
Effect of a 2-week Scratch Intervention in CS1
on Learners with Varying Prior Knowledge

Shitanshu Mishra
IDP in Educational Technology

Indian Institute of Technology Bombay
Mumbai, India

shitanshu@iitb.ac.in

Sridhar Iyer
Department of CSE

Indian Institute of Technology Bombay
Mumbai, India
sri@iitb.ac.in

Sudeesh Balan

IDP in Educational Technology
Indian Institute of Technology Bombay

Mumbai, India
sudbalan@gmail.com

Sahana Murthy
IDP in Educational Technology

Indian Institute of Technology Bombay
Mumbai, India

sahanamurthy@iitb.ac.in

ABSTRACT

A large CS1 class often needs to provide scaffolding for novices
while keeping advanced learners engaged. Scratch has been
shown to be suitable to address a diverse set of requirements. In
this study, we determine whether a 2-week Scratch intervention
in a CS1 course is useful from two perspectives: i) as a scaffold
for novices to learn basic programming concepts and transition
to C++, and ii) as a tool for advanced learners to remain engaged
and do challenging work. We conducted a field study of 332
first-year undergraduate engineering students, two-thirds of
whom were novices. We analyzed student performance on
exams and Scratch projects. We administered a survey to
determine student perceptions on the usefulness of Scratch.
Some key findings of our study are: (i) Novices were able to
catch-up to advanced learners in Scratch questions of the type
'Predict the output' and 'Debug the program', (ii) Projects by
advanced learners reached 80% of the complexity of 'most loved
projects' on the Scratch website, and (iii) 69% of students
perceived Scratch to be useful for learning programming
concepts and transitioning to C++.

Categories and Subject Descriptors

K.3.2 Computer Science Education.

Keywords

CS1; scratch intervention; novice learners; advance learners;

1. INTRODUCTION
In typical Indian universities, there is a single programming
course for all freshmen engineering students, with the main
programming language taught in the course being C++ or Java.
Students come with widely varied programming experience,
ranging from those with zero prior exposure, to those already
competing in programming contests. Thus, novices get daunted
because they have to simultaneously learn both new constructs
and syntax, while advanced learners tend to get bored when

basic concepts are being taught. Instructors face a dual
challenge: (i) quickly equip novices with basic programming
concepts and skills so that they can keep up with the main
learning outcomes of the course, (ii) keep the advanced learners
engaged. Hence we need a solution that addresses both these
problems. In this study, we examine the suitability of a 2-week
Scratch curriculum as a solution for both novices and advanced
learners, in a large CS1 course. Scratch has been found to
facilitate the learning of programming and computer science
concepts [11]. It has been shown to have: a “low floor” (easy to
get started with); “high ceiling” (complex projects can be built);
and “wide walls” (can address variety of topics and themes)
[13], especially at the middle school level, with some attempts to
use it in a CS1 course at the college-level [20]. It has been
recommended for novice programmers for its ease of use, as
well as for advanced programmers for its facility to build
complex projects [9].

Motivated by the potential of Scratch to address such diverse
needs, the research goal of this study is to investigate the impact
of a short intervention of Scratch in a large, academically
diverse, college-level CS1 course on C++ programming. Most
Scratch studies (except 2 or 3 such as Malan's [20]) are done in
middle school while ours is at the college level. We determine
the effectiveness of Scratch from two perspectives: i) as a
scaffold for novices to learn basic programming concepts and
transition to C++, and ii) as a tool for advanced learners to
remain engaged with content. Our research questions (RQ) are:

RQ1: How much have novices learnt, in terms of: (a) basic
programming concepts and (b) how much were they able to
transition to C++?
RQ2. What are the benefits of Scratch to advanced learners?
RQ3: How useful do students perceive Scratch to their
learning of programming concepts and their engagement?

