
Automatic Topology Generation for a Class of Wireless Networks

Raghuraman Rangarajan and Sridhar Iyer
KReSIT, IIT Bombay, India

email: {raghu,sri}@it.iitb.ac.in

ABSTRACT

In this paper we present the Wireless Infrastructure De-
ployment (WIND) tool to automatically generate topologies
for wireless networks. The heuristic tool considers the nodes
to be deployed, their characteristics and abstract deployment
scenarios as input and generates topologies satisfying node
QoS requirements. WIND does this by recursively con-
structing complex network elements out of simpler elements
while satisfying the constraints.

I. INTRODUCTION

Wireless technologies allow rapid deployment of networks
by alleviating the difficulty and expense of deploying guided
media between communicating nodes. They also allow rapid
reconfiguration of networks with growth.

Currently, planning for wireless networks is done either
in an adhoc manner or through complex site survey with
emphasis on RF propagation studies.

For example, in an 802.11 network the APs are distributed
regularly across the site, i.e. the density of APs is uniform
or they are distributed based on RF propagation studies.
The fixed clients are also uniform in their distribution, while
mobile clients are located in a random manner or are densely
cramped.

While such an approach is valid for single-hop networks,
providing one-hop backbone connectivity for all nodes and
site surveys of large deployment areas restrict the scalability
of such network planning techniques ([1]).

At the other end of the spectrum, MANET topologies are
constructed after the network is deployed and is more of a
best-effort attempt. Once the nodes are deployed as such, re-
search has mainly concentrated on resource allocation, rout-
ing for QoS requests or topology control.

The successful deployment of 802.11 WLAN s has demon-
strated that internet/intranet connectivity remains the pri-
mary application driver. With the increase in capability of
the network elements, there are many network applications
that require QoS provisions, such as multimedia, collabora-
tive work and distributed applications. The high bandwidth
demand of such applications makes infrastructure support a
necessity.

The multi-hop mesh connectivity of hybrid networks ([1])
presents a compromise between both these approaches and is
suitable for scaling of networks while keeping the application
scenario requirements (i.e. appropriate backbone connectiv-
ity) in mind. While hybrid networks result in larger wireless
coverage and in some cases improved throughput, the pit-
fall of this approach is the increased channel contention due
to the wireless links([3]). Hence, network planning of such
networks has to take the above factors into consideration.

 Wireless Link Client Nodes

 Wired Link Infrastructure
 Nodes
 Wireless link
 coverage area

Wired Backbone

Fig. 1. An example mesh network.

In this paper we present a framework for building hy-
brid networks. The Wireless Infrastructure Deployment tool
(WIND) generates appropriate topologies for hybrid net-
works under given constraints.

It considers the number of nodes deployed and their as-
sociated characteristics (number of links, application traffic
etc.), an abstract graph of the deployment area and QoS
constraints to generate appropriate logical topologies.

The crucial idea in our approach to this problem is the
recursive construction of the topology. WIND starts with
the set of network elements to be deployed. At each stage of
the recursion, WIND successively generates a sub-graph of
the topology by deriving it out of the sub-graphs generated at
the previous stage and hence finally resulting in the network
topology. This is done while satisfying the constraints.

II. RELATED WORK

Research work has mainly concentrated on topology con-
trol for adhoc wireless networks. The studies have concen-
trated on adjusting the transmission range (i.e. power con-
trol) for constructing a topology satisfying a given through-
put ([4], [5]).

Recently, Jia et al presented a work [6], which attempts
to create a QoS aware topology using power control. Even
though they deal with meeting the overall QoS requirements,
they do this by adjusting the transmission range of the nodes.

Marsan et al presented a technique in [7] to optimise the
topology of Bluetooth, which aims at minimizing the max-
imum traffic load of nodes (and thus minimizing the power
consumption).

The construction of a network topology from ground-up
that can meet the QoS requirements of of all its network
elements has not yet been studied in detail.

TABLE I

Information base.

NU Type Information
Out Traffic In Traffic Src Addr Destn Addr Link Type Mobility

NUPDA 100 10000 < NPDA > < NS > 1 Yes
NUWS 1000 100000 < NWS > < NS > 1 No
NUS 1000000 10000 < NS > Undefined 2 No
NURelay 500000 500000 Undefined Undefined 1,2 No
. .

III. PROBLEM STATEMENT

A wireless network (figure 1) typically consists of two dis-
tinct categories of network elements. One category of net-
work elements are the client nodes, which represent the ap-
plication users and providers of the network. The other cate-
gory consists of the infrastructure nodes (i.e. Access Points,
routers etc.) which are typically put in place with the pri-
mary purpose of aggregating and transporting the traffic for
the clients.

