
Think-Pair-Share in a Large CS1 Class:
Does Learning Really Happen?

Aditi Kothiyal
Inter-Disciplinary Program in

Educational Technology
IIT Bombay, India

aditi.kothiyal@iitb.ac.in

Sahana Murthy
Inter-Disciplinary Program in

Educational Technology
IIT Bombay, India

sahanamurthy@iitb.ac.in

Sridhar Iyer
Department of Computer Science

and Engineering
IIT Bombay, India
sri@iitb.ac.in

ABSTRACT
Think-pair-share (TPS) is a classroom active learning strategy in
which students work on activities, first individually, then in pairs
and finally as the whole class. TPS allows students to express
their reasoning, reflect on their understanding and obtain prompt
feedback on their learning. While TPS is recommended to foster
classroom engagement and learning, there is a lack of research
based evidence in computer science education on the benefits of
TPS for learning. In this study, we investigate the learning
effectiveness of TPS in a CS1 course. We performed a quasi-
experimental study and found that students who learned via TPS
performed significantly better on a post-test than students who
learned the same concept via lecture. We also conducted a survey
and focus group interviews to understand student perceptions of
learning with TPS. The majority of students agreed that TPS
activities helped improve their conceptual understanding. From an
instructor’s point of view, TPS was useful to address the
challenges of a large class, such as students tuning out or getting
distracted and was easy to implement even in a large class.

Categories and Subject Descriptors
K.3.2 [Computers and Education]

Keywords
CS1, large class, active learning, think-pair-share, experimental
study, effectiveness, learning.

1. INTRODUCTION
CS1 is an introductory programming course at many universities.
Typical goals of a CS1 course are conceptual understanding of
programming constructs, code tracing to predict the output,
debugging and modifying code, and finally writing the program
itself [7]. At our institute, CS1 is mandatory for freshman
engineering students of all disciplines. It is a large class (450
students) with diversity in terms of student prior exposure to
programming and motivation. Hence an instructor faces the
challenge of ensuring that students across these variations are
engaged and learning effectively.

Active learning techniques are known to enhance student
engagement and improve student learning [13] . The choice of the
active learning technique to be used for a class or a topic depends

upon the corresponding instructional goals. For CS1 we need an
active learning technique that is easily implementable in a large
classroom setting and can be used for the goals stated above.
Think-Pair-Share (TPS) [9], [10] is one such active learning
technique. TPS is a structured co-operative strategy implemented
in three phases as follows: 1) Think: The instructor poses a
question and students think and write their answer to it, 2) Pair:
Students work in pairs on an extension of the task posed in the
Think phase and 3) Share: Students share their solutions and
engage in a class-wide discussion, moderated by the instructor.

TPS has several known benefits of small group cooperative
learning, such as engaging students with the content, the
instructor and each other [1] [3], development of higher order
thinking skills [4], and opportunity for formative assessment [2].
Despite the benefits of TPS, it has not been researched and
evaluated in computer science education (CSE) for evidence of
student learning. In a related paper [5], we provided evidence that
TPS results in high student engagement in a large CS1 class. In
this paper, we present a two group experiment showing that TPS
results in effective learning. In addition we also offer guidelines
on how to design TPS activities that not only meet the CS1
instructional goals but also are easy to implement in a large class.

Our broad research goal was to study the effects of TPS activities
on the conceptual understanding and application of CS1 concepts
in a large enrolment class. Our specific research questions (RQs)
were:
1) Do TPS activities lead to increased conceptual understanding

and application of CS1 concepts?
2) What are the students’ perceptions of learning with TPS?
3) What are the instructor’s perceptions of teaching with TPS?

We performed a control group experiment to answer RQ1,
surveyed students and conducted focus group interviews to
answer RQ2 and used instructor class logs to answer RQ3. We
found that students in the experimental group who learned a
concept via TPS performed significantly better on the post-test
than students in the control group who learned the same concept
via an interactive lecture. Further, in the perception survey, a
majority of the students agreed that they would not have learned
as much from the lectures had there been no TPS activities, and
that the tasks in each of the phases helped conceptual
understanding. Instructor perception confirmed that many
benefits of TPS activities, such as getting students to engage
deeply with the content, continue to hold even in a large CS1
classroom setting.