We conducted a field study of implementing Scratch in a large
CS1 class to answer the above research questions. Our treatment
consisted of two weeks of Scratch instruction that included four
lectures, three labs and a project. Our research was conducted
in-situ, instead of controlled lab experiments, as we were
interested in determining the effects of deploying Scratch as a
short-term intervention in a regular university classroom setting,
wherein the rest of the course was taught using C++. We used a
mixed-methods research design to answer the research questions
(RQs). We categorized students as novices or advanced learners
based on their responses to a questionnaire on prior

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ITICSE'14, June 21–25, 2014, Uppsala, Sweden.
Copyright © 2014 ACM 978-1-4503-2833-3/14/06…$15.00.

http://dx.doi.org/10.1145/2591708.2591733

45

programming background, which was administered in the first
week of the semester. Students’ learning of programming
concepts after instruction was assessed via questions on an in-
semester quiz and mid-term exam (RQ1). Data from one other
source was used to determine the extent of novice students’
application of programming concepts and skills (RQ1). This
source was a non-traditional assessment tool in which students
were asked to generate questions in different CS1 topics.
Another data source was Scratch projects done by students.
These were analyzed via Scrape tool [6], to determine the
complexity of projects created by advanced learners, which we
used to infer the engagement of advanced learners (RQ2).
Finally, we administered a survey questionnaire to determine
students’ perceptions of the usefulness of Scratch for their
learning and engagement (RQ3).

Our results showed that novices were able to catch-up to
advanced learners in Scratch questions of type – ‘Predict the
output’ and ‘Debug’. However, we found that novices did not
perform comparably on questions where they had to write a
program of a numerical nature (such as generating Fibonacci
sequence or Pascal’s triangle). In case of advanced topics that
can be easily taught via Scratch - threads and graphics - both
novices and advanced learners showed evidence of learning.
Projects by advanced learners reached 83% of the complexity of
the “Most-loved projects” on the Scratch website [15] indicating
high engagement. Student perceptions from the survey
confirmed that Scratch was beneficial in helping them learn
basic programming concepts and transitioning to C++, with 69%
agreement. The most frequently cited benefit of Scratch was that
it helped students overcome the barrier to start programming,
which is a key insight regarding the usefulness of Scratch for
students’ affective component. The survey also showed that
Scratch projects helped keep students engaged with the content.

2. THEORY AND RELATED WORK
In this section, we first discuss the theoretical basis for using
Scratch (Section 2.1), from the perspective of reducing cognitive
load and scaffolding for novices, and balancing skill versus
challenge for advanced learners. We then focus on prior work on
the use of Scratch in college-level courses (Section 2.2).

2.1 Theoretical basis for using Scratch
Students without any prior exposure to programming need to
simultaneously learn the techniques to solve a problem, and the
use of a programming language as a tool to solve the problem.
These multiple demands on working memory could lead to
cognitive overload [19] for a novice programmer. This prevents
novice students from learning computer science concepts and
has been reported to be a major problem in CS education [5].
One approach to reducing cognitive load has been the use of
visual programming environments [1] that allow students to
assemble code snippets using a drag-and-drop interface. Scratch
is one language having such an environment.

A Scratch intervention can thus be considered as a scaffold for
novice students. Scaffolding is a temporary support provided by
an instructor to assist learners for dual purposes [12]: i) in
completing a task that they otherwise would not be able to
accomplish, and, ii) in enabling students to learn from that
experience so that they are prepared to perform similar tasks in
the future. Our Scratch intervention makes use of both functions
of scaffolding by helping novice programmers to conceptually
solve a problem without having to focus on the details of syntax,

and to apply these programming concepts when they later
transition to writing programs in C++.

Advanced learners, on the other hand, need a sufficiently
challenging set of learning materials so that they remain engaged
with the content. From the perspective of Flow Theory [4],
students become and remain engaged in learning when there is
equilibrium between the challenge level of the activity and the
learner’s personal skill. A high-school study has reported
students to have experienced higher engagement when the
perceived level of challenge and their skills were high and in
balance with each other [17]. We exploit the ‘high ceiling’
feature of Scratch [13] to provide advanced learners with
activities commensurate with their skill level.

