
AUTOMATED TAGGING TO ENABLE
FINE-GRAINED BROWSING OF LECTURE

VIDEOS
Vijaya Kumar Kamabathula

Department of Computer Science & Engg
Indian Institute of Technology

Email: kvijay@iitb.ac.in

Sridhar Iyer
Department of Computer Science & Engg

Indian Institute of Technology
Email: sri@iitb.ac.in

Abstract—Many universities offer distance learning by record-
ing classroom lectures and making them accessible to remote
students over the Internet. A university’s repository usually
contains hundreds of such lecture videos. Each lecture video
is typically an hour’s duration and is often monolithic. It is
cumbersome for students to search through an entire video, or
across many videos, in order to find portions of their immediate
interest. It is desirable to have a system that takes user-given
keywords as a query and provides a link to not only the
corresponding lecture videos but also to the section within the
video. In order to do this, lecture videos are sometimes tagged
with meta-data to enable easy identification of the different
sections. However, such tagging is often done manually and is
a time-consuming process.

In this paper, we propose a technique to automatically generate
tags for lecture videos. This is based on generating speech
transcripts automatically using a speech recognition engine and
automatic indexing and search of the transcripts. We also
describe our system implemented for easily browsing through a
lecture video repository. Our system takes keywords from users
as a query and returns a list of videos as the results. In each
video of the retrieved list, the portion of the video that matches
the query is highlighted so that users can easily navigate to that
location within the video. Following the approach and using open
source tools mentioned in the paper, a lecture video repository
can provide features for users to access the content required by
them easily.

We used open source libraries available for speech recognition
and text search purposes. We have performed experiments to test
the performance of our system, we have achieved a recall of 0.72
and an average precision of 0.84 as video retrieval results.

Index Terms—Speech Recognition, Text Search, Slide Synchro-
nization, Lecture Videos, Tagging.

I. Introduction
Many universities offer distance learning by recording class-

room lectures, maintaining hundreds of lecture video record-
ings in a repository, and making them accessible to remote
students over the Internet [1]. It is often cumbersome for
students to search through an entire video, or across many
videos, in order to find portions of their immediate interest.
For example, one repository (NPTEL [6]) has a course on
Data Structures, containing around 40 recorded lecture videos,
each of approximately 60 minutes duration. Suppose a user
wants to find the portion where Heap Sort is discussed, the

user has to manually go through titles of all the lectures in
the course and first decide which videos might contain the
desired explanation. Then the user has to individually browse
through each of the chosen videos to find the portion where
Heap Sort is discussed. The problem is exacerbated if the user
is not familiar with the area, or if the topic is very specific,
since the user may not be able to decide the videos to be
scrutinized.

Hence, it is desirable to have a system that takes user-
given keywords as a query and provides a link to not only
the corresponding lecture videos but also to the section within
the video. A few such systems exist (discussed in Section
2). In some of them, meta-data is associated (manually) with
the lecture videos, while others use proprietary software to
generate an index from the video contents. In this paper,
we describe the design and implementation of a system for
automatic tagging and fine-grain browsing of lecture videos.
We use available open source tools for speech recognition
engine and text search engine to develop the overall system.
In the experiments to test the performance of our system, we
achieved a recall of 0.72 and an average precision of 0.84 as
video retrieval results by searching in automatically generated
tag file using speech recognition. We are trying to improve the
accuracy of speech recognition engine to get better recognition
results.

II. Background
In this section we provide a brief background on techniques

for searching in lecture videos and a survey of search facilities
currently supported in some well known courseware reposito-
ries.

A. Techniques for searching in lecture videos
Search facilities can be provided in lecture video reposito-

ries in two ways [2]. They are:
• Meta-data based: Meta data is textual data that is applied

to a piece of multimedia content in order to describe it.
These methods use meta data, such as video title, video
description and user comments, to identify video results
matching given set of keywords. Such a meta data based

2011 International Conference on Technology for Education

978-0-7695-4534-9/11 $26.00 © 2011 IEEE

DOI 10.1109/T4E.2011.23

96

2011 IEEE International Conference on Technology for Education

978-0-7695-4534-9/11 $26.00 © 2011 IEEE

DOI 10.1109/T4E.2011.23

96



approach may be able to identify videos that contain the
keywords but they cannot locate where those keywords
appear in the video time line.

