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Abstract

Extremality principle is a commonly used problem-solving strategy. The main idea is to

look at extremal cases of a problem in order to obtain insight about the general structure.

Though the principle is widely known, it is not explicitly discussed in algorithm textbooks

or taught in courses. We devise a methodology based on extremality principle and use it

to solve a variety of algorithmic problems involving graphs. We apply the methodology to

three tasks that are relevant in the context of teaching algorithms.

The first task is related to the analysis of greedy algorithms. We are given an optimiza-

tion problem P and a greedy algorithm that is purported to solve the problem P. The goal is

to construct an instance of P on which the algorithm fails to give the correct answer. Such

an instance is called a counterexample. In a pilot experiment, we found that students had

difficulty in constructing counterexamples. We give a method to construct counterexamples

for many graph-theoretic problems. We apply our method to standard problems in graph

theory for which greedy algorithms exist in literature.

The second task is related to proving lower bounds on a query computational model.

We are given a graph G as input via its adjacency matrix A. We are also given a graph

property (like connectivity). The goal is to determine the minimum number of entries of A

that one needs to probe in order to check if G has the given property. We prove that if the

graph has n nodes, then for many common properties at least Ω(n2) probes are necessary.

We find that lower bound proofs of this problem that are given in textbooks rely too much

on ‘connectivity’ property and do not generalize well. We give a method to prove lower

bounds in a systematic way. In a pilot experiment, we found that students were able to

understand and apply our method.

In the third task we use our methodology to solve a research problem. We give a

detailed account of the problem-solving process that could be of expository value.

We present preliminary work to show the use of extremality in linear programming.
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Chapter 1

Introduction

1.1 Mathematical Problem-Solving

Problem-solving research has a long history. We give an overview of findings of the mathe-

matics community that are relevant to our work. Although teachers having been interested

in problem-solving for over a century it was Polya’s book ‘How to solve it’ that gave impetus

to research in the subject. The book contains a variety of heuristics that are commonly

used by mathematicians. Early research on the topic described thinking processes used by

individuals as they solved problems. Experiments suggested that the key factors that in-

fluenced problem-solving were knowledge, meta-cognitive skills and beliefs. In the 1970s

and 80s, researchers like Schoenfeld and Lester observed the outcomes of teaching Polya-

style heuristics directly to students in classrooms. A consensus among researchers that has

emerged is that while meta-cognitive skills play an important role in problem-solving there

is little evidence to show that these skills can be taught to students. Schoenfeld’s work

shows that teaching general heuristics to students does not improve their problem-solving

ability ([30], [31]). A nice summary of problem-solving research can be found in the book

‘Theories of Mathematics Education’ by Bharath Sriraman and Lyn English [32]. To quote

from the book:

Teaching students about problem-solving strategies and heuristics and phases of

problem solving does little to improve students’ ability to solve general math-

ematics problems ([22] p. 508). For many mathematics educators, such a

consistent finding is disconcerting.
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The ineffectiveness of heuristics is commonly attributed to two main drawbacks:

Drawback 1. Scope of problems is too broad. The scope of problems solvable by a heuris-

tic is usually ill-defined; this makes it difficult to judge when a particular heuristic is

applicable. Choosing the right procedure from a long list itself can become daunting.

(pg. 265 [32]). Polya’s book alone has about forty heuristics.

Drawback 2. Lack of predictive power. Even if one finds the correct heuristic for a given

problem, its descriptive nature makes it hard to directly apply it to the problem. Most

heuristics are often just names given for broad thinking processes. The same heuris-

tic like ‘solve an analogical problem’ can be interpreted in many ways and applies

differently to different problems [30].

Techniques such as greedy, divide-and-conquer, dynamic programming are based on

some popular heuristics in mathematical problem-solving. For example, divide-and-conquer

is based on the following heuristic: ‘Decompose the problem and recombine its elements in

some new manner’ (pg. 75 [27]). We show how the divide-and-conquer technique differs

from the heuristic by arguing that it addresses the drawbacks mentioned above.

Scope of problems. There is empirical evidence to show that divide-and-conquer strategy

is useful usually when one encounters the following situation: An easy polynomial

algorithm can be found but one suspects that an improvement is possible. The strat-

egy rarely improves the running time by more than an O(n) factor. For example, all

the problems (including exercises) mentioned in popular textbooks like [6], [7] and

[21] belong to this category. Table 1.1 shows some common examples.

Predictive Power. The chapter on divide-and-conquer is a collection of illustrative exam-

ples and technical tools for solving recurrences [6]. The examples and the exercises

given the chapter are representative of the problems that one encounters in computer

science. It is plausible that ideas used in solving the textbook problems also help in

solving other (unseen) problems. Divide-and-conquer based solutions usually involve

recurrences. Hence, a few technical tools have been developed to solve recurrences of

various kinds [9]. The ability to solve recurrences can be seen as one of the core-skills

of using divide-and-conquer technique. Hence, it it not surprising that four out of the

six sections in the chapter from CLRS textbook deal with solving recurrences (Chap.

2



Problem Naïve Divide and Conquer

Sorting O(n2) O(n log n)

Counting Inversions O(n2) O(n log n)

Matrix Multiplication O(n3) O(n2.7)

Maximum Subarray O(n2) O(n log n)

Closest Pair of Points O(n2) O(n log n)

Hidden Surface Removal O(n2) O(n log n)

Integer Multiplication O(n2) O(n log n)

Convolution and FFT O(n2) O(n log n).

Table 1.1: Problems discussed in the chapter on divide-and-conquer in popular textbooks like CLRS

[6] and Klienberg-Tardos [21]. For each problem, the table shows the running time of the naïve

algorithm and the divide-and-conquer algorithm. Divide-and-conquer strategy usually gives only a

o(n) factor improvement over the naïve algorithm.

4 [6]). It is the illustrative examples and the technical tools for solving recurrences

together as a ‘package’ that gives the divide-and-conquer technique some predictive

power.

We propose a methodology that operationalizes Polya’s heuristic of solving easier

problems first. The process of finding easier problems is referred to as ‘Weaken-

ing’. We extend the solution of the easier problem to solve the original problem.

We call our methodology as ‘WISE’. WISE stands for ‘Weaken-Identify-Solve-Extend’

(Fig. 1.1).

1.2 Extremality Principle

The extremality principle is a problem-solving strategy that involves studying objects with

extreme properties in order to reason about more general objects. Although the principle

is intuitive and well-known, its application to a specific problem can be difficult. There are

many books on problem-solving that illustrate the use of extremality principle in solving

3



Heuristic. “Can you decompose the

problem and recombine its elements in

some new manner?”

⇓Operationalize

Divide and Conquer

Core Skill: Solving Recurrences.

Heuristic. “If you can’t solve a prob-

lem, then there is an easier problem

you can solve: find it.”

⇓Operationalize

WISE

Core Skill: Finding Extremal Instances.

Figure 1.1: Analogy between divide-and-conquer and WISE.

mathematical problems ([8], [27]). However, the current texts on extremality principle

focus mostly on math topics like geometry, number theory and combinatorics.

In computer science, extremality is discussed only in the context of greedy algorithms.

A greedy algorithm makes a local choice at each step that is extremal in some sense. Con-

struction of extremal graphs is also an important topic in graph theory. Extremal graphs

are those which maximize or minimize certain functions on properties. For example, some

simple extremal graphs are shown in Table 1.2. A complete graph is extremal since it max-

imizes the number of edges. A path is extremal since it has the longest diameter, and so

on.

We use the extremality principle to give more predictive power to the methodology.

In all the applications that we solve, we will show how extremal graphs play a key role in

solving the problems. The ideas in our technique are well-known to experts who probably

apply them implicitly. We make the use of extremal graphs explicit.

1.3 Main Contributions

The main contributions of the thesis are as follows:

• A method to construct counterexamples for greedy algorithms for optimization prob-

lems in graph theory.

• A method to prove lower bounds for graph property-testing under the query-complexity

model.
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Common Extremal Graphs

Path

Cycle

Star

Complete graph
Kn

Independent set graph
In

Binary Tree

Complete bipartite graph

Kn,n

Table 1.2: Generic extremal graphs which play an important role is solving many graph-theoretic

problems.

• An O(n1.8 log n) algorithm for the tree learning problem and its derivation using the

WISE methodology.

• A list of instructive examples for linear programming using the extremality principle.

1.4 Thesis Organization

• In chapter 2, we describe the WISE methodology apply it to solve a few textbook

problems. The problems are chosen from undergraduate algorithms textbooks.

• In chapter 3, we show how the WISE methodology can be used to construct coun-

terexamples for greedy algorithms. We show the applicability of the technique for

many standard problems in graph theory for which greedy algorithms exist in litera-

ture.

• In chapter 4, we apply WISE to problems related to property-testing in graph theory

under the query-complexity model.

• In chapter 5, we use WISE to derive an algorithm for a problem called the ‘tree

5



learning problem’. The objective is to find the structure of a bounded-degree tree

using minimum number of queries to a separator oracle. The separator oracle can

answer queries of the form “Does the node x lie on the path from node a to node b?”.

We derive an O(n1.8 log n) algorithm using WISE for this problem which improves

upon the previously known quadratic bound.

• In chapter 6, we discuss the potential use of extremality principle in the topic of linear

programming.

• In chapter 7, we give some possible extensions of the methods discussed in the previ-

ous chapters.

WISE

Chap. 2: Illustrations Applications of WISE

Chap. 3: Counter Examples for Greedy Algorithms

Chap. 4: Query Lower Bounds

Chap. 5: Tree Learning Problem

Chap. 6: Extremality in Linear Programming

Figure 1.2: An overview of the main chapters in the thesis.
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Chapter 2

WISE Methodology

We explain the WISE methodology and illustrate its application on a few textbook problems.

As mentioned in the previous chapter, the methodology operationalizes Polya’s heuristic

of solving easier problems first. The process of formulating an easier problem is called

‘Weakening’. The part where we take cue from the solution to the easier problem and use

it to solve the original problem is referred to as ‘Extending’.

The problems that we use as illustrative examples are intentionally chosen to be dif-

ferent from each other. This is to done to illustrate an important point: Although all the

problems are solved using the same methodology, the weakening and the extending steps

vary from problem to problem. Hence, the methodology does not have as much predictive

power as we would like. The question we ask is this: If we restrict the scope of problems to

a smaller domain, then can we increase the predictive power of the methodology further?

We answer this question affirmatively in Chap. 3 and Chap. 4. In Chap. 3, we restrict the

scope of problems to constructing counterexamples to greedy algorithms and show that

the steps of the methodology remain the same across all the problems. Hence, the WISE

methodology is sharpened into a method for constructing counterexamples. Similarly, in

Chap. 4, we derive a method to prove query lower bounds.

2.1 WISE: Weaken-Identify-Solve-Extend

We describe the steps involved in the WISE methodology. We elaborate the steps that are

shown in Fig. 2.1.
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2. Weaken the
given problem

1. Analyze
the problem P

2a. Weaken
the Instance

2b. Weaken
the Objective

3. Identify
a candidate
problem P ′

Can solve
P ′?

4. Solve P ′. Find
as many solutions
as possible for P ′

Add a previ-
ously removed
constraint to P ′

Remove a
constraint

Solution nSolution 1

5. Extend the
solutions of P ′

towards solving P

. . .

Can solve
P?

Stop

yes

no

no

yes

Figure 2.1: The WISE methodology.
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Step 1 Analyze the given problem P

The first step of the method is to identify the instances, constraints and the objective of the

problem.

Instances and constraints in the problem are easy to identify by looking at the nouns

phrases and verb phrases in the problem description, respectively.

For each instance, we select a representation and list their properties. For example,

a graph can be represented either as an adjacency matrix or adjacency list. Graphs have

properties like maximum degree of a vertex, diameter, connectivity, etc. The properties

may depend on the choice of representation. A property can be intrinsic to an instance or

depend on the choice of representation. For example, diameter is a property that is intrinsic

to a tree, but height is a property that is applicable only if the tree is represented as a rooted

tree. Table 2.1 shows representations and properties of common instances we encounter in

algorithmic problems.