2.2 Scratch in CS0/CS1
Scratch is a visual programming environment that provides
various ‘blocks’ of programming constructs, such as statements,
conditions, loops, operators, variables, and so on. These can be
dragged and dropped onto a ‘stage’ area in ‘stacks’ that can be
then executed. A detailed account of the features and capabilities
of Scratch can be found in [8] and [13].

Scratch was designed to promote ‘technological fluency’ [13]
among young learners. It enables users to create media rich
‘projects’ (Scratch programs) such as animation, music videos
and games. In terms of programming, Scratch has been shown to
be useful to learn concepts such as loops and conditionals [8].

Though majority of Scratch users are at the middle and high-
school levels, Scratch has been used in a few formal courses at
the college level [20]. In [9], Scratch was used in a CS1 course
for a short period (1-2 weeks) before transitioning to more
advanced programming constructs in Java. Students were first
introduced to basic programming constructs using Scratch. They
created Scratch projects with multiple stacks as part of the
assignments. The study reported overall positive findings of
student perceptions. In a different implementation for at-risk
students [14], Scratch was deployed in a semester-long CS0
course to improve the retention and performance of students.
Survey and performance data indicated that the CS0-Scratch
course was effective in preparing students for the next level CS1
course. Our study includes both learning data and perception
data.

We found that there are several other programming tools and
techniques to help novices learn programming [16]. Some are
visual programming environments, such as Alice [3] and JPie
[18]. Others allow students to visualize the control flow of a
program [7] and create mental models [10]. However, some
researchers have commented that these tools either have a high
learning curve for first-time programmers, or are restrictive as
compared to Scratch [9]. Hence we did not explore the use of
these tools for our intervention.

3. COURSE IMPLEMENTATION
The setting for our study was a large enrollment CS1 class of
450 first year undergraduate students, across various engineering
disciplines, excluding CS majors; the student characteristics are
described in Section 4.1. The goal of the CS1 course was to
teach programming concepts and C++ skills. The course was
conducted over 14 weeks in Spring 2013, using lectures and
labs. Our Scratch intervention was limited to the first two weeks
of lecture and three weeks of lab. The details are as follows:

46

• Lecture: The blocks on motion, control, sensing, operators,
and variables, were discussed in detail, with lesser
emphasis on the blocks on looks, sounds and pen.
Additional attention was given to the advanced constructs
such as lists (arrays) and event handling (broadcast-
receive). The lectures had an active learning structure. For
example, the program shown in Figure 1 was used in the
second week. Students were required to make predictions to
answer questions like “What will happen if keys s and t are
pressed simultaneously?”

• Lab: The lab activities depended on the lecture contents of
the previous week. The students worked in pairs. The first
lab got students familiar with the Scratch environment, by
getting them to run and modify a given program. The
second lab required them to play a game of space-invaders,
already implemented in Scratch, do a code walk-through,
and then modify the code for altering a given behavior of
the game. The third lab had students use the single step
mode to observe threads interleaving, debug programs, and
also work on their projects as described below. Activities
from the fourth lab onwards were using C++.

• Project: In parallel with labs two to four, the student pairs
also worked on building a game for their Scratch project,
which they demonstrated to the TA at the start of lab five.
A description of the projects is given in Section 4.2.2 and
their analysis is presented in Section 5.2.

• Question Generation: In lab five, each student pair was
asked to generate two questions that other students could
practice on. A description of this activity is in Section 4.2.3
and the corresponding analysis is presented in Section 5.1.

• Assessment: One quiz (1-hour written exam) and one
midterm had Scratch questions, to test students’ conceptual
understanding along traditional lines. Midterm had C++
questions also, which were used to address RQ1b.