We formalise our problem of network planning similar to
the heuristic defined for cellular networks in [8]: Given the
client nodes to be deployed, their characteristics and the de-
ployment layout construct, the network topology subject to
QoS constraints and minimization of network infrastructure
nodes.

The node characteristics (model) are defined in an infor-
mation base. The number of nodes to be deployed, the de-
ployment layout and the constraints applied on the topology
construction algorithm are defined as input parameters.

IV. NETWORK MODEL

A. Definitions

Some terms used in our network model are :
• Node Unit (NU): Network elements; i.e. all client and
infrastructure nodes.
• C: Capacity of a link in bytes/sec.
• addr: Address of a network element.
• load: Average offered load in bytes/sec.

B. Information Base, Input Parameters and Constraints

WIND makes use of an information base containing node
and link type information about the network under study.
The information base stores the following information :
• Type of a NU deployed in the network. The parameters
that define the type are :
– Application scenarios (AS): Represents the source/sink

traffic due to each application traffic type. Application traffic
of a NU is represented by a tuple consisting of the average
incoming and outgoing loads, the source and the destination
addresses.

traffic =< loadout, loadin, addrsrc, addrdestn >
where,
loadout, loadin = outgoing and incoming load respectively.
addrsrc, addrdestn = source and destination address respec-
tively.

– Total Load : Summation of all AS traffic loads.
– Links: The type and the number of links present in a

NU.
– AS-Link mapping : This mapping determines the link on

which a particular AS traffic is carried.
– Mobility : Represents whether a node is mobile or not.

The information base also defines the NU types of the relay
nodes deployable in the network. All infrastructure nodes
(i.e. APs, routers, switches etc.) are considered as relay
nodes. While constructing the topology, WIND chooses an
appropriate relay node based on its link properties and the
QoS criteria.
• Link types: Every link defined in a NU type has the fol-
lowing properties defined :
– Link name.
– Capacity of the link, C.
– Link specification: A MAC abstraction function is de-

fined to capture the characteristics of the particular MAC
scheme used. This is used to abstract the underlying MAC
scheme. The function maxNodes(C,l) computes the maxi-
mum number of network elements that can access the link
were each element has a load l.

Table I shows a part of an information base for a net-
work deploying PDAs (NUPDA) and workstations (NUWS).
Other NUs representing servers and relay nodes are also
shown.

Input parameters :
• The number of NUs of each type to be deployed.
• Deployment layout : The deployment layout is represented
as a graph ,corresponding to the deployment scenario. The
graph is modeled as G = (V,E), where V is the set of nodes
representing areas where network elements are deployed and
E is the set of edges between nodes indicating the physical
connection between areas. An example layout for a simple
office plan is shown in figure 2.
• Affinity factor (af): Affinity factor is the probability with
which a NU type is attracted to a node in the deployment lay-
out, i.e. present in one of the nodes in the layout. While for
non-mobile NUs, af represents the areas where such nodes
are deployed, for mobile NUs af captures the probability of
a mobile NU visiting that particular node. We adapt this
definition of affinity factor from the attraction points char-
acteristic defined in [2]. Nodes in the deployment graph
are typed with the af of each NU type. Table II shows an
example listing of affinity factors for NUs (PDAs and work-
stations) for the deployment layout in figure 2.

Floor FloorCorridor

1 32

Fig. 2. An office floor plan and its corresponding deployment layout.

TABLE II

Affinity factors.

Node 1 2 3
NUPDA 0.6 0.2 0.2
NUWS 0.6 0 0.4
NUS 1 0 0
.

Optimization constraints : The tool also takes as input the
constraints applied on the topology being constructed. The
constraints can be the QoS requirements demanded by the
applications running in the network. Other constraints such
as a bound on the number of infrastructure NUs deployed by
the system (i.e. infrastructure cost) can also be enforced.

V. TOPOLOGY CONSTRUCTION

A. Preliminaries

The basic building block in the topology construction algo-
rithm is that of a Composite Unit (CU). A CU is recursively
defined as a virtual network element constructed out of one
or more CUs or NUs. The properties of a CU are derived
out of the properties of its child CU/NUs.

A composite unit is defined as:
CU = (CU

′
|NU)+

where properties of CU are :
• links = unreserved links((CU

′ |NU)k), where k is the
number of units forming the CU.
The function returns the unused links of underlying network
elements. Once the bandwidth on a link is allocated, a link
is considered to be used. Hence the function calculates the
links of child CU/NUs on which bandwidth is still available.
• traffic = outgoing traffic((CU

′ |NU)k), where k is the
number of units forming the CU.
Outgoing traffic is the traffic which is not destined for any
descendant of this CU and hence is considered as unfulfilled
traffic. Traffic of underlying CUs which have found a path
(i.e. both source and destination CUs are descendants of
the same CU), are considered to be satisfied. Therefore, the
function calculates traffic which is bound for some NU not a
descendant of this CU.
• totalload =

∑
∀cu∈child(CU) unusedload(cu).