• Content based: Lecture videos typically contain the fol-
lowing contents [3]: (i) Lecturer Speech: Portion of video
that shows the instructor talking, (ii) Presentation Slides:
Portion of video that shows the current slide of the pre-
sentation, and (iii) Notes: Portion of video that shows the
board/paper on which instructor is writing. Content based
approaches extract meta-data from appropriate portions
of the video and create an index that can be used for
searching within the video. Such techniques are difficult
to automate and time-consuming to do manually.

B. Existing lecture video repositories

NPTEL [6], videolectures.net [7], freevideolectures.com [8]
and MIT Lecture browser [9] are some of the existing lecture
video repositories. We investigated support for search and
browsing features available in those repositories. A list of some
more video repositories providing educational video contents
is given in [10]. Unfortunately, many of the repositories
are not providing search functionality for their users. Some
repositories have manual transcriptions (subtitles) for lecture
videos but they are not making use of them to provide search
features.

NPTEL currently does not have any overall video search
facility. A user has to manually first pick a course and then
go through titles of all the lectures in the course, to decide
which videos might contain the desired explanation. Then the
user has to manually browse through the videos to identify
the portion of interest. videolectures.net, freevideolectures.com
and the system described in [4], use meta-data based approach
to provide search features in the video repository. They are not
using contents present inside a lecture video for providing the
search. A method for synchronization of lecture video timings
with the lecture slides is presented in [5]. This method is
based on using a plug-in in the slide presentation software
that stores the slide transition timings during the lecture.
So it has the limitation of not being applicable to lecture
videos that have already been captured. MIT Lecture browser
uses lecturer speech for searching and provides fine-grain
browsing features [1] than the other repositories surveyed.
However, the system is not publicly available (for use with
other repositories) and its speech recognition engine is also
not an open source tool.

The table I summarizes the comparison of features available
in these video repositories. The last row of the table indicates
the features provided in our system.

III. Problem Definition

For any repository of lecture videos, our goal is to build
a system that given a set of search keywords, (i) return a
list of lecture videos that contain the keywords. (ii) highlight
the portions of each video where the keyword occurs. (iii)
allow the user to navigate directly to any highlighted portion

Repository Search Navigation Features
NPTEL No No

freelecturevideos.com Meta data No
videolectures.com Meta data Slide Synchronization

(manual)
Lecture Browser, MIT Content Speech Transcript

Proposed System
Content Speech Transcript &

Slide Synchronization
(automatic)

TABLE I
Lecture Video Repositories Comparison

of the video. (iv) provide direct links to starting locations of
presentation slides for easily navigating through slide portions

Users enter keywords in search box provided in the user
interface. For example, if a student is looking for video lectures
in which a networking topic called TCP (Transmission Control
Protocol) is discussed, he/she can enter “tcp” in the search box.
The queries can be simple keywords, keywords with operators
such as +/- and also titles of courses.

The output user interface is a results list of lecture videos
matching the keywords. In each video, portions where the
keywords occur (in the speech) are highlighted. When the
user clicks on a particular portion, the video starts playing
in the media player present in user interface. Along with the
media player, the user interface also shows hyper-links to slide
transitions, current slide and the speech transcript. The user
can also click on any word present in speech transcript and
directly go to the corresponding time in the currently playing
video.

The scope of our system is currently limited to lecture
videos which are in English. The reason for this is that one
of the major components of our system is a automatic speech
recognition engine, whose accuracy is influenced by acoustic
models and language models [1]. We need large amount of text
corpus for creating language models. The Language models are
domain dependent so we need to collect text corpus related to
the domain in which we want to apply speech recognition.
We collected corpus for the Computer Science domain to
recognize lectures related to that field. In order to apply our
system in other domains, corresponding corpus has to be
generated.

