M2MC: Middleware for Many to Many
Communication over broadcast networks

Dissertation

submitted in partial fulfillment of the requirements

for the degree of
Master of Technology

by
Chaitanya Krishna Bhavanasi
(Roll no. 03329003)

under the guidance of

Prof. Sridhar Iyer

Kanwal Rekhi School of Information Technology
Indian Institute of Technology Bombay
2005

Dedicated to Prof.Sridhar Iyer for his excellent
quidance.

Abstract

M2MC is a new distributed computing middleware designed to support collabora-
tive applications running on devices connected by broadcast networks. Examples of such
networks are wireless ad hoc networks of mobile computing devices, or wired devices con-
nected by a local area network. M2MC is useful for building a broad range of multi—user
applications like multiplayer games, conversations, group ware systems.

M2MC architecture consists of Messages Ordering protocol, Member Synchronization
protocol, and protocols for processes to join and leave the groups. We emphasized on
Message Ordering protocol as it is a key component in developing group communication
applications. Hence we proposed a new message ordering called S, ordering that orders
the messages based on their semantic relationship as specified by the users.

Some salient features of M2MC are: Unlike existing middleware architectures that
rely on central servers, the M2MC is truly distributed protocol and hence application de-
veloped using M2MC does not require central servers. Being broadcast oriented, M2MC
does not require any resource consuming routing protocols. Distributed applications de-

velopment is simplified by M2MC APIs.

v

Contents

Abstract iv
List of figures vii
1 Introduction 3
1.1 Introduction e 3
1.2 Motivation L 4
1.3 Objectives of the work 6
1.4 Layout of the Report 7

2 Literature Survey 9
2.1 Imtroduction 9
2.2 Existing middleware for point to point communication 9
221 CORBA . . . e 9

222 RMI. e 10

2.3 Existing middleware for group communication 11

24

2.5

2.3.1 Amoeba middleware for client server group communication 11
2.3.2 Anhinga middleware for peer2peer group communication . 12
Multicasting protocols: 13
2.4.1 Ad hoc Multicast Routing protocol utilizing Increasing id

numbers(AMRIS) 14
2.4.2 Adhoc Multicast Routing Protocol 15
2.4.3 Adaptive Flooding 18
Issues in Group Communication 19
2.5.1 Group Communication 19
2.5.2 Issues e 20

vi

Contents

3 Architecture and components of M2MC

3.1 Middleware Architecture
3.1.1 Components of Middleware

3.2 Middleware operations

4 Message Ordering Protocol

4.1 Message Ordering Protocol
411 S, Orderingo
4.1.2 Propertiesof S,order
4.1.3 Protocol Actionso
4.1.4 Protocol illustration
4.1.5 Correctness and liveness

4.1.6 Protocol Implementation.

5 Group Join/Leave Protocols

5.1 Group join and leave protocols

5.1.1 Notations, Message Format and Data Structures

5.1.2 Protocol Actions
5.1.3 Protocol Illustration
5.1.4 Correctness and Liveness

5.1.5 Protocol Implementation

6 Member Synchronization Protocol

6.1 Member Synchronization Protocol (MSP)

6.1.1 Notations, Message Format and Data Structures

6.1.2 Protocol Actions
6.1.3 Protocol Illustration
6.1.4 Correctness and Liveness

6.1.5 Protocol Implementation

7 Java Implementation of M2MC

7.1 Java Implementation of M2MC middleware Layer
7.1.1 System Environment

7.1.2 Message Ordering Protocol

Contents vii
7.1.3 Group Join/Leave Protocol 69
8 Threaded Chat Application Development using M2MC 75
8.1 Case Study: Thread chat Application 75
8.1.1 Motivation 75
8.2 Class Diagram 76
8.2.1 class:GroupManager 76
8.2.2 Interface: ApplGrpMgnrlInterface 78
8.3 Threaded Chat Application classes: 79
8.3.1 ChatComnsole: 79
83.2 DynaTree e 80
8.3.3 DynaTreeNode 80
8.3.4 GroupInfoWindow 81
9 Summary and Conclusions 83
Bibliography 85
Acknowledgements 87

viii Contents

List of Figures

1.1
1.2
1.3
14

2.1

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

2.1

6.1

7.1
7.2

8.1
8.2
8.3
8.4
8.5

Communication Paradigm 000, 4
M2MC . e 4
Chat Application 5
Threaded Chat Application 5
Anhinga Architecture L oo o 13
M2MC architecture 24
Nlustrating S, ordering oL 24
Ordering Tree L e 32
State Diagram of the protocol o000 35
Sp protocol illustration oL 37
Data Structures 40
Ordering List Data structure 43
OSMT Data structure 45
Group Join/Leave Protocol state diagram ol
Member Synchronization Protocol 59
Message Ordering Protocol class diagram 66
Group Join/Leave Protocol 71
Chat Application 76
Threaded Chat Application 76
Threaded Chat Application Architecture 7
Group Manager class L oo 78
Interface for application developer 78

LIST OF FIGURES

Chapter 1

Introduction

1.1 Introduction

Middleware is a set of software facilities that mediates between an applications programs
and communication network. It manages the interaction between applications across the
computing devices by providing communication support of network layer in a transparent
way to the application. The communication paradigms can be classified into one-to-one
or one-to-many or many-to-many communications. As shown in Figl.la, in one-to-one
communication model only two processes are involved in communication, one for sending
the message and other receiving it. Examples of applications of one-to-one paradigms
are web browsing, email etc. The Figl.1b, shows one-to-many communication in which
one process sends message and many processes receive it. Web casting is an example of
such application. The Figl.1c shows many—to—many communication paradigm in which
a message sent by any of the processes reach every process present in the network and is
interested in receiving it. The many to many communication is a form of group communi-
cation paradigm with devices present in the network forming multiple overlapping groups
as shown in Figl.1d. The middleware architecture proposed in this thesis is especially
to support applications with many—to—many communication patterns, although it also
supports other communication patterns.

The thesis describes a set of protocols for many 2 many communication paradigm, for
building collaborative applications like multiplayer games, chat applications etc. that run
in wireless proximal ad hoc networks of fixed or mobile devices or wired or wireless devices
connected by hybrid network. The Fig.1.2 shows the relative position of middleware
protocols with respect to application and the network protocols. The middleware consists

of Messages Ordering protocol, Messages Synchronization protocol, and protocols for

Chapter 1. Introduction

c)1-* (d) "~ is overlap group communication

Figure 1.1: Communication Paradigm

application
data
Application “ » Application
M2M
M2mC | msg | M2MC
packet
Broadcast Protocols + * Broadcast Protocols

Figure 1.2: M2MC

processes to join and leave the groups. These middleware protocols broadcast messages
to all nearby devices using some underlying reliable broadcast protocols.

The M2MC is intended for running collaborative applications without relying on cen-
tral servers. In wireless ad hoc network or hybrid network of devices, relying on central
servers is not attractive because the devices are not necessarily always in the range of
wireless access point. Furthermore relying on any one wireless device to act as a server is
unattractive because devices may come and go without prior notification. Instead all the
devices, which ever ones happened to be present in the changing set of proximal devices,

act in concert to run the application.

1.2 Motivation

We have developed an application using our M2MC APIs called Threaded chat appli-
cation. In this section we describe the application to motivate the relevance of M2MC.

Consider a group of processes (A,B,C,D) running on distributed devices and implementing

1.2. Motivation 5

a simple chat application that lets the members of the group interact with each other. The
processes communicate with each other by sending messages using a broadcast medium.
Suppose the application is implemented using a message ordering protocol based on log-
ical timestamps, such as total ordering [1]. See [2] for a comprehensive survey of total
ordering protocols.

As shown in Fig 1.3, let process C send messages ’Did you wvisit Delhi?’ and ’Did you
wisit Chennai?’ with timestamps 1 and 2 respectively. After receiving the above messages,
suppose process A replies to the message ’Did you visit Chennai?’ with the response 'No’
and process B replies to the message 'Did you visit Delhi?’ with the response "Yes’. As
per total ordering, both A and B would affix the timestamp 3 to their responses. Now, the
message ordering protocol at process D on receiving these messages orders them according
to their timestamps and displays them on the chat console. However, since there are two
messages having the same timestamp, they may get displayed on the console at D in an
arbitrary order. This leads to ambiguity because the user at D may not be able to map
the responses 'No’, Yes’, to the messages ’Did you visit Delhi?’, ’Did you visit Chennai?’
appropriately. Hence total ordering protocol is inadequate for such an application. It can
be shown that the ambiguity persists even when the messages are ordered using vector

clocks, as in causal ordering [3] or even when synchronized global clocks [4] are assumed.

A Disirbuled Prowcol Appl Pei=il 3 "‘_ Disttibuled Prowwol Appl (Y=g 3

- C: Did you visit Chennai? B SHERRGNA T d Distributed Protocol Appl PSl=1F 3
-3¢ Did you visit Delhi? ®—{3C: Did you visit Delhi? [
e{3 B: Yes

C: Did you visit Delhi?
[OB:- yes

|_sena |
!

- - - - C: Did you visit Chennai?
a) User C b) User B [y A:-nO
bl Cistni butad Prowor ol appl ERN=1E i Distrbuied Froocol Appl =18

&7 C: Did you visit Chennai?
&3 C: Did you visit Delhi?

&7 C: Did you visit Chennai?
&3 C: Did you visit Delhi? |
=3 A:Ne |

| - &3 B: Yes | send
| | Serg | l | sena | L J
(I e —
L = |
c) User A d) User D Figure 1.4: Threaded Chat Application

Figure 1.3: Chat Application

In contrast to the above, consider a threaded chat application [5] that lets users com-
municate in a message—response form as shown in Fig 1.4. All chat messages are
structured in the form of a tree. The key feature of this tree structure is that messages

and responses are organized into relationships called threads. A user explicitly selects a

Chapter 1. Introduction

message before responding to it. As a result, the response is linked directly to the corre-
sponding message, using threads, and other users can perceive the semantic relationship
among the messages.

Although the paper [5] does not provide the details of the message ordering protocol
used by threaded chat application, such an application can be easily implemented using
the Message Ordering protocol of M2MC. For the above example, upon receipt of messages
from process C, process A displays both of them to the user. Now the user at process
A would explicitly select the message ’Did you visit Chennai?’ before responding with
the message 'No’. The Message Ordering protocol at process A captures this semantic
dependence between the message and its response and sends this information to the group,
along with the response. Similarly, the Message Ordering Protocol at process B captures
the semantic dependence between the messages ’Did you visit Delhi?’ and its response
’Yes’ and sends this information to the group. The MOP at D, upon receipt of these
responses, orders the messages appropriately and unambiguously, as shown in Fig 1.4. If
a new process E enters the broadcast domain then it executes the Group Join and Leave
protocol to get the list of group of applications running in the broadcast domain. After
joining the group, the Member synchronization Protocol will ensure that the process E
receives all the messages that have been sent to the group. The Message Ordering Protocol

Orders these messages and displays on the screen.

1.3 Objectives of the work

The objective of the present work is to conceive, design the components of M2MC and
implement them as Java APIs for developing applications like threaded chat application,

multiplayer games etc. The detailed scope of the work as follows:

Conceiving the components of M2MC.

e Designing the architecture of M2MC.

Implementing it as Java APIs for application development.

Developing threaded chat application using M2MC.

1.4 Layout of the Report

The layout of the report is as follows:

e First chapter starts with introduction, followed by motivation and objectives of

work.

e Second chapter reviews literature review one existing middleware for group commu-

nication.
e Third chapter presents the architecture and components of M2MC.
e Fourth chapter discusses Message Ordering Protocol and its algorithms.
e Fifth chapter presents Group Join/Leave Protocols
e Sixth chapter presents Member Synchronization Protocols.
e Seventh chapter presents Java implementation of M2MC
e Eight chapter discusses Threaded chat application development.

e Ninth chapter concludes the report.

Chapter 1. Introduction

Chapter 2

Literature Survey

2.1 Introduction

We have surveyed the middleware for one to one communications and group communica-
tions. We present here the one to one middlewares CORBA, RMI, group communication
middleware like Amoeba and Anhinga. In this chapter we present the problems in us-
ing them for developing truly distributed group applications. We have also surveyed the

multicasting protocols and we present some of them.

2.2 Existing middleware for point to point commu-

nication

CORBA and RMI are some of the many middleware concepts that exist in the wired
network. The two mechanisms allow a client to access a remote object present in different
machine and address space transparently. These middleware systems are build for unicast
method invocation over TCP/IP and hence their original incarnations do not support

muliticasting or group services.

2.2.1 CORBA

CORBA [6] specifies a system which provides interoperability between objects in a het-
erogeneous, distributed environment and in a way transparent to the programmer. The
OMG Object Model defines common object semantics for specifying the externally visi-
ble characteristics of objects in a standard and implementation-independent way. In this

model clients request services from objects (which will also be called servers) through a

9

10 Chapter 2. Literature Survey

well-defined interface. This interface is specified in OMG IDL (Interface Definition Lan-
guage). A client accesses an object by issuing a request to the object. The request is an
event, and it carries information including an operation, the object reference of the service
provider, and actual parameters. The object reference is an object name that defines an

object reliably.

2.2.2 RMI

RMI [7]is a Java version of RPC. RMI support remote invocation on objects across Java
virtual machines. RMI directly integrates a distributed object model into the Java Lan-
guage. RMI also includes the dynamic downloading of stubs. Java RMI is a mechanism
that allows one to invoke a method on an object that exists in another address space. The
other address space could be on the same machine or a different one. The RMI mechanism
is basically an object-oriented RPC mechanism. CORBA is another object-oriented RPC

mechanism. CORBA differs from Java RMI in a number of ways:
1. CORBA is a language-independent standard.

2. CORBA includes many other mechanisms in its standard (such as a standard for

TP monitors) none of which are part of Java RMI.
3. There is also no notion of an ”object request broker” in Java RMI.

Java RMI has recently evolved toward becoming more compatible with CORBA. There is
now a form of RMI called RMI/IIOP (”RMI over IIOP”) that uses the Internet Inter-ORB
Protocol (IIOP) of CORBA as the underlying protocol for RMI communication.

There are three processes that participate in supporting remote method invocation.
1. The Client is the process that is invoking a method on a remote object.

2. The Server is the process that owns the remote object. The remote object is an

ordinary object in the address space of the server process.

3. The Object Registry is a name server that relates objects with names. Objects are
registered with the Object Registry. Once an object has been registered, one can
use the Object Registry to obtain access to a remote object using the name of the

object.

2.3. Existing middleware for group communication 11

There are two kinds of classes in Java RMI. Remote class and Serializable class. In-
stances of the Remote class are accessable to remote client. The state of an object of a

serializable class can be copied from one address space to another.