The unused load of child CUs is assigned to their parent as
its load.

These functions are discussed in detail while presenting the
algorithm.

B. WIND overview

The tool (figure 3) consists of three modules.
1. Preprocessor : This module configures the inputs for use
by the topology generator. It takes as input the information
base (NU and link models) and the input parameters (de-
ployment layout, affinity factors of NUs and the number of
elements of each NU to be deployed).
It constructs the following for use by the topology generator :
• NU list : Using the NU models, the deployment layout

graph and the affinity factors associated with each NU, the
list of NUs to be deployed in each area in the deployment
layout graph is calculated.
• CU rules: The topology generator also requires a set of

rules while generating the topology. The rules define the
criteria for CU formation and relay node selection.
2. Compute CU : This is the topology generator module
which uses the CU rules and NU list to construct the topol-
ogy. The module takes in one more input, the optimization
criteria, which defines the QoS constraints on the construc-
tion process. At each stage in the construction process, the
module considers the CU rules and makes sure that the cri-
teria are kept satisfied. The process works as follows :
(a) Given a list of nodes, the function calculates the nodes

to be used for construction of the CU using the CU rules.
(b) The properties of the constructed CU and the nodes

are set using the criteria defined for optimization.
(c) The algorithm continues until all nodes in the list are

exhausted. The generated list of CUs is then recursively fed
to the module again, until the root CU of the topology is
generated.
3. Output topology : The constructed topology is then pro-
cessed for input to a simulator for verification.

C. Implementation and validation by simulation

We have currently implemented a version of the tool for
single-hop wireless networks, providing guarantees on band-
width. The tool takes input parameters and information base
as input files. The description language for the input file is
based on the XML description formats defined for simulation
in Opnet.

The algorithm 1 works as follows :
1. We calculate the number of NUs deployable in each node
in the deployment layout graph (Step 4) and pass it to the
computeCU() function (Step 5). computeCU() returns a CU
for each node which is collected in cuList.
2. Finally we compute the root CU of the network using the
above list of CUs.
3. We print the topology by performing a DFS on the root
CU.

Given a list of NU/CUs, computeCU() is defined as fol-
lows :
1. We first find the common link types among all NU/CU in
cuList. This results in an unordered list of NU/CUs for all
link types (Step 16).

Algorithm 1 Pseudo-Algorithm for topology generation.
1: procedure WIND(ib, ip) . ib: Info base, ip: Input

parameters
2: cuList← NULL
3: for all v ∈ V (ip.GDL) do . GDL: Deployment layout
4: deployedList←

⋃
∀i(v.afi × ip.numNUi

).NUi . af :
affinity factor

5: cuList← cuList + computeCU(deployedList, ib)
6: end for
7: cuList← computeCU(cuList, ib)
8: printTopology(cuList)
9: end procedure

10: procedure computeCU(cuList, ib)
11: if sizeOf(cuList) = 1 then
12: return cuList
13: end if
14: newCUList← NULL
15: L← linktypes present(cuList)
16: for all lt ∈ L do
17: cuListlt ← cuListlt +{cuList[i], cuList[i].linktype = lt}
18: t←

∑
∀j cuList[j].total load

sizeOf(cuList) . t: average load
19: n = lt.maxNodes(lt.C, t)
20: while cuListlt NOTEMPTY do
21: new cu

′

22: childCUList← NULL
23: m← 0
24: while m < n do
25: cu← cuListlt.getnext()
26: cu

′
.child(cu)

27: childCUList.add(cu)
28: cuListlt.remove(cu) . cu also removed from cuList
29: m← m + 1
30: end while
31: curelay = findRelayNode(lt, t)
32: cu

′
.child(curelay)

33: for all cu ∈ childCUList do cu.resetProperty()
34: end for
35: curelay.resetProperty()
36: cu

′
.setProperty()

37: newCUList.add(cu
′
)

38: end while
39: end for
40: return computeCU(newCUList, ib)
41: end procedure

CU
Construc
tion Rules

Preprocessor

Compute CU

 NU List

 CU Rules

 Optimization
 Criteria

 Information
 Base

 Affinity Factor

Deployment
Layout

 Deployable
 N/W
 Elements

 Root CU Output
Topology

 Topology
 & Statistics

Node to
Dep.
Layout
mapping

Fig. 3. WIND: Tool Overview.