IV. Solution Overview

We follow a content based approach for providing search
features in lecture video repositories. There are two tech-
nologies useful for extracting textual information from lecture
video contents. One is Optical Character Recognition (OCR)
and the other is Speech Recognition. We adopted speech recog-
nition in our approach, as it is more suitable for lecture videos.
More information can be extracted using speech recognition, as
most of the portion of lecture videos contains lecturer speech.
Following steps describe the overall process of our solution
approach.

1) Take a video lecture and generate audio file containing
corresponding speech of the lecture.

9797



2) Input the audio file to automatic speech recognition
engine to get a transcript which is time aligned textual
representation of actual speech of the lecture.

3) Give speech transcripts of all the available lecture videos
to a text search engine to produce index tables and store
these index tables in database.

4) Generate a log file for each lecture which contains slide
transition timings of the lecture.

5) Develop user interface of the system that takes queries
from users and presents them with results from the
database.

V. System Architecture and Implementation
The various components involved in development of our

system (shown in figure 1) can be divided into two types:
off-line and on-line components.

Fig. 1. Our System

A. Off-line Components
These components perform activities at the server side. It

involves processing of each lecture video in the repository
and preparing an index for providing search facility based on
contents of the lectures.

1) Audio Extraction: This component of the system takes a
lecture video as input and produces an audio file which
contains lecturer speech. As speech recognition engine
takes audio file as input, we need to extract audio track
from the video.
FFmpeg [14] is an open source tool which provide
libraries and programs for handling multimedia data. It
provides a command line tool ffmpeg, which can extract
audio track from a given video file. It just takes a given
video file of one format as input and produces an audio
file in specified format. There will not be any effect on
the original video file

2) Speech Recognition: This component takes audio file
generated in the audio extraction unit as input and cre-
ates a speech transcript. The speech transcript contains

individual spoken words in textual form along with their
time of occurrence in the lecture video.
A sample speech transcript looks as shown in the follow-
ing paragraph. The word tags represent each individual
word in the speech transcript. The text between text tags
the word present in the lecture speech. Value between
start and end tags denotes starting time and ending time
(in seconds) of the corresponding word in the speech.
<?xml version="1.0" ?>
<transcript>

<word>
<text>deals with</text>
<start>5</start>
<end>7</end>

</word>
<word>

<text>internet related</text>
<start>8</start>
<end>11</end>

</word>
<word>

<text>technologies</text>
<start>11</start>
<end>13</end>

</word>
</transcript>

Example Speech Transcript
CMU Sphinx [13] provides open source tools and li-
braries for speech processing. Sphinx 4 [15] is a speech
recognition engine from CMU Sphinx and is developed
in Java. Sphinx 4 provides easy configuration manage-
ment where we need to set various parameters related
to speech recognition such as acoustic model, language
model etc. It also supports tools for creating acoustic and
language models. As it is completely written in Java, it
is highly modular and platform independent. So we have
chosen Sphinx 4 as speech recognizer in our system. A

Fig. 2. Sphinx 4 Recognizer

speech recognition engine uses acoustic model and lan-
guage model for automatically converting spoken words
into text. It also requires a pronunciation dictionary that