2.2.2.1 Not suitable for group communication

RMI, CORBA etc are suitable for point to point communication. Although group commu-
nication can be achieved by using point to point communication, they do not exploit the
advantages of using multicasting or broadcasting protocols. Hence they are not suitable

for group communication..

2.3 Existing middleware for group communication

2.3.1 Amoeba middleware for client server group communica-
tion

Amoeba is based on model in which all computing power is located in one or more
processor pools. A processor pool contains substantial number of CPUs each with local
memory and network connection. Availability of shared memory is not expected, but if
available can be used for optimizing message passing by using memory to memory copying.

Amoeba consists of two basic pieces: a microkernel, which runs on every processor, and
a collection of servers that provide most of the traditional operating system functionally.
The Amoeba microkernel runs on all machines in the system. The same kernel can be

used on pool processors, terminals etc. The microkernel has four primary functions:

e Manage processes and threads
Amoeba supports the concept of a process and multiple threads of control within
a single address space. A typical use for multiple threads might be for running file

server etc.

e Provide low-level memory management support
The kernel provides low level memory management. Threads can allocate and de
allocate blocks of memory called segments. These can be read and written, and can
be mapped into and out of the address space of the process to which the calling

thread belongs.

12 Chapter 2. Literature Survey

e Support communication
The kernel supportsinterprocess communication. Two forms of communication pro-
vided are point to point and group communication. Point to point communication
is based on client server model. Group communication allows a message to be sent
from one source to multiple destinations. Software protocols provide reliable, fault-
tolerant group communication to user processes in the presence of lost messages and

other errors.

e Handle low-level I-O Devise drivers communicate with rest of the system by the

standard request and reply messages.

Although Amoeba provides group communication, it assumes existence of central

server and hence not suitable for truly distributed communication.

2.3.2 Anhinga middleware for peer2peer group communication

The Anhinga Project [8] is an infrastructure for building distributed applications involving
many-to-many communication in an ad hoc network of proximal mobile wireless devices.
Its architecture consists of Many2Many Invocation (M2MI) mechanism and Many2Many
Protocol(M2MP). as shown in Fig.2.1. The architecture is built for mobile devices that
are in the transmission range of each other. In this infrastructure, all the nodes that
participate in the collaborative application will have and implementation of an object
and interface.Each object is registered with M2MI layer as public object so that any node
can invoke it (omni handle), restricted to a particular group (group handle) or unihandle
object which means only one of the nodes can invoke it. So when a client calls an remote
object after obtaining and interface of it, appropriate invocations happen at remote nodes

based on their access control handles.

2.3.2.1 M2MI

Remote method Invocation(RMI) can be viewed as an object oriented abstraction of
point-to-point communication: what looks like a method call in fact a message sent and
a response sent back. In contrast to RMI , M2MI provides an object oriented method

call abstraction based on broadcasting. An M2MI-based application broadcasts method

2.4. Multicasting protocols: 13

Applications
| objicts [| ubjicts || objects |

Proxies

M2MI Layer
Msg Regulator
M2MP Layer I L I

Broadcast Layer

Figure 2.1: Anhinga Architecture

invocation, which are received and performed by many objects in many target devices

simultaneously. The paper [8] describes it in detail.

2.3.2.2 M2MP

The M2MP is similar to our GJLP protocol. If more than one group application exists
then M2MP lets application join a group and leave group. It also regulates the received
packets from the broadcast layer to appropriate group application.

Since no routing is involved, every message is broadcasted. M2MP layer has filter
implementations, and this layer will transfer data to M2MI layer only if it satisfied filter
conditions. Hence this is a kind of message based or content based routing.

Although Anhinga project provides Object oriented method call abstraction for devel-
oping many to many communication applications, it does not provide support for message

ordering and recovery of lost messages.

2.4 Multicasting protocols:

Multicasting is the transmission of datagrams to a group of hosts identified by a single
destination address. It is intended for group-oriented computing applications that are
characterized by the close collaboration of teams with requirements for audio and video
conferencing and sharing of test and images. Maintaining group membership information
and efficiently delivering the multicast packets to all members is challenging in adhoc

networks. The nodes in these networks consist of a dynamic collection of nodes with

14 Chapter 2. Literature Survey

sometimes rapidly changing multi-hop topologies that are composed of relatively low-
bandwidth wireless links. Since each node has a limited transmission range, a source-to-
destination path could pass through several intermediate nodes. The network topology
can change randomly and rapidly, at unpredictable times. Most of the mobile devices are
powered by batteries, thus routing protocols must limit the amount of control information

that is passed between nodes.

The existing multicast protocols can be can classify into tree-based multicast protocols,
mesh-based and flooding based protocols. Tree-based multicast protocols construct a
logical multicast tree with the members of the group forming nodes of the tree. As the
tree is a cycle free data structure, no alternate paths exists between any two adjacent
nodes. These are not robust but less overhead to construct and maintain the tree. The

following are two tree-based protocols.

2.4.1 Ad hoc Multicast Routing protocol utilizing Increasing id
numbers(AMRIS)

AMRIS is a tree-based multicast scheme, hence uses a shared tree for multicast data
forwarding. Each node in the multicast session is assigned a multicast session member
id(msmid). The key idea in using msmid is to denote the logical height of the node at that
particular instant in the shared multicast tree. Theprotocol has two mechanisms, they are
Tree Maintenance and Tree Initialization. The nodes interested in joining the multicast
group sends periodic beacon signals to find out the existence of a neighbour. Initialy
a source node with id sid broadcasts a NEW SESSION packet. The relation between
Sid and msm id is that msm ids increase in value as they radiate away from Sid. The
neighbors upon receiving this packet calculate their own msmids and re broadcast the
packet. The msmids may not be consecutive.Information derived from the NEW Session
manage is kept in the neighbor status table for some t1 seconds. A node joins a session by
determining its parent, i.e the neighboring nodes that have smaller msm ids. A unicast
join is then sent to potential parent, i.e Join Req is sent and if the parent is in the delivery
tree then it sends a Join ACK message, or that node will try to locate a potential parent
for it. And a join ack is sent back through the reverse path, thereby drafting a branch
to the node. The node receives all data through this branch. If no parent is found by

2.4. Multicasting protocols: 15

unicast request to neighboring nodes, then a broadcast message is sent to locate a parent.
If node is unable to locate a parent then a BR (Branch Reconstruction) process is carried
out. The Tree maintenance mechanism operates in parallel in the back ground. When
some link failures occurs, the node with higher msm id i.e the child is responsible for
reconstruction of link. BR has two sub routines, BR1 and BR2, where BR1 is executed
when the node has neighboring potential parent and BR2 when no neighboring potential
parent is present. In BR1 a node send a unicast message to neighbor parent, and the node
sends a JOIN ACK, this process happens if the neighboring parent is no the multicast
tree or else it sends JOIN NACK. Now BR2 is executed where a broadcast message is
sent, and there is a restriction on the number of hoops. If a node succeeds to find a parent

then it receives a JOIN-CONF.

2.4.2 Adhoc Multicast Routing Protocol

This protocol uses shared multicast tree approach. It runs over an underlying unicast
channel. It allows dynamic core migration based on group membership and network
configuration. The disadvantage of this protocol is it is vulnerable to core node. It
requires a underlying routing protocol in addition to tree based multicasting mechanism.

The protocol assumes the existence of an underlying unicast routing protocol that
can be utilized for unicast IP communication between neighboring tree nodes. The ac-
tual path followed may the two direction of unicast tunnel connecting neighboring group
members may be different. It is not required for allnetwork nodes support AMRoute or
any other IP Multicast Protocol. All group members must be capable of processing IP in
IP encapsulation. No group members need have more than one interface or act as unicast
routers. However, at least one member must be capable of being AMRouter.

The protocol creates per group multicast distribution tree using unicast tunnels con-
necting group members. The protocol has two main components:mesh creation and tree
creation. There are three types of nodes , noncore node, core node and nongroup mem-
ber. Only the logical core node intiates mesh and tree creation. Bi-directional links
are created between a pair of group members that are close together and thus forming a
mesh structure. Using a subset of the available mesh links protocol periodically creates
a multicast distribution tree. The protocol works as follows. Each group has atleast

one logical core that maintains the multicast structure and members. During the start

16 Chapter 2. Literature Survey

each member assumes that theyare the core of their own group, and the group size is
one. Now the core periodically floods a join request to discover other mesh segments.
When a node receives the message from a core of the same group but from a different
mesh segment, it replies with a join-ack, and marks it as its mesh neighbor. Once the
mesh is created each core sends a Tree-create packet periodically to its mesh neighbors
for building the shared multicast tree. Members forward the non duplicate create tree
packets to others, which they have received from one of their mesh links. If a duplicate
tree create is received, then the node receiving the packet send a tree-create-nak, alon
the incoming link. The nodes wishing to leave the group send a join-nak to their neigh-
bors, and they do not forward any data packets for the group. The AMRoute prtocol
uses virtual mesh links to create the shared multicast tree, so as long as routes between
tree members exist through mesh links, the tree need not be re adhusted when there is a
network topology change. So processing overhead is incurred only by the nodes that form
the tree. Since there are loops present a non optimal tree is created when there is node

mobility. Some features of the protocol

1. There is a channel overhead when sending the Tree Create NAK is used, to suppress

the duplicates , but this would have been avoided by ignoring the duplicates.

2. Join NAK, also increases the processing and channel overhead. A more efficient
solution could be using a time out procedure, i.e, if a node wishes to leave the group
issues no more join requests; as a result the source or the logical core can remove

this node from its routing table.

3. The protocol entirely depends on the underlying unicast protocol. If the unicast

protocol fails then this protocol also fails.

The following protocol is a mesh-based multicast protocol. The protocol constructs a
mesh with group members. This is robust protocol with possibly more than one path

between any two group members.

2.4.2.1 On Demand Multicast Routing Protocol

On-Demand Multicasting Routing Protocol(ODMRP) is a mesh-based multicast scheme

and uses a forwarding group concept. A subset of nodes forwards the multicast packets

2.4. Multicasting protocols: 17

via scoped flooding. The protocol dynamically build routes and maintain multicast group

membership.

1. Route and Membership creation

When a multicast source has packets to send it floods the network with an adver-
tisement packet plus data piggybacked to it. This packet called JOIN QUERY is
periodically flooded to refresh or update the route and membership information.
When an intermediate node say X receives the packet from Y it stores the source ID
into routing table and rebroadcasts it to its neighbors. If one of the neighbours is
multicast receiver then it creates a JOIN REPLY and broadcasts to its neighbours
(X is one among its neighbours). When X receives JOIN REPLY message it sets the
FGFLAG (Forwarding Group Flag) and broadcasts its own JOIN REPLY. In this
way node Y (which has sent JOIN QUERY) to X also sets FGFLAG and broadcasts
JOIN REPLY. This is continued unpto the source node. The intermediate nodes

which perform forwarding to their neighbors are called ”forwarding group”.

2. Example

Consider the following figure for demonstration of the protocol. Nodes S1 and S2 are
multicast sources, and nodes R1, R2, and R3 are multicast receivers. Nodes R2 and
R3 send their JOIN REPLIES to both S1 and S2 via I2. R1 sends its JOIN REPLY
to S1 via I1 and to S2 via I12. When receivers send their JOIN REPLIES to 11, 12
, they update their tables,sets FGFLAG set and builds its own JOINREPLY since
there is a next node ID entry in JOIN REPLY received from R1 and R2 respectively.
The JOIN REPLY built by I1 has an entry for sender S1 but not for S2because the
next node ID for S2 in the received JOIN REPLY is not I1. The JOIN REPLY built
by 12 will have and entry for both S1 and S2. In this way routing tables are setup.

3. Data Forwarding

After group establishments and route constructions process by constructing for-
warding tables, a source can multicast to group of receivers through intermediate
forwarding nodes. An intermediate node forwards it only when it is not duplicate
and the setting of the FGFLAG for the multicast group has not expired.This mini-

mizes the traffic overhead and prevents sending packtes through expired routes. In

18

Chapter 2. Literature Survey

ODMRP, no explicit control packets need to be sent to join or leave the group. If
a multicast source wants to leave the group it simply stops sending JOINQUERY
, similarly the receiver does not JOINREPLY if it is no longer interested in re-
ceiving the message from that source and intermediate nodes will be demoted to

nonforwarding status.

The flooding multicast protocols are best effort multicast protocols.

2.4.3 Adaptive Flooding

In adaptive flooding protocol, nodes dyanamically switch flooding mechanisms based on

their perspective of network conditions. The relative velocity of nodes could be one such

conditions. The flooding mechanisms discussed here are scoped flooding, hyper flooding.

1. Scoped Flooding

The basic principle behind Scoped Flooding is to reduce re-broadcasts to avoid col-
lisions and minimize overhead. Scoped Flooding is suitable for constrained mobility
environments (for eg. in a conference scenario) where nodes do not move much and
plain flooding will yield unnecessary re-broadcast. The work in bibtexRef shows
that re-broadcast can provide between 0-617% additional converage over what was
already convered by a previous transmission. The coverage area reduces drastically

to 0.05

Different heuristics can be used in deciding whether to rebroadcast a packet. In
scoped flooding implementation, each node periodically transmits hello messages
which also contain the node’s neighbor list. Nodes use hello message to update
their own neighbor list and add received lists to their neighbor list table. When a
node receives a broadcast, it compares the neighbor list of the transmitting node
with its own neighbor list. If the receiving node’s neighbor list is a subset of the

transmitting node’s neighbor list, then it does not rebroadcast the packet.

. Hyper Flooding

Nodes in hyper flooding mode periodically transmit hello messages. When a neigh-
bor receives a hello message, it adds the hello message originator to its neighbor

list(it the list does not already contain that node). Similarly to plain flooding,

2.5. Issues in Group Communication 19

when a node receives a data packet, it simply re-broadcasts the packet and also
queues it in its packet cache. Additionally, re-broadcasts are triggered by two other
events: receiving a packet from a node which is not in the current neighbor list or
receiving a hello message from a new node. In these cases, nodes transmit all packets
in their cache. The rationale behind re-broadcasts is that "newly acquired” nodes
could have possibly missed the original flooding wave on account of its mobility.
This increases overall reliablity by ensuring that new nodes entering the transmis-
sion region of a node receive data packets which they otherwise would have missed.
Nodes periodically purge their packet cache to prevent, excess re-flooding of the

packets.
These protocols is not suitable to support group communications because

1. Atomicity
The protocol does not guarentee that either all nodes receive the packe t or none of
them receive it, because the responsibility of forwarding the data is with not with

the source node but with intermediate forwarding nodes.

2. Reliablility
The nodes miss packets temporarily when the forwarding nodes move away. These
protocols do not provide 100% guarentee that all the nodes of group receive data.

Hence these are best effort service protocols.

3. Synchrony
If a source S1 multicasts a message before another source S2 there is no guarentee

that every member of the group receive the message from S1 first and then from S2.