This intervention meets our requirements as: 1) Scaffolding for
novices was achieved by the gradual ramp-up of the concepts in
the two weeks of lecture, followed by applying the concepts in
the labs. 2) Engagement for advanced learners was achieved by
having the project start in the second week, and giving students
the freedom to decide the nature and complexity of their project.
The only incentive for performance was that the top few projects
were to be showcased as the ‘Hall of Fame’.

4. STUDY METHODOLOGY
We used a mixed methods design and triangulated our data with
multiple types of measurements for each research question. We
describe the data collection instruments and the analyses in
Section 4.2. Now, we first describe our sample and how we
categorized students into ‘novices’ and ‘advanced learners’.

4.1 Sample
There were 450 students registered for the class (395 male, 55
female). All were first year students majoring in different
branches of engineering. Students who were admitted to our
institute were among the highest ranked in an extremely
competitive exam testing analytical skills in mathematics,
physics and chemistry (they were all among the top 1000 out of
500000 students). Hence all students in the study can be
considered as equivalent in all respects, except prior exposure to
programming.

To determine prior programming background, we conducted a
survey in the first week of the semester. Students had to respond
to a series of questions on their familiarity with computers and
programming experience. Those who had opted for
programming electives in Grades 10 or 12, or had done
programming outside of school, were classified as ‘advanced
learners’. Others were classified as ‘novices.’ 332 students
completed the above survey, hence only those students were
considered in the sample. We found 217 students were novices,
and 115 were advanced learners. 10 advanced learners had
participated in programming contests.

4.2 Data collection tools and analysis
4.2.1. Quiz and mid-term exam question scores
Scores from the quiz (4th week) and the mid-term (6th week)
were used to determine students’ acquisition of basic
programming concepts (RQ1). The quiz contained four
questions, all of which were based on Scratch, while the mid-
term exam contained three questions, of which one was based on
Scratch and the others on C++. There was a mix of conceptual
and programming question types, including: ‘predict the output’,
‘debug the program’, as well as ‘write a program’. These were
typical CS1 questions. For example, a program for BubbleSort
with erroneous array initialization and loop conditions was given
and students were required to debug the program. In another
question, they were required to write a program to output the
Fibonacci series. We did not analyze scores from tests after the
mid-term exam since the topics in the latter half of the semester
were not related to the Scratch intervention.

Analysis

We analyzed novice learners’ performance on the above
questions and examined the scores in each category of questions.
We have also used scores of advanced learners as a benchmark
to estimate the absolute learning gain for Novices (RQ1).

4.2.2 Scratch projects
At the end of the second week, students were asked to work on a
Scratch project in teams of two. They were expected to exercise
their creativity and also demonstrate their learning, by writing
games using multiple scripts and blocks. Students worked on
their projects for a period of two weeks during their labs but
were free to work outside of lab hours also. Projects were graded
by lab TAs and exceptionally good projects (with large number
of sprites, having complex interactions and emulating real-world
functionality) were hosted on the course website as 'Hall of
Fame' entries.

Analysis

We analyzed the Scratch projects using the Scrape visualization
tool [6]. The Scrape tool provides a record of the programming
constructs used in each project, such as, variables, sprites, stacks
and blocks. We analyzed the frequency of use of different
constructs by advanced learners and students whose projects
were showcased in the Hall of Fame. We used the reference of

Figure 1: Example program -‘predict the output’ activity

47

average frequency distribution of constructs used in the ‘Most-
loved’ projects [15], as an estimate of ‘high ceiling’ [13], while
examining the performance of our advanced learners (RQ2).