9898



maps each word to its phoneme representation.
Acoustic Model: The acoustic model represents how
individual characters are pronounced, also known as
phonemes. It gives statistical representation of distinct
sounds that make up each word in a language.
Acoustic model creation needs large amount of speech
corpus and their corresponding accurate speech tran-
scriptions. As it is a time consuming process to generate
new acoustic models, we configured sphinx 4 system
with open source acoustic models provided by CMU
Sphinx. It provides WSJ and HUB4 acoustic models
which are trained for the recognition of American En-
glish accents. So recognition accuracy is very low (less
than 6%) for our lectures which are in Indian English
accent.
In order to improve the recognition accuracy of Sphinx
4 decoder, we have adapted the HUB4 models for recog-
nizing our lecturer speech. Sphinx base and Sphinx Train
provide tools useful for the acoustic model adaptation.
After the adaptation the recognition accuracy increased
to 45%.
The adaptation requires manually transcribing 3 to 4
minutes of speech of lecturer. This process takes the seg-
mented audio files and manually transcribed sentences
as input and generates acoustic models adapted for the
lecturer speech.
Language Model: A language model represents gram-
mar of a language and is a file containing the proba-
bilities of sequences of words. It gives the probability
of word (X) being followed by word (Y) so that the
word sequence which is having higher probability will
be chosen during decoding process. Language modeling
requires supplemental text files, such as journal articles,
book chapters, etc., to adapt the vocabulary of the
system.
CMU Sphinx provides statistical language modeling
toolkit to create language models. Using the tools pro-
vided by toolkit we can generate language model from
available text corpus. We have collected text corpus
related to computer science courses to create language
model for Sphinx 4 decoder. The text corpus includes
electronic versions of text books, presentation slides and
available manual transcriptions.

3) Index Generation: Index Generation constructs index
tables from speech transcripts and stores them in the
repository. It takes the XML files generated in speech
recognition and slide detection phase for constructing
indexes.
We have chosen Lucene text search engine for indexing
purpose. Lucene Java library contains classes for creat-
ing indices of a set of documents. IndexWriter class is
one of them and useful to create indexes and store them
in a given directory.

4) Slide Transition Detection: This component identifies
slide transition timings in a lecture video and creates
a file containing slide title and time at which slide

occurred in the video. This takes frames extracted from
video and examines each frame to identify slide transi-
tion.
It is required to extract individual frames of the video,
we extracted one frame of the lecture video per second
using ffmpeg. Our algorithm to detect slides in a lecture
video is based on matching titles of individual frames
of the video. It uses Optical Character Recognition
(OCR) technology for extracting frame text. Tesseract
OCR [17] is one of the open source tool which gives
better accuracy. It takes a binary, gray scale or color
image and save text present in the image into a separate
file.
A sample log file generated for slide synchronization
looks as shown in the following paragraph. The slide
tags represent each slide of the lecture. Each of the slide
is an image and its location is specified in url tags.
The time in seconds at which slide transition occurs is
indicated in time tags.
<?xml version="1.0" ?>

<slideshow>
<slides>

<slide>
<url>slide1.jpg</url>
<time>10</time>

</slide>
<slide>

<url>slide2.jpg</url>
<time>20</time>

</slide>
</slides>

</slideshow>

Example log file for slide synchronization

B. On-line Components

These components work at the server side through the
Internet. These include requests made by users for particular
content and the responses given by the system.

1) Query Handling: It takes user input keywords and
searches in database for matching video lectures and
gives the video results as output.
This component development involved server side pro-
gramming which has been done using Java Servlets.
Lucene also provides Java classes for searching in the
created indexes.
The figure 3 shows interface which shows search results
for a user entered queries.

2) Database: It stores all the information related to lec-
ture videos. It contains actual video recordings of the
lectures, presentation slides, speech transcriptions gen-
erated during content extraction, log files for slide syn-
chronization and index tables created during indexing
process.

3) User Interface: User interface contains a search box in
which user can enter keywords to search for videos in

9999



Fig. 3. Search Results Page

which the particular topic is discussed. After retrieving
results from database, list of lecture videos are displayed
in the interface.
Our system is a web based tool and runs on standard
browsers. We are using Apache Tomcat, an open source
web server at the server side. Web pages are developed
using HTML, CSS, Java Script and Java Server Pages
(JSPs). The figure 4 shows user interface of our sys-
tem. As shown in the figure, the interface contains the
following four sections.