2.5 Issues in Group Communication

2.5.1 Group Communication

A group is a collection of process or objects that act together in some system as specified
by the application. The key property that all groups have is that when a message is sent
to the group, all members of the group receive it. Groups are dynamic. New groups can

be created and old groups can be destroyed. A node can join a group or leave one. A node

20 Chapter 2. Literature Survey

can be a member of several groups at the same time. Hence mechanisms are needed for
managing groups and group membership. The purpose of introducing groups is to allow
nodes to deal with collections of process as a single abstraction. Thus a node can send a
message to a group of nodes without having to know how many there are or where they
are, which may change from one call to next. The following are the design issues in wired

network

2.5.2 Issues

1. Closed Groups versus Open groups
Closed groups are those in which only members are allowed to send messages to
other members in the group. In constast open groups are those that allow non
members to send messages to members of the group. Closed groups are typically
used for parallel processing. For example, a collection of process working together

to play a game or developing a project without disturbance from nodes outside the

group.

2. Peer Groups versus Hierarchial groups
In peer groups all members have equal privilages. In hierarchial groups one or some
of the nodes will coordinator or boss. The peer groups are symmetric but decision
making is complicated. To decide anything voting has to be taken, incurring some
delay and overhead. In hierarchial groups loss of coordinator brings entire group to

halt.

3. Group Membership

One approach is to have a centralised group server and alien nodes can register with
the server. But if a mobile node hosting the server moves away then group collapses.
Other approach is that nonmembers sending joining request to every memeber of
the group or majority of the group.

The other issues are that joining and leaving of the group have to be synchronous
with messages being sent. In other words, starting at the instant that a process or
node joined a group it must receive all messages sent to the group. Similarly as soon

as the process has left a group, it must not receive any messages from the group.

4. Group Addressing

2.5. Issues in Group Communication 21

In order to send a message to a particular group, application process must have
some way of specifying which group it means. One way is to give each group a
unique address and if multicast support is there then group address will be same as
multicast address. Another method of adressing a group is to require the sende to
provide explicit list of all destinations. When this method is used, the parameter in
the call to send that specifies the destination is a pointer to a list of addresses. This
method has the drawback of lack of transparency of group members for the sender.
The method is message based addressing in which a message is broadcasted and
only some the receiver interested in the message pick the information and others

filter it as noise.

5. Send and Receive primitives
The existing RPC, RMI or CORBA middleware systems support request/reply
model. These are suited for communication models in which client send a request
and server replies it. But when a message is sent to a group of nodes, the sender
cannot wait until it receives replies from all the members of the group. Hence re-
quest/reply model does not suit group communications. There should be one,ay
model in which sender sends messages to the group and if required one of the mem-
bers explicitly call the sender to acknowledge the message. Hence RPC send and
receive routines but be altered to make them one — way and suitable for group

communication.

6. Atomicity
Group atomicity means either all members of the group must receive the message

or none of them should receive it.

7. Message Ordering
To make group communication easy to understand and use, two properties are
required. The first one is atomicity that ensures all nodes receive message. The
second one is that all these nodes receive the message in the order they are issued.
One way to solve this problem is to have global time ordering. Absolute timing
may not be possible always and hence weaker forms like logical clock based on the

principle of causality.

8. Overlapping Groups

22

Chapter 2. Literature Survey

A process can be a member of multiple groups at the same time. This can lead
to a new kind of inconsistency. Consider the figure shown below. There are two
groups, 1 and 2. Process A,B, and C are members of groupl. Process B,C, and D
are members of group2. Now suppose that process A and D send information with
global time stamp, the order in which B and C receive information from A and D
differs i.e. B receives A’s message first and then D’s. C receives D’s first and then
A. Although global time ordering is used, the culprit is lack of coordination amount

various groups.

Chapter 3

Architecture and components of

M2MC

3.1 Middleware Architecture

As shown in Fig 3.1 M2MC comprises of a Message Ordering Protocol (MOP), Member
Synchronization Protocol (MSP), and protocols for process to join and leave the group

called Group Join Leave Protocol (GJLP).

3.1.1 Components of Middleware

The following are components of our middleware.

3.1.1.1 Message Ordering Protocol(MOP)

When two or more messages are sent to the group, processes receive them in arbitrary
order depending on the transmission delays between senders and receivers. For example,
if a group member sends a message Y7 as a response to message X1, then it is possible that
some of the group members may receive Y; before X; (see Fig 3.2). Hence an ordering
protocol is required to guarantee that every group member will deliver the message X;
before delivering Y; to the application. Also if X, and Y; are any two semantically
unrelated messages, then a member receiving Y5 before Xy, should not block delivery of
Y, by waiting for the arrival of Xs.

Traditional solutions like total ordering protocol [3] or causal ordering protocol [1] do
not take into account the semantic relationship among messages and hence are inadequate

for many distributed group communication applications.

23

24 Chapter 3. Architecture and components of M2MC

Application

I ApplGrpMngrClass I

[)

5

A
| ApplGrpMngrinterface I / MSP
7
i t % ﬁ
GJLP Group Manager
c
E
12’3 MOP
Message 8
Receiver/Buffer 2]
..... 11
..... t
FroadcastReceiver BroadcastSender

Figure 3.1: M2MC architecture

P Q R
X
Y,
2
a) X.Y semantically b) X,Y semantically
related. Causal unrelated. Causal
Ordering Protocaol, Ordering Protocol
Sh protocol atR at R blocks Y until
blocks Y until it it receives X, Sb
receives X delivers Y
immediately

Figure 3.2: Illustrating S, ordering

3.1. Middleware Architecture 25

For M2MC, we propose a new message ordering, called Sy ordering, and a correspond-
ing protocol, called Message Ordering Protocol (MOP) , which is implemented by every
member of the group. The primary objective of the MOP is to order received messages,
based on the semantic relationship among them, irrespective of the chronological order
in which they are received. As a result, the MOP also minimizes the delivery delay at
a process (the time from the moment a message is received at a process to the time the
message is delivered to the application consuming it), by blocking delivery of a message

only if it is yet to receive any semantically preceding message(s).

3.1.1.2 Group Join Leave protocols (GJLP)

When a process is newly connected to a broadcast network or a process leaves the network
temporarily and later rejoins, it should be aware of the group applications that are running
across the network so that it can join in any of the interested applications. For M2MC,
we propose Group join protocol to keep a the newly connected process aware of group
applications running across the network so that it can join them and a Group Leave
Protocol for a process leaving a group application, to informs its departure to the members
of the group. The protocol is also for creating new groups.

According to these protocols, when a process newly connects to broadcast network it
advertises its presence to the group by sending the list of group information that it is
aware of. Every process responds to the advertisement by sending the list of information
about group that they are aware of. Every process in the network if finds any new groups
information in these lists that it is not aware of, then it informs about them to the

application.

3.1.1.3 Member Synchronization Protocol (MSP)

When a process newly joins a group or it leaves an existing group and later rejoins it, it
misses messages that were sent to the group during its absence. The process must recover
such lost messages, as soon as it joins the group, such that the group applications continue
running correctly. For M2MC, we propose Member Synchronization Protocol to recover
such lost messages.

According to MSP, every process stores every message sent to the group and newly

joined or rejoined process sends a request message containing the list of messages that

26 Chapter 3. Architecture and components of M2MC

it has received. Every process updates their messages by delivering any new messages
present in the list to the application. Any one of the processes(chosen randomly) present
in the group by responding with the list of messages that the requested process missed.

Only the requested process delivers the messages present in the list to the application.

3.1.1.4 Group Manager

The Group Manager regulates the flow of messages from one component to another. It
receives messages from the network, determines the nature of the message, routes them
to the other components of M2MC appropriately and finally delivers it to the applica-
tion. It also receives messages from application and delivers it to the network layer for
broadcasting. Since M2MC supports applications over multiple overlapping groups, the
group manager maps group information to the corresponding instances of the MSP, MOP

allocated to the groups.

3.1.1.5 Broadcast Layer

The broadcast layer is assumed to be reliable and guarantees message delivery to every
member of the group. However it may suffer from nondeterministic bounded delay in
message delivery. Messages in transit need not follow FIFO order. The Broadcast layer
supports functions for broadcasting a message to the group and for receiving a message

from the group.

3.1.1.6 Applications

The middleware supports group applications like chat applications, multiplayer games,
group ware systems etc. The application uses the APIs provided by GroupManager and
ApplGrpMngrInterface for sending and receiving group messages, for creating new groups

or for joining and leaving existing groups.

3.2 Middleware operations

3.2.0.7 For creating a new group:

The Application calls (step A in Fig 3.1) GroupManager component with group descrip-

tion parameters. The GroupManager creates an identity and instances of various protocols

3.2. Middleware operations 27

for the new group and broadcasts the new group description(step D).

3.2.0.8 For joining an existing group :

Every process maintains a groupsInfoList containing the identity and members informa-
tion of every group that it is aware of. When a process newly connects to broadcast
network or a process leaves the network temporarily and later reconnects, it broadcasts
its presence by doing the following. The GroupManager calls GJLP protocol compo-
nent, gets the advertisement message (steps E, 6) containing the attributes of process and
broadcasts by sending it to broadcast layer along step D. Every process (including the
one that sent the advertisement) on receiving advertisement (along steps 1, 2, 3) gives it
to their respective GroupManager. The GroupManager calls GJLP and gets (steps E, 6)
the groupsInfoList containing identities and members list of every group that the process
is aware of. The GroupManager broadcasts the groupsInfoList by sending it to broadcast
layer along step D.

At every process, groupsInfoList received by the broadcast layer reaches GJLP along
1, 2, 3, E. The GJLP checks if there exists information about any new group in the
received message that is not present in its groupsInfoList. If such group exists then it
presents the details of the new group to the application along 6,4,5. The user at the
application if decides to join a group, calls GroupManager (step A) which in turn creates
instances of MSP, MOP for the group and sends joinMsg, containing the identity of the
group and identity of the process, to the broadcast layer (along step D) for broadcasting.
Every member of the group on receiving the joinMsg updates their groupsInfoList by
appending the identity of the process specified in joinMsg to the members list of the
group.

For leaving the group, application calls GJLP along step A, E. GJLP creates a
leaveMsg with identities of the process and the group that the process is leaving. The
leaveMsg reaches GroupManager along 6 and it subsequently broadcasts along E. The
GJLP at every member of the group on receiving leaveMsg along 1,2,3,E updates their
groupslInfoList by deleting the identity of the process from the members list of the group

specified in leaveMsg message.

28 Chapter 3. Architecture and components of M2MC

3.2.0.9 For sending a message to group

For sending an application message M to the group, the application calls (arrow A)
GroupManager which in turn calls MOP. The MOP adds appropriate headers and returns
the message (arrows C, 8) to GroupManager. The GroupManager broadcasts the message

to the group by calling Broadcast layer.

3.2.0.10 On receiving a message from the broadcast layer

The GroupManager on receiving the application message M (along arrows 1,2,3) finds
the group that the message belongs to and calls MSP of the group (along 7,B) for storing
the message. It then calls MOP (along C) of the group. MOP checks whether the process
received all the messages that are semantically before M. If it has received them then it
sends (along 8) M and any other messages that are waiting for its arrival (because M is
semantically before waiting messages) to the GroupManager which in turn delivers them

to the application (along 4). Otherwise MOP blocks the delivery of the message.

3.2.0.11 Member synchronization

When a process running on a mobile device leaves the network temporarily and later
reconnects to the network it misses the messages that were sent to the group. It exe-
cutes Member Synchronization Protocols for each group (in which it has membership) for
recovering the missed messages.

The GroupManager calls MSP and gets (arrows 7, B) a synchronization request mes-
sage SyncReqMsg. SyncReqMsg contains the process identity, group identity, and applica-
tion messages the processes has received before leaving the network. The GroupManger
broadcasts it by sending it to broadcast layer (along D).

BroadcastReceiver on receiving SyncReqMsg, sends it to GroupManager (steps 1,2,3).
The GroupManager at every process other than the process that sent SyncReqMsg sends
it to MSP (step 4). MSP finds for any messages that it has not received from the group,
in the application messages of SyncReqMsg and sends them to the Group Manager (step
B). The Group Manager subsequently delivers them to the application. MSP creates
a temporary applMsgList containing application messages that it has received from the

group. It waits for random time and sends SyncRespMsg containing the messages

present in applMsgList. While waiting, if MSP receives SyncRespMsg sent by some other
process, then it deletes the messages from applMsgList that are present in SyncRespMsg.

The broadcast layer at the process that sent SyncReqMsg on receiving SyncRespMsg,
sends it to GroupManager (steps 1,2,3). The GroupManager subsequently delivers the
application messages present in SyncRespMsg after sending to MSP,MOP for storing and
ordering purposes.

Hence the process that missed the messages gets updated with the application mes-
sages and also every other process gets the application messages from the process that

requested synchronization.

30

Chapter 3. Architecture and components of M2MC

Chapter 4

Message Ordering Protocol

4.1 Message Ordering Protocol

Here, we present the specification and implementation details of Message Ordering Pro-
tocol. Group Join/Leave Protocol and Member Synchronization Protocols are presented
in next chapters.

The primary objective of the Message Ordering Protocol called MOP is to identify the
semantic relationship among received messages and delivering them to the application in

a semantically consistent order. Guaranteeing such ordering involves:

1. Capturing the semantic relationship between a message and its response, from the

application at the sender.

2. Representing these semantic relationships in an appropriate form and conveying

them to the receivers.

3. Maintaining the relationship at each member of the group with minimum overhead.

4.1.1 S, Ordering

We represent the semantic relationship among the messages using S, order relationship
defined as follows:

Two messages X and Y are said to be related in S, order if and only if Y is
produced semantically in response to a unique message X. This is represented
as X°%Y. Also if X and Y are not semantically related then it is represented
as X%,

For a group of messages, we conceptually represent the semantic relationship among

them in the form of a tree, called the Ordering Tree (OT), as shown in Fig 4.1. The

31

32 Chapter 4. Message Ordering Protocol

OTR

(Z'I1

A1 B1

8]

Figure 4.1: Ordering Tree

OT has the following structure:

e The vertices of the OT are identities of the messages; each message has a unique

system-wide identity.

e The directed edges of the OT represent the semantic message-response relationships
among messages. There is an edge between any two vertices in the OT, if and only

if and the corresponding messages are related in S, order.

e The root of the OT is a virtual node, denoted by OT'R. OTR is assumed to be
semantically before all the messages sent to the group. If a message is not a response

to any other message in the OT, it is considered to be a response to OTR.

4.1.2 Properties of S, order
Some salient properties of S, order are as follows:

1. Response semantics :

If X% then P(Y) = X, i.e., X is said to be parent of Y.