2. BACKGROUND AND RELATED WORK
Active learning comprises research-based instructional strategies
in which students engage with the content in a deeper way than

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org
ITICSE '14, June 21–25, 2014, Uppsala, Sweden.
Copyright 2014 ACM 978-1-4503-2833-3/14/06 $15.00.
http://dx.doi.org/10.1145/2591708.2591739 .

51

just listening to lecture or copying notes. They express their
thinking and reasoning by writing, speaking, drawing diagrams,
and problem-solving [1][13]. Characteristics of active learning
methods are that students often work in small groups, are engaged
in tasks emphasizing qualitative reasoning and conceptual
thinking, and receive rapid feedback [13].

Active learning methods researched in CSE include pair
programming (PP) [12], [14] peer instruction [15], [16], just-in-
time teaching [11], process oriented guided inquiry learning [6]
and inverted classroom [8]. PP [12], [14] is a collaborative
technique in which two students work together in the lab to solve
open programming problems like design, development and testing
[18]. It has been shown that PP improves student retention and
confidence [12] and quality of programs produced [18]. A method
for large classes that been extensively researched in CSE is Peer
Instruction (PI) [15]. In PI, students work on multiple choice
questions aimed at improving conceptual understanding and
qualitative reasoning [15]. It has been shown that students
learning via PI have higher grades in the CS0 course than
equivalent students learning via a traditional lecture [16].

An active learning strategy that has not received significant
attention in the CSER community is Think-Pair-Share (TPS). TPS
and PI have some common features. In both methods students
initially think about the problem posed by the instructor
individually and commit to an answer, the difference being that
students record a written answer in TPS and vote on their choice
in PI. Students then discuss in pairs or groups. In TPS, this
discussion can involve a checking of each others’ answers, as well
as working together to solve the next part of the problem; while in
PI, the discussion is mostly focused on the students’ votes. The
final Share phase in TPS can be compared to the Whole-class
discussion recommended in PI [19]. In this phase, TPS involves
discussion of multiple solutions and their pros and cons, while PI
focuses on students’ reasoning for various answers. Both methods
can be used to address the goals of conceptual understanding. In
addition, TPS allows the posing of open-ended problems such as
writing programs, which is not possible with PI.

TPS is based upon several key ideas that have been shown to be
effective for learning, including active learning [13] and
cooperative learning [4]. TPS has been shown to be a good
classroom formative assessment technique [2][17]. Since
grouping is done informally, the constraint on movement and
requirement of teaching assistants, typical of large classes, is
overcome. While there have been some studies to establish the
effectiveness of TPS for learning in domains like psychology
[2][17], there are fewer studies evaluating the effectiveness of
TPS in the learning of computer science and other STEM
disciplines. As we showed in a related paper, >80% of students
were engaged and on-task in each phase of the TPS [5].

3. COURSE DESIGN
3.1 Course Goals and Challenges
The specific instructional goals of our CS1 class were to teach our
freshman engineering class programming concepts and skills, i.e.,
conceptual understanding of programming constructs, analysis of
a program to predict the output and debug/modify code,
developing programming logic to solve a specific problem,
writing pseudo code and finally writing the program itself.

All classes were taught by the same instructor. Challenges that the
instructor had to deal with included: large number of students

(450); large diversity in prior exposure, ranging from students
who had never used a computer to those who were fluent in C++
programming; and stadium style seating with fixed chairs and
tables, leading to constraint on student movement and grouping
for collaborative learning. The challenge was to keep students
engaged with the content, the instructor, and with each other,
despite these constraints.

3.2 General Course Implementation Details
The CS1 course was conducted over 14 weeks in Spring 2013.
The topics covered were control structures such as conditionals,
iteration, functions and recursion, data structures such as arrays,
matrices, strings and queues, object-oriented structures such as
classes and the concept of inheritance. In the first two weeks of
the course, Scratch was used to introduce basic programming
constructs; the rest of the course was taught via C++.

Students were from varied engineering disciplines but not CS
majors. They were divided into two sections for lectures. Each
section had two 90-minute interactive lectures per week, in which
instructor lecturing was interspersed liberally with instructor and
student questions, open discussions, student activities and
program demos. The course did not have recitations and problem
solving activities were included into the lecture itself. The course
also consisted of a 2-hour lab per week, which consisted of
programming exercises designed to give students practice in the
application of the skills and concepts learned in the lectures.