Instance Properties (Representation)

Number Value, Parity, Sign, Number of prime factors,

Number of digits (Decimal),

Numbers of bits (Binary).

Lines Length and Slope.

Array Length, Values, Number of inversions, etc.

Tree Maximum degree of vertex, Number of leaves,

Diameter, Height (Rooted tree).

Graph Number of edges, Diameter, Connectivity,

Regularity, Planarity, Bipartiteness,

Number of cycles, Chromatic number, Girth,

Number of overlapping back-edges (DFS Tree)

Height (BFS Tree).

Table 2.1: Common instances and their properties.

Step 2 Weaken the given problem

9



If the problem is hard to solve, we look for a related problem that is simpler to solve first.

This is one of the most common problem-solving techniques [27]. We describe two common

ways of weakening.

Weaken the instances. The most common way to simplify the problem is to retain

the objective but restrict the instances to a particular type. In this section, we discuss ways

to weaken the instances.

Extremal instances are those which optimize a function on properties subject to some

constraints. Due to the number of ways in which we can combine properties, there are sev-

eral extremal instances one can derive. We list some simple extremal examples in Table 2.2

that are useful in many problems. Solving the problem on a simple extremal instance usu-

ally gives a clue to what other extremal instances might be interesting to consider.

Instance Extremal function Constraints Extremal Instance

Number Min. the number of prime factors - Numbers of the form pn

where p is prime

Min. the number of 1s in bits - 10000,01000,00001,

etc.

Lines Maximize or Minimize slope - Horizontal and Vertical lines

Array Number of values - Array consisting of only 1s

and 0s

Tree Minimize the number of leaves - Path

Minimize height - Star graph

Minimize height Max. degree is three Complete binary tree

Graph Maximize number of edges - Complete graph

Minimize number of edges Preserving connectiv-

ity

Tree

Table 2.2: Examples of extremal objects.

Weaken the objective. In this step, we identify the objective and relax the constraints

of the problem. The common way to do this is to relax the individual properties of the

constraints or operations. It is well known that simplifying constraints by itself can lead to

insight [14]. Combining this with extremality makes it more powerful.

Step 3 Identify a candidate problem P ′

10



Once we have a list of weaker problems, we identify all the trivial problems that can be

easily solved. Usually, many of these problems do not give much insight. So we need to

pick a candidate problem that gives some insight into the original problem. The candidate

problem is usually the simplest non-trivial problem to which we do not have a solution. If the

candidate problem itself is too hard then we go back to Step 2 by and weaken it further. By

repeated application of weakening the problem or objective, we obtain a candidate problem

P ′ that retains some aspects of the original problem but is easy enough to be solved. Since

the problem can be weakened in several ways, we usually end up with multiple candidate

problems. We choose to pursue one candidate problem at a time.

Step 4 Solving the candidate problem P ′

In this step, we can apply any of the commonly available techniques like greedy, divide-

and-conquer, dynamic programming, etc. to solve P ′. It usually helps to solve the candidate

problem in multiple ways. Solutions differ in their strengths and weaknesses and may give

different insights into the problem.

Step 5 Extend the solutions

We use each solution of the candidate problem to get insight into the original problem.

One of the common ways of doing this is to first see if the solution applies to near-extremal

instances i.e. extremal instances which are slightly perturbed. For example, we can try to

extend a solution on prime numbers to numbers with two prime factors. Most often this

extension gives an idea that works for arbitrary numbers. Similarly, we may try to extend a

solution that works for a path to trees with only two paths. The solution to two paths may

generalize to trees with fixed number of leaves and then to general trees.

However, if the solution does not extend to a general case then we add the difficult

case to the candidate problem, go back to Step 1 and tackle it as a new problem.

We now apply the WISE methodology to derive solutions to a few textbook problems.

11



2.2 Example I: Intersecting Intervals

Problem. Given a set of n intervals that are pairwise intersecting, prove that there exists

a point that is common to all intervals. Each interval is given in the form of [starting

point,end point].

Step 1 Analyze the Problem

We first identify the instances in the problem and their properties.

• Instances in the problem: Intervals.

• Properties of intervals: starting point and ending point.

Step 2 Weaken the input instance

Extremal instance of intervals: Without loss of generality we can order the intervals by their

starting points. Consider the extremal case when ending points are also sorted according

the order of intervals.

Step 3 Identify a candidate problem

The candidate problem is as follows: Given the arrangement of intervals as shown below

prove that there exists a point that belongs to all intervals.

A D

B C

common point

Figure 2.2: Extremal instance for a set of pairwise intersecting intervals.

Step 4 Solve the candidate problem

There are two points as we can see that belong to all the intervals. By symmetry, we can

consider only the point D.

Observation 1. The ending point p of the first interval is present in every interval.

12



Proof: Suppose there exists an interval I whose starting point is after this ending point,

then the first interval and I do not intersect which cannot be true since every pair of in-

tervals must intersect. Since the ending points are ordered every interval has ending point

after p. Hence point p belongs to every interval. �

Step 5 Extend the proof

A D

B C

common point

Figure 2.3: A near-extremal instance. The proof for the extremal instance does not extend to this

input since point D is no more the common intersection point.

The observation about the ending point of the first interval does not hold. However,

observe that the first ending point in this instance is common to all intervals. This point

must be common to all intervals by reasoning given in the proof above. This observation

does generalize completely and thus resolves the problem.

Sol. Sort the intervals by their ending points. The first ending point must belong to all the

intervals.

2.3 Example II: Harmonic Vertices

Problem. We have a graph in which each vertex is associated with a value. A vertex is

called harmonic if its value is the average of all its neighbours’ values. For example, the

graph shown in Fig. 2.4 has three harmonic vertices and four non-harmonic vertices. Prove

that any graph with n> 1 vertices cannot have exactly one non-harmonic node.

Step 1 Analyze the problem

Instances in the problem: Graph and values at each node.

Step 2 Weaken the input instance

Let us consider the extremal input case when the graph is a path.

13



1 0

3
2

6

3

4

Figure 2.4: The shaded vertices are harmonic.

Step 3 Identify a candidate problem

The candidate problem is as follows: Can we have a path of values with exactly one non-

harmonic node?

Step 4 Solve the candidate problem

Suppose we make the first node as 1.
1

Also suppose that we want node 1 to be the only non-harmonic node. So the next

node should be a number other than 1. Let us say we put 2 as its neighbour.
1 2

Since we want the second node to be harmonic the next node should have the value 3.

Subsequently, the values of all other nodes get fixed as shown. The last node is inevitably

a non-harmonic node since it is bigger than its neighbour. Hence, we end up getting two

non-harmonic values which also happen to be the maximum and minimum values.
1 2 3 4 5 6 7 81 8

Step 5 Extend the proofs

The maximum and minimum values are always non-harmonic in a path. Can we generalize

this to any graph?

Sol. If all the values are not same then there exists two distinct values: minimum and

maximum.

Claim 2.3.1. There are two nodes with minimum and maximum values in the graph that

are non-harmonic.

14



Proof: There exists a minimum-values node x such that at least one of its neighbours is

strictly larger than x . All the other neighbours of x either have the same value as x or are

strictly bigger. Hence node x cannot be harmonic. The same reasoning applies to maximum

value. �

2.4 Example III: Coins in a Row

We apply the WISE methodology to a problem that appears in the book ‘Mathematical

Puzzles: A Connoisseurs Collection’ by Peter Winkler [35].

Problem. COINS IN A ROW. On a table is a row of fifty coins of various denominations. Alice

picks a coin from one of the ends and puts it in her pocket; then Bob chooses a coin from

one of the (remaining) ends, and the alternation continues until Bob pockets the last coin.

Prove that Alice can play so as to guarantee collecting as much money as Bob.

Step 1 Analyze the problem

We identify the instances, constraints and the objective of the problem. Noun phrases in

the problem description usually correspond to instances and verb phrases to constraints

and objectives. The cue phrases in the problem are shown in italics below.

Objective Find a strategy for Alice to collect more money than Bob.

Constraint Coins must be picked from either of the two ends.

Instances Coins and a sequence of fifty coins.

Problem-specific property. Since the game is deterministic, for any sequence of coins

S, there is a unique value which denotes the maximum amount Alice can collect on S,

assuming that both Alice and Bob choose optimally. Let profit denote the difference between

Alice’s amount and Bob’s amount for a given sequence of coins. The profit is an emergent

property of the sequence.

Step 2 Weakening

15



Weaken the instance. One way to weaken the input sequence is to restrict the values of

coins to 1s and 0s. Zeroes and ones are extremal because they are the smallest two non-

negative values. A sequence of all zeroes or all ones is also extremal, but this makes the

problem trivial.

Weaken the objective. There are many options to relax the objective or constraints: Can

Alice pick the largest coin always? Can Alice force Bob to pick a particular coin? Can Alice

collect at least half the amount as Bob?

Step 3 Identify a candidate problem

Candidate problem. Given a sequence consisting only zeroes and ones, find a strategy for

Alice to maximize her profit.

Step 4 Solving a candidate problem

This is the step in which extremality is most useful. We would like to identify problem-

specific extremal instances of the candidate problem which can be used to get some insight

into the problem.

Here is an extremal instance based on the emergent property profit: Which configura-

tion consisting of 1s and 0s gives the maximum profit for Alice? The instance is not hard to

construct since at each turn Alice should be able to pick 1 but not Bob:

0 1 10 0 0 0 0 0 01 1 1 1 1 1

In the above example it is easy to see that Alice can pick all the 1s and Bob gets zero.

So the gain for this sequence is maximum over all sequences of the same length.

If 1s and 0s appear in alternate positions, Alice can always pick all the 1s.
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Key idea. In general, Alice can pick all the numbers that are in positions of the same

parity, regardless of the values of the coins. Notice how we made this observation simply

by solving the right extremal problem: that of alternate ones and zeroes.

Step 5 Extend the solutions

Near extremal instance: Alternate 1s and 0s except for one position. Alice can win by

collecting 1s if x is less than the number of ones. Otherwise, she can win by collecting x .
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By generalizing this idea, we see that Alice has a winning strategy: Alice first sums up all

the coins in even positions and all the coins in odd positions. Then, she will pick up all

coins of the same parity that gives her a larger sum.
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Sol. Alice either picks all the numbers in even positions or odd positions (whichever is

greater).

Remark. If the sequence is of odd length, then there is no winning strategy for either Alice

or Bob. For example, if the sequence is 0-1-0, then Alice loses. If the sequence is 1-0-0,

then Bob loses.

2.5 Example IV: Grid Minimum

This problem is taken from the textbook by Klienberg-Tardos [21]. GRID MINIMUM is the

last problem in the chapter on divide-and-conquer technique.

Problem. Let G be an n× n grid graph. Each node v in G is labelled by a real number xv;

you may assume that all these labels are distinct. A node v of G is called a local minimum

if the label xv is less than the label xw for all nodes w that are joined to v by an edge. You

are given the grid graph G, but the labelling is only specified in the following implicit way;

for each node v, you can determine the value xv by probing the node v. Show how to find

a local minimum of G using only O(n) probes to the nodes of G. (G has n2 nodes.)

Step 1 Analyze the problem

We first identify the instances of the problem.

• Instances in the problem: Grid graph with values.

• Extremal instances

– An 1× n grid graph (extremality in structure.)

– A grid graph with only one node that is a local minimum (extremality in values.)

Step 2a Weakening the instance
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Let us consider the extremal instance when the grid graph is of size 1× n. This means the

graph is just a path.

Step 3 Identify a candidate problem

The candidate problem is as follows: What is the least number of queries in which we can

find a local minimum on a path?

Step 4 Solving the candidate problem

Suppose we probe the middle node m and find its value to be 5 (say). If this node is the

local minimum, then its neighbors must be larger than 5.

5

To check if the node m is a local minimum, we compare its value with its adjacent

nodes. If m is smaller than both the neighbors, then we are done; otherwise we do the

following:

Without loss of generality, assume that the right node is smaller than the middle node.

