Performance Analysis Of Live Video Streaming Using Content Distribution.

> Harshad Inarkar *Guided by* Prof. Purushottam Kulkarni And Prof. Sridhar Iyer

## Outline

Introduction Problem Definition Approaches Proposed System Architecture IIT Bombay Network Architecture Experimental Methodology Performance Analysis Conclusions Future Work Demo

### Introduction

#### Growing Use of Live Video Streaming.



Live Talk VIP and Popular Person

Live lectures



## Requirement

#### User's Requirement

- Better perceived quality of video.
  - Bitrate, frame rate, resolution.
- Availability of live streaming.

#### CDEEP Server Requirement

- Lower load on Server.
- Lower load on IIT Bombay network.

# **Problem Definition**

6

Unicast streaming has scalability issue.

- t Server overload
- Packet delay , Video frame skips : video quality degrades
- Develop webcasting architecture for CDEEP such that it is more scalable (concurrent users) ensuring lower demand on the server and network also the better perceived quality of video.
- Verify the correctness of the solution.
- Evaluate the performance of the system.
- Integrate it into CDEEP network.

## Approaches

Increasing the network capacity.

t Expensive: change in infrastructure.

Transcoding and Variable bit-rate streaming.

- Encoding rate can be downscaled for more scalability.
- Compromize with video quality.

#### IP multicast

- t Packet replication at router level. (e.g DVMRP)
- Need multicast supporting routers. (stateful routers)
- load on router.
- Unwanted traffic.
- Change in infrastructural level (costly).

#### **Application Level Multicast**



8

- Packet replication at end system.
  e.g. ALMA (tree), NARADA (mesh)
- Construct distribution tree containing all the receivers.
- Subset of nodes get the live stream directly.Others get the stream from receivers 1 level above them.

Issues

- Highly dynamic behaviour (connection/disconnection) of receivers.
- Complex Mesh/Tree maintenance algorithm.

### Approach cont..

#### P2P Streaming.

- Split video stream into chunks.
- Distribute it using bittorrent-like protocol.
- e.g PPLive, SopCast, GoalBit.
- Content Distribution Based.
  - Clients are redirected to best server.
  - Internally use load balance algorithms.
    e.g Round Robin, least-connection etc.

### **Proposed Architecture**

10



#### **Request Redirection module**

- t Round Robin- Incoming requests redirected round robin fashion.
  Drawback: Clients behavior dynamic.
   Server capacities are different.
  - Subnet Level Based : Static redirection
    Load may not be balanced among servers.
- Instantaneous Number Of Connection : Dynamic Redirection
  No guarantee of redirection to local server
- Network utilization of servers balancer: Dynamic redirection
  - Server use multiple streaming or some other (network) application.

#### **Campus Network Architecture**



http://nms.iitb.ac.in

### Part of Campus Network



## **Experiment Testbed**



Streaming VLC\_Main\_Server

# **Physical Setup**

15



# **Experimental Setup**

- 16
  - Media Streaming Server: VLC player
  - Media Streaming Client : Mplayer
  - Performance Metrics:
    - Server and router side:
      - I/O rate
      - CPU utilization of server
    - Client Side:
      - Frame Stats (Frame rate, delay, drop)
      - Packet stats (Packet delay, jitter)

#### Experimental Setup cont..

- Streaming video
  - Length of video clip : 300 sec.
  - Frame rate : 25 fps.
  - Video bitrate:1000 Kbps, codec: H.264.
  - Audio bitrate: 192 Kbps, codec: mpga.
  - Streaming Protocol: HTTP\_streaming.
- Equipment used:
  - 5 Laptops (2.2 Ghz C2D, 2 GB RAM)
  - 3 Server machines.
  - 3 Routers (cpu machines with multiple NICs).
- Client's Request rate = 5 clients per/sec

### **Prelimenary Experiment**

18



# **Performance Analysis**

#### Average Frame Rate



#### Average Frame drop

20

#### Average Frame Drop %



# H8\_Extreme (GW1)





# CC\_Extreme (GW2)





# CSE\_Extreme (GW3)

#### Gateway 3 Router I/O rate



### Main Streaming server

Simultaneous Client





#### **Content Distribution Server 1**

Content Distribution Server 1 I/O rate



#### **Content Distribution Server 2**

26

#### Content Distribution Server 2 I/O rate



#### Network Utilization balancing ratio

 b1,b2,b3 -> network utilizations, total=b1+b2+b3 , balancing\_ratio= Abs(b1/total - 1/3) +Abs(b2/total -1/3) +Abs(b3/total-1/3)



## Conclusions

- Problem in existing unicast streaming.
  - t Not scalable.
- We implemented a tool for proposed content distribution architecture with various redirection algorithms.
- Evaluated unicast streaming, static as well as dynamic redirection algorithm.
- Dynamic redirection works better in terms of load balancing.
- Subnet level based : minimize campus network load.

### Future Work

- In Request Redirection module
  - t CPU load balancer
    - Some hybrid redirection
- Create GUI or itegrate code in VLC player.
- Integrate into CDEEP.

### References

- [1] CDEEP Website <u>www.cdeep.iitb.ac.in</u>
- [2]Akamai Technologies, www.akamai.com
- [3]VLC Player: <u>www.videolan.org</u>
- [4]"A Case for End System Multicast" Yanghua Chu, Sanjay G. Rao, and Hui Zhang Carnegie Mellon University.
- [5] Goalbit open source p2p live streaming softwares. http://goalbit.sourceforge.net/
- [6] IIT Bombay network management service. http://nms.iitb.ac.in,.