3.3 Instructional Method: Think-Pair-Share
Problems addressing goals of tracing, modifying and writing code
can have multiple valid solutions. As instructors, we want
students to not only be able to devise a solution to the problem,
but also analyze the pros and cons of various solutions. Hence we
need a format of active learning that: (i) gets students vested in
the problem by getting them to first devise their own idea of the
solution, (ii) prevents students from feeling daunted with the task
by allowing them to work with each other, and (iii) affords
discussion of pros and cons of multiple solutions. The three
phases in TPS offer a natural fit to meet these requirements. Most
lectures had two TPS activities on average.

Think phase. The instructor presented the task, and students
worked individually on the task for about two minutes and wrote
their answers in their notebooks. For example, the instructor
presented the following question (Also see Table 1).
“Predict the output of the following program:

int main() {
int A[4], *p;
for (int i = 0; i < 4; i++) A[i] = i;
p = &A[0];
cout << *p << " " << *(p +=2) << *(p+1) + *(p-1) <<

endl; }”

Pair phase. The instructor gave a task related to or extended from
the Think phase question. In the above example the task was,
“Check your neighbor’s solution and determine if it is the same as
yours. If not, discuss and come up with a solution that you both
agree on.” The students worked with their neighbors to complete
the task in three to five minutes. The instructor walked along the
aisles, encouraging discussion and answering queries.
Share phase. The instructor led a class-wide discussion related to
the tasks in the Think and Pair phases. In the above example, the
instructor elicited a few responses, and then executed the program
to show the output. He then asked students to propose

52

modifications in the code that could result in the other responses
that came up. Students followed the discussion to verify their
solution and discuss ‘what-if’ scenarios. This phase was open-
ended, lasting from three to ten minutes depending on the depth
of the discussion. At an appropriate point, the instructor
transitioned from this phase into the next topic.

During the first TPS activity of the semester, the instructor
described the structure of the activity to the students and what was
expected of them. Thereafter, we found that the problem
statement was sufficient to cue the students to the task. For the
first few activities, the instructor explicitly encouraged the
students to write their responses during the Think phase. In
subsequent activities the students did not need any prompts for
any of the phases.

3.4 Creation of TPS activities
Once it was decided to use TPS in the course, the instructor
piloted a few TPS activities in the class and observed students’
behavior along with an external observer. Their observations led
to the following design principles for TPS activities which were
employed throughout the rest of the semester:

1. Each phase of think-pair-share should be meaningful in
solving the problem. That is, the problem must contain parts
that require individual thinking and writing, the Pair phase
deliverable should require two students to work together, and
the Share phase activity should merit a class-wide
discussion.

2. The Think and Pair phases should have precise deliverables
to ensure that the ensuing Share phase discussion is focused
towards the answer for the original problem.

3. The phases should be logically connected. Students should
use the output of one phase in next phase.

4. Sufficient time should be planned for each phase. Too little
time can cause frustration among students and too much time
can lead to boredom.

TPS can be used for a variety of learning outcomes. Depending
on how the phases of the activity are designed, TPS can be used
to improve students’ ability to analyze a given program, write
programs for the given tasks or acquire conceptual knowledge of
programming constructs. A summary of the structure of the TPS
activities for various learning outcomes is shown in Table 1.

Table 1: Examples TPS activities
Instructional
goals

Think Pair Share Example as shown in the slide to students

Conceptual
understanding

Think Students write down the answer to the
given question
Pair Students (i) Identify parts of the answer that
they have missed out. (ii) Discuss their answers;
do pros-cons analysis if there are multiple
solutions.
Share Instructor discusses (i) What are all the
essential parts in the answer? (ii) Pros-cons of
various solutions given by students

“Consider an unsorted array of N elements.
Think: Write the pseudo code for sorting the array
Pair: Discuss your answer with your neighbor, do pros and cons
analysis of your algorithms
Share: Follow instructor led discussion of your solutions and
others.”
*This led to a discussion of various sorting algorithms.

Code tracing:
Predict the
output;
Debug/modif
y the given
code

Think Students determine and write down the
answer.
Pair Students (i) check each others’ solution (ii)
discuss changes in code needed to get others’
solutions
Share Instructor (i) executes the program and
shows the output (ii) discusses a few
modifications based on student answers.