Observe that the node with the smallest value in the right half (outlined) of the path must

be a local minimum, so the right half of the path contains at least one local minimum. With

one probe, we can reduce the size of the path by half. We can find a local minimum in at

most O(log n) probes by recursing.

56 3

Step 5 Extend the solutions

Can we generalize the above idea to a 2× n size grid?

Suppose, we probe the middle nodes of the 2× n grid and find that one of them is a

local minimum, then we are done.

2

5

Otherwise, it means that each middle node is adjacent to a node that has smaller value.

Let x and y be the smaller nodes that are adjacent to the middle nodes . Consider the case
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Figure 2.5: The right half of the grid contains a local minimum.

when both x and y are on the same side of the middle nodes. For example, in Fig. 2.5,

4 and 1 are the smaller nodes that are on the right side of middle nodes. In this case, we

know that there exists a local minimum in the right half of the gird (outlined portion), due

to the same reason as above: the smallest valued node in the right half is definitely a local

minimum. Hence, the same idea that we used for a path extends to this case. We can

recurse on the right half of the grid since it is assured to contain a local minimum.

However, this idea does not extend to the case when the smaller adjacent nodes are in

opposite directions (as shown in Fig. 2.6). This case is perplexing because we do not know

if we can discard the right half or the left half of the grid (if at all we can discard). Let us

add this difficulty and consider it as our next candidate problem.

2

5

1

6

3

4

Figure 2.6: Should we recurse on the left half or the right?

Step 3 Identify a candidate problem

Candidate Problem 2: Given a grid graph of size 2× n and the values of middle nodes and

their neighbors, determine which half of the grid contains a local minimum.

Step 4 Solving the candidate problem

We consider the difficult case when the smaller neighbors of middle nodes are on the op-

posite sides as given in Fig. 2.6.

Instead of approaching this problem directly, we use extremality to get some insight.

Our instance is a 2× n grid. An extremal instance of a grid may be a grid with only one

local minimum. Is it possible to extend the grid shown in Fig. 2.6 such that it has only one

local minimum?

If a node is not a local minimum, then one of its neighbors has a smaller value than

itself. We can use this fact and complete the grid in Fig.2.6 with values such that it has only
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one local minimum. One such extremal case is shown in Fig. 2.7, where node 1 is the only

local minimum.

2

5

17 16 14 1 3 8 11 12

18 15 13 6 4 7 9 10

Figure 2.7: Node 1 is the only local minimum.

The local minimum has appeared on the left side of the grid graph. We observe that

no matter how we try to fill up the values for the remaining nodes in Fig. 2.6, we always

end up with a local minimum on the left side of grid graph. So in some sense, the middle

node 2 seems to have more influence than middle node 5.

Key Fact. Node 2 is the minimum node among the middle nodes 2 and 5.

We reason why the local minimum always appears on the left side of the grid graph

shown in Fig.2.6: Suppose node 1 is a local minimum, then we are done. Otherwise,

let node l be the minimum valued node in the left half of the graph (outlined portion in

Fig. 2.7). The node l is less than all the nodes in the left half of the grid graph including

the middle nodes 2 and 5. Therefore, node l is a local minimum. So in either case, we get

a local minimum on the left side of the grid graph.

Using the above observation, we can now answer candidate problem 2. Suppose we

are given a 2×n grid with middle nodes a and b. Without loss of generality, assume va < vb.

Let x be the neighbor of node a with vx < va. Then there always exists a local minimum in

that half of the grid graph that contains node x .

Step 5 Extend the solutions

The solution to the 2× n grid gives enough insight to solve the original problem. We give a

divide-and-conquer algorithm below:

Sol. Given an n×n grid, we probe all middle nodes and check if one of the middle nodes is

a local minimum. If this is true, then we are done. Otherwise, we find the minimum valued

node among the middle nodes (call this minimum valued node m). Since m is not a local

minimum, there exits a node x , either to m’s right or left such that vx < vm. Let G′ be the

half of the grid than contains vx . G′ is a n× n/2 grid. Apply the probing procedure again

to G′ and partition it into two halves. Let G′′ be the half that contains the local minimum.

Recurse on G′′. This is the divide-step of the algorithm that uses only 3n/2 probes and
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reduces the problem into an instance of size n/2× n/2. The associated recurrence relation

is

T (n) = T (n/2) + 3n/2

which implies that the algorithm runs in linear time.

2.6 Discussion

We notice a common feature in all the solutions obtained using WISE. In every problem that

we have discussed, the use of WISE methodology is invisible in the final solution. We use

the methodology only as a scaffold to obtain insight into the problem. This aspect of WISE

is prevalent in all the applications we discuss. The invisibility of WISE methodology makes

it different from other design techniques like greedy, divide and conquer and dynamic pro-

gramming. The solutions obtained using these techniques usually have a signature of the

technique that was used to solve them.
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Chapter 3

Constructing Counterexamples using

WISE

3.1 Introduction

Greedy, divide-and-conquer, recursion, dynamic programming are some of the prominent

algorithm design techniques that are taught at undergraduate level. Counterexamples of-

ten crop up in the context of greedy algorithms because they are useful in discarding naïve

approaches. While there is a method to prove a greedy algorithm correct (‘exchange argu-

ment’) (Chap. 10, [6]), to the best of our knowledge, there is no method that is specifically

aimed at designing counterexamples for greedy algorithms. Students simply rely on their

intuition or search for counterexamples by trying small cases.

Broadly, the task of constructing counterexamples is as follows. We are given an op-

timization problem P and a greedy algorithm that is purported to solve P. We need to

construct an instance of P on which the greedy algorithm fails (Fig. 3.1). We present a

technique called the Anchor method based on the extremality principle discussed in the first

chapter. The method is a specific application of the WISE methodology. We limit the scope

of our work to simple greedy approaches and the scope of our problems to graph theoretic

problems on unweighted graphs. We show that anchor method works on many well-known

problems. The specific list of problems can be found in Table 3.1.

Remark. Preliminary version of this work appears in [24].
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Task T

Optimization
Problem P

Greedy
Algorithm A

Greedy
Counterexample C

Original Task

Figure 3.1: A greedy counterexample is an instance of P on which the greedy algorithm fails.

3.2 Definitions

In this section, we prepare the ground by first giving a few definitions.

3.2.1 Definitions related to graphs

A graph is an ordered pair G = (V, E) where V is the set of vertices and E the set of pairs of

vertices called edges. The pair of vertices in an edge are unordered so edge (u, v) is same

as (v, u). For an edge e = (u, v) we say e is incident on vertex u and v. Vertices u and v are

also called endpoints of e. The degree of a vertex is the number of edges incident on it.

A subgraph of G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G) and the

assignment of endpoints to edges in H is the same as in G. A graph H is a proper subgraph

of G if H is subgraph of G and H 6= G.

We delete a vertex v from G = (V, E) by removing v from V and removing all the edges

that are incident on v from E.

3.2.2 Definitions related to problems

In a constraint problem P, we are given a graph G and a set of constraints as input. A solution

to the constraint problem P is a subgraph of G that satisfies the given set of constraints.

An optimization problem is a constraint problem in which each solution is assigned a

value (a number) and the objective is to find a solution with the optimal value OPT. The

optimization problem is either a minimization or maximization problem.

MIS Problem. Let G = (V, E) be a graph. An independent set in G is a vertex set S ⊆ V

such that no two vertices in S have an edge between them in E. The problem is to find an
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independent set in G with maximum number of vertices. See Fig. 3.2.

a b

de

c

Figure 3.2: In the graph shown, S = {a, c} is a maximum independent set (MIS). So, OPT=2.

Every independent set in G is a solution to the problem. The value of a solution is the

number of vertices in it. The MIS problem is therefore an optimization problem.

3.2.3 Definitions related to algorithms

An algorithm for an optimization problem is a well-defined procedure which finds a solution

to the problem (not necessarily the optimal).

Greedy algorithm. The greedy algorithm works by ‘making the choice that looks best at

the moment’ [21]. We do not dwell on what exactly qualifies as a greedy algorithm. The

notion of locally-best choice will appeal only intuitively.

Greedy algorithm for MIS. Consider the following greedy algorithm to solve the MIS prob-

lem. When a vertex is picked, we are prohibited from picking its neighbors. Since we want

to pick as many vertices as possible, intuitively it is reasonable to pick a vertex with least

degree first [28].

Algorithm 3.2.1: MIS(G)

Input: Graph G

Output: An independent set S from graph G

Initially the set S is empty.

1 : Pick a vertex v from G with the least degree.

Add v to S.

2 : Delete v and all its neighbors from G.

3 : Repeat the above two steps until G has no vertices.

4 : Report S as the solution

Weak algorithm. We define a weak algorithm to be an algorithm that works by making an

arbitrary choice at each moment.
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3.2.4 Definitions related to counterexamples

Counterexample. For a given optimization problem and an algorithm, a counterexample is

a problem instance on which the algorithm produces a non-optimal solution.

Plausible and definitive counterexamples. If more than one choice looks best at a given

moment, the greedy algorithm picks one of the best choices arbitrarily. Hence, an algorithm

could have multiple execution paths for the same input instance. We call an input instance

a plausible counterexample if one of the execution paths leads to a wrong answer. Similarly,

an input instance is called a definitive counterexample if every possible path of execution

leads to a wrong answer. It is a convention to treat plausible counterexamples as valid

counterexamples. So for the rest of the chapter, we refer to plausible counterexamples

simply as counterexamples.

Weak and greedy counterexamples. A weak counterexample is a counterexample to a

weak algorithm. Similarly, a greedy counterexample is a counterexample to a greedy algo-

rithm.

Goodness ratio. The goodness ratio of a counterexample is a measure that compares the

value of the optimal solution to the value of the solution obtained by the algorithm. We

define it as follows: Suppose I is an input to an algorithm A. Let OPT be the value of the

optimal solution to I and ALG be the value of the solution returned by the algorithm A.

The goodness ratio of the input I is defined as the ratio of OPT to ALG, for maximization

problems. For minimization problems, it is the ratio of ALG to OPT. For example, for the

input shown in Fig. 3.8 OPT=3 and ALG=2, so the goodness ratio is 1.5.

a

b

c

K3

Figure 3.3: A counterexample to Alg. 3.2.1 for the MIS problem. A dark edge indicates that there

are edges from the high degree vertex to all the three vertices in K3. The central vertex has degree

3. Vertices a, b and c have degree 4 each. Each vertex in K3 has degree 5. So the greedy algorithm

picks the central vertex first and then picks one vertex from K3. The maximum independent set is

actually {a, b, c}. Hence, the greedy algorithm picks 2 vertices, while the optimal algorithm picks 3.
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We usually express goodness ratio in an asymptotic sense i.e. as a function of the

number of vertices in the counterexample.

General Counterexample. A general counterexample is a graph family of counterexamples

such that for any given number k, we can find a graph in the family with larger than

k vertices. A general counterexample is said to be tight if it achieves the best possible

goodness ratio (in the asymptotic sense).

3.2.5 Definitions related to solutions

Local solution. Let G be the input graph of a maximization problem P. A solution to P

is said to be local if it is not a proper subgraph of any other solution in G. Likewise, a

solution to a minimization problem P ′ involving input graph G′ is said to be local if no

proper subgraph of it is a solution in G′.

Discrepancy. Suppose G is the input graph of an optimization problem. Let S1 and S2 be

two local solutions in G whose values are s1 and s2, respectively. Without loss of generality,

assume that s1 >= s2. The ratio s1/s2 is called the discrepancy of the graph G.

3.3 Anchor Method

The Anchor method consists of three main steps which are briefly described below.

Step 1. Construct a counter-example for the weak algorithm.

(Tip: Try graphs with high discrepancy.)

Step 2. Observe how the weak algorithm fails.

Step 3. Extend the weak counterexample to a greedy counterexample.

(Tip: Try attaching graphs with low discrepancy.)

3.4 Anchor Method using MIS as an Illustrative Example.

Step 1 Analyze the task

The scope of the method is limited to graph-theoretic optimization problems and greedy

algorithms. We make sure that the given problem is within the scope by verifying if the

given problem is an optimization problem as defined in Sec. 3.2.2.
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The attributes of the MIS problem are as follows.