The OT represents this relationship in the form of a directed edge between a parent
node X and a child node Y. For example in the Fig 4.1, node Al is the root of the
tree. A4 is produced in response to C1 (Cli)Aél) and P(A4) = C1. Hence there is
a directed edge from node C1 to node A4 in the OT.

2. Uniqueness:

If X2%Y then P(Y) #Z (VZ,Z # X), i.e., X is unique.
The OT represents this by allowing a node to have multiple number of child nodes

but a child node can have exactly one parent node. In other words, a message sent

4.1. Message Ordering Protocol 33

to the group may generate multiple responses from various members of the group
but any given response is associated with one and only one message and not with
multiple messages.

3. Transitivity:
XBY \ Y47 = X2,
The OT represents this as having a path from X to Z, if there is an edge from X

to Y and an edge from Y to Z. We use the notation S 1o represent such transitive
*

closure. It can be easily seen that the following also hold:

o XY A Y27 = X7
Sp Sp Sp
e XHY ANYSHZ = X—Z

o X2y A Y27 = X247

4.1.3 Protocol Actions

Here we present the Message Ordering Protocol that includes:

1. At the sender: Captures the S, order between a message and its response and

includes this information while broadcasting the response.

2. At the receiver: Maintains the S, order information and determines the action
to be taken for each received message. A message is delivered immediately to the
application either if its parent in the S, order has been delivered or if it is not a
response to any other message, i.e., it has the root of the OT (OTR)as its parent.
Otherwise the delivery of the message is deferred, until the receipt and delivery of

its parent.

We now describe the data structures and state diagram of MOP.

4.1.3.1 Notations, Message Format and Data Structures

1. Notations:

34 Chapter 4. Message Ordering Protocol

< gid >: denotes the unique identity of the group.

< pid >: denotes the unique identity of the process in the broadcast network.

e < seqno; >: denotes sequence counter value at process i.

< mid; >: denotes message identity of message i and < mid; > is < pid;, seqno; >

2. Message Format:
A message format is: < mid,, mid,, gid, data > where mid, is the message identity,
mid, is the identity of its parent (midpi)midc), gid is the identity of the group and
data is the application information. If a message (mid.) is not a response to any

other message then the identity of its parent (mid,) is set to OTR.

3. Data Structures :

Every process maintains two data structures for every group:

(a) Ordering Tree (OT): As discussed earlier, the OT represents the S, order
among the messages of a group. Each process constructs its OT dynamically
by recording the identities of those messages that have been received in S,

order.

(b) Out of Sequence Messages Store (OSMS): OSMS saves messages that
have arrived out of Sy order. For every such message in the form < mid,., mid,, gid, data >,
mid., mid,, data are are saved in the OSMS in the format < Msg >:<

mid., midy, data >.

4.1.3.2 State Diagram

The state diagram of the MOP is as shown in Fig 4.2. In the INITIAL state all the
data structures are initialized to NULL and the process then waits in the LISTEN state.
When the application wants to send a message to the group, the process goes to the RE-
SPOND state, where it augments the message with the S, order information, broadcasts
the message and returns to the LISTEN state.

When a message is received from the group, the process goes to the RECEIVE state,
where it checks the S, order information of the message with the OT (Ordering Tree). If it
has delivered the parent of the current message, it goes to the RCVDeliverableMSG state,
else it goes to the RCVOutSequenceMSG state. In the RCVOutSequenceMSG state, the

4.1. Message Ordering Protocol 35

after delivering msg to application

msg
deliverable

RCV DeliverableM$SG

RCY OutofSeqMSG

Received

msg out of
sequence.

RESPOND

after broadcasting the msg

after storing msg in OSMIT

Figure 4.2: State Diagram of the protocol

process simply saves the message in the OSMS and returns to the LISTEN state. In the
RCVDeliverableMSG state, the process delivers the message to the application as well as
any of its S, order children that may be saved in the OSMS and returns to the LISTEN
state.

A more detailed description of the protocol actions in each state, for a group of n

processes, is as follows:

1. INITIAL STATE:
At every process, set seqno to zero, set root of OT to OTR and go to LISTEN
STATE.

2. LISTEN STATE:

Listen until a message is received or application wants to respond to a message.

if message is received then
go to RECEIVE state

else if application sends a message to the group then
go to RESPOND state.

end if

3. RECEIVE STATE: Process i on receiving a message M =< mid,, midy, gid, data >,

36 Chapter 4. Message Ordering Protocol

if mid, = OTR or mid, € OT then
go to RCVDeliverableMSG STATE.
else
go to RCVOutSequenceMSG STATE
end if

4. RCVDeliverableMSG STATE:

(a) Call the UpdateOT operation described below with received message M as its
parameter.
(b) UpdateOT(M)
i. Append M - mid, into OT; as a child node of M - mid,.

ii. Deliver the M - data to the application.

iii. /* Let Msg represents a message in OSM S; and M sg-mid,, Msg-mid,
represent the mid,, mid, values of the message Msg respectively. */
for each message Msg €OSMS, having Msg - mid, == M - mid, do

UpdateOT (M sg)
Remove message Msg from OSMS;

end for
(¢) go to LISTEN state.

5. RCVOutSequenceMSG STATE:
Insert < mid,, midy, data > in OSM S; and go to LISTEN state.

6. RESPOND STATE: When application at process ¢ responds to a message with
identity mad,, then,
(a) seqno; = seqno; + 1
(b) mid; =< pid;, seqno; >
(c) broadcasts :< mid;, midy, data >

(d) go to LISTEN state.

If message is not related to prior messages then mid, is OTR.

4.1. Message Ordering Protocol 37

oT: OSMS: oT: OSMS: Oql:rR OSMS: _
OTR QTR B3 B2data
gh
(@) (b) ©
oT: OSMS: oT:
: OSMS: oT:
R B3 B2dats Bf,"‘ OTR OSMS:
B B4 B3awa e 41:
) éfg A

(e) 0]

Figure 4.3: S, protocol illustration

4.1.4 Protocol illustration

Consider a group formed by two processes with identities A and B respectively. We fol-
low the Ordering Tree representation explained earlier, to show the semantic relationships
among the messages exchanged between A and B. Recall that the root of the tree is a
default node OTR and we assume OTR is semantically before every message sent to the

group. The vertex of the tree represents message identity in the format < pid, seqno >.

Protocol Actions at process A are illustrated below:

1. In the initial state, the OT4, OTpg at process A,B respectively contains root node
OTR. Also the OSMS 4, OSMSpg at process A,B respectively are empty. The se-
quence counters seqno,, seqnopg are set to zero. The process remains in LISTEN
state until a message is received from the group or application responds to a previ-

ous message. The ordering tree is as shown in Fig 4.3a.

2. Process A on receiving a message < Bl,OTR, data > enters RECEIVE state. Since
my, = OTR the process A goes to RCVDelivarableMSG state, saves B1 in OT}y as
child node to OTR, and delivers the data to the application. As the OSM S, is
empty, it cannot find any messages m, such that (mc%)mw) and goes back to LIS-

TEN state. The data structures at process A are as shown in Fig 4.3b.

3. Process A on receiving a message < B3, B2, data > enters RECEIVE state. Since

B2 (mid, field of the message), is not present in OT 4 the protocol goes to RCVOutSequenceMSG.

38 Chapter 4. Message Ordering Protocol

Following the S, protocol, the < B3 >, < B2 >, and data are saved in OSM S, as
shown in Fig 4.3c.

4. Similarly on receiving < B4, B3, data >, the process A goes to RECEIVE state and
then to RCVOutSequenceMSG because B3 is not in OLp. B4, B3, data are saved in
OSM,. The Fig 4.3d shows OSMS 4, OT4.

5. On receiving < B2, B1,data >, the process goes to RECEIVE state and then to
RCVDeliverableMSG state because B1 is present in OL4. In this state, the protocol
delivers data corresponding to received message and saves its identity B2 is saved
in OL4 as child node of B1l. Messages with identities B3, B4 are retrieved from
OSMS 4 because B22%B3 directly and B2%B4 transitively. The < data > corre-
sponding to messages with identities B3, B4 are delivered to the application in S

order and identities B3, B4 are saved in OT4 as shown in Fig 4.3e.

6. If the application at process A wants to respond to a message having identity B2,
then it goes to RESPOND STATE. It increments the sequence counter value to
1, receives data from the application and broadcasts the message in the format
< Al, B2,data >. Since the message is a broadcast, process A on receiving its
own message goes to RCVDelivarableMSG delivers data and updates OT4 as shown

in(Fig 4.3f).

4.1.5 Correctness and liveness

We prove the correctness and liveness of the S protocol by using the semantic relation-
ships among the messages as represented by the Ordering Tree (OT). Recall that by
the transitive closure property of Sy order, the root of the OT is semantically before all

messages sent to the group. OTR N {Vmessages € OT}.

4.1.5.1 Correctness

Theorem 1: The S, protocol preserves S, ordering.
Explanation: Let (OTR, A1, As, A3, Ay ... Ay,) be the identities of the messages in the
OT along the path from root to any node A, of the OT. As these messages are in S,

order, we need to prove that the S, protocol delivers them to the application in the same

4.1. Message Ordering Protocol 39

order.

Proof:

The proof is by induction on the number of messages n.

Base

For n

case:

= 1, the first message having identity A; sent to the group is not semantically before

any other messages except OT R. Hence every process receiving it will deliver information

corresponding to A; to the application. A; is represented as the child of OTR in OT.

If

a process does not receive A; but receives a message A, such that A i A2 then
*

the process saves A, in the OSMS until it receives message A;. The process after receiv-

ing A

1 will deliver information corresponding to A; to the application before delivering

information of A,. Hence the ordering is preserved.

Induction Hypothesis :

Assume that the S, protocol preserves the ordering for n messages i.e for the messages

(OTR, Ay, Ay, A3, Ay ... Ay) in the ordering tree (OT).

Induction Step:

Suppose a member of the group sends a new message in the format < A,.,,, mid,, data >

to the group.

If mid, is node A,: Since A, is present in the OT, the data corresponding to iden-
tity A, is delivered to the application and A,,.,, becomes child node of A, in OT.
Hence the protocol preserves the ordering for n+1 messages (OT R, Ay, Ag, As, ... An, Anew)-

If mid, is any node A, in OT. In this case also, the data corresponding to identity
A, 18 delivered to the application and A,,.,, becomes child node of A; in OT. Hence

the protocol preserves the ordering for n + 1 messages.

If mid, is not in OT: In this case, A, is saved in the OSMS until the process
receives mid,. Upon delivery of the message corresponding to mid,, mid, would
be inserted into the OT. Now A, 1s removed from the OSMS and also delivered
to application. A,., then becomes child node of mid, in OT. Hence the protocol

preserves the ordering for n 4+ 1 messages.

40 Chapter 4. Message Ordering Protocol

T [T T+T 1] mide mids data
L]
—{ [31 1]

(a) Ordering Lists

{b) OSMT

Figure 4.4: Data Structures

4.1.5.2 Liveness

Theorem 2: The S, protocol is liveness preserving.

Explanation: Every message sent to the group will be eventually delivered to the applica-
tions at every process. We need to prove that no process will block a message indefinitely.
Proof:

Consider a message M for which n responses have been generated in the group. Consider

the receipt of one of these responses, R, at process i.

e If process i has delivered message M to the application: In this case process

i also delivers response R immediately, irrespective of other n-1 responses.

e If process i has not received message M: In this case process i saves response
R in the OSMS and waits for receipt of message M. Since the underlying broadcast
medium is assumed to provide reliable message delivery, message M would be even-
tually delivered to process i. When process ¢ receives message M, and subsequently

delivers it, it traverses the OSMS and also delivers response R.

4.1.6 Protocol Implementation

Here, we discuss the protocol algorithm details and the corresponding time and space
complexities.

The data structures required for S, protocol at a process ¢ are implemented as follows:

1. Ordering Tree (OT;): We implement this as an array of linked lists, called Order-
ing Lists (OL;), as shown in Fig 4.4a. The size of the array is equal to the number of
processes present in the group. Each array element OL;[j] saves the starting address

of the linked list corresponding to process j and the linked list saves the sequence

4.1. Message Ordering Protocol 41

numbers of the messages received from process j. The data structure supports the

following operations:

(a) InsertInOL(segno;): inserts seqno; in linked list starting at array element j.

(b) IsPresentInOL(segno;): searches for seqno; in linked list starting at array

element j. If the segno; is present then returns true else returns false.

2. Out of Sequence Message Store(OSM S;): We implement this as a 2-dimensional
array of 3 columns each and some finite number of rows called Out of Sequence Mes-
sage Table (OSMT;) as shown in Fig 4.4b. Message identities of the messages that
have arrived out of sequence are saved here. The process ¢ on receiving a out of se-
quence message < mid,, mid,, data > saves the identity of the parent message mid,
in the first column of the row, identity of the message mid, in the second column

and the data in the third column.

The data structure supports the following operations:

(a) InsertInOSMT (mid,., mid,,data):
The operation uses the first empty row available from the top of the OSMT;
table and inserts mid., mid,, data in the first, second, third columns of the

row respectively.

(b) getRow(mid,):
The operation searches in linear manner from the beginning of the OSMT;
table and returns the index of row containing mud, value in its second column.
If there are multiple rows containing mad, in their second column then it returns

the first row that it encounters while searching from the beginning of the list.

(c) putOSMsgsInOL(mid,):
The operation identifies all the rows of OSMT; containing messages for which
mad, is either directly or transitively semantically before them. The operation
transfers the identities of these messages to OL; and data corresponding to
these messages to application in S; order. The rows containing these messages

are marked empty for reusing them.

42 Chapter 4. Message Ordering Protocol

4.1.6.1 Protocol at process i

1. In the initial state,

for j =1 to n (where n is the number of members present in the group.) do
OL;[j]=NULL

end for

seqno;=0

The rows of OSM S; are marked empty.

2. Process i on receiving a message:
On receiving a message < mid., mid,, data > from group, where mid, =< pid., seqgno. >
and mid, =< pid,, seqno, >
if mid, # (0 and IsPresentInOL(segno,) is false then
InsertInOSMT (mid., midy, data)
else
InsertInOL(seqno.)
Deliver data to the application
putOSMsgsInOL(mid,)
end if

3. Process i for responding to a message having identity mid,

(a) seqno; = seqno; + 1;
(b) mid; = < pid;, seqno; >;

(¢) Broadcasts: < mid;, mid,, data >

4.1.6.2 Ordering List Operations

The structure of Ordering List is as shown in Fig 4.5. An array element OL;[k] saves
the starting address of the linked list corresponding process k. Each node of the linked
list contains there 3 fields. The first two fields called Low (L) and High (H) contains
sequence numbers of the messages and the third field points to next node. The values L
and H indicate that the process ¢ has received all the messages having sequence numbers

between L and H inclusive.