“Predict the output of the following program:
int a = 1, b = 2, c = 3;
int* p, int* q;
p = &a; q = &b;
c = *p; p = q;
*p = 13;
cout << a << b << c << endl;
cout << *p << *q << endl;”

Think: Draw the memory arrangement and predict output.
Pair: Check your neighbor’s solution. If you don’t agree, discuss
and come up with a solution that you both agree upon.
Share: See demo of above code and modified versions.”
*The example for the outcome “Debug/modify” is similar

Develop
programming
logic for a
problem:
Write
program.

Think Students write down the pseudo-code.
Pair Students (i) identify missing pieces in each
others’ solutions (ii) write the program.
Share Instructor (i) shows one possible solution.
(ii) Discusses a few representative student
solutions.

“Recall your program to reverse a 4 digit number. Extend your
solution to arbitrary integers.
Think: Write the pseudo-code individually.
Pair: Write the C++ code with a partner.
Share: Compare your solution with demo10-reverseNum-mod1.cpp”

Design a
solution:
Write pseudo-
code

Think Students write down the different parts
(structures and functions) of the solution
Pair Students discuss the pseudo-code for other
structures and functions that are required
Share Instructor discusses a few representative
solutions.

“Design a taxi scheduling service for an airport as follows: (i) When
a driver arrives, his ID is entered in an array (ii) When a customer
arrives the earliest waiting driver is assigned
Think: What structures and variables are required?
Pair: Discuss the pseudo-code for the functions that are required.
Share: Follow instructor led discussion of your solutions and
others.”

53

4. RESEARCH METHODOLOGY
4.1 Learning outcome measurement
To answer RQ1, “Do TPS activities lead to increased conceptual
understanding and application of CS1 concepts?” we conducted a
two group pre-post quasi-experimental study to determine the
effectiveness of TPS activities over interactive lecture.

Sample. One of the two sections was randomly assigned as the
experimental group (263 students), which received a TPS
treatment, and the other as control group (184 students), which
received a regular interactive lecture. The equivalence of both the
groups was established on the basis of a pre-test which had 5
questions testing students’ understanding of prerequisite concepts.
The results of a Mann-Whitney U test between the pre-test scores
of the experimental group (Mexpt=16.3, SD=5.6), and the control
group (Mcontrol=16.7, SD=6.7) showed no significant difference
(Mann Whitney U = 20440, p=0.574).

Procedure. The concept chosen for the experiment was the
interleaving of multiple threads in the CPU. This concept is new
to both novices and advanced learners, so their prior knowledge
does not play a role. The instructor chose to use Scratch to
explain threads because it is a visual programming environment in
which multi-threading is very easy to implement. In both the
groups the instructor first explained the concept of multiple
threads and thread synchronization via an interactive lecture. Next
the instructor presented a problem on interleaving of threads.

 “Consider three threads as shown below.

Thread A
When Run flag clicked,
Say “Thread A start”;
Repeat 2 times
● Move 10 steps;
Say “Thread A done”

Thread B
When Run flag clicked
Say “Thread B start”;
Turn 90 degrees;
Broadcast “event”;
Say “Thread B done”;

Thread C
When I receive
“event”,
Glide to (0,0).

Assume that: (i) 'When' and 'Say' statements result in 2 assembly
instructions, (ii) Loop initialization, increment and condition
check, each results in 1 assembly instruction, and (iii) all other
statements result in 3 assembly instructions. Also assume that: (a)
all assembly instructions are atomic and take the same amount of
time, (b) CPU time-slice is sufficient for 3 assembly instructions.
What are the possible interleaved execution sequences?”

In the control group, the instructor explained the solution as a
worked example while students followed along and asked
questions. In the experimental group, the problem was presented
as the following TPS activity:

“Think: Write one possible interleaved execution sequence.
Pair: Check your neighbours’ solution. If it is the same as
yours, come up with a second interleaved execution sequence.
Share: Instructor explains one possible solution and discusses
alternate solutions.”

Post-test. The post-test consisted of a single question (this was
sufficient because it covered the entire concept that was taught
using the TPS activity) on thread interleaving similar to the one
above. It was included as the last part of the quiz that students
took in the class following the above problem-solving activity.
The post-test question was graded out of a maximum score of 4.

4.2 Student perception survey and focus group
To answer RQ2 “What are students’ perceptions of learning with
TPS?” we administered a survey to all students. The instrument
had questions on student engagement and learning. All questions

were on a 5-point Likert scale (strongly disagree, disagree,
neutral, agree, and strongly agree). The questions relevant to the
learning construct were:

Q1. Thinking about the problem and writing the solution
during the think phase helped me learn CS1 concepts.