• Input. A graph G = (V, E).

• Solution. A set of vertices S ⊆ V . Hence, the solution is a sub-graph of G as required.

• Constraints. A set of vertices S must be independent.

• Value of a solution. The number of vertices in S.

• Greedy choice. Pick the least-degree vertex first.

Clearly, MIS problem is an optimization problem and belongs to the scope of problems

for which the method is applicable.

Task. To construct a counterexample to the greedy algorithm for the MIS problem.

Step 2 Weakening Step

Our objective is to construct a counterexample to a given greedy algorithm. We first ask if

we can achieve a simpler objective: Can we construct a counterexample for an algorithm

that does not make any greedy choices?

Task T1

Optimization
Problem P

Weak
Algorithm A′

Weak
Counterexample

C ′

Weakening Step.

Figure 3.4: Instead of solving the original task directly, we first pose an easier task. The optimization

problem is kept the same but the algorithm is changed from greedy to a weak algorithm.

Recall that a weak algorithm is obtained from the greedy algorithm by replacing the

greedy choice with an arbitrary choice. The assumption is that the weak counterexample

gives insight into the structure of the greedy counterexample. We call the weak counterex-

ample an anchor.
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The algorithm Alg. 3.2.1 picks the vertices in increasing order of degree, so the corre-

sponding weak algorithm picks vertices in arbitrary order.

So now the weaker task is to construct a counterexample for the following algorithm:

Algorithm 3.4.1: MIS-WEAK(G)

Input: Graph G

Output: An independent set S from graph G

Initially the set S is empty.

1 : Pick a vertex v from G.

Add v to S.

2 : Delete v and all its neighbors from G.

3 : Repeat the above two steps until G has no vertices.

4 : Report S as the answer

Weak Counterexample. A weak counterexample is an instance on which the weak

algorithm fails assuming the worst possible execution or, in other words, when choices are

made in an adversarial manner (e.g. Fig. 3.5).

Remark. In the WISE methodology in Sec. 2.1, we mentioned that one may need to pose

multiple weaker problems and then identify the problems to be solved first. If the weak-

ening step has multiple weaker tasks, we would have had to identify a task to solve first.

Since there is only one weaker task (as described above), the identification step is trivial.

Step 3 Solving the candidate problem

In this step, we construct a weak counterexample. There could be several weak counterex-

amples for a given weak algorithm. It helps to construct multiple weak counterexample

with high discrepancy.

A counterexample to Alg. 3.4.1 is shown in Fig. 3.5.

a

b

c

Figure 3.5: A counterexample to the weak algorithm for the MIS problem. A star graph with three

outer vertices.

29



The weak algorithm could pick the central vertex first and get an independent set of

size 1, whereas the maximum independent set has size 3 ({a, b, c}). So this is our weak

counterexample.

In Sec. 3.5, we explain how extremality can be used to pick the ‘good’ weak coun-

terexamples.

Step 4 Extending the weak counterexample

Task T2

Weak Coun-
terexample C ′

Anchor

Greedy
Algorithm A

Greedy
Counterexample C

Extending Step.

Figure 3.6: In the extend step, we use the weak counterexample from the previous step to guide the

process of constructing a greedy counterexample.

In this step, we extend the weak counterexample to a greedy counterexample (Fig. 3.6).

We do so following two steps:

1. First, we observe how the weak algorithm behaves on the weak counterexample.

Then we ask ourselves, what would have to happen if the greedy algorithm were to

go wrong in the same way as the weak algorithm? We isolate this ‘bad structure’ and

call it the anchor.

2. We attach a graph to the anchor to obtain a greedy counterexample. The attached

graph is called the auxiliary structure. The term is meant to suggest that this structure

performs a supporting role to the anchor.

In Sec. 3.5, we explain how extremality can be helpful in picking the right auxiliary

structure.

Building an anchor for the MIS problem. In the weak counterexample (Fig. 3.5), the

central vertex has the highest degree. We want the greedy algorithm to go wrong in the
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same way as the weak algorithm. We know that the greedy algorithm would pick the

central vertex in the above graph first if the central vertex had the lowest degree somehow.

We capture this intuition in the anchor (Fig. 3.7). The anchor is a skeleton that captures the

essence of a possible greedy counterexample. It serves as a starting point for constructing

a counterexample to the greedy algorithm.

Notation. We use symbols and to indicate a vertex we wish were of high degree

and low degree, respectively.

Figure 3.7: The anchor obtained from the weak counterexample. If the central degree had the lowest

degree somehow, then the greedy algorithm would fail in the same way as the weak algorithm.

Adding an auxiliary structure. Each high degree vertex needs to be connected to at least

3 vertices in order to exceed the low degree central vertex. Let Kn denote a complete

graph with n vertices. Attaching the auxiliary graph K3 gives a counterexample as shown

in Fig. 3.8.

a

b

c

K3

Figure 3.8: A counterexample to Alg. 3.2.1 for the MIS problem. A dark edge indicates that there

are edges from the high degree vertex to all the three vertices in K3. The central vertex has degree

3. Vertices a, b and c have degree 4 each. Each vertex in K3 has degree 5. So the greedy algorithm

picks the central vertex first and then picks one vertex from K3. The maximum independent set is

actually {a, b, c}. Hence, the greedy algorithm picks 2 vertices, while the optimal algorithm picks 3.

3.5 Role of Extremality

In this section, we explain how to pick useful weak counterexamples and auxiliary struc-

tures based on the principle of extremality. We may have to try multiple weak counterexam-
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ples and auxiliary structures before hitting upon the right combination that gives a greedy

counterexample. The following tips are helpful in picking the right structures:

Tip for choosing the weak counterexample. Pick those graphs which have the highest

discrepancy.

Tip for choosing the auxiliary structure. Pick those graphs which have the least discrep-

ancy.

Usually, the extremal graphs that have the highest or the least discrepancy are easy to

find by trial and error. They are usually composed of simple structures like the ones shown

in Table 1.2.

Let us apply this tip to picking a weak counterexample for the MIS problem. We want

to choose such a graph which has two local solutions of different size. Searching through

the generic extremal graphs (Table 1.2) we find that the star graph has this property.

r

. . .1 2 n

Figure 3.9: A weak counterexample and the corresponding anchor. There are two local solutions in

the counterexample, one of size 1 and the other of size n. The discrepancy is therefore O(n), which

is the highest possible discrepancy for the MIS problem.

Let us pick an auxiliary structure for the MIS problem based on discrepancy.

Kn

(a)

In

(b)

Figure 3.10: Two graphs with discrepancy 1. In the complete graph (a), any local solution has size

1. In an independent set graph (b) any local solution has size n. Hence, Kn and In are extremal

graphs with the least discrepancy for the MIS problem. Again, both these graphs were among the

generic extremal graphs shown in Table 1.2.

Attaching the auxiliary structure Kn to the anchor gives us a general counterexample

(Fig. 3.11). This counterexample has a goodness ratio of O(n) which is also tight.
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Kn

. . .1 2 n

Figure 3.11: A general counterexample to Alg. 3.2.1 for the MIS problem with O(n) goodness ratio.

The greedy algorithm picks 2 independent vertices, while the optimal algorithm picks n vertices.

Problem Anchor Aux. St. G. Ratio Best Ratio

INDEPENDENT SET Star Kn O(n) O(n)

VERTEX COVER Star Centipede 2 log n

MATCHING Paths Kn,n 2 2

MAXLEAF Path Binary tree 2 2

MAXCUT Kn,n Kn,n 2 2

NETWORK FLOW - Paths O(
p

n) O(
p

n)

TRIANGLE-FREE - Kns 4/3 O(log n)

DOMINATING SET Paths Paths 1.5 O(log n)

Table 3.1: Applicability of anchor method on common graph-theoretic problems. The anchors and

the auxiliary structures of most counterexamples come from simple extremal graphs (Table 1.2).

Symbol - indicates that the anchor is problem-specific. Descriptions of the problems and the corre-

sponding greedy algorithms can be found in Sec. 3.6.
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3.6 Additional Examples

We show the applicability of the anchor method on many classic problems from graph

theory. Most of the problem descriptions along with their applications can be found in

standard texts like [13, 34].

3.6.1 Minimum Vertex Cover Problem

Optimization Problem. Let G = (V, E) be a graph. A vertex cover problem is a vertex set

S ⊆ V such that for every edge (u, v) ∈ E either vertex u or v (or both) belongs to S. The

vertex cover problem is to find a vertex cover of minimum size. An example is shown in

Fig. 3.12.

a b

de

c

Figure 3.12: In the graph shown, S = {a, b, d} is a minimum vertex cover.

Greedy Algorithm. A vertex that has many edges is probably a good pick[19]. Let vmax(G)

denote a vertex with maximum degree in graph G.

Algorithm 3.6.1: MVC(G)

Input: Graph G

Output: A vertex cover set S of graph G

1 : if G has at least one edge

add vertex vmax(G) to set S.

else report S as the answer

2 : Remove vertex vmax(G) from G to get G′.

3 : Recurse with G′ as the input: MVC(G′).

Constructing a counterexample

1 Weak algorithm. The greedy algorithm picks the vertex with highest degree at each

step. A weak algorithm picks an arbitrary vertex at each step.
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2 Weak counterexample. A star graph is a simple extremal graph on which the weak

algorithm fails. There are two local solutions in the star graph (Fig. 3.13):

• S1 : The root node r.

• S2 : The vertices labelled 1 to n.

The weak algorithm could pick the leaf nodes and find solution S2, whereas S1 is the

minimum vertex cover.

r

. . .1 2 n

Figure 3.13: A weak counterexample for the vertex cover problem. The discrepancy of the graph is

O(n). The star graph also has the highest discrepancy among all the weak counterexamples.

3 Building an anchor. To build an anchor we ask ourselves: “What would have to happen

if the greedy algorithm were to fail in the same way as the weak algorithm?” The greedy

algorithm pick the highest degree vertex first. So if somehow the leaf nodes had high degree

and the root node had the lowest degree then the greedy algorithm would fail in the same

way as the weak algorithm. We capture this intuition by an anchor (Fig. 3.14).

r

. . .1 2 n

Figure 3.14: An anchor corresponding to the weak counterexample. We wish the root node were of

low degree and the leaf nodes were of high degree.

4 Adding the auxiliary structure. We need to find an auxiliary structure that can be

attached to the anchor. As mentioned in Sec. 3.5, it helps to first look at simple extremal

graphs with low discrepancy. Fig. 3.15 shows a few such graphs.

In

(a)

Kn

(b) (c)

Pn
C tn

(d)

Figure 3.15: Four simple graphs with discrepancy 1. The value of any local solution (vertex cover)

in each graph from left to right is 0, n− 1, n/2 and n, respectively.
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We try to extend the anchor to a greedy counterexample by trying to attach each

one of the graphs shown in Fig. 3.15. Attaching a path of length n + 2 gives a greedy

counterexample (Fig. 3.16). Similarly, attaching a centipede of length n+ 3 gives a greedy

counter example (Fig. 3.17). For Kn, attaching one Kn makes the vertices in Kn itself as the

highest degree vertices so we try attaching two Kns, which does the trick (Fig. 3.18). There

does not seem to be any way of extending by attaching In.

. . .1 2 n

Figure 3.16: A counterexample for vertex cover. The auxiliary path attached has length n+ 2. Each

leaf node of the anchor has degree n+3. The greedy algorithm picks all the leaf nodes of the anchor

and alternate nodes from the path. This gives a vertex cover of size ≈ 1.5n. The optimal solution is

to pick the root node of the anchor and all the vertices in the attached path. This gives a minimum

vertex cover of size n+ 3. Hence the goodness ratio of this counterexample is limn→∞
1.5n
n+3
= 1.5.

. . .1 2 n

Figure 3.17: A counterexample for vertex cover with goodness ratio 2. The centipede attached has

length n+ 3.