4.1. Message Ordering Protocol

n4 k- nk

=S ARERUNE R UM NNE SN

Hea Lk Hy

Lkl

AT T] il

2 X (b) Structure of
(a) Ordering Lists node in linked list

Figure 4.5: Ordering List Data structure

1. IsPresentInOL(segno;)

The operation searches for segno; in linked list starting at OL,[j]. If the segno; is

present then returns true else returns false.

Algorithm 1 IsPresentInOL(segno,)

1:

2:

S; = OL,[j] /* Starting address of linked list */
Scan the list and find the node ny such that Lj is greatest number less than or equal
to seqno;

. if Hy, < seqno; then

return true

: else

return false

end if

Time complexity: Scanning the list takes linear time, i.e., O(m) where m is the

number of nodes present in the linked list.

. InsertInOL(segno;)

The operation inserts seqno; in linked list starting at OL;[j]. If process i receives
messages with continuous sequence numbers starting from L and ending at H from
a process j then these messages are represented in OL; by storing only L. and H
values in a node of linked list starting at OL;[j]. The linked list stores these values
in the non decreasing order.

So, to insert seqno;, the linked list starting at OL;[j] is scanned to find the node
ny such that Lj is the least value greater than seqno; as shown in Fig 4.5a. Let
nig—1 be the node preceding it. If segno; is one more than H;_; and one less than

Ly then Hjy_; is replaced by seqno; and the node ny, is deleted. Otherwise if segno;

43

44 Chapter 4. Message Ordering Protocol

is one more than Hjy_; then Hj_; is replaced by segno;. Or else if seqno; is one
less than L then Ly is replaced by segno;. If none of the above conditions satisfy
then a new node 7y, is created with L,., and H,., fields set to seqno; and ny,e,

is inserted between ny_; and ny.

Algorithm 2 InsertInOL(segno,)
1: 1. Scan the list and find the node n; such that L, is the least number greater than

5eqno;.
2: if H, | = seqno; — 1 and L = seqno; + 1 then
3: 1.H, .= Hy
4: 2.Delete node k
5: else if L, = seqno; + 1 then
6: Ly = seqno;
7: else if H,_; = seqno;-1 then
8 Hj = seqno;
9: else
10: 1.Create a new node new
2.Assign Lyey = Hpew = seqno;
3.Insert it between nodes n;_; and ny.

11: end if

Time complexity:
Scanning the linked list takes linear time, i.e., O(m) where m is the number of nodes

present in linked list.

4.1.6.3 OSMT operations

The structure of OSMT; is shown in detail in Fig 4.6. We assume the table contains a
maximum of q rows ! for analyzing time complexity of the OSMT operations. Also for
sake of clarity, we refer to a row of table OSMT;[k] as ry and columns corresponding to row

r i.e., OSMT;[k][0], OSMT;[k][1], OSMT;[k][2] as rx.mid,, ri.midy, r.data respectively.

1. InsertInOSMT(mid,., mid,, data): As explained earlier the operation performs

'We assume g number rows of OSMT are sufficient for a process to save every message that arrives

out of sequence.

4.1. Message Ordering Protocol 45

mid . midp data

osmt[1] | .mide | r.midp | r,.data | T,
osmt[2] |p.midg| r,.midp | r.data | I

osmt[2] |r,.mid. | r,.midy, | r,.data |-3

osmt[q] |rq. midg| ro.midy, | r,.data

Figure 4.6: OSMT Data structure

linear search starting from the beginning of the table and searches until an empty
row is found to insert the values mid.,mid,,data.
Time complexity:

Hence the InsertInOSMT operation takes O(p) time.

2. getRow(mid,): As explained earlier the operation returns row r, from OSMT such
that r,.mid, = mid,. If such row does not exist than it returns null. We assume
the operation performs linear search from starting of the table to find the required

TOwW.

Time complexity:

Hence the above operation takes linear time, i.e., O(q) time.

3. Operation: putOSMsgInOL(mid,) The OSMT contains collection of prospec-
tive edges of ordering tree OT that arrived out of S, sequence in the form of rows
of OSMT with each row containing parent and child message identities in columns
mid,, mid, respectively. The operation starting from mud, performs depth first
search (DFS) on the contents of OSMT. It identifies the rows of OSMT that forms
the edges of prospective sub tree of OT having mud, as its root. During depth first
search, every time a row is visited, the operation removes the row from OSMT, ap-
pends mid, to OT and delivers data to application. Hence the messages that arrive

out of Sy order are delivered to the application in Sj order.

Time complexity:

Searching the OS MT; and putting them into the OL; takes quadratic time, i.e., O((m+

p)?) (where m and p are as before).

46

Chapter 4. Message Ordering Protocol

Algorithm 3 putOSMsgInOL(mid,)

1: for each row (r,=getRow(mid,))#NULL do

2: Deliver r,.data to application
3: InsertInOL(r,.mid.)

4: putOSMsgInOL(r,.mid,)

5: remove row 7, from OSMT

6: end for

This may be computed in detail as follows: Depth First Search algorithm for a tree

with e edges takes O(e) time. Hence the DFS algorithm for OSMT; with a maximum

of q rows takes O(q) time. To identify each edge of the tree and transferring it to OL;,

getRow operation at line 1 and InsertInOL operation in line 3 takes O(q),O(m) time

respectively. Hence time taken by these operations together for each edge is O(m+q).

Hence the operation putOSMsgInOL takes O(q(m+q)) time or O((m + ¢)?) time.

4.1.6.4 Complexity of S, protocol

e Time Complexity The major operations of the protocol occur at a process while

sending and receiving of messages.

— Sending a message takes constant time as it involves only capturing mid, from

the application, incrementing the sequence number, and broadcasting the mes-

sage.

On receiving a message, the IsPresentInOL() operation takes 0(m) time
to check whether the message is deliverable to the application or not. If
the message is not deliverable, then operation InsertInOSMT() takes lin-
ear time proportional to number of rows in OSMT; i.e., O(q). If the mes-
sage is deliverable, then the operations performed are InsertInOL(segno,),
putOSMsgInOL(mid.) and time complexity of each of these operations is
0(m),0((m + q)?) respectively. (as discussed earlier). Hence the total time
complexity of the Sj protocol is 0((m + ¢)?).

e Space Complexity The linked lists in the OL store only the first and last values

of contiguous sequence numbers of messages received from a process.

— The Space complexity for OL;:The linked lists in the OL store only the first
and last values of contiguous sequence numbers of messages received from a
process. The best case occurs when all the received messages have contiguous
sequence numbers. Hence in the best case, each linked list contains only one
node and size of array of linked lists is O(n) for a group with n processes.
The worst case is when a process receives messages with alternate sequence
numbers from every process. In this case, the number of nodes in each linked
list is equal to the number of messages received from that process and the
number of nodes present in the OL; is equal to the number of messages received
by the process from all members of the group. Hence in the worst case, the

size of the OL is bounded only by the device’s memory limits.

— The Space Complexity for OSMT;:, the best case is when all messages are
received in Sy order and the number of entries in the OSMT; is zero and the
worst case is when a process does not receive the messages corresponding to
the nodes closer the root of the OT; and the number of entries in the OSMT;

is bounded only by the number of rows allocated.

4.1.6.5 Java Implementation

The class diagram of the protocol and the java implementation of data structures are

described chapter 7.

48

Chapter 4. Message Ordering Protocol

Chapter 5

Group Join/Leave Protocols

5.1 Group join and leave protocols

In this section we present GJLP protocol, for processes that have newly entered the
network, to become aware of the various group applications currently operating in the
broadcast network and to join in any of these groups. The GJLP protocol is also for
processes, that rejoined the network after leaving it temporarily, to know the list of new
group applications currently operating in the network and also to update the membership

list of the groups that it is already member of.

e At Sender: The process sends advertisement message to inform its presence to the

processes present in the network.

e At every process on receiving advertisement : Every process, including the
process that sent the advertisement, on receiving advertisement message sends in-
formation about the groups, that they are member of, in the form of a list of group

identities and their members identities.

e At every process on receiving information about groups: Every process on
receiving them, if finds any new group that they are not aware of, then they send it
to the application. If application wants to join a group, the process broadcasts its
identity and the identity of the group that it is joining. Every member of the group

on receiving it updates the members list of the group.

e For a process to leave a group: The process, for leaving a group, broadcasts its
identity and the identity of the group that it is leaving. Every member of the group

on receiving it updates the members list of the group.

49

50 Chapter 5. Group Join/Leave Protocols

5.1.1 Notations, Message Format and Data Structures
5.1.1.1 Notations

e < cMemlList >: denotes list of identities of the processes that are current members

of a group.
e < [MemList >: denotes list of identities of the processes that have left the group.

e < grpInfo >: denotes the information of a group. It is of the format < gid, desc,

cMemlList, Memlist > and desc denotes the description about the group.

5.1.1.2 Messages Format

e < advMsg >: denotes advertisement message sent by process. It contains the

identity of the process in the format < pid >

e < grpsInfolList >: denotes information about the various groups. It is of the

format: < list of < grpInfo >>.

o < joinMsg >: It is of the format < pid, gid > and denotes message sent by process

whose identity is pid to inform the members of the group gid that it is joining the

group.

o < leaveMsg >: It is of the format < pid, gid > and denotes message sent, by process

pid to inform the members of the group gid that it is leaving the group.

5.1.1.3 Data Structures

Every process maintains the following data structure:

e GrpsInfolndexTable; (GIIT;).Each row of the table GIIT; at process i contains
grpInfo of a group and the row is indexed by the identity of the corresponding
group grpInfo-gid (i.e. row GIIT;[grpInfo- gid] contains grpInfo). If the process
1 is not member of group whose identity is gid then the row of GIIT; indexed by
gid contains N /A value. (i.e. if i is not member of group gid then GIIT;[gid] is
N/A)

5.1. Group join and leave protocols o1

CreateN r] @ o

Q .3'4’3"’_5." UpdateGrpinfo
E 1

for creating new s

al'ter updating
group

for advertlsm
ot SendAdyv

no Grpinfo

: leave

¥ received J

GrpinfoList ; sentinfolist o © E SendLeaveMsg)
4 received Adv

SendGrpinfoList

For each;GrpInfoMsg in the list

after seﬁding

if process joins the group

SendJoinMsg

Figure 5.1: Group Join/Leave Protocol state diagram

5.1.2 Protocol Actions

The state diagram of the protocol at process i is as shown in the Fig 5.1. Brief explanation
of protocol action is as follows: The process for advertising its presence to the group goes
from the Intial state to Send Adv state. In this state, it creates advertisement message
adMsg and broadcasts it. After broadcasting, it returns to the Imitial state. Every
process including the process that sent the advertisement on receiving advertisement goes
to SendGrplInfoList state, creates grpsinfoList from the grpInfo present in the rows
of their GIIT and broadcasts it.

Every process present in the broadcast network on receiving grpsInfolList , goes to
RecvGrpsInfoList state. In this state, if process i finds any grpInfo in grpsInfoList
that do not have an entry in its GIIT;, then it delivers grpInfo - desc to its application.
If the application at this process is interested in joining any of these groups then the
process goes to SendJoinMsg state. In this state it creates a joinM sg for each group
and broadcasts them. On receiving joinM sg sent by the process for joining a group, every
member of the group goes to UpdateGrplInfo state. In this state every member of the
group gets grpInfo of the group from its GIIT[joinMsg - gid] (by indexing operation)
and updates it by appending the joinMsg - pid to the grpInfo-cMemUList.

If process i is leaving a group, the process goes to SendLeaveMsg state and broad-

casts < leaveMsg >. Each member of the group on receiving < leaveMsg > goes to

52 Chapter 5. Group Join/Leave Protocols

UpdateGrplnfo state. In this state a process i gets grpInfo from its GIIT;[leave M sg -
gid] and updates grpInfo by transferring leaveM sg - pid from grpInfo - cMemUList to
grpInfo-IMemlList.

A more detailed description of the protocol actions in each state at process i is as

follows:

1. Initial STATE

if process newly enters network or rejoined network after leaving it temporarily
then
go to SendAdyv state for sending its advertisement.
else if process receives < advMsg > sent by any process then
go to SendGrpsInfoList state.
else if process receives grpsInfolList from any process then
go to RecvGrpsInfolList state.
else if process receives joinMsg or leaveMsg then
go to UpdateGrplInfo state.
else if process wants to leave a group then
go to SendLeaveMsg state.
else if process wants to create a new group then
go to CreateNewGrp state.
end if

2. SendAdv STATE

e Delete row of GIIT; containing the entry N/A

e For process ¢ to advertise its presence to the group, creates < advMsg; > =

< pid >, broadcasts it and goes back to Intial state.

3. SendGrplnfoList STATE

Process i and every other processes including the process that sent < advMsg > on
receiving < advM sg > does the following,
/*Create grpsInfoList by doing the following.*/
for each grpInfo present in GIIT; do
add grpInfo to < grpsInfolist >.

5.1. Group join and leave protocols 53

end for

Broadcast grpsInfolList

4. RecvGrpsInfoList STATE Process i on receiving grpsIn foList:

for each grpInfo present in grpsInfolist do
if there is an entry in GIIT; indexed by grpInfo - gid then
if entry is N/A then
Discard the grpInfo
else if entry is group information gInfo then
Update the gInfo by doing the following.
Insert every pid present in grpInfo - IMemdList in ginfo - IMemlList if
pid does not exist in it and remove pid from ginfo - cMemList if pid
exists. Similarly insert every pid present in grpInfo-cMemList in gInfo-
cMemList if it does not exist in gInfo-cMemList and gInfo-IMemUList.
end if
else
Deliver grpInfo - desc of the group to the application.
if application wants to join the group then
Process i creates a new row in GII7T;, inserts in it grpIn fo and sets index key value to
go to SendJoinMsg state.
else
Discard the grpInfo
end if
end if

end for

5. SendJoinMsg STATE

To join group gid process ¢ creates joinMsg with < pid, gid > and broadcast it.

6. UpdateGrplnfo STATE

Process ¢ on receiving joinM sg or leaveM sg,

if received message is joinMsg then

if process ¢ is member of group joinMsg - gid then

54 Chapter 5. Group Join/Leave Protocols

Get the grpInfo from GIIT;[joinMsg - gid] and add the joinMsg - pid to
grplnfo-cMemiInfo
end if
else if received message is leaveM sg then
if process 7 is member of group leaveM sg - gid then
Get the grpInfo from GIIT;[joinMsg - gid] and remove the leaveM sg - pid
from grpInfo-cMemList and add it grpInfo -l MemList.
end if
end if

7. SendLeaveMsg STATE
For process to leave group whose identity is gid, it destroys MOP, MSP instances of

the group, creates leaveMsg in the format <pid,gid> and broadcasts it.