4.2.3. Question-generation by students
In the 5th lab, students did a question-generation exercise. Each
pair of students was asked to generate two questions, pertaining
to the topics covered so far, which could be given as practice
questions for the next lab-batch. They were free to set either a
programming problem or a conceptual question, and had to
submit detailed answers to their generated questions. They were
given only one open-ended guideline “The questions should be
challenging but should not be too difficult for the students in the
next batch to complete in the lab”. We used the question-
generation exercise as an independent measure to examine the
extent of application of programming concepts, and hence of
students’ learning of the concepts (RQ1).

Analysis

We analyzed each question generated on the basis of the
programming concepts targeted by it. These concepts were
chosen from computational thinking concepts described in [2],
and include: Sequence, Loops, Threads, Events, Conditionals,
Operators, Variables, and Arrays.

4.2.4. Survey questionnaire
We created a survey to address RQ3: How useful do students
perceive Scratch to their learning of programming concepts and
their engagement? The survey had five questions, the first three
of which were on a Strongly Agree to Strongly Disagree Likert
scale. Q1 was on whether students perceive Scratch useful for
learning programming concepts; Q2 was to determine students’
perception of the usefulness of Scratch to transition to C++; Q3

asked students if they enjoyed programming with Scratch; the
last two questions were open-ended. In Q4, students were asked
to write the main benefit they found in using Scratch, and in Q5
they were asked for the most frustrating aspect in using Scratch.

Analysis
Quantitative analysis of first three questions gives the measure
of students’ engagement and their perception about usefulness of
Scratch for their learning. Open ended - Questions 4 and 5 were
analysed using content analysis technique to examine the
advantages-disadvantages of Scratch as perceived by students.

5. RESULTS
Recall that our goals were to explore use of Scratch as : i) a
scaffold for novices to learn basic programming concepts and
transition to C++, and ii) a tool for advanced learners to remain
engaged and do challenging work. Section 5.1 gives the results
corresponding to goal 1 which relates to RQ1 and RQ3. Section
5.2 gives the results corresponding to goal 2 which corresponds
to RQ2 and RQ3.

5.1 Learning of Programming concepts by

Novices
5.1.1 Acquisition of programming concepts and

transitioning to C++: Exam scores
Table 1 shows exam scores of novices and advanced students in
different types of questions in Scratch and C++. An independent
sample t-test shows that novices were able to catch-up to
advanced learners in Scratch questions of type – ‘Predict the
output’ and ‘Debug’. Novices were not able to catch-up in C++
‘Debug’ questions, perhaps because they did not get adequate
time to get familiar with the syntax; the test was conducted
within 3 weeks after the transition. Novices were not able to
catch-up in any ‘Write a program’ question, which is somewhat
to be expected (RQ1).

The correlation analysis between midterm scores in the Scratch
with midterm scores in C++ indicated a moderate positive linear
relationship. In addition to this, 65% of the students who did
well (score higher than 1 SD above mean) in Scratch in the
midterm exam, also did well in the C++.

5.1.2 Application of Programming Concepts:

Question-Generation
Table 2 shows the number of student-pairs who generated
questions involving various programming concepts. We labeled
a pair as ‘advanced’ if at least one of them was an advanced
learner as per ‘prior programming background’ survey. The
presence of a concept in a question generated by students
indicates that they have learnt and applied that concept.

Table 2: Concepts addressed in Question-generation activity

Concepts

Questions generated by novices
(% questions in which this concept is addressed)

total no. of questions =84

Note: % questions generated by advanced

learners are given in ()

Sequence 92 (90)

Loops 65 (83)

Threads 10 (5)

Events 11 (5)

Conditionals 61 (66)

Operators 94 (83)

Data 95 (93)

Arrays 10 (24)

We note that for concepts of sequence, data and conditionals, the
percentage of questions generated by novices was comparable to
that of advanced learners. Moreover, since all students submitted
solutions to their generated questions, it shows that students are

Table 1: Scores on exam questions of different types in Scratch and C++ (Maximum Marks for each question: 10)

Novice

Average (SD)
Advanced

Average (SD)

 Predict output Debug a program Write a program Predict output Debug a program Write a program