Fig. 4. User Interface

a) Video player: As shown in the top left part of the
figure 4, it plays video of the selected lecture. Users
can navigate to any particular location by clicking
on video time line of the player.
We are using a JW player [16] for playing videos
in the interface.It supports various plugins for con-
trolling the player and handling events. Navigation
based on speech transcript has been done using
Java Script and JW Player APIs.

b) Current slide: It is the top right part of the figure 4.
It shows presentation slide of the corresponding
video portion.

c) Speech transcript: It is the bottom left part of the
figure 4. It displays textual representation of the
lecturer speech. User can click on any particular
word of the speech transcript and can jump directly
to that location.

d) Slide Navigation: It is the bottom right part of the

figure 4. It gives hyper links to slides of the video
being played. Each link represents title of the slide
and time at which it starts. So users can click on
any required slide and go directly to that location
of the video.

VI. Evaluation and Experiments

This section presents evaluation metrics and experimental
results we have got during the implementation so far.

A. Evaluating Speech Recognition
In order to evaluate the Sphinx-4 system, we have to

compare the output text called hypothesis with the actual tran-
scription named reference. Three error types are distinguished
in this process.

• Substitution: deals with words that are wrongly recog-
nized (including singular and plural differentiation).

• Insertion: additional word in the hypothesis that is absent
in the reference.

• Deletion: word present in the reference but not in the
hypothesis.

Word Error Rate (WER) and Word Accuracy (WA) are useful
for measuring the performance of speech recognition [11].
WER is defined as

WER =
S +D + I

N

where
• N is the total number of words in the reference text.
• S is the number of substitutions.
• D is the number of deletions.
• I is the number of insertions.

WA is defined as

WA = 1−WER =
N − S −D − I

N

B. Evaluating Video Retrieval
An information retrieval system can be evaluated based

on two parameters, called recall and precision [12]. Here
document means video lecture in our case. As our system also
deals with information retrieval, we are going to use those
metrics for evaluation of the system. Recall and precision
values describe the search quality of an information retrieval
system.
Recall :
Performance of the search system in finding relevant
documents can be measured using recall. It is a measure
of the ability of a retrieval system to present all relevant
documents.

Recall =
Number of relevant videos retrieved

Total number of existing relevant videos

Precision :
Precision measures how well the system filters out the
irrelevant. It is a measure of the ability of a system to present

100100



only relevant documents.

Precision =
Number of relevant videos retrieved

Total number of videos retrieved

The goal of an information retrieval system is to maximize
both recall and precision.

C. Experiments
To build basic functionality of the system, we took the

lectures of CS 101: Computer Programming and Utilization
by Prof. Deepak B Phatak. We collected text corpus related
to programming and data structures to create language model
using CMU language modeling toolkit. Then we adapted
HUB 4 acoustic models to voice of the professor using tools
provided by sphinx train. We configured sphinx 4 recognizer
with the created language and acoustic models to provide
speech transcriptions. We have provided the search facility
in those 20 lectures by indexing the speech transcripts using
lucene text search engine. User can enter keywords and our
system searches in the indexed transcripts, and then retrieves
videos that match user input.

1) Audio Extraction: As mentioned in the previous sec-
tions we used Java libraries provided by ffmpeg for extracting
audio track from a video file. We tested the performance of this
unit on video lectures of CS 101. The table II shows results
of audio extraction on some of the lecture videos.

Input Length Output Extraction
(Audio File) Time

Lec_1.mp4 46 min 36 sec Lec_1.wav 21 sec
Lec_2.mp4 59 min 38 sec Lec_2.wav 27 sec

TABLE II
Audio Extraction Results

2) Video Retrieval: We have built the system to provide
search facility in the videos lectures of CS 101 course.
The table III shows search quality of Lucene based on the
metrics mentioned in the above section. Quality package under
benchmark of Lucene allows us to measure recall and precision
of the Lucene indexing mechanism.

The process of measuring recall and precision requires
following three files as input.

• Index file: Lucene generated file during indexing process.
• Topics file: This contains list of search queries for which

we want to measure the recall and precision.
• Qrel file: This is filled with file names of expected video

lectures for each of the query mentioned in topics file.