5.1.2.1 CreateNewGrp STATE

The process creates a unique identity gid for the new group, creates grpInfo and sets
grpInfo - gid to gid. It appends its identity pid to grpInfo-cMemlList and broadcasts
grpInfoList containing grpInfo.

5.1.3 Protocol Illustration

e Let a process A connects to broadcast network and creates a new group G1. Let
process B connects to the network after sometime. After connecting to the network
process B, following GJLP sends advertisement message. Upon receiving it process
A sends grpInfolList containing information about group G1. Since B does not have
information about any groups it does not send groupInfoList. Assuming process
B joins the group, it sends joinMsg and upon receiving it both A,B update the

members list of group G1.

e Let process C connects to the network. When C sends advertisement message, both
A, B sends grpsInfoList containing information about group G1. Upon receiving
any of these, process C delivers the group information to the user. Assuming C
rejects the group invitation, it stores this information in its GIIT. Now C creates

a new group G2 and broadcasts it.

e Assuming A, B have left the group temporarily, and process D connects to the
group. When D sends the advertisement message, it receives grpsInfoList from C

containing information about G2. If E joins G2 then it sends joinMsg.

e Suppose the processes A reconnects to the network then it sends advertisement
message. Upon receiving it, process C, D sends grpsInfolList containing information
about G2 and process A sends grpsInfoList containing information about G1. Hence

every process in the network receives every group information.

5.1.4 Correctness and Liveness
5.1.4.1 Correctness

Every process present in the network receives information about every group that has been
created so far, as long as one of the group members exists in the network. When process
X newly connected to the network, according to GJLP it sends advertisement message,
and every process in the network upon receiving it sends information about the groups
that they are member of. Hence it receives information about every group. Suppose
if every member of a group G goes off the network temporarily, then process X does
not receive information about G. But when the any of the members of G reconnects to
the network they send information about G after receiving their advertisement message.
Hence process X will eventually gets information about G. If every member of a group G

leaves the network permanently then information about the group G is lost.

5.1.4.2 Liveness

The protocol is deadlock free because, every process that runs GJLP, sends the grpsin-
foMsg messages upon receipt of advertisement message. They do not wait for the arrival

of advertisement message.

5.1.5 Protocol Implementation

We have implemented the protocol in Java. The class diagram of the protocol and its

methods are described in Appendix.

26

Chapter 5. Group Join/Leave Protocols

Chapter 6

Member Synchronization Protocol

6.1 Member Synchronization Protocol (MSP)

A process that newly joins a group or process that rejoins the group after leaving the
group temporarily executes MSP to recover the messages that were sent to the group
during its absence. We assume that every member of the group logs the messages that it

has received from the group. MSP protocol is as follows:

e At the sender: The process sends synchronization request message SyncReqMsg

that contains the list of the messages that it has so far received from the group.

e At the receivers: On receiving a SyncReqMsg from a process, every process (ex-
cluding the process that sent SyncReqMsg) in the group creates a repository of
message identities. The repository contains the identities of messages that it has
received from the group excluding the messages present in SyncReqMsg. 1t starts a
counter with a random value. When the counter expires, it broadcasts a synchro-
nization response message SyncRespMsg, containing the messages whose identities
are present in repository, to the group and deletes the repository. While counting,
for every SyncRespMsg that it receives from any member of the group, it deletes
the identities of those messages from repository that are present in received Syn-
cRespMsg. The process that sent SyncRegMsg on receiving SyncRespMsg, sends the
messages present in message list of SyncRespMsg to the GroupManager which will

be subsequently delivered to application.

o7

o8 Chapter 6. Member Synchronization Protocol

6.1.1 Notations, Message Format and Data Structures
6.1.1.1 Notations

e < SyncSegno >: denotes a sequence counter. It is initialized to zero and incre-

mented before SyncReqMsg.

e < SyncMsgld >: denotes the identity of SyncReqMsg or SyncRespMsg and it is in

the format < pid, syncSeqno, gid >

e < SyncMsgList >: denotes list of messages. Each message < Msg > is in the for-
mat < mid,, mid,,data > where mid., mid,, data are identity of message, identity

of its parent message and application data as described in Section 4.

6.1.1.2 Message Format

o < SyncReqM sg; > denotes SyncReqMsg sent by process ¢ and it is in the format < SyncMsgld;, Sync

o < SyncRespMsg;; > denotes SyncRespMsg sent by process j in response to <
SyncReqMsg; > and it is in the format < pid;, SyncMsgld;, SyncMsgList >.

6.1.1.3 Data Structure

Every process maintains following data structures:

e Group Messages List (GrpMsgList,q) The data structure stores every message
that is sent to group with gid in the list so that when a new member requires
synchronization, messages present in this list will be transferred to it. Each message
stored in the list is of format < mid,, mid,,data >. If the process has memory
constraints and if the application data is not very significant than it stores only

mid., mid, because these identities are used by MOP for ordering purpose.

e Message Identities Repository (MIR): The data structure MR stores identi-
ties of messages. It is created for temporary period on receiving SyncReqM sg and

deleted after the process responds to it by sending SyncRespM sg.

e Process Sync Status Index Table (PSSIT;): The rows of index table PSSIT;

at process i stores for every process the latest SyncSegno of SyncReqMsg among

6.1. Member Synchronization Protocol (MSP) 59

SendSyncReq

After
on receving - recevingv\ ;endi'l;!]
SyncRespMsg | . PYIKRe-
PRI [synReaitsg spMsg ji SendSyncResp

when counter

expires
UpdateMIR

Figure 6.1: Member Synchronization Protocol

S

updating

the SyncRegMsg messages that it has so far received from the process. Each entry

SyncSeqno of PSSIT; is indexed by pid of the process.

e MIRIndexTable: The index table entry points to M IR indexed by SyncMsgld.

6.1.2 Protocol Actions

The state diagram of the protocol at process i is as shown in fig6.1.

The process iin the Initial state goes to SendSyncReq state and sends SyncReqM sg;.
If process i receives SyncReqM sg; from process j it goes to SyncReqRecv state. Checks
if the received SyncReqMsg; is latest request message from process j(because network
layer may not follow FIFO order in message delivery) by comparing the SyncReqM sy, -
SyncSeqno with SyncSegno present in PSSIT;[SyncReqMsg;- SyncM sgld-pid] and up-
dates this entry in PSSIT; with SyncReqM sg;-SyncSegno if the request message is latest
message. If the received message is latest message, it creates M IR (if it does not exist in
MIRIndexTable when indexed by key SyncReqMsg;.SyncMsgld), stores in MIR the
identities of those messages present in (GrpMsgListgq) (where gid is SyncMsgld - gid)
and not in SyncReqMsg; - SyncMsgList and goes to Counting state. In this state
it starts a counter with random initial value and keeps decrementing. If the counting

reaches zero it goes to SendSyncResp state and creates SyncRespM sg;; containing the

60 Chapter 6. Member Synchronization Protocol

list of messages whose identities are present in MIR. It broadcasts SyncRespMsg;; and
deletes M IR. While counting if it receives SyncRespMsgj, it goes to UpdateMIR state
deletes the identities of those messages from MIR that are present in SyncRespMsg;, -
SyncMsglList.

If process i receives the SyncRespMsg;, before SyncReqM sg; because the network
layer may not follow FIFO order in delivering messages then it goes to SyncRespRecv
state. If the received message is latest message then it does the following. Creates MIR
if one does not exist in MIRIndexTable, stores in MIR the identities of those messages
that are present in GrpM sgListgq and not in received SyncRespMsg;, message. If MIR
already exists in MIRIndexTable then it deletes identities of messages from MIR that are
present in SyncRespM sg;, - SyncMsgList.

If process i receives SyncRespM sg;, in response to its request message SyncReqM sg;
it goes to Deliver state and delivers the messages present in SyncRespM sg;,-SyncM sgList
to GroupManager.

A more detailed description of the protocol at process i is given below:

1. Initial STATE

Contents of PSSIT; are made empty and SyncSeqno is set to zero.
if process wants to sync with rest of group members of group gid then
Go to SendSyncReq state
else if a SyncReqMsg; is received then
Go to SyncReqRecv state
else if SyncRespM sg;, is received then
Go to DeliverMsg state
else if SyncRespMsgjy is received then
Go to SyncResRecv state
end if

2. SendSyncReq STATE

e Increments SyncSeqno.

e Creates a < SyncMsgld; > with < pid >, < gid > and < SyncSeqno >.

6.1. Member Synchronization Protocol (MSP) 61

e Creates < SyncMsgList > with the list of the messages present in GrpM sgListg;q.

e Creates < SyncReqMsg; > in format < SyncMsgld;, SyncMsgList > and

broadcast it.

3. SyncReqRecv STATE

On receiving SyncReqMsg;, let msgld, msgList, gid represent SyncReqMsg; -
SyncMsgld, SyncReqMsg; - SyncMsgList and SyncReqMsg; - SyncMsgld - gid
respectively.
if PSSIT;imsgld - pid] < msgld- SyncSegno then
Create MIR with identities of messages present in GrpM sgListy, and not in
msgList and set M IRIndexTable[msgld] to MIR
Set PSSIT;lmsgld - pid] to msgld - SyncSegno
Go to Counting state
else if PSSIT;imsgld - pid] = msgld - SyncSeqno then
Get MIR from MIRIndexTable[msgId]
Delete message identities from MIR whose messages present in msgList
Go to Counting state
else
Discard SyncReqM sg;x
end if

4. Counting STATE

Choose a random counter value.
while counter does not reach zero do
Decrement the counter by one.
if the process receives SyncMsgRes;, from some process x then
Get MIR from
MIRIndexTable[SyncMsgResj, - SyncMsgld]
go to UpdateMIR State
end if
end while
if counter reached zero then

Go to SendSyncResp state

62 Chapter 6. Member Synchronization Protocol

end if

5. UpdateMIR STATE

e Deletes the identities from MR whose messages are present in SyncRespM sg;-

SyncMsgList.

e Go to while loop at statement 2 of Counting state.

6. SendSyncResp STATE

Create SyncMsgList with the list of messages from GrpMsgListg, whose

identities are present in MIR.

Create SyncRespMsgj; in the format < SyncMsgld, SyncMsgList >.

Delete MIR and its reference from MIRIndexTable.

Broadcast the SyncRespMsgj;.

7. Deliver STATE On receiving SyncRespM sg;;,deliver the messages present in
SyncMsgList of the received SyncRespMsg;; to the GroupManager which will

subsequently deliver them to the application.

8. SyncRespRecv STATE On receiving SyncRespM sg;,, let msgld, msgList, gid
represent SyncRespMsg;,-SyncMsgld, SyncRespMsg;,-SyncM sgList and SyncRespM 5,
SyncMsgld - gid respectively.

if PSSIT[msgld-pid] < msgld-SyncSeqno then
Create MIR with identities of messages present in GrpM sgListsq and not in
msgList and set MIRIndexTable[msgld] to MIR
Set PSSIT|msgld - pid] to msgld - SyncSeqno
else if PSSIT[msgld- pid| = msgld - SyncSeqno then
Get MIR from MIRIndexTable[msgld] if exists
Delete message identities from MIR whose messages present in msgList
else
Discard SyncRespM sg;s
end if

6.1.3 Protocol Illustration

Let A, B be members of the group and each of them having messages M1, M2 in their
GrpMsgList received from the group. Let process C which was member of the group
and it went off the network temporarily. Let its GrpMsgList contains M1 only. Now
if processes C reconnects to the network and did not run MSP yet, and a new process
D newly connects to the network. Assuming process D runs MSP before C, it sends
SyncReqMsg to the group. Upon receiving SyncReqMsg process C, creates MIR with
identity of M1 and A, B creates MIR with identities of M1, M2. Each of these start a
random counter. Assuming counter at C expires it sends SyncRespMsg containing M1.
On receiving it, process D sends M1 to application, and A,B deletes identity of M1 from
their MIR. When the counter at A or B expires, A or B sends SyncRespMsg containing

M2. Process D upon receiving it delivers M2 to the application.

6.1.4 Correctness and Liveness
6.1.4.1 Correctness

When a process runs MSP for a group, MSP ensures that every member of the group
have same messages. This is because, when a newly joined or rejoined member runs
MSP, it sends the messages that it is aware of, in SyncReqMsg and some of the members
of the group whose random counters have expired, send SyncRespMsg containing group
messages. Hence they exchange messages that they have and finally reach a synchronized

state.

6.1.4.2 Liveness

The process running MSP does not wait for arrival of any message. It waits for only
for the random counter to expire and that will eventually happen. Hence MSP does not

suffer from deadlock problems.

6.1.5 Protocol Implementation

The class diagram of the protocol and the java implementation of data structures are

described chapter4.

64

Chapter 6. Member Synchronization Protocol

Chapter 7

Java Implementation of M2MC

7.1 Java Implementation of M2MC middleware Layer

7.1.1 System Environment

We have implemented the middleware protocols in Java language. We have used IP
multicast for network layer protocols and the Multicast socket provided by the Java.io
packet for Broadcasting over IP address. We discuss the implementation details of each

protocol using their class diagrams.

7.1.2 Message Ordering Protocol

We have implemented the protocol as Java APIs. The class diagram of the protocol is as

shown in Fig.7.1.

e class:OutSeqMsgList The class OutSeqMsglList implements the attributes and
methods that support the operations of the data structure OQut of Sequence Mes-
sage Store (OSMS). The store is implemented as linear linked list osmMsgIdList
with each element of the list pointing to an object of class called Msgld. The Ms-
gld stores mid, and its corresponding mid, of the message that arrived out of

sequence.

— void insertInOsml(String midc, String midp)

* Method Arguments: The strings midc, midp represent the identity of

a message and identity of its parent message respectively.

* Operation:The function stores the identity of the message (that arrived

violating Sy order) and its parent message identity in OSML. It creates an

65

Chapter 7. Java Implementation of M2MC

MsgOrderProtocol

OutSeqMsgList osmil
GroupManager o X 2
" OrderingList orderList
DataPacket send (midp, data)
void receive(DataPacket dpkt)

OutSeqMsgList OrderingList
HashMap pidList

LinkedList seqnolList;
ListElement listElement

LinkedList osmMsgList

void insertinOsmi{midc,midp,data)

void insert (midc)
LinkedList getinSeqMsgList(midc) boolean isPresent{midc)

void addList(pid)

Figure 7.1: Message Ordering Protocol class diagram

object of class Msgld and stores midc, midp in it. The function appends

the object of MsgID at the end osmMsgldList.

* Return type: None.
— LinkedList getInSeqMsgList(String mid.)