Q2. Discussing my solution with my partner during the pair
phase helped me learn CS1 concepts.

Q3. Listening to other students' solutions and discussion
during the share phase helped me learn CS1 concepts.

Q4. I would not have learned as much from the lecture if
there had been no think-pair-share activities.

In addition, at the end of the course, we conducted four focus
group interviews with 8-10 students in each group. The interviews
lasted 30 minutes each and were conducted by an external
observer. The interviews were audio recorded, transcribed and
analyzed using the content analysis technique.

4.2 Instructor perception data
To answer RQ3, “What are the instructors’ perceptions of
teaching with TPS?” we have two sources of data. The instructor
maintained detailed logs of the class. In addition, an external
observer, who attended all classes, maintained notes of classroom
observations.

5. RESULTS
5.1 TPS activity leads to increased conceptual
understanding
250 students in the experimental group and 169 students in the
control group took the post test. The distribution of scores was not
Normal, hence we used Mann-Whitney U-test to compare means
of the two groups, the results of which are shown in Table 2.

Table 2: Analysis of post test scores of experiment
Experimental
Mean (SD)

Control
Mean (SD)

p-
value

Difference
significant at p=0.05

1.91 (1.65) 0.88 (1.38) 0.00 Yes

We find that there was a statistically significant difference
between the post-test scores of the two groups, with the
experimental group (TPS) performing significantly better than the
control group (interactive lecture). Further, Cohen’s effect size
(d = .67) suggests a moderate to high practical significance.

This experimental study was conducted in one class during which
the applicability of TPS for the learning outcome of conceptual
understanding was tested. In the interest of fairness to students we
did not repeat the study in any further classes. For the remainder
of the semester, both the sections were taught using interactive
lectures interspersed with TPS activities for maximum learning in
both sections. In Table 3, we present the scores of a problem from
a course exam which was based on concepts taught to both groups
using TPS. We find that there is no significant difference
between the group means when both learnt via the same method.
This result continues to hold for all exam problems throughout the
semester. Table 3 also shows the final exam scores of students,
where we find no significant difference between the groups.
These results together indicate that it was the introduction of the
TPS activity which caused the significant difference between the
post test scores of the two groups.

54

Table 3: Comparing groups when taught via the same method
 Experiment

al Group
Mean (SD)

Control
Group

Mean (SD)

p-
value

Difference
significant

at 0.05?

Problem taught
via TPS (out of 4)

3.66
(1.69)

3.43
(2.07)

0.848 No

Final exam
(out of 100)

64.08
(23.7)

66.48
(23.44)

0.18 No

To understand these results better we classified the students based
on their pre-test scores into 3 categories, low (<40%), medium
(40-70%) and high (>70%) achievers. We similarly classified
them based on their post-test scores to low (0), medium (1 or 2)
and high (3 or 4) achievers. We determined the percentage of
students who transitioned from category A pre-test to category B
post-test by counting the number of students who were in
category A pre-test and category B post-test. This enabled us to
develop an empirical model of the students’ learning in each
group as shown in Figures 1 & 2.

Our first observation is that while nearly two-thirds of the control
group got zero on the post-test problem a majority of the students
in the experimental group scored three marks or higher. Next we
observe that in the experimental group 61% of high achievers
remain high achievers, while a significant percentage of medium
(37%) and low achievers (30%) move into a higher achievement
category. In the control group, however, 79% of high achievers
moved into low or medium achievement categories and small
percentages of medium (14%) and low (18%) achievers moved
into higher achievement categories. This demonstrates that the
TPS activity enabled students of all categories in the experimental
group to perform better on the post-test as compared to the
students in the control group.

Achievement level at pre‐
test

Experimental group: Scores
on post‐test

43
17%

91
36%

53
21%

94
38%

106
42%

113
45%

0.61

0.23

0.37

0.16

0.35

0.70

0.16

0.28

0.14

H
ig
h

M
ed

iu
m

Lo
w

Figure 1: Transition diagram of experimental group

Achievement level at pre‐
test

Control Group: Scores on
post‐test

33
20%

108
64%

36
21%

71
42%

25
15%

65
38%

0.21

0.55

0.14

0.03

0.65

0.82

0.24

0.22

0.15

H
ig
h

M
ed

iu
m

Lo
w

Figure 2: Transition diagram of control group

5.2 Students perceive TPS useful for learning
We received 336 valid responses to the student perception survey.
The summary of student responses is presented in the Table 4.