Kn

Kn

. . .1 2 n

Figure 3.18: A counterexample for vertex cover using Kns as an auxiliary structure. The goodness

ratio of the counterexample is 1.5.
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3.6.2 Bipartite Matching

A graph G = (V, E) is bipartite if the vertex set can be partitioned into two sets A and B such

that no edge in E has both endpoints in A or B alone.

A set of edges M is called a matching if M ⊆ E and every vertex in G is an endpoint of

at most one edge in M . A vertex is said to be matched if it is an endpoint of some edge in

M ; if not the vertex is said to be unmatched.

Optimization Problem. Let G = (V, E) be a bipartite graph. The bipartite matching prob-

lem (MBM) is to find a matching M of maximum size in G

A B

Figure 3.19: In the graph above, the dark edges form a matching of size 5.

Greedy Algorithm. A vertex with degree one has to necessarily be matched to its neighbor

if it has to participate in the matching. In general, a vertex with fewer neighbors has fewer

choices and therefore more critical.

Notation. Let vmin denote the vertex with minimum non-zero degree in graph G and
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umin denote the vertex with minimum degree adjacent to vmin.

Algorithm 3.6.2: MM(G)

Input: Graph G

Output: A matching M from graph G

Initially the matching set M is empty.

1 : if graph G has no edges

report M as the matching set.

2 : Add the edge (vmin, umin) to the set M .

3 : Remove the vertices vmin and umin from G

to get the subgraph G′.

4 : Recurse on the graph G′: MM(G′)

Constructing a counterexample

1 Weak algorithm. The weak algorithm picks edges in any order and includes them in

matching set M .

2 Weak counterexample. A path of four nodes in the simplest instance on which the

weak algorithm fails. A general counterexample is obtained by making many copies of

P4, as shown in Fig. 3.20. The weak algorithm could pick just the middle edges, while the

optimal algorithm picks the first and the last edge of each path. Hence, the optimal solution

can be twice as good as the weak algorithm’s solution.

3 Building an anchor. The greedy algorithm would behave like the weak algorithm if the

end points of each path were of high degree. The anchor captures this intuition (Fig. 3.21).

4 Adding the auxiliary structure.

We attach an auxiliary structure (K2,2) to each of the high degree nodes. If we start

with the anchor obtained by the general weak counterexample (Fig. 3.22) we can get a

tight counterexample with goodness ratio 2 (Fig. 3.23). Observe that Kn,n has the least

discrepancy since all the local solutions have size n.
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...

Figure 3.20: A general weak counterexample for the bipartite matching problem with goodness ratio

2.

Figure 3.21: The anchor for bipartite matching is obtained by replacing the end vertices of P4 with

high degree vertices. We want the greedy algorithm to pick the middle edge. This would happen if

the end vertices were of high degree and the middle nodes were of low degree.

...

Figure 3.22: The anchor obtained from the

general weak counterexample.

...

K2,2

Figure 3.23: A tight counterexample for the

bipartite matching problem. The shaded ver-

tices have degree three. The goodness ratio

of the graph is 2.
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Figure 3.24: Two spanning trees for the graph given on the left: one with 3 leaves and the other

with 2 leaves.

3.6.3 Maximum leaf spanning tree

Optimization Problem. Given a graph G = (V, E), the maximum leaf spanning tree prob-

lem (MLS) is to find a spanning tree T in G that has maximum number of leaves; where

leaves are vertices with degree 1. An example is shown in Fig. 3.24.

Greedy Algorithm. We would like to grow the tree along vertices that branch out well. One

strategy is to grow the tree along a vertex which has the maximum number of neighbors

not in the tree [17].

Notation. For a vertex v in tree T , let N ′(v) denote the set of neighbors of v not in T .

Algorithm 3.6.3: MLS(G)

Input: A connected graph G

Output: A spanning tree T of graph G

Tree T initially has only the vertex vmax(G).

repeat

1 : Pick a vertex u in T such that the

size of the set N ′(u) is maximized.

2 : Grow the tree T by attaching

vertices in N ′(u) to u.

until the tree T has all the vertices in G

Constructing a counterexample

1 Weak algorithm. In the greedy algorithm, we grow the tree T along the vertex that has

maximum number of neighbors outside the tree. Consider the weak algorithm that does

not exercise this choice and instead grows the tree along any arbitrary vertex.

2 Weak counterexample. None of the simple extremal graphs is a counterexample, so

we need to construct a weak counterexample by trial and error. An instance where the
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r

l

Figure 3.25: A weak counterexample for the max-leaf spanning tree problem. The optimal solution

is to start with the node r and pick all its neighbors. The weak algorithm could start with the

leftmost node and pick a spanning tree having only two leaves.

Figure 3.26: If the greedy algorithm has to fail like the weak algorithm then the leftmost node must

have high degree and all the nodes of the path must be leaves of some tree.

weak algorithm could perform poorly is given in Fig. 3.25. The optimal algorithm would

pick the vertex with the highest degree r and obtain a spanning tree having |V | − 1 leaves.

If the weak algorithm picks vertex l first, it could end up with a spanning tree having only

two leaves (as indicated with dark background).

3 Building an anchor.

The key to designing the weak counterexample was to make the algorithm select a

long path of vertices which should have been selected as leaves. We want the greedy

algorithm to mimic that behaviour? We make the greedy algorithm start from the first node

by increasing its degree.

4 Adding the auxiliary structure. The vertices of this path must be the leaves of some

tree. We need to attach an auxiliary structure such that the vertices on the path become

leaves. The auxiliary structure cannot have a vertex with degree greater than 3 since we

have forced the greedy algorithm to pick the the leftmost vertex in the anchor first. The

complete binary tree serves this purpose. The counterexample is shown in Fig. 3.27.

Figure 3.27: A tight counterexample for max-leaf spanning tree problem with goodness ratio 2.
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3.6.4 Max Cut

Optimization Problem. Let G = (V, E) be a graph, and S ⊆ V be any subset. Then

E(S, S)
de f
= {(u, v) : u ∈ S and v /∈ S} forms a cut. The MAX-CUT problem is as follows. Given

a graph G as input, find S ⊆ V which maximizes the value of |E(S, S)|.

Greedy Algorithm. Suppose E(S, S) is a cut. If moving a vertex from S to S increases the

value of the cut, then we must do so. A greedy strategy is to move a vertex that results in

the largest increase in the value of the cut.

Algorithm 3.6.4: MAXCUT(G)

Input: A graph G = (V, E)

Output: A subset S ⊆ V

Initialize S = V .

repeat

1 : Let v ∈ V be the vertex that results in

the maximum increase in the value of the cut

if moved from S to S (or vice-versa)

2 : Move v from S to S (or vice-versa).

until there is no positive increase in the value of

the cut by moving any vertex.

Constructing a counterexample

1 Weak algorithm. The greedy algorithm moves a vertex that results in the largest

increase in the cut. The weak algorithm could move the vertex that results in the smallest

increase in the cut.

2 Weak counterexample. There are many generic extremal graphs that are counterex-

amples to the weak algorithm. We pick Kn,n since it has the highest discrepancy. There

exists a cut with size n2 but the weak algorithm settles for a cut with size zero.

3 Building an anchor. We want the greedy algorithm to not move the vertices into the

other partition, as shown in Fig. 3.28.

4 Adding the auxiliary structure.
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A

B

Figure 3.28: Kn,n is a weak counterexample with the high discrepancy. Let A and B denote the

partitions of Kn,n. The value of the maximum cut is n2 (if A and B are on the opposite sides). The

weak counterexample has all the vertices on one side. We do not want the greedy algorithm to move

any vertex to the other side.

We proceed in three steps.

1. Moving a single vertex from set A in Kn,n to the other side increases the cut size. We do

not want that to happen. This can be done by attaching In (least discrepancy graph)

to all the vertices in A. Every vertex in A now has degree 2n with n vertices being on

the other side. The greedy algorithm will not move any vertex from A since it will not

increase the cut size. However, the greedy algorithm could move the vertices in set B

of the anchor to the other side (Fig. 3.29).

2. In order to prevent the vertices in B from being moved, we attach another In. This

gives us a counterexample with goodness ratio 1.5.

3. We can fine tune the counterexample by adding edges between the two attached Ins.

This improves the goodness ratio to 2 which is the best possible ratio.

3.6.5 Maxflow

Optimization Problem. We are given a graph G = (V, E) with two designated vertices as

source s and target t. Two paths are said to be edge-disjoint if they have no edge in common.

Find the maximum number of edge-disjoint paths between s and t.

Greedy Algorithm. Intuitively, we can get more paths if each path is short. A greedy
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Step 1 Step 2

Kn,n

Kn,n

Step 3

Figure 3.29: We use the anchor as a starting point and add the auxiliary structure in three steps. We

get a tight counterexample with goodness ratio 2.

strategy would be to pick the paths in the order of increasing path lengths.

Algorithm 3.6.5: MAXFLOW(G)

Input: A graph G = (V, E) and two vertices s and t belonging to V .

Output: A collection of disjoint paths from s to t.

repeat

1 : Pick the shortest path P from s to t.

2 : Remove all the edges in P.

until vertex s is disconnected from t.

Constructing a counterexample

1 Weak algorithm. The weak algorithm works like the greedy algorithm, except that

instead of picking the shortest path from s to t it picks any path from s to t at each step.

2 Weak counterexample. It is easy to imagine a graph where picking a long path disrupts

a lot of short disjoint paths. For example, in Fig. 3.30, source s is connected to k vertices.

There exists a flow of size k, but the weak algorithm could pick the long path and get only

a flow of size 1. This graph has discrepancy of O(n).

3 Building an anchor. We want the greedy algorithm to mimic the weak algorithm. This

would happen if the dashed short path in the weak counterexample were somehow longer

than the longest path. In Fig. 3.30 (b), the dashed lines should be longer than the solid

line.
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4 Adding the auxiliary structure. We replace the dashed lines in the anchor with long

paths of size 2k + 3. This gives us a greedy counterexample (Fig. 3.31). There are O(k2)

vertices in the graph and the maximum flow possible is k. But the greedy algorithm picks

one long path and gives a flow of size 1. Hence, the goodness ratio of the counterexample

is O(
p

n), which is the best possible.

s t s t

Figure 3.30: A weak counterexample for the max-flow problem. A flow of O(n) units exists but the

weak algorithm finds a flow of only 1 unit.

s t

Figure 3.31: A tight counterexample for the greedy max-flow algorithm. The counterexample has

goodness ratio of O(
p

n).

3.6.6 Triangle Removal Problem

Optimization Problem. A graph is said to be triangle-free if it does not contain K3 as a

subgraph. The triangle removal problem (TR) asks for the minimum set of vertices one

should remove from a graph in order to make it triangle-free. More precisely, given a graph

G = (V, E), find a set F ⊆ V such that G \ F is triangle-free and the size of F is minimum.

An example is shown in Fig. 3.32.

a b

de

c

e

a b

c

Figure 3.32: We can make the above graph triangle-free by just removing vertex d.
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Greedy Algorithm. We would like to pick vertices whose removal disrupts a large number

of triangles.

Algorithm 3.6.6: TR(G)

Input: Graph G

Output: A vertex set F

Initially set F is empty.

1 : if graph G is triangle-free

report F as the output.

Let u be the vertex in G that is contained

in maximum number of triangles.

2 : Add vertex u to set F

3 : Remove u from G to get a subgraph G′

4 : Recurse on G′: TR(G′).

Constructing a counterexample

1 Weak algorithm. The greedy choice is to remove the vertex which is contained in

maximum number of triangles. The weak algorithm removes any vertex contained in some

triangle.

2 Weak counterexample. Consider a flower which is a graph in which a set of triangles

are connected at a single vertex. The central vertex that can be removed to make the

graph triangle-free. The weak algorithm might end up picking one vertex from each K3

(Fig. 3.33).

3 Building an anchor. The anchor corresponding to the flower has n outer vertices which

are in many triangles.

4 Adding the auxiliary structure. We need the outer vertices to be contained in more

cycles than the central vertex. Attaching three Kns as an auxiliary structure serves the

purpose. Adding edges between each outer vertex and every vertex from Kns gives a greedy

counterexample with approximation ration 4/3 (Fig. 3.33).
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K n

K n

K n

Figure 3.33: Weak counterexample and a greedy counterexample for the triangle removal problem.