Scratch

Ques.1 - 7.5 (3.4)
Ques.2 - 7.2 (2.2)

Ques.3 - 6.9 (3.5)
Ques.4 - 4.6 (4.5)

Ques.5- 3.4 (3.3)
Ques.6 - 2.8 (3.5)

Ques.1 - 8.2 (3.0)
Ques.2 - 7.6 (1.9)

Ques.3 - 8.1 (3.0)
Ques.4 - 5.4 (4.2)

Ques.5 - 6.8 (3.2)
Ques.6 - 5.8 (3.9)

C++
NA

Ques.7 - 7.1 (4.3)
Ques.8 - 5.4 (3.7)

Ques.9 - 6.4 (2.9) NA
Ques.7 - 9.2 (2.3)
Ques.8 - 7.8 (2.8)

Ques.9 - 9.1 (1.9)

48

not only addressing different programming concepts but are also
comfortable in solving questions requiring these concepts.

5.1.3 Student Perception of Learning
We show a summary of responses to the first two Likert-scale
items (Questions 1, 2) on the student perception survey. To
simplify the presentation, we have combined responses in the
Strongly Agree and Agree categories as Positive, and the
Strongly Disagree and Disagree as Negative. The neutral
responses to the Likert items were left as is. These are shown in
Table 3 (Total number of responses=337).

Table 3: Summary of survey responses – Learning

Item Positive

(%)

Neutral

(%)

Negative

(%)

Scratch is useful for learning
programming concepts.

70 18 12

It is useful for beginners to learn
Scratch before moving on to C++.

69 15 16

The results show that a majority of students perceived Scratch to
be useful for learning basic concepts as well as for transitioning
to C++ (RQ2).

5.2 Engagement of Advanced Learners

5.2.1 Application of Programming Concepts:

Scratch Projects
We were able to obtain 93 projects for analysis. In 35 out of 93,
one or both members of the team had not taken the ‘prior
programming background’ survey conducted in the first week
(See section 4.1). Hence we could not classify these projects as
belonging to novice or advanced learners. Of the remaining 58
projects, any team that had both novices was classified as a
‘novice’ project, while any team with at least one advanced
learner was classified as an ‘advanced’ project. This resulted in
18 ‘novice’ projects and 40 advanced projects. 13 out of the 40
advanced projects qualified as Hall-of-fame entries, so for
analysis we split the advanced category into 27 ‘advanced’ and
13 ‘Hall-of-fame’.

There was a variety of games in the projects. Some of the most
frequent types of games were “shooting games”, “maze based
games”, “batting games”, and “car racing games”. Six games
were multi-player and thirty nine were single player games;
forty were found to be single-level games while five had
multiple level options. Each game was tested and found to be
acceptable in terms of usability. First, we counted the number
programming constructs used in novice, advanced and Hall-of-
fame. These are shown in Table 4, along with corresponding
numbers for ‘Most-loved’ projects from Scratch website [15],
for reference. From Table 4, we note that advanced projects use
on an average 67% constructs as the most-loved projects, while
Hall-of-fame projects use 105% of constructs compared to
Most-loved projects. If we combine the results of all advanced
learners in our course, i.e., advanced and Hall-of-fame, we find
that their constructs usage is 80% that of Most-loved projects.

Thus, our advanced learners are able to achieve results
comparable to the Most-loved projects, even in a period of only
three weeks. It should be noted that the reward for the Scratch
project was just 5 marks, and even with this meagre reward
students generated complex projects. This shows that they were
indeed engaged.

5.2.2 Student Perception of Engagement
The summary of responses corresponding to the Question 3 of
the student perception survey questionnaire is shown in Table 5.
(Total number of responses=337).

Table 5: Summary of survey responses - Engagement

Item Positive (%) Neutral (%) Negative (%)

Enjoyed programming

with Scratch.