Table 4: Student perception of learning with TPS
 Strongly Agree

+ Agree (%)
Neutral
(%)

Strongly Disagree
+ Disagree (%)

Q1 72 21 7
Q2 67 24 9
Q3 73 21 6
Q4 58 29 13

These results show that a majority of the students perceived each
stage of the TPS activities to be useful for learning CS1 concepts.
A majority of the students also felt that they learned better from
an interactive lecture interspersed with TPS activities than an
interactive lecture only. Transcripts of the focus group interviews
were coded, categorized and classified to identify student
perceptions regarding learning with TPS and confirm the survey
results. In the interest of space, we are not reporting all the results
of the content analysis and only a few illustrative quotes below.

“The think and pair parts were equally important. Unless we
think on our own, we won’t get to know at what level we are.
When we were made to think on certain questions we realize that
these are some places we get stuck. We discuss those things with
our partner, we realize that he overcame this problem in a certain
manner and then we may come up with better solutions..”

“In a class of 240 you can come with 4 or 5 different solutions.
[…] In that half an hour [of TPS] we are able to learn five
methods of solving a problem and pros and cons of each method.
That’s more that you can learn in an hour.”

Finally, the overall percentage of the end of semester course
evaluation conducted by our institution was 85%, which is
comparable to the top courses at our institution.

5.3 Instructor finds TPS engaging for all
students
The instructor’s perceptions of the benefits and challenges of
teaching with TPS were as follows:

1) TPS is useful to address the challenges of students tuning
out, getting distracted or going off-task. When specific
deliverables were given in each stage of the activities,
students were on-task. For this to happen, the activities must
be interesting and balance student ability and challenge.
Such activities ensured that the problem of boredom and
frustration was resolved.

2) The activities were easy to implement even under the
constraint of fixed seats. Students naturally turned to their
classmates on their left and right, formed informal groups
and discussed their solutions.

3) The activities easily scale to large numbers. The Think and
Pair phases are distributed among the students and so do not
pose a challenge to the instructor. The Share phase can be a
bottleneck, but the instructor did not find it so because many
solutions turned out to be similar and so only the first
instance of each type of solution needed to be discussed.

4) TPS mitigates problems due to diversity of prior knowledge.
Since seating and pairing are random, learners without prior
knowledge often get benefits of one-on-one tutoring.
Learners with prior knowledge of a given topic are engaged
due to discussion with peers or tutoring.

55

5) There is increased participation by everyone, not just the
vocal students. Since everyone has worked on the problems
individually and in small groups, everyone has something to
contribute to the share phase and so gets involved.

6) The entire class gets the benefits of multiple and unusual
solutions because the instructor explicitly invited sharing of
those solutions which were different from what had already
been discussed.

6. DISCUSSION AND CONCLUSION
Our first research question “Do TPS activities lead to increased
conceptual understanding and application of CS1 concepts?” was
answered by the results of the quasi-experimental study which
showed that the group who learned a concept via a TPS-activity
performed significantly better (with a moderate to high effect
size) than the group which learned the same concept from an
interactive lecture. Further, the transition diagrams show that a
majority of students in the experimental group transitioned into
equal or higher performance level from pre to post test. In the
control group however, students moved into lower performance
levels.

One concern of such an experimental study is student motivation.
Even though we established group equivalence on the basis of a
pre-test, this was a mandatory course for all freshmen. Hence it is
possible that the students who were new to programming were
more enthusiastic about the course than others and so learned
better. However since we chose the concept of threads using
Scratch as the target concept for the study, it was a new concept
to all students, and we expect that all students had the same
motivation to learn this concept. Another concern is instructor
bias. While it is possible that the subtle changes of instructor
behavior between the two methods can impact student learning,
the instructor made every effort to ensure that the interactive
lecture was engaging. In addition the end-of-semester evaluations
(84% vs. 86%) show that the two sections did not perceive
differences in instructor behavior.

Results of the second research question “What are students’
perception of learning from TPS?” showed that a majority of
students approved of a TPS-based classroom environment, and
they would not have been able to learn CS1 as well had they not
performed the TPS activities. The results of our final research
question “What are the instructor’s perceptions of teaching with
TPS?” have shown that the instructor perceives TPS i) to be an
effective technique that engages all students of varying levels, and
ii) is easy to implement even in a large class.