3.6.7 Minimum Dominant Set Problem

Optimization Problem. We are given a graph G = (V, E) as input. A vertex set S is called

dominant if every vertex in G either belongs to S or is a neighbor of a vertex in S. The

minimum dominant set problem is to find a dominant set S of minimum size.

Greedy Algorithm. The problem is closely related to vertex cover and we follow a similar

greedy strategy. A vertex is covered if it is in the dominant set or is a neighbor of a vertex in

the dominant set. We proceed by picking those vertices which cover the maximum number

of vertices at each step.

Algorithm 3.6.7: MINDOM(G)

Input: A graph G

Output: A dominant set S ⊆ V of graph G

Set S is initially empty.

Initially all the vertices are colored white.

repeat

1 : Pick a vertex v which has the maximum number of white neighbors.

2 : Color v and all it’s neighbors black. Add v to S.

until no white colored vertices are left.

Constructing a counterexample

1 Weak algorithm. The greedy algorithm picks the vertex with highest number of uncov-

ered neighbors. The weak algorithm picks any vertex and includes it in the dominant set S

as long as it is not present in S.

2 Weak counterexample. A collection of n paths of length three. The minimum dominant

set has size n, but the weak algorithm could pick all the degree one vertices and get a
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U V

(a) A weak counterexam-

ple for the domination set

problem. The optimal so-

lution is to pick the middle

vertices of each path. The

weak algorithm could pick

sets U and V .

U V W

(b) A counterexample for the domination set

problem with goodness ratio 1.5. The greedy

algorithm could pick the set V first (and then

U and W ). The optimal solution is to pick the

second and fourth vertex in each path

Figure 3.34: Construction of counterexample for the MINIMUM DOMINANT SET problem.

solution of size 2n (Fig. 3.34a).

3 Building an anchor. The greedy algorithm will pick vertices in V first if their degree is

highest among all the vertices.

4 Adding the auxiliary structure. Since the highest degree is 2, it suffices to attach one

vertex to each vertex in V . Attaching a collection of n paths of size two gives a greedy

counterexample (Fig. 3.34b). The goodness ratio of the graph is 1.5.

3.6.8 Minimum Steiner tree

We discuss a problem that is outside the scope of problems we consider. This suggests that

the anchor method may be applicable to other kinds of problems too.

Optimization Problem. Given a graph G = (V, E) and a set of terminal vertices P ⊆ V , the

minimum Steiner tree problem (STP) is to find a tree T in G such that the following two

conditions are satisfied:

1. Tree T contains all terminal vertices P.
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2. The number of edges in T is minimized.

An example is shown in Fig. 3.35.

a b

de

c

a b

d

c

Figure 3.35: The input graph G with terminals P = {a, c, d} has a minimum Steiner tree having

three edges. Note that the Steiner tree can contain vertices not in set P.

This problem is not within the scope of our problems since the input is a both a graph

G and a set of vertices (terminals).

Greedy Algorithm. Notice that the Steiner tree must connect all the terminals using the

least number of edges. Since any two terminals must be connected, we try to grow the tree

connecting two vertices along their shortest path.

Definition. For a tree T ∈ G and a vertex v ∈ G, a v  T connecting path is the shortest

path that connects vertex v to some vertex in T .

Algorithm 3.6.8: STP(G)

Input: Graph G and a terminal set P

Output: A minimum steiner tree of G

Initially, the tree T contains only the shortest

path amongst all pairs of terminals in the set P.

repeat

1 : Let u be the terminal not in T that

has the shortest connecting path to T .

2 : Add u  T connecting path to T .

until the tree T contains

all the terminals in the set P.

Report tree T as the Steiner tree

for the graph G and terminals P.

Constructing a counterexample
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Figure 3.36: A weak counterexample for the Steiner tree problem. The terminal vertices are a, b

and c. The smallest Steiner tree is the path a− b− c. If the weak algorithm picks the path a− d − c

first, then the Steiner tree will be a− d − c− b which is non-optimal.

1 Weak algorithm. We note that the greedy algorithm starts by picking the shortest path

between all pairs of terminals. We weaken the algorithm slightly by saying the tree could

be initialized with the shortest path between any two terminals.

2 Weak counterexample. Let us try to build a counterexample for the weak algorithm.

The Steiner tree in the graph having two terminals is the shortest path connecting them.

Note that if there are only two terminals the weak algorithm would return the optimal

Steiner tree. It is possible to construct a counterexample having 3 terminals as shown in

Fig 3.36.

3 Building an anchor. The optimal Steiner tree is the path containing 3 terminals. The

weak algorithm could initialize tree T by picking the shortest path between a and c going

via the non-terminal vertex b. This would result in a Steiner tree containing 3 edges. This

serves as our anchor.

4 Adding the auxiliary structure. We can extend the weak counterexample to obtain a

definitive counterexample as shown in Fig. 3.37. The terminal vertices are a, e and c.

a b c

d

e

Figure 3.37: A counterexample with goodness ratio 4/3. The optimal Steiner tree has three edges.

If the greedy algorithm picks the path a − d − c first, then the Steiner tree that is finally obtained

has four edges.

3.7 Pilot Experiment

In order to see which heuristics students apply while constructing counterexamples, we did

a pilot experiment with four students. We will refer them as A, B, C and D. Students A,
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Pick an easier task

Our approach

Weaken the algorithm

Students’ approaches

Bad first choice

Try small graphs

Reduce from known problem

More general problem

Figure 3.38: Approaches that students tried when constructing counterexamples. The idea of con-

structing a counterexample to a weak algorithm did not occur to any student.

B and C were M.Tech. students who were crediting a course in graduate-level algorithms.

Student D was a Ph.D. student who had secured AA grade in the previous offering of the

same course. All their approaches can be classified into four main categories (Fig.3.38). In

this section, we briefly discuss each category by collating their responses. All the students

were given the following four problems: MAX INDEPENDENT SET, VERTEX COVER, MATCHING

and STEINER TREE.

Force the algorithm to make the wrong choice first. This by far was the most popular

heuristic. All the students were able to construct a counterexample for the vertex cover

problem using this approach (Fig. 3.39). For the MIS problem, most students wrote a star

first and tried to tweak the example such that picking the central vertex leads to a bad

choice (Fig. 3.40). A similar approach was tried for matching problem also. So the only

successful use of this technique was on the vertex cover problem. We observed that students

sometimes failed to acknowledge plausible counterexamples as legitimate counterexamples

and seek to get definitive counterexample directly. For example, for the vertex cover prob-

lem, three out of four students gave a definitive counterexample and only one student gave

a plausible counterexample Fig. 3.39 (b).

Try small graphs. The idea is to check if the algorithm fails for any of the small graphs.

This approach seems natural but is not productive for two reasons. Firstly, even with the

number of nodes not exceeding six, there are many graphs. Unless the student is given a

list of small graphs, as shown in Fig. 3.41, it is time-consuming to enlist all the graphs by
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(a) (b)

Figure 3.39: A definitive and a plausible counterexample for the vertex cover problem.

Figure 3.40: Initial rough work by students A and B for the MAX INDEPENDENT SET problem. Star

is an example on which the greedy algorithm performs optimally. The initial reaction in both cases

was to try an example that looks very unlike the star example. K6(‘complement’) and K5 are nearly

opposite of a star graph.

trail and error. Secondly, many of the greedy algorithms work correctly on small graphs,

so the smallest counterexample itself could have more than six nodes. For example, the

smallest counterexample for the MIS problem has seven nodes (Fig. 3.8).

Reduce from a known problem. Student C was able to apply this method to construct a

counterexample for steiner tree problem. The idea is as follows: since both Steiner tree

and vertex cover are NP-complete problems, we can reduce an instance of vertex cover

problem to an instance of Steiner tree problem. In this case, it turns out that reduction of

the counterexample for vertex cover to Steiner tree instance gives a counterexample for the

greedy Steiner tree algorithm (Fig. 3.42a). This seems like a general method that may be

applicable for other problems but unfortunately the reduction from one instance to another

itself can be a difficult task.

Generalize the optimization problem. In this method, we see if the greedy algorithm fails

for a harder optimization problem. If the harder optimization problem is closely related to

the original optimization problem, then one might expect to get some idea to solve the
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Graph Palette

Path

Cycle

Tree

1 Cycle, 1 Path

1 Cycle, 2 Paths

Small graphs

Figure 3.41: A list of small graphs.

(a) CE by reduction (b) CE by weakening the input

Figure 3.42: Successful application of two different heuristics for the Steiner tree problem.

original problem. For example, instead of building a Steiner tree with unweighted vertices

student D first built a counterexample for the weighted-graph version of the problem and

then converted the counterexample into an unweighted graph (Fig. 3.42b).

The above experiment shows that there are many ways to interpret the phrase ‘solve an

easier problem’ even when we restrict the scope of problems to a small domain. We believe

that the value of anchor method lies in having identified one specific easier problem among

all the available choices.
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3.8 Discussion

Techniques like greedy, divide-and-conquer, dynamic programming, etc. are quite general

and hence the student does not usually know when a particular method should be applied.

Unlike these techniques, the anchor method is tailor-made for constructing counterexam-

ples for greedy algorithms.

We list some drawbacks of the anchor method:

• Extending the anchor to a counterexample may be hard in some cases. For example,

in the max-leaf problem, it is not obvious that we need to swap a star with a complete

binary tree.

• One may have to try multiple weak counterexamples before hitting upon the right

one that extends to a greedy counterexample.

• Anchor method works only if the weak counterexample gives insight into the structure

of a greedy counterexample. It is ineffective for problems like coin changing[4],

makespan minimization[16], etc. where this is not the case.

In hindsight, the anchor method could have been described directly in terms of ex-

tremal discrepancy graphs. For example, we could have just said:

1. Take a high discrepancy graph and build an anchor.

2. Attach a low discrepancy graph such that the greedy algorithm fails.

The above steps do not use the notion of WISE methodology at all. As we mentioned

in the previous chapter, this is the aspect of WISE that we see in all applications. WISE

scaffolding can be removed once the right extremal graphs are found.
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Chapter 4

Proving Query Lower Bounds using WISE

4.1 Introduction

The query-model or decision-tree model is a computational model in which the algorithm

has to solve a given problem by making a sequence of queries which have ‘Yes’ or ‘No’

answers. A large class of algorithms can be described on this model and we can also prove

non-trivial lower bounds for many problems on this model. In this chapter, we give a

method to prove lower bounds on the query-model. As in the previous chapter, the method

is a specific application of WISE methodology. In the last chapter, we saw that extremal

graphs with high and low discrepancy played a key role in constructing counterexamples.

Here, we show how certain extremal graphs called critical graphs play a similar role.

Many lower bounds on the query-model are proved using a technique called adversary

argument. In CS courses, a common example used to illustrate the adversary argument is

the following problem: Suppose there is an unweighted graph G with n vertices represented

by an adjacency matrix. We want to test if the graph is connected. How many entries in

the adjacency matrix do we have to probe in order to test if the graph has this property

(property being ‘connectivity’)? Each probe is considered as a query.

Since the adjacency matrix has only n2 entries, O(n2) queries are sufficient. It is also

known that Ω(n2) queries are necessary. Proving this lower bound is more difficult and is

done using the adversary argument.

In literature, we find that lower bound proofs of this problem rely too much on ‘con-

nectivity’ property and do not generalize well. When the property being tested is changed,

the proof changes significantly. Our contribution is a method that gives a systematic way of
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proving lower bounds for problems involving testing of many graph-properties. We did a

pilot experiment and found that students were able to understand and apply our method.

4.2 Query Complexity

A major focus of computer science is on design and analysis of provably efficient algorithms.

Once we have designed a correct algorithm for a problem, a natural question to ask is: ‘Is

this the best possible algorithm for this problem?’. The only way to know the answer for

certain is to prove that no better algorithm exists. On the Turing-machine computational

model, this question is very difficult to answer and very little is known. So researchers have

been studying the question of proving the optimality of an algorithm on simpler models of

computation. One such model that is widely studied is the ‘query model’ (also known as

decision-tree model).