* Method Arguments : The String mid, represents the identity of a mes-

sage.

x Operation: The function extracts the objects of Msgld containing identi-
ties of messages from OSML that are semantically after mid, and returns
them in the form of elements of linked list called InSeqMsgList. The linked
list OSML contains collection of prospective edges of ordering tree OT that
arrived out of Sy sequence in the form of elements of linked list with each
element storing the objects of Msgld. Each object of MsgID stores parent
and child message identities in the fields mid, and mid, repectively.(Recall
that OT is made up of nodes containing message identities and nodes rep-
resenting parent and child messages identities are connected by edges) The
method getInSeqMsgList starting from argument mid, performs depth first
search (DFS) on the elements of OSML. It identifies the edges of OSML
that forms the edges of prospective sub tree of OT having mad, as its root.
During DFS, every time an element of the list is visited, the operation

removes the object of Msgld pointed by the element and appends it to

7.1. Java Implementation of M2MC middleware Layer 67

linked list InSeqMsgList.

* Return type: returns object of linkedlist InSeqMsgList containing the

identities of messages in S, order.
— Msgld getMsglds(String mid)
x+ Method Arguments: The string mid is the identity of message.

x Operation: The function searches the elements of linked list OSML and

returns the object of Msgld containing mid in its mid, field.

* Return type: Object of Msgld containing identities of a message and its

parent message.

e class: Ordering List The class Ordering List implements the attributes and meth-
ods that support the operations of data structure Ordering Tree (OT) as described
I sec 2.2. The OT is actually implemented as collection of linked lists called se-
gnoList. If there are n members participating in group application, then n linked
lists are maintained by the process such that one list per member of the group. The
elements of linked list of member k stores the sequence numbers of the messages sent
by member £. In order to save space, if process receives messages with contiguous
sequence numbers say from low to high, from process k, then it stores only starting
(low) and ending (high) sequence numbers of messages. The low and high values
are stored in object of class ListElement that contains two integer fields (low and
high) for storing these values. Each element in the linked list seqnoList points to
the object of ListElement. A HashMap called pidList maps the identity of a process

to the linked list seqnoLists corresponding to the process.

— void insert(String mid,)

x Method Arguments: The argument mid, represents identity of a mes-
sage and it is combination of process identity pidc and sequence counter

value (seqno.) at process ¢ when it sent the message.

x Operation: The operation inserts the seqgno. in linked list seqList. The
operation get the starting address of the seqList by looking up the Java.util. HashMap
pidList with key value pid.. The seqList is scanned to find the element

of list listElement;, such that low;, value of the element is the least value

68

Chapter 7. Java Implementation of M2MC

greater than seqno. as shown in figure. Let listElement;_; be the list
element preceding the element listElementy. If seqno. is one more than
highy_1 and one less than L, then Hj_; is replaced by seqno. and the
element listElement; is deleted. Otherwise if seqno. is one more than
highy_1 then highy_, is replaced by seqno.. Or else if seqno. is one less
than low;, then lowy, is replaced by segno;. If none of the above conditions
satisfy then a new object of class ListElement is created with low and
high fields set to seqno. and new element is inserted between the elements

listElement; and listElement;_1.

* Return type: None.
— Boolean isPresent(String mid,)

* Arguments: The argument mid. represents identity of a message and it
is combination of process identity pid. and sequence counter value (segno.)
at process ¢ when it sent the message.

x Operation: The operation checks for the presence of sequence number
seqno, in the linked list seqnoList. The operation get the starting address
of the seqList by looking up the HashMap (pidList) with key value pid,.

x Return Type: The operation returns true if the seqno,. is present in the
linked list else returns false.

— void addList(pid)

* Arguments: The argument pid represents the identity of a process.

x Operation: The operation is called if a process with pid newly becomes
member of group. The operation creates new object of LinkedList seqno-
List for storing the sequence numbers of the messages sent by process pid.
It also updates HaspMap pidList to include the mapping from pid to newly
created linked list seqnoList.

* Return type: None.

e Class: MsgOrderProtocol The object of class MsgOrderProtocol contains refer-
ences to objects of classes OutSeqMsgList and OrderingList. For a given message
identity, the methods of the class runs S, protocol and decides whether the message

X (and messages waiting in OSMS for the message X that is semantically before)

7.1. Java Implementation of M2MC middleware Layer 69

can be delivered to the application or it should be stored in OSMS before process did
not receive the messages that are semantically before it. Also the MsgOrderProtocol

contains methods for application to respond to a message sent to the group.

— void send(String mid,, String data)

* Argument: mid, represent identity of the message and data represents

the application data.

x Operation: If the application wants to respond to a message having iden-
tity mid, by sending data then this function is called. The method creates
identity for the message and broadcasts the message in the format de-

scribed in secl.2.

*+ Return type: None.
— voidreceive(DataPacket dpkt)

x Arguments: The dpkt is object of class DataPacket. The class Data-
Packet contains fields mid,, mid,, gid, data representing the identity of
the message, identity of its parent message, the identity of the group that

it belongs to and the application information respectively.

x Operation: The operation checks whether the application information
present in the received dpkt is deliverable or not. It calls isPresent method
of OrderingList class with argument mid,. If it gets positive reply (true)
from isPresent method (the method isPresent returns true if process al-
ready received message with identity mid,.) then calls getInSeqMsgList(midc)
of OutofSeqMsgList class to get the messages for which the received mes-
sage is semantically before. It delivers the identities of these messages to
Group Manager which in turn deliver the application information corre-

sponding to these messages to the application.

7.1.3 Group Join/Leave Protocol

The class diagram of the protocol in the Fig7.2 shows salient attributes and methods of

the class GrpJLProtocol.

70 Chapter 7. Java Implementation of M2MC

7.1.3.1 class: GrpJLProtocol

The class implements the data structure GIIT as object of java.util. HashMap called
GrpInfoMap. The key of the GrpInfoMap is the object of class Gid containing unique
identity for each group and entry of the map is object of GrpInfo containing information
about the group in its attributes gid, desc and java.util.LinkedList objects cMemlList,
[IMemULust.

1. sendAdMsg() deletes all entries containing value N/A in grpMsgList and sends
an object of AdMsg class containing attribute pid.

2. LinkedList getGrpInfoList() returns linked list called GrpsInfoList whose nodes
contain objects of GrpInfo which are present in GrpInfoMap.

3. adMsgReceived(AdMsg adMsg) at every process (including the process that
sent the message) on receiving adMsg calls getGrpInfoList() , gets the linked list of
the GrpInfoList and broadcasts it.

4. updateGrpInfoMap(GrplInfo recvGrplnfo) gets the grpInfo from GrpInfoMap
by indexing with key value recvGrpInfo.gid. The method updates grpInfo.IMemList
and grpInfo.cMemlList by doing the following. The process inserts each pid present
in recvGrpInfo.lMemList, in grpInfo.lMemList. Also if pid is present in grpInfo.cMemUList
then process removes pid from grpInfo.cMemlList. The process inserts each pid
present in recvGrplInfo.cMemlList, in grpInfo.cMemlList if it does not exist either in

grpInfo.cMemlList or in grpInfo.lMemList.

5. void grpInfoListRecv(grpInfoList) For each grpInfo object present in grpln-
foList, it does the following. If there is an entry in GrpInfoMap with key value
grpInfo.gid, then it calls updateGrpInfoMap(grpInfo). Otherwise it informs the user
about the new group by delivering the grpInfo to the application through Group-
Manager. If application wants to join the group then calls join ThisGroup(grpInfo)
of GroupManager which calls joinGroup(grpInfo) else it calls rejectGrp(grpInfo)

6. void joinGrp(grpInfo) updates GrpInfoMap by adding the entry grpInfo, its key
grpInfo.gid and calls sendJoinMsg(grpInfo.gid).

7.1. Java Implementation of M2MC middleware Layer 71

GrpJLProtocol

AdMsg adMsg
GrpinfoMap grpinfoMap
GrpinfoList grpinfolList e GroupManager
LeaveMsg leaveMsg
JoinMsg joinMsg

sendAdvMsg()
adMsgReceived{AdMsg adMsg)
createNewGrp(String desc)
sendJoinMsg() sendLeaveMsg()
grpinfoListRecv{GrpinfoList)
leaveMsgRecv|{LeaveMsg leaveMsqg)

k4

Figure 7.2: Group Join/Leave Protocol

7. void rejectGrp(grpInfo) updates GrpInfoMap by adding the entry N/A, its key
grpInfo.gid.

8. sendJoinMsg() creates an object of JoinMsg class containing attributes pid, gid

and broadcasts it.

9. sendLeaveMsg(gid) creates an object of LeaveMsg class with fields pid, gid and
broadcasts it. It also calls GroupManager for destroying the objects of MSP, MOP

of the group.

10. joinMsgReceived(joinMsg) gets the grpInfo from GrpInfoMap by indexing with
joimnMsg.gud if exists, and inserts joinMsg.pid in grpInfo.cMemList.

11. leaveMsgReceived(leaveMsg) gets the grpInfo object from GrpInfoMap by in-
dexing with leaveMsg.gid if exists and inserts leaveMsg.pid in grpInfo.IMemList. 1t
also deletes leaveMsg.pid from grpInfo.cMemUList

12. createNewGroup(desc) creates new group by doing the following. It creates
unique identity gid for the group by incrementing grpSegno and appending process
identity pid to it. It creates object grpInfo of GrpInfo class sets grpInfo.gid, gr-
pInfo.desc to gid, desc respectively. It inserts process identity pid in grpInfo.cMemList
linked list and updates GrpInfoMap by adding the entry grpInfo and its key gid. It

creates grpInfoList containing grpInfo and broadcasts it.

72 Chapter 7. Java Implementation of M2MC

7.1.3.2 Member Synchronization Protocol

e class: MemSyncProtocol The MemberSyncProtocol implements the data struc-
ture GrpMsgList as a java.util.LinkedList object called grpMsgList with each
node of the linked list pointing to object of Msg. (Msg has fields midc,midp,data).
HashMap (ProcessSyncStatusMap(PSSM)) implements the data structure Pro-
cessSyncStatusIndexTable(PSSIT) with each entry of the map is indexed by
key value pid of process and each entry contains the SyncSeqno of latest Syn-
cReqMsg sent by process with identity pid. MIR is implemented as LinkedList
called MIRList. Another HashMap MIRMap implements MIRIndexTable for
storing the objects of MIRList indexed by key value SyncMsgld.

1. sendSyncReq() increments its syncSeqno and creates object of SyncMsgld
class with fields pid, syncSeqno, gid. It creates object of SyncMsgList contain-
ing the linked list of messages that are present in grpMsgList and broadcasts
the object of SyncReqMsg containing objects of SyncMsgld and SyncMsgList.

2. updateGrpMsgList(SyncMsgList syncMsgList) updates the grpMsgList
by appending messages to grpMsgList that are present in syncMsgList and not

in grpMsgList. These messages are subsequently delivered to application.

3. receiveSyncReq(syncReqMsg) at every process (except process that sent
syncReqMsg) calls updateGrpMsgList(syncReqMsg.syncMsgList). It gets the
syncSeqno of latest syncReqMsg sent by process syncReqMsg.syncMsgld.pid
from PSSM and if syncReqMsg.syncMsgld.syncSeqno is less than syncSeqno
then it discards syncReqMsg, if greater than syncSeqno then creates object of
MIRList (with identities of messages present in grpMsgList and not in syn-
cReqMsg.syncMsgList). If syncSeqno is equal to syncReqMsg.syncMsgld.syncSeqno
then get the object of MIRList from MIRMap by indexing with key value syn-
cReqMsg.syncMsgld and update it by removing the identities of those messages
from MIRList that are present in syncReqMsg.syncMsgList. It creates object

of counter class and starts the counter thread.

4. receiveSyncResp(syncRespMsg) at process i checks if syncRespMsg.syncMsgld.pid
is pid; and calls updateGrpMsgList (syncResMsg.syncMsgList). Otherwise gets
syncSeqno from PSSM and if syncRespmsg.syncMsgld.syncSeqno is less than

syncSeqno then it discards syncReqMsg, if greater than syncSeqno then creates

object of MIRList (with identities of messages present in grpMsgList and not

in syncReqMsg.syncMsgList). If syncSeqno is equal to syncReqMsg.syncMsgld.syncSeqno
then get the object of MIRList if one exists from MIRMap by indexing with

key value syncReqMsg.syncMsgld and update it by removing the identities of

those messages from MIRList that are present in syncReqMsg.syncMsgList.

5. sendSyncResp(syncMsgld) gets the MIRList object from MIRMap by in-
dexing with key syncMsgld and creates syncMsgList with the list of messages
present in MIRList. It creates syncRespMsg with syncMsgList, syncMsgld
and broadcasts syncRespMsg to the group. It destroys MIRList and updates
MIRMap.

e class:Counter The class Counter inherits Thread class. Its only method is start-
Counter(syncMsgld). The method takes random value and keeps decrementing. If

reaches counter value reaches zero it calls sendSyncResp(syncMsgld).

e class: MIR The class maintains LinkedList MIRList. It contains methods like
putMsgld(mid), removeMsgld(mid), getMsglds() for putting, removing, sending

identities respectively.

74

Chapter 7. Java Implementation of M2MC

Chapter 8

Threaded Chat Application

Development using M2MC

8.1 Case Study: Thread chat Application

As specified earlier, we can develop group applications like multiplayer games, chat appli-
cations etc with M2M middleware. In this section we describe a threaded chat application

developed by using M2M middleware.

8.1.1 Motivation

Consider a group of processes (A,B,C,D) running on distributed devices and implementing
a simple chat application that lets the members of the group interact with each other. The
processes communicate with each other by sending messages using a broadcast medium.
Suppose the application is implemented using a message ordering protocol based on logical
timestamps, such as total ordering [1]. See [2] for a comprehensive survey of total ordering
protocols.

As shown in Fig 8.1, let process C send messages ’Did you wvisit Delhi?’ and ’Did you
visit Chennai?’ with timestamps 1 and 2 respectively. After receiving the above messages,
suppose process A replies to the message ’Did you visit Chennai?’ with the response 'No’
and process B replies to the message 'Did you visit Delhi?’ with the response "Yes’. As
per total ordering, both A and B would affix the timestamp 3 to their responses. Now, the
message ordering protocol at process D on receiving these messages orders them according
to their timestamps and displays them on the chat console. However, since there are two

messages having the same timestamp, they may get displayed on the console at D in an

75

76 Chapter 8. Threaded Chat Application Development using M2MC

arbitrary order. This leads to ambiguity because the user at D may not be able to map
the responses 'No’, ’Yes’, to the messages ’Did you visit Delhi?’, ’Did you visit Chennai?’
appropriately. Hence total ordering protocol is inadequate for such an application. It can
be shown that the ambiguity persists even when the messages are ordered using vector

clocks, as in causal ordering [3] or even when synchronized global clocks [4] are assumed.

d Distributed Protocol Appl.