Think-Pair-Share has been known to be an effective strategy for
improving learning outcomes in various disciplines [2][17]. Our
study has reconfirmed this finding in a CS1 large class. The main
takeaway for instructors is that rather than framing a question as
an open discussion to the whole class, creating a TPS activity is
more effective. One reason is that the TPS activity ensures that
students are vested in the outcome in each phase leading up to the
discussion. The structured phases focus the discussion and ensure
that it is more fruitful than an open discussion which typically
tends to be dominated by the vocal students. The three phase
structure also ensures that there is some part of the activity to
keep different students engaged, thus addressing the issue of
diversity of achievement levels. The guidelines and examples we
provide in Table 1 help an instructor operationalize TPS for a

programming course. This paper thus provides another effective
active learning technique for CS instructors of large classes.

7. REFERENCES
[1] Bonwell, C. C., and Eison, J. A. Active learning: Creating

excitement in the classroom. Washington, DC: School of
Education and Human Development, George Washington
University, 1991.

[2] Butler, A., Phillmann, K. and Smart, L. Active learning within
a lecture: Assessing the impact of short, in-class writing
exercises. Teaching of Psychology, 28 (4), 257-259.

[3] Cooper, J. L. and Robinson, P. Getting Started: Informal
Small-Group Strategies in Large Classes. New Directions for
Teaching and Learning, 81.

[4] Kagan, S. The structural approach to cooperative
learning. Educational Leadership, 47(4), 12-15.

[5] Kothiyal, A., Majumdar, R., Murthy, S. and Iyer, S. “Effect
of Think-Pair-Share in a large CS1 class: 83% sustained
engagement”, In Proc. 9th Int. Comp. Edu.
Research Workshop, August 12-14, 2013, San Diego, USA.

[6] Kussmaul, C. Process oriented guided inquiry learning
(POGIL) for computer science. in Proc. 43rd ACM Tech.
Symp. on Comp. Sci. Edu., pp. 373-378.

[7] Lee, C. B. Experience report: CS1 in MATLAB for non-
majors, with media computation and peer instruction. In Proc.
44th ACM Tech. Symp. on Comp. Sci. Edu, pp. 35-40.

[8] Lockwood, K. and Esselstein, R. The inverted classroom and
the CS curriculum. In Proc. 44th ACM Tech. Symp. on Comp.
Sci. Edu, pp. 113-118.

[9] Lyman, F. The responsive classroom discussion. in Anderson,
A. S. ed. Mainstreaming Digest, College Park, MD:
University of Maryland College of Education, 1981.

[10] Lyman, F. Think-Pair-Share: An expanding teaching
technique, MAA-CIE Cooperative News, v. 1, pp 1-2.

[11] Martinez, A. Using JITT in a database course. In Proc. 43rd
ACM Tech. Symp. on Comp. Sci. Edu, pp. 367-372.

[12] McDowell, C., Werner, L., Bullock, H. E. and Fernald, J.
Pair programming improves student retention, confidence,
and program quality. Comm. of the ACM, 49(8), 90-95.

[13] Meltzer, D. E. and Thornton, R. Resource Letter ALIP–1:
Active-Learning Instruction in Physics, Am. J. Phys., 80, 6.

[14] Nosek, J. T. The case for collaborative programming.
Comm. of the ACM, 41.3 pp. 105-108.

[15] Porter, L., Lee, C. B., Simon, B., and Zingaro, D. Peer
instruction: do students really learn from peer discussion in
computing? In Proc. 7th Int. Workshop on Computing Edu.
Research, pp. 45-52.

[16] Simon, B., Parris, J., and Spacco, J. How we teach impacts
student learning: Peer instruction vs. lecture in CS0. In
Proc. 44th ACM Tech. Symp. on Comp. Sci. Edu, pp. 41-46.

[17] Vreven, D. and McFadden S. An Empirical Assessment of
Cooperative Groups in Large, Time-compressed,
Introductory Courses. Innov. High Edu, 32, 85–92.

[18] Williams, L., Kessler, R. R., Cunningham, W. and Jeffries,
R. Strengthening the case for pair programming. Software,
IEEE, 17(4), 19-25

[19] http://www.cwsei.ubc.ca/resources/files/Clicker_guide_CW
SEI_CU-SEI.pdf

56