Query Model. In this model, the algorithm is not given the input directly. The algorithm

has to output the answer by asking queries specified by the problem. The efficiency of the

algorithm is measured by the number of queries it takes in the worst case. The query-model

is popular because a large class of algorithms can be implemented on this model. Hence,

proving optimality of an algorithm on the query model proves its optimality within a large

class of algorithms. For example, consider the problem of sorting n numbers in an array. All

comparison-based algorithms like Quicksort, Mergesort, Heapsort, etc. can be implemented

as query algorithms where a query corresponds to a comparison between a pair of elements

from the array.

Query Complexity. In the query model, we are concerned only with the number of queries

asked by the algorithm and any other computation it may do is irrelevant. The cost of an

algorithm that solves a problem P is the number of queries the algorithm takes in the worst

case to solve P. The cost of an algorithm can usually be expressed as a function of the input

size n. We say algorithm A is better than algorithm B if there exists a constant co such that

the cost of algorithm A is less than B for every problem instance of size n > c0. The query

complexity of a problem P is the cost of the best algorithm that solves P. We denote the

query complexity of the problem of size n by T (n). Query complexity is a property of the

problem and cost is a property of an algorithm.

Given below are four examples of query-model problems. We will refer to all of them
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later, but our method is applicable only to problems similar to the CONNECTIVITY problem.

Formal descriptions of the first three problems can be found in [6], [3] and [11], respec-

tively.

Problem E1. SORTING. Given an array A of n numbers, sort the elements in the array using

only comparison queries. A comparison query is of the type, ‘Is A[i] smaller or bigger than

A[ j]?’.

Problem E2. ELEMENT DISTINCTNESS. Given an array A of n numbers, find if all the numbers

are distinct, using only comparison and equality queries. An equality query is of the type,

‘Is A[i] equal to A[ j]?’.

Problem E3. 3-SUM. Given an array A of n numbers, find if there exists three numbers in

the array, say a, b and c, such that a + b + c = 0, using only linear-inequality queries. A

linear-inequality query is of the type, ‘Is 3A[1] + 2A[3]− A[6]≥ 0?’.

Problem E4. CONNECTIVITY. Suppose there is a graph G = (V, E) with n vertices. We know

the vertex set V of the graph but not the edge set E. Vertices are labelled from 1 to n. For

any two vertices, a and b with a, b ∈ V , we are allowed to ask the following query: ‘Is (a, b)

an edge in G?’. If G is given by an adjacency matrix, this query is equivalent to probing

the entry at the ath row and bth column of the adjacency matrix of G. What is the query

complexity of determining if the graph is connected?

If the objective of the problem is to determine whether an input satisfies a given prop-

erty or not, then we call such a problem as ‘property-testing’ problem. A property-testing

problem has exactly two possible answers: ‘True’ or ‘False’. For example, problems E2, E3

and E4 are property-testing problems.

Tight lower bounds.1 We call a lower bound tight if it asymptotically matches an up-

per bound of T (n). We are interested in obtaining tight asymptotic bounds on T (n) for

problems involving testing of graph-properties (similar to Prob. E4).

Overview of techniques. There are four main techniques for proving query lower bounds.

The four problems E1-E4 are generally used as examples to illustrate each technique (Sec. 4.3).

However, our focus is only on proving lower bounds for testing graph properties. The

known methods for proving lower bounds for this kind of problems are ad-hoc in nature

and rely on problem-specific observations. Our main contribution is a method that gives a

1Most of the terminology we use is standard. Definitions of algorithmic terms and graph theoretic terms

can be found in [21] and [34], respectively.
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more systematic way of proving lower bounds (Sec. 4.7). In Sec. 4.8, we show that our ap-

proach works for many problems within the scope. We did a pilot experiment and observed

that students are able to understand and apply our method (Sec. 4.9).

4.3 Related Work

We review known methods for proving query lower bounds and provide context for our

work.

Information-theoretic proof. An explanation of this method can be found in Chap-

ter 8 of [6]. The main assertion of the proof is the following:

Fact. If a problem P has M possible outputs and the input to the problem can be

accessed only via ‘Yes/No’ queries, then log2 M is a query lower bound for P.

In other words, log2 M is the minimum number of queries any correct algorithm

must ask, in the worst case. For example, in the sorting problem, if the input consists

of n numbers, then there are n! possible outputs. Each output corresponds to a differ-

ent ordering of n numbers. So we can claim that the lower bound for sorting problem is

log2 n!= Ω(n log n).

However, this method is not useful for property-testing problems. In a property-testing

problem, there are only two outputs: ‘True’ or ‘False’. The information-theoretic proof only

gives a trivial lower bound of one (log2 2= 1).

Algebraic Methods. In 1983, Ben-Or gave an algebraic technique that proves a tight

Ω(n log n) lower bound for ELEMENT-DISTINCTNESS problem. His technique, in one stroke,

proves non-trivial lower bounds for twelve different problems [3]. But problems E3 and E4

are not amenable to this technique.

Reduction. Reduction is another way of proving lower bounds. At undergraduate-

level, reduction is often taught in the context of NP-hardness. If we want to show that

problem H is NP-hard, we do so by proving that some known NP-hard problem (like SAT)

reduces to H in polynomial time. Query lower bounds can also be proved in a similar

vein. Suppose we know that a problem R has query complexity of Ω(g(n)) on a certain

computation model, we can show that another problem S has query complexity Ω(g(n)) on

the same model by reducing problem R to S in o(g(n)) time. For example, we know that

finding the convex hull of a set of n points takes Ω(n log n) operations because the sorting
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problem reduces to it (Prob. 33.3-2 in [6]).

The 3-SUM problem is known to have a query complexity of Θ(n2) [11]. The lower

bound proof of 3-SUM does not result in any general technique. But the strength of 3-SUM

lies in the fact that this problem is an excellent candidate problem for proving lower bounds

by reductions. Several problems in computational geometry have been shown to be as hard

as 3-SUM [12]. But a lower bound for Prob. E4 cannot be proved by reduction either.

Adversary Arguments. What can we do if none of the above three methods work?

We take recourse to proving by ‘first principles’, commonly known as proving by adversary

argument. Recall that a lower bound of g(n) for a problem P means that any correct algo-

rithm must make at least g(n) queries to solve P. So if we show that any algorithm that

makes strictly less than g(n) queries must be incorrect, then we have proved a lower bound

of Ω(g(n)) for the problem. Imagine that the queries asked by the algorithm are answered

by an adversary. The adversary’s objective is to maximize the number of queries that the

algorithm asks and the algorithm’s objective is to minimize the number of queries. If an

adversary can force any correct algorithm to ask at least g(n) queries, then g(n) is a lower

bound on the query complexity of the problem. It is necessary to understand the format of

adversary arguments in order to follow the proofs in this paper. Introduction to adversary

method can be found in [10] or [29]. Two proofs that give exact lower bounds for Prob. E4

can be found in [10] and [2]. Both the proofs are based on adversary arguments. However,

these proofs do not generalize easily to other graph properties. In the next section, we give

a different proof for this problem using an adversary argument. Though our proof gives

only an asymptotic tight lower bound, it generalizes easily to other graph properties.

4.4 Adversary Argument Revisited

Terminology

Notation. Throughout the chapter, the notation G = (V, E) refers to an undirected un-

weighted graph G with n vertices, where V is the vertex set and E is the edge set. We may

assume that the vertices are labeled from 1 to n. We denote a complete graph having r

vertices by Kr .

Definition. If there is no edge present between a pair of vertices u and v in a graph, we say
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(u, v) is a non-edge in the graph.

4.4.1 Testing Connectivity

Problem E4. We are given access to a graph G = (V, E) via queries of the form ‘Is (a, b)

an edge in G?’. We know the vertex set V but not the edge set. Prove that it takes at least

Ω(n2) queries in the worst case to determine if G is connected.

Proof: We prove that any correct algorithm must take at least n2/4 queries. For contra-

diction’s sake, let us assume that there is a correct algorithm A that makes less than n2/4

queries. We first describe the adversary’s strategy for answering queries asked by the algo-

rithm and then give the analysis.

Let G1 be the graph made of two complete subgraphs A and B, such that A has nodes

labelled from 1 to n/2 and B has nodes labelled from n/2+ 1 to n (Fig. 4.1 (a)). Note that

graph G1 has the same vertex set V as G.

Adversary’s Strategy. The adversary first picks the graph G1 tentatively as input (in

its mind) and answers the queries posed by the algorithm as follows:

When the algorithm asks ‘Is (a, b) an edge in G?’, the adversary says ‘Yes’ if

(a, b) is an edge in G1 and ‘No’ if (a, b) is a non-edge in G1.

The adversary also keeps track of all the queries asked by the algorithm.

Analysis. Consider the moment when all the queries are made and A has declared

whether G is connected or not. By our assumption, A has made less than n2/4 queries.

Since there are n2/4 non-edges in G1, there exists some pair of vertices (say (i, j)) such

that:

• Pair (i, j) is a non-edge in G1.

• A did not ask the query ‘Is (i, j) an edge in G?’

Let G2 be the graph obtained by replacing the non-edge (i, j) in G1 by an edge (Fig. 4.1 (b)).

G1 is not connected but G2 is connected. But both the graphs are consistent with all the

answers the adversary has given. The adversary can prove that algorithm A is wrong as

follows:
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If the algorithm outputs ‘True. G is connected’, the adversary ‘reveals’ that G = G1 and

shows that the algorithm is wrong. If the algorithm outputs ‘False. G is not connected’, the

adversary reveals that G = G2 and again proves the algorithm wrong.

So regardless of what the algorithm outputs, the adversary can always contradict the

algorithm. Hence, every correct algorithm must make at least n2/4 queries.

Kn/2

A

Kn/2

B
(a) G1

Kn/2

A

Kn/2

B
i j

(b) G2

Figure 4.1: (a) G1 is the graph the adversary tentatively keeps as input in its mind. Every pair of

vertices (p, q) with p ∈ A and q ∈ B in a non-edge in G1. So G1 has n2/4 non-edges. (b) G2 is the

graph obtained by replacing the non-edge (i, j) in G1 with an edge. G2 is connected but G1 is not.

Since (i, j) was not queried by the algorithm, both G1 and G2 could have been possible inputs to the

problem.

�

4.5 Scope of Problems

Our method is applicable to problems of the following kind.

GENERIC-PROBLEM. There is a graph G = (V, E) to which we do not have direct access.

We know the vertex set but not the edge set. There are n vertices in G and we may assume

that they are labelled from 1 to n. We are allowed to ask queries of the type ‘Is (a, b) an

edge in the graph G?’, where a, b ∈ V . The problem is to find if G has a given property P

by asking such queries.

4.5.1 Our approach

In order to prove a lower bound for the GENERIC-PROBLEM, when property P is specified

explicitly, we do the following:

• Construct a critical graph G for property P which has many non-edges. We will define

a critical graph shortly.
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• Apply Theorem 4.7.1 which says that existence of a critical graph with many non-

edges implies a lower bound for the problem.

4.6 Query lower bounds using WISE

We describe how the key idea in the lower bound proof of connectivity was obtained using

WISE.

Weakened Problem. In the proof of connectivity we have weakened the problem in

two ways:

• Firstly, the possible inputs is resctricted to only those graphs which have at most two

connected components.

• Secondly, we seek to obtain only an asymptotic bound although an exact bound is

possible. We shall see that this trade-off helps in proving lower bounds for other

graph properties.

Identifying a candidate problem. Even after restricting the input graphs to at most

two connected components there are a few choices (Fig 4.2). We choose to identify the

case where the graph is composed of two complete graphs (Fig 4.2(b)) for the purpose of

proving the lower bound.

(a)

Kn/2 Kn/2

(b) (c)

Figure 4.2: Graph (a) is extremal because the discrepancy between the size of two connected com-

ponents is maximum. Graphs (b) and (c) are graphs in which the discrepancy between the sizes in

minimum. Graph (b) has maximum number of edges within each component (Kn/2) while graph

(c) has the minimum number of edges needed for connectivity (n/2− 1).