4 Disis buled Prowcol Appl Egi=iE 3 jd Distiibuled Prowcol Appl Pgieil]

R = = 7 C:Did you visit Chennai? |
o3 c:Did Ch: ? a
Plorpar sty -3 G- Didyou visie Deli? C: Did you visit Delhi?
: ¥ &9 B: Yes | L

| — | [OB:- yes

|_Send | send { - — =
L = | L J C: Did you visit Chennai?

a) User C b) User B D A:-NO

B Disiiibuied Proioeol Appl Relli=lg] B L5t bited Prowcol Appl |

@7 C: Did you visit Chennai?
| ®-3:C: Did you visit Delhi?

&7 C: Did you visit Chennai?
@3 C: Did you visit Delhi?

| =30 ANo =3 A:Ne
| =1 B: Yes i r
e | Came | Send
| I Sl Sus s | ——
i il
c) User A d) User D L J

Figure 8.1: Chat Application Figure 8.2: Threaded Chat Application

In contrast to the above, consider a threaded chat application [5] that lets users com-
municate in a message-response form as shown in Fig 8.2. All chat messages are
structured in the form of a tree. The key feature of this tree structure is that messages
and responses are organized into relationships called threads. A user explicitly selects a
message before responding to it. As a result, the response is linked directly to the corre-
sponding message, using threads, and other users can perceive the semantic relationship

among the messages.

8.2 Class Diagram

The class diagram of the application is as shown in the figure8.3.

8.2.1 class:GroupManager

The class GroupManager (Fig.8.4) of the M2M middleware provides the following
method interfaces for the application developers. The class GroupManager maintains
object of java.util.HashMap called grpProtocolMap for mapping identity of a group gid to

its instances of classes MsgOrderProtocol and MsgSyncProtocol.

8.2. Class Diagram 7

GroupManager * ApplGrpMngrinterface
CreateNewGrpWindow
—
NewGrpConsole : ApplGrpMngrClass

3

i

ChatConsole

T TR

PynaTreeNodere DynaTree

Figure 8.3: Threaded Chat Application Architecture

e void CreateGroup(String desc) is for the application developer for creating a
new group. The argument desc is description about the group. It gets identity for
the new group from object of GrpJLProtocol method, creates instances of classes
MsgOrderProtocol and MsgSyncProtocol, and updates grpProtocolMap to map the
identity of the group to the instances of classes. It calls getGrpInfoList() of GrpJL-
Protocol class, gets grpsInfoList that includes grpInfo of new group and broadcasts
it.

e void joinThisGroup(grpInfo) is called if the process wants to join an existing
group whose identity is grpInfo.gid. It creates instances of MsgOrderProtocol, Ms-
gSyncProtocol, updates grpProtocolMap and calls joinGrp(grpInfo) of GrpJLPro-

tocol class.

e void leaveThisGroup(gid) is called if the process wants to leave from group whose

identity is gid. It calls sendLeaveMsg(gid) method of GrpJLProtocol.

e void receiveMsgfrm A ppl(midp, data,gid) is called when the user at group ap-
plication wants to broadcast application data to the group in response to a message
having identity mid,. The method calls send(midp,data) of object of class Ms-
gOrderProtocol corresponding to group with identity gid.

78 Chapter 8. Threaded Chat Application Development using M2MC

GroupManager

HashMap grpProtocolMap

void createGroup(String desc)
void joinThisGroup(Gid gid)

void leaveThisGroup(Gid gid)

void receiveMsgfrmAppl(String midp,
String data, Gid gid)

void sendAdvMsg()

Figure 8.4: Group Manager class

ApplGrpMgnrinterface

void sendMsg2Appl(LinkedList
msgList, Gid gid)

void displayNewGrpInfo(Grplinfo
grpinfo)

Void createNewGroup(Gid gid)

Figure 8.5: Interface for application developer

e void sendAdvMsg() for advertising the presence of process in the network. The

method calls sendAdMsg() of GrpJLProtocol.

8.2.2 Interface: ApplGrpMgnrInterface

The interface ApplGrpMgnrinterface provides the following APIs as shown in Fig8.5.
These APIs are called by the middleware software (methods of GroupManager). The ap-
plication developer implements the methods provided in the interface based on application

logic.

e void sendMsg2Appl(LinkedList msgList, String gid) The method is called
by GroupManager methods for giving the application the list of messages that the

8.3. Threaded Chat Application classes: 79

process has received from the group of group identity gid. As discussed earlier each
element of the linked list is an object to class MsgList containing the fields maid,
(identity of the message), mid, (identity of the parent message) data (application

information).

e void displayNewGroupInfo(LinkedList grpInfoList) The method is called by
GroupManager, for sending the list of group identities and their descriptions. (Recall
that when the process enters the network domain, it advertises its presence. The
other processes in the network will respond to it by sending the identities and

descriptions about the groups that they are aware of.)

e void createdNewGroup(String gid) The method is called by GroupManager, for
sending the identity of newly created group. The application developer can write
the application specific code (that has to be performed when a new application

group has been created) by implementing this method.

8.3 Threaded Chat Application classes:

The classes ApplGrpMngrClass, GroupInfoWindow, ChatConsole, DynaTreeNode, Dy-
naTree, represent the application logic.
The classes ChatConsole, DynaTreeNode, DynaTree, GroupInfoWindow provide GUI for

the threaded chat application.

8.3.1 ChatConsole:

The ChatConsole creates the chat window (shown in Fig). The chat window contains
main panel, text panel, buttons, and panel for displaying members. The main panel
displays the messages in the form of tree structure such that a response to a message
is connected by thread representing the parent—child relationship. The text panel is for
entering the text message for broadcasting to the group. The following the methods of

the class.

e void createPanels() The method calls the javax.swing library functions for creating

various panels and buttons.

80

Chapter 8. Threaded Chat Application Development using M2MC

e void actionPerformed() The method implements the action listeners for send

button such that when text is entered in the text panel after selecting one of
the earlier messages and the button is pressed then, the action listener calls the
sendMsg2Group() method of ApplGrpMngrClass for sending the text entered in

the text panel and identity of the selected message to group members.

void display(Msg msg) The argument msg is the object of class Msg that contains
the fields, mid,, mid,, data representing the identities of message, its parent message
and application information of message. The chat console represents the messages
sent to the group in the form of tree which is the object of class called DynaTree
and each message is the object of DynaTreeNode class. The method creates the
object of DynaTreeNode (child) for application data received as argument, gets the
object of DynaTreeNode (parent) corresponding to mid, and the calls the function
add2Tree() of DynaTreeNode class with arguments p, ¢ for displaying on the chat

window.

8.3.2 DynaTree

The DynaTree class contains the following methods:

e void add2Tree(DynaTreeNode dynaParent, DynaTreeNode dynaChild)

The method represents the message contained in the object dynaChild on chat

window as the child node of message contained in the dynaParent object.

e DynaTreeNode getSelectedNode() When user selects a message on the chat win-

dow, the actionListeners in class Console call this method to get the DynaTreeNode

object of selected message.

8.3.3 DynaTreeNode

The object of the DynaTreeNode stores the chat message. It contains listeners for mouse

events.

e createNode(String msg) The methods create a DynaTreeNode for given message

string.

8.3. Threaded Chat Application classes: 81

8.3.4 GroupInfoWindow

provides GUI for user to join new groups. It is as shown in the fig.

e void createGroupInfoPanel() The method creates the panel.

e void showGroupdesc(String desc, String gid) The method presents the group

description and its identity on the group panel.

e void actionPerformed() The method is action listener and invoked when user
decides to join the group by pressing the button. The method calls the method
joinThisGroup(gid) of class ApplGrpMgnrClass with group identity parameter.

The ApplGrpMgnrClass implements the methods of ApplGrpMgnrinterface.

The following are methods of the class ApplGrpMngrClass that implements the fol-
lowing methods of the interface ApplGrpMngrInterface. Each group will have on unique
chat window for displaying the messages sent to the group. The ApplGrpMngrClass cre-
ats maintains a HashMap to map the group identity gid to the object of ChatConsole

class.

e void sendMsg2Appl(LinkedList msgList, String gid) The argument msgList
is a linked list of messages with each element of the linked list pointing to the object
of class Msg. The method displays the messages contained in msgList in the chat
window corresponding to group with identity gid. The method calls display(msg)
function of the chatConsole object with msg parameter for each element of the linked

list. The display method displays the message on the window.

e void displayNewGrpInfoList(LinkedList grpInfoList) The argument is a linked
list whose elements contain objects of class GrpInfo. The class Grplnfo contains
fields group identity gid, group description desc. The method creates and object of
GroupInfoWindow and calls the method show Grpdesc(desc, gid) for each element
in the linked list.

e void createdNewGroup(String gid) The method creates new object of Console
which in turn creates chat window for the group. The method also updates objects

of HashMap that maps gid to object of Console.

e void joinThisGroup(String gid) The method calls the joinThisGroup(gid) method
of GroupManager with group identity (gid) argument.

e void sendMsg2Grp(String mid,, String data, Console console) The message is called
by the chatConsole for sending a chat message data typed by the user in response
to message with identity mid,. The method finds the group identity (gid) of the
console in which the message is typed using the HashMap and calls the method
recvMsgfrmAppl(mid,, data, gid).

The object of the class CreateNewGrpWindow (shown in Fig) contains the method

for creating new group.
e JPanel createPanel() The method creates the panel for GUL

e void actionPerformed() The method calls createGroup(String desc) of GroupM-

ngr for creating new group.

Chapter 9

Summary and Conclusions

We have presented M2MC, a new distributive computing middleware designed to support
collaborative applications running on devices connected by broadcast networks. M2MC is
useful for building a broad range of multi-user applications like multiplayer games, conver-
sations, group ware systems. M2MC does not rely on central servers and its component
protocols MOP,MSP,GJLP act together for communicating in a distributed manner. Mes-
sage ordering protocols are key components for group communication systems. The most
widely used message ordering protocols like total ordering, causal ordering protocols are
not suitable for all group communication applications because they do not let the appli-
cation explicitly specify the order among the messages.

We have defined a new ordering called S, that orders the messages according to the
semantic relationship among them as specified by the application and we described a
protocol called MOP protocol that ensures all the receivers will receive the messages sent
to the group in S, order. We have explained the protocol actions with a state diagram. We
have proved the correctness and liveness of the protocol and discussed the implementation
issues and time, space complexity of protocol.

We have described the specification details and Java implementation details of these

protocols. We have discussed Threaded Chat Application developed using M2MC.

83

Bibliography

1]

2]

3]

[4]

[5]

[6]
[7]
8]

[9]

D.R.Cheriton and D.Skeen. Understanding the limitations of causally and totally
ordered communication. In the Preceedings of 14th ACM Symposium on Operating
System Principles, pages 44-57, 1993.

P.Urban. X.Defago, A.Schiper. Total order broadcast and multicast algorithms: Tax-
onomy and survery. ACM Computing Surveys, Vol. 36,No. 4 pp.372-421, December
2004.

L.Lamport. Time,clocks, and the ordering of events in a distributed system. Com-

munication of ACM, July 1978.

L.Lamport. Using time instead of time-outs in fault-tolerant systems. ACM Trans.

Program. Lang. Syst. 6,256-280, 1984.

B.Burkhalter M.Smith, JJ. Cadiz. Conversion trees and threaded chats. ACM Mag-
azine, 2000.

http://www.omg.org. BASICS of CORBA.
http://java.sun.com. Java RMI.

H.Bischof. A.Kaminsky. Many-to-many invocation: A new framework for building
collaborative applications in ad hoc networks. CSCW 2002 Workshop on Ad Hoc
Communication and Collaboration in Ubiquitous Computing Environments, New Or-

leans, Lowisiana, USA,, 2002.

Sung Ju Lee, William Su, and Mario Gerla. On-demand multicast routing protocol

in multihop wireless mobile networks. Mob. Netw. Appl., 7(6):441-453, 2002.

85

86

Bibliography

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Rajesh Talpade Jason Xie and Mingyan Liu Anthony Mcauley. Amroute: Ad hoc

multicasting routing protocol. 2002.
C-W.Wu and Y.Tay. Amris-a multicast protocol for ad-hoc wireless networks. 1999.
. Andrew S. Tanenbaum. Distributed Operating Systems.

Alan Kaminsky Hans-Peter Bischof and Joseph Binder. The anhinga project. a new

framework for building secure collaborative systems in ad hoc network. 2003.
Gene Tsudik Katia Obraczka. Multicast routing in ad hoc networks. 2000.

Thomas Kunz and Ed Cheng. On-demand multicasting in ad-hoc networks: Com-

paring aodv and odmrp. 2002.

F. Viegas J. Donath, K. Karahalios. Visualizing conversation. Proceedings of HICSS-
32, 1999.

C.Fidge. Timestamps in message passing systems that preserve the partial ordering.

Proceedings of 11th Australian Computer Science, page56-66, pages 56-66, 1988.

S.Mishra. F.Cristian, R.Debeijer. A performance companrision of asynchronous

atomic broadcast protocols. Distrib. Syst. Eng. J.1,4,177-201, 1994.

C.Fetzer F.Cristian. The timed asynchronous distributed system model. IEEE Trans.
Parall. Distrib. Syst. 10,6, 1999.

S.Mishra F.Cristian. The pinwheel asynchronous atomic broadcast protocols. In
Proceedings of 2nd International Symposium on Autonomous Decentralized Systems.

IEEE Computer Society Press., 1995.

P.Urban X.Defago, A.Schiper. Comparitive performance analysis of ordering strate-

gies in atomic broadcast algorithms. IEICE Trans. Inf. Syst. E86-D,12, 2003.

M.Dasser. Tomp: A total ordering multicast protocol. ACM Operat.Syst. Rev.26,1,
1992.

A .Schiper F.Pedone. Handling message semantics with generic broadcast protocols.

Distrib. Comput. 15,2,97-107, 2002.

Bibliography 87

[24] A.Schiper. F.Pedone. Optimistic atomic broadcast: A pragmatic viewpoint. Theor.
Comput. Sci.291,79-101, 2003.

[25] R.Vitenberg. G.Chockler, I.Keidar. Group communication specifications:a compre-

hensive study. ACM Computing Surv. 9,2(Feb.), 427-469, 2001.

38

Bibliography

Acknowledgements

I take this opportunity to express my sincere gratitude for Prof. Sridhar Iyer for
his constant support and encouragement. His excellent guidance has been instrumental

in making this project work a success.

I would like to thank members of the Compaq lab and SIC313 lab at KReSIT and
SIGNET — the Special Interest Group in Networking, for their valuable suggestions and

helpful discussions.

I would also like to thank my family and friends, who have been a source of encour-

agement and inspiration throughout the duration of the project.

Last but not the least, I would like to thank the entire KReSIT family for making my

stay at II'T Bombay a memorable one.

Chaitanya Krishna Bhavanasi
I. I. T. Bombay
June 30, 2005

89