65 15 20

As evident from Table 5, a majority of students perceived the
experience of Scratch programming to be positive. This shows
that Scratch has positively affected students’ engagement.

6. DISCUSSION
We first examined if the Scratch intervention was effective in
novices’ acquisition of basic programming concepts and in their
transition to C++ (RQ1). From the analysis of scores on exam
questions, we find evidence of learning basic programming
concepts. However, the performance of novice students was
comparable to that of advanced learners only on Scratch
questions of types: Predict output of a program, and debug a
program. In typical questions of write a program, novices lag
behind advanced learners. This is to be expected as only six
weeks had elapsed in the course. The gap persists in scores on
C++ questions. So from the perspective of achievement on
traditional exams, we conclude that our Scratch intervention was
only a qualified success.

When we analyze students’ learning (RQ1) in terms of how well
they apply programming concepts in the question-generation
activity, we find that novices have a high ‘catch-up’ with
advanced learners. In this non-traditional assessments, we see
that i) novices indeed show strong evidence of application of
programming concepts and ii) the performance of novices is
often comparable to that of advanced students.

Student perception data from the survey strongly support that
Scratch was useful for the learning of basic concepts of novices
and that it helped them transition to C++ (RQ3).

The effectiveness of Scratch for advanced learners (RQ2) is
clearly seen from the performance of advanced learners on
Scratch projects, and is corroborated by survey data. The Scratch
project creation activity pushed advanced students towards a
high boundary in terms of the extent of their application of
programming concepts. We see this as evidence of students’

Table 4: Average number of occurrences of programming

constructs used in Scratch projects

Programming

Constructs

‘Novice’
projects
(N=18)

‘Advanced’

projects

(N=27)

Hall-of-fame

projects

(N=13)

‘Most loved
games’
(N=10)

Variables 5 9 12 9

Sprites 14 30 35 35

Stacks 38 77 131 101

Control 111 230 417 454

Motion 51 83 147 129

Operator 38 92 147 197

Sensing 32 63 117 75

Other blocks 38 117 177 403

Total 327 701 1183 1403

49

engagement with the content and conclude that Scratch was an
appropriate choice to address this instructional goal.

Open-ended responses in the survey data (Q4) support this point:
students have said that “[I am] thrilled to be able to code
complex games” and “[coding] games helped increase my
interest, […], there was lot of room for experimentation.”
Responses to the first open-ended question in the survey data
identified some major benefits. In addition to the cognitive
aspect of the benefit of Scratch to learn programming concepts
and skills, nearly a third of the responses addressed the affective
benefit of using Scratch to begin programming. Several students
commented that Scratch “helped improve confidence” and
“removed fear of programming.” Majority also commented that
Scratch "helped in understanding C++", indicating its usefulness
in transitioning to C++. Other benefits were the ease of
programming threads and graphics, syntax-free visual
environment and the fun element in using Scratch. On the
contrary, responses to the second open ended question (Q5)
brought out some disadvantages of using Scratch such as
cumbersome features of the IDE and the limitation of the
language capability of Scratch.

As mentioned in Section 1, our findings are subject to validity
threats due to the field-study setting in which they were
conducted. The biggest threat is the lack of control while
interpreting exam scores. Since we could not compare the
performance of our students with a group that did not get the
Scratch intervention, it is possible that the learning we observe
through exam performance could have been due to reasons other
than the 2-week Scratch intervention. To offset this issue we
used a combination of different data collection sources and
different analysis approaches – qualitative and quantitative. We
triangulated our findings from exam scores with several other
sources. The variety of assessment instruments we used gave us
different views into our research questions, and we were able to
infer learning and engagement from several perspectives.

7. CONCLUSION
We conclude that an intervention of two weeks of Scratch
lectures, along with three labs and a project is useful for learning
basic programming concepts at CS1 level, addressing diversity
by scaffolding for novices, engagement for advanced learners.
However, this specific intervention of Scratch has limited
usefulness in helping novices to catch up with advanced learners
in typical programming exam questions.