No.of queries tested 10
Avg Search seconds 0.007

Recall 0.72
Avg Precision 0.84

TABLE III
Search Quality Results

3) Speech Recognition: As mentioned in the previous
sections, Sphinx 4 decoder requires acoustic and language
models for recognition. Language model can be generated
by collecting text corpus related to the domain. Generation
of these acoustic models is a time consuming process which
would require producing manual transcripts for several hours
of audio. For example, the pre-trained HUB 4 acoustic models
available from the CMU Sphinx group were trained on 140
hours of English Broadcast News Speech from the 1996 and
1997 hub 4 corpora.

We have adapted the HUB 4 models for recognizing our
lecture videos voice and tested the recognition performance.
It gave word accuracy (WA) of 45% which is not good enough
for our purpose. So we are collecting more data for adaptation
for improving the results.

VII. Conclusion and Future Work
We have proposed design and implementation of a web

based browsing system for lecture videos. It facilitates users to
easily find required video contents at a fine-level of granularity.
We are using open source speech recognition engine and
text search engine to build overall system. By following the
approach and set of tools mentioned in our paper, lecture video
repositories can be made easily accessible for their users.

We have built a basic prototype of the system by provid-
ing search facility in lecture videos on CS 101: Computer
Programming and Utilization course. We have performed ex-
periments to test the performance of our system. We achieved
a recall of 0.72 and an average precision of 0.84. We have
achieved an average word recognition accuracy of 45% in
the speech transcription process. The low value of recognition
accuracy affected the decrease in recall and precision results.
We are trying to improve the accuracy of speech recognition
engine by collecting more data for adaptation to get better
overall results.

Acknowledgment
We would like to thank the people involved in development

of open source tools which are being used in our system. We
would also like to thank Prof. Deepak B Phatak for providing
us with CS 101 lecture videos and presentation slides of the
course.

References
[1] Glass, J., Hazen, T., Cyphers, S., Malioutov, I., Huynh, D., Barzilay, R.:

Recent Progress in the MIT Spoken Lecture Processing Project. In Proc.
Interspeech 2007, Antwerp (2007), pp. 2553 - 2556.

[2] Alan F.Smeaton, Techniques used and open challenges to the analy-
sis,indexing and retrieval of digital video, Adaptive Information Cluster
and Center for Digital Video Processing , Dublin City University, 2006.

[3] Ganesh Narayana Murthy and Sridhar Iyer, Study Element Based Adap-
tation of Lecture Videos to Mobile Devices, National Conferece on
Communications,Chennai, 2010.

[4] Jesse Jin and Ruiyi Wang, The Development of an Online Video Browsing
System, ACM International Conference Proceeding series; Vol. 147, 2001.

[5] H. Sack and J. Waitelonis, Automated Annotations of Synchronized
Multimedia Presentations, Proc. Workshop Mastering the Gap: From
Information Extraction to Semantic Representation (ESWC 06), 2006.

[6] NPTEL
http://www.nptel.iitm.ac.in/

101101



[7] videolectures.net
http://www.videolectures.com/

[8] freevideolectures.com
http://www.freevideolectures.com/

[9] Lecture Browser, MIT
http://web.sls.csail.mit.edu/lectures/

[10] List of educational video repositories
http://en.wikipedia.org/wiki/List_of_educational_video_websites

[11] Word Error Rate
http://en.wikipedia.org/wiki/Word_error_rate

[12] Recall and Precision
http://en.wikipedia.org/wiki/Precision_and_recall

[13] CMU Sphinx - An Open Source Toolkit for Speech Recognition
http://cmusphinx.sourceforge.net/

[14] FFmpeg
http://www.ffmpeg.org/

[15] CMU Sphinx 4 Speech Recognition Engine
http://cmusphinx.sourceforge.net/sphinx4/

[16] JW Player
http://www.longtailvideo.com/players/jw-flv-player/

[17] Tesseract Open Source OCR tool
http://code.google.com/p/tesseract-ocr/

102102