2. We now calculate the maximum number of nodes n that
can be merged together considering the average load (Step
17). We do this by using the MAC abstraction function
(maxNodes(C,t,)) defined for each link type (Step 18).
3. We form now a CU and add a maximum of n children to
it(Step 19-32). We then set the properties of the child CUs
and the newly formed CU .
Once n NU/CUs are added as children to the newly created
CU, we select an appropriate NURelay from the information
base and add it to CU (Step 27). A child CU having a
suitable relay link can also be selected as a relay node (for
example, nodes having multiple links can act as relays).
Before defining the properties of the CU, we set the prop-
erties of the child CUs. The resetProperty() (Step 29, 31)
function calculates :
• Used links: For all NU/CUs merged together to form the

CU, we set the link on the basis of which they were merged
as a used link.
• Fulfilled traffic: Traffic from one child CU which is des-

tined for another child CU is consider to be fulfilled traffic.
Now the properties of the CU (setProperty()) are defined as
(Step 32) :
• links = Unused links of NUs/CUs + Outgoing link of

Relay Node
• load =

∑k
i=1 traffic

• traffic = Unfulfilled traffic of child NUs/CUs.
4. The computed CU is added to a cuList and the function
recursively calls itself until the root CU is computed.

D. An illustrative example

We explain the workings of the algorithm with an example.
The example builds a network topology for seven PDAs and
workstations deployed in an office environment. The office
floor plan and its corresponding deployment layout are shown
in figure 2. The affinity factors for the nodes are defined in
table II.

Both type of nodes run an application accessing some ser-
vice from server NUS . The corresponding information base
(table I) represents the node information.

Figure 4 shows the progression of the computeCU() algo-
rithm. It recursively then builds the topology by bringing
together NU/CUs based on CU rules. The algorithm re-

1 32

2 3 6541

7 321 9 65

10 91

47

4

APL Nodes

Nodes deployed: 1 NUS, 4 NUPDA
, 4 NUWS 2NUPDA

1 NUPDA
, 3 NUWS

computeCU() 1:

computeCU() 3:

computeCU() 2:

1 Relay nodes NUS NUPDA NUWS Composite Units

Fig. 4. computeCU() algorithm for given example.

turns finally the root CU of the network which represents
the topology.

E. Validation of the topology

An example generated topology for the following parame-
ters is shown in figure 5 :
• Input parameters: 5 PDA and 5 workstations to be de-
ployed each running a ftp client with an average load of 10
KBPS and 100 KBPS respectively.
• Deployment layout is as shown in figure 2.
The output topology of the tool was fed as input to Opnet
(along with suitable node and link models) to validate the
generated topology. The average observed bandwidth was
9.877 KBPS and 99.838 KBPS for PDAs and workstations
respectively, hence validating the generated topology.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented a tool (WIND) for plan-
ning hybrid networks. The tool generates automatically ap-
propriate topologies based on heuristic inputs. The topol-
ogy generated by WIND was fed to a simulator to validate
it. Currently the tool has been implemented for 802.11 net-
works. In the next stage, we intend to expand the scope of
the tool to take care of issues in multi-hop mesh networks.
Also, we have only considered a static network for analysis.
Mobile nodes will present a more dynamic environment with
a difficult to predict traffic patterns. Another aim is to ver-
ify whether the topology generated is optimal, i.e. the cost
of the infrastructure deployed is minimal for the constraints
specified.

REFERENCES

[1] Yang, Conner, Guo, Hazra, and Zhu, “Common Wire-
less Adhoc Network Usage Scenarios,” Internet draft,
2003.

[2] M. Feeley, N. Hutchinson, and S. Ray, “Realistic Mobil-
ity for Ad Hoc Network Simulation,” ADHOC-NOW,
LNCS 3158, pp. 324-329, 2004.

Fig. 5. Constructed topology.

[3] S. Lee, S. Banerjee, B. Bhattacharjee, “The Case for a
Multi-hop Wireless Local Area Network,” IEEE Info-
com, 2004.

[4] L. Hu, “Topology Control for Multihop Packet Radio
Networks,” IEEE Trans. on Communications, vol. 41,
no. 10, pp. 1474-1481, 1993.

[5] T. Hou and Victor O.K. Li, “Transmission Range Con-
trol in Multihop Packet Radio Networks,” IEEE Trans.
on Communications, vol. 34, no. 1, pp. 38-44, Jan 1986.

[6] X. Jia, D. Li and D. Du, “Topology Control in Adhoc
Wireless Networks,” IEEE Infocom, 2004.

[7] M. A. Marsan et al, “Optimizing the Topology of Blue-
tooth Wireless Personal Area Networks,” IEEE Info-
com, 2002.

[8] B. Jabbari, G. Colombo, A. Nakajima, and J. Kulkarni,
“Network Issues for Wireless Communications,” IEEE
Commun. Mag., vol. 33, no. 1, pp. 88-98, January, 1995.