Even though the original motivation for our study was to address
the needs of the diverse academic population in an Indian
university, our results are useful for: a) CS0/CS1 instructors
looking for a solution to help students with no programming
background from getting daunted by syntax and concepts, and,
b) for engaging college students with prior programming
exposure with building complex programs and exercising
creative expression in programming.

8. REFERENCES
[1] Blackwell, A.F. 1996. Metacognitive Theories of Visual

Programming: What do we think we are doing?. Visual

Languages, 1996. Proceedings. IEEE Symposium on,
Cambridge, Pages 240-246.

[2] Brennan, K., Resnick, M. 2012. New frameworks for
studying and assessing the development of computational
thinking. In Proceedings of the 2012 annual meeting of the

American Educational Research Association (Vancouver,
Canada).

[3] Carnegie Mellon University. Alicev2.0. www.alice.org.

[4] Csikszentmihalyi, M. 1997. Finding flow: The psychology
of engagement with everyday life. Basic Books.

[5] Gray, S., Clair, S. C., James, R., Mead, J. Graduated
exposure to programming concepts using fading worked
examples. 2007. ICER ’07 Proceedings of the third

international workshop on Computing education research.

Georgia, ACM, Pages 99-110.

[6] Home of Scrape. River Sound Media. happyanalyzing.com

[7] Jeliot3.Program Visualization tool. cs.joensuu.fi/jeliot/

[8] Lifelong Kindergarten, MIT Media Lab. Scratchweblogs.
http://media.mit.edu/llk/scratch/.

[9] Malan, D. J., & Leitner, H. H. 2007. Scratch for budding
computer scientists. ACM SIGCSE Bulletin, 39(1), 223-
227.

[10] Margulieux, L. E., Guzdial, M., Catrambone, R. 2012.
Subgoal-labeled instructional material improves
performance and transfer in learning to develop mobile
applications. In Proceedings of the ninth annual

international conference on International computing

education research (pp. 71-78). ACM.

[11] Meerbaum-Salant, O., Armoni, M., and Ben-Ari, M. M.
2010. Learning computer science concepts with scratch. In
Proceedings of the Sixth international workshop on

Computing education research (pp. 69-76). ACM.

[12] Reiser, Brian J. 2004. Scaffolding complex learning: The
mechanisms of structuring and problematizing student
work. Journal of the Learning Sciences: 13(3), 273-304.

[13] Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., and Kafai, Y. 2009.
Scratch: programming for all. Communications of the
ACM, 52(11), 60-67.

[14] Rizvi, M., Humphries, T., Major, D., Jones, M., and
Lauzun, H. 2011. A CS0 course using scratch. Journal of
Computing Sciences in Colleges, 26(3), 19-27.

[15] Scratch projects: scratch.mit.edu/tagged/toploved/game

[16] Sheard, J., Simon, S., Hamilton, M., Lonnberg, J. Analysis
of Research into the Teaching and Learning of
Programming. 2009. ICER '09 Proceedings of the fifth

international workshop on Computing education research

workshop. (California). ACM, Pages 93-104.

[17] Shernoff, D. J., Csikszentmihalyi, M., Shneider, B., and
Shernoff, E. S. 2003. Student engagement in high school
classrooms from the perspective of flow theory. School
Psychology Quarterly, 18(2), 158-176.

[18] The JPie project. www.jpie.cse.wustl.edu/

[19] Van Merrienboer, J. J., & Sweller, J. 2005. Cognitive load
theory and complex learning: Recent developments and
future directions. Educational psychology review, 17(2),
147-177.

[20] Wolz, U., Leitner, H. H., Malan, D. J., and Maloney, J.
2009. Starting with Scratch in CS1. Proceedings - 40th
ACM technical symposium on CS education, Tennessee,
ACM, pp 2-3.

50