Solving the candidate problem. We prove a lower bound of n2/4 using the adversary

arguement (Sec. 4.4).

Extending the solution. However, we can extend the solution to prove lower bounds

for other properties. In the next section, we show how the proof of connectivity lower
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bound can be extended to solve the generic problem given in Sec. 4.5. Unfortunately, it is

not possible to extend the solution to get an exact query lower bound, so all the bounds are

still asymptotic.

4.7 Main Theorem

Definition. Given a property P, a graph Gc is said to be critical with respect to the property

if the following two conditions are met.

(C1) Gc does not have the property P.

(C2) Replacing any non-edge in Gc by an edge endows the graph with property P.

For example, if the property is ‘Connectivity’, then the graph shown in Fig. 4.1 (a) is

an example of a critical graph.

We will now prove our main result using ideas very similar to the proof of CONNECTIV-

ITY problem (Sec. 4.4.1).

Theorem 4.7.1. Suppose Gc is a critical graph for the property P. If Gc has n vertices and

x non-edges, then x is a query lower bound for the GENERIC-PROBLEM.

Proof: We show that any correct algorithm must make at least x queries in the worst case.

We prove by contradiction. Assume that there is some algorithm A that solves the GENERIC-

PROBLEM by making strictly less than x queries.

We first give an adversary’s strategy for answering queries by A and then give the

analysis.

Adversary’s Strategy. The adversary first constructs the graph Gc (in its mind) and

answers the queries posed by the algorithm as follows: When the algorithm asks ‘Is

(a, b) an edge in G?’, the adversary says ‘Yes’ if (a, b) is an edge in Gc and ‘No’ if (a, b) is a

non-edge in Gc.

Analysis. Consider the moment when all the queries are made and A has declared

whether G has the property P or not. By our assumption, A has made less than x queries.

Since there are x non-edges in Gc, there exists some pair of vertices (say (i, j)) such that:

• Pair (i, j) is a non-edge in Gc.

• A did not ask the query ‘Is (i, j) an edge in G?’
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By our definition of critical graph, we have the following:

• Graph Gc does not have property P.

• Suppose G′c is a graph which is the same as Gc except that the non-edge (i, j) in

Gc is replaced by an edge in G′c. So G′c has exactly one more edge than Gc. More

importantly, G′c has the property P, since Gc was a critical graph.

Either Gc or G′c could have been the input graph for the problem since they are con-

sistent with all the answers the adversary has given. But one graph has the property and

the other one does not. Hence, whatever answer the algorithm outputs, the adversary can

prove the algorithm wrong. Hence, any algorithm that makes less than x queries must be

incorrect. �

Now we turn to the applications of this theorem.

4.8 Applications

We prove lower bounds for many common graph properties by constructing a critical graph

for each property. It turns out that all the problems we consider have a lower bound of

Ω(n2), which proves that the bounds are asymptotically tight.

For each problem, we describe how to construct a critical graph with Ω(n2) number of

non-edges. The lower bound follows from Theorem 4.7.1.

We will use the following handy fact repeatedly.

Lemma 4.8.1. A graph with n vertices and m edges
�n

2

�

−m non-edges.

Proof: There are
�n

2

�

pairs of vertices in a graph. Between every pair of vertices, either

there is an edge or a non-edge. �

4.8.1 Triangle Detection

A graph G is said to have a triangle if K3 is a subgraph of G.

Problem P1. Given access to G = (V, E) via queries of the form ‘Is (a, b) an edge in

G?’ determine if G has a triangle.
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Construction of Gc. A rooted star tree with the root node as 1 (Fig.4.3). In other words,

Gc is a graph where we connect node 1 to every other node. There are exactly n− 1 edges

in Gc.

It is easy to verify that Gc satisfies both the conditions of a critical graph.

(C1) Gc does not have triangle.

(C2) Replacing any non-edge in Gc, induces a triangle involving node 1.

No. of non-edges in Gc:
�n

2

�

− (n− 1) = Ω(n2).

By Theorem 4.7.1, any algorithm must make at least Ω(n2) queries. Since this step

is same for all problems, in subsequent examples, we only describe the construction of the

critical graph.

. . .

1

2 3 n

Figure 4.3: A critical graph for ‘has a triangle’ property. Node 1 is connected to every other node.

The non-edges are between nodes 2, ...n.

4.8.2 Hamiltonian Path

Problem P3. Given access to a graph G = (V, E) via queries of the form ‘Is (a, b) an edge in

G?’ determine if G has a Hamiltonian path.

Construction of Gc. We build two complete subgraphs A and B of equal size such that A

has nodes labelled from 1 to n/2 and B has nodes labelled from n/2+ 1 to n (Fig. 4.4).

Kn/2

A

Kn/2

B
(a)

Kn/2

A

Kn/2

B
(b)

Figure 4.4: (a) A critical graph Gc for Hamiltonian property. Gc does not have a Hamiltonian path

since it is disconnected. (b) Replacing any non-edge by an edge induces a Hamiltonian path.

65



4.8.3 Perfect Matching

Problem P3. A graph G is said to have a perfect matching if there exists a pairing of all

nodes in G, such that every node is contained in exactly one pair and each pair has an edge

between them. A necessary (but not sufficient) condition for G to have a perfect matching

is that n must be an even number. Given access to G = (V, E) via queries of the form ‘Is

(a, b) an edge in G?’ determine if G has a perfect matching. Assume that n is even.

Construction of Gc. Since n is an even number, assume that n = 2s. If s is an odd number,

we construct two complete subgraphs A and B such that A has nodes from the set {1, .., s}

and B has nodes from the set {s+1, .., n}. If s is an even number, we construct two complete

graphs A and B such that A has nodes in the set {1, .., s−1} and B has nodes in the set {s, .., n}

(Fig. 4.5). Basically, we want to ensure that both A and B have odd number of nodes.

We show that Gc satisfies both the conditions of a critical graph.

(C1) Gc does not a perfect matching. This is because both A and B have odd number of

vertices and hence one vertex in A and B will always be unmatched.

(C2) Replacing any non-edge (a, b) in Gc, induces a perfect matching. We pick the edge

(a, b) in the matching and remove it from Gc. Now both A and B have even number of

unmatched vertices, hence we can find a perfect matching.

No. of non-edges is s2, when s is odd and s2 − 1 when s is even. Hence, number of

non-edges x ≈ n2/4.

Ks−1

A

Ks+1

B
(a)

Ks−1

A

Ks+1

B
(b)

Figure 4.5: (a) Critical graph Gc for ‘perfect matching’ property when s is even. Graph Gc does not

have a perfect matching since A and B have odd number of vertices. (b) If we replace any non-edge

by a edge then it is easy to verify that the graph obtained has a perfect matching.

4.8.4 Non-Bipartite Detection

Problem P4. Given access to G = (V, E) via queries of the form ‘Is (a, b) an edge in G?’

determine if G is non-bipartite.
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Construction of Gc. Gc is a complete bipartite graph with two partitions A and B. where

partition A has nodes labelled from 1 to n/2 and B has nodes labelled from n/2+ 1 to n.

So Gc has n2/4 edges (Fig. 4.6).

We show that Gc is a critical graph.

(C1) Gc is a bipartite graph. Since property is taken to be ‘non-bipartite-ness’, Gc does not

have the property. (C2) The only non-edges are inside the partitions A and B. Replacing

any non-edge in Gc induces a triangle, hence making the graph non-bipartite.

No. of non-edges in Gc is
�n

2

�

− n2/4≈ n2/4. Hence, the lower bound follows.

A BA B

Figure 4.6: A critical graph for the property of ‘Non-bipartiteness’. Gc is bipartite but adding replac-

ing any non-edge by an edge makes in non-bipartite.

4.8.5 Cycle Detection

Problem P5. Given access to G = (V, E) via queries of the form ‘Is (a, b) an edge in G?’

determine if G has a cycle.

Construction of Gc. A critical graph for ‘has a cycle’ property is a path containing all nodes.

Hence Gc has exactly n− 1 edges (Fig. 4.7). No. of non-edges: Ω(n2).

We show that Gc is a critical graph.

(C1) Gc does not have e cycle. (C2) Any non-edge in a path is between two non-adjacent

nodes. Hence, adding any non-edge induces a cycle on the path.

1 2 n

Figure 4.7: Critical graph Gc for ‘has a cycle’ property. Replacing any non-edge by an edge induces

a cycle.

67



4.8.6 Degree-Three node

Problem P6. Given access to G = (V, E) via queries of the form ‘Is (a, b) an edge in G?’

determine if G has a node whose degree is three.

Construction of Gc. A critical graph for property ‘has a degree-3 node’ is a cycle containing

all the nodes. Every node has degree exactly two. Adding any non-edge would make some

vertex have degree three (Fig. 4.8). Since Gc has exactly n edges, the number of non-edges

is Omega(n2).

1

2

3

4

5

6
. . .

n

Figure 4.8: Critical graph Gc for ‘has a degree-3 node’ property. Gc has all nodes of degree two so

replacing any non-edge by an edge gives a degree-3 node.

4.8.7 Planarity

Problem. Given an access to graph G = (V, E) via queries of the form ‘Is (a, b) an edge in

G?’ determine if G is a planar graph.

Solution.

The construction of property-critical graph for planarity is a bit tricky since it requires

some known facts about planar graphs. A planar graph G is said to be triangulated if

the addition of any edge to G results in a non planar graph. For example, a triangulated

graph for n = 6 is shown in Fig. 4.9. So by our definition any triangulated planar graph

is property-critical. It is a well-known fact in graph theory that any triangulated planar

graph has exactly 3n− 6 edges. This means the number of non-edges is
�n

2

�

− (3n− 6) =

(n2− 7n+ 12)/2. Hence, the query lower bound for planarity testing is Ω(n2).
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Figure 4.9: A triangulated graph having six vertices. This is a property-critical graph for planarity

for n= 6. There are exactly 3n− 6= 12 edges in the graph.

4.9 Teachability

We did a pilot experiment with five CS graduate students to see if they could apply our

method to derive query lower bounds. We report our findings in this section.

Design. The author had one-on-one interview-type session with each student. Prior

to the start of the session, we made sure that the student understood the basic concepts

and definitions related to query computational model. A session lasted for 2-4 hours and

was divided into three phases. In the first phase, the students understood the format of

adversary arguments. In the second phase, the student attempted to solve the CONNECTIVITY

problem (Prob. E4) for one hour. Our objective was to allow the students to try the problem

on their own so that we could identify the common approaches taken to solve the problem.

The student was encouraged to think aloud during this time. If he persisted in a wrong

approach for more than ten minutes, the author alerted the student to the mistake and let

him continue. At the end of one hour, regardless of how the student performed, the author

gave the solution to the problem along with an explanation of the method as described in

Sections 4.4-4.7. The student was also given the solution given in [2]. In the third phase,

the student attempted to derive lower bounds for the list of problems given in Sec. 4.8,

without any help. We describe observations made in each phase below.

4.9.1 Phase I: Adversary Argument Explained

In the first phase, the students got familiar with the adversary argument. Two students who

said they were familiar with adversary arguments were quizzed on the topic with a couple of

questions. The other three students found it easy to follow the adversary argument through

examples like ‘n-Card Monte’ and ‘20-questions’, given in [10] and [29], respectively. Some

students took more time than others to understand the format of the proof, which accounted
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for the variability in the duration the sessions.

4.9.2 Phase II: Teaching

We list common failed approaches taken while solving the CONNECTIVITY problem.

Failed approach F1. Students find it hard to let go of the algorithm and think like an

adversary. They often prove lower bounds assuming that the algorithm works in a certain

way. For example, four out of five students gave the answer along the following lines:

“Every vertex has n− 1 possible incident edges. When the algorithm asks n− 1 queries for

a vertex, the adversary answers with a ‘Yes’ only for the last incident edge.” The flaw in this

reasoning is the assumption made about the algorithm’s behavior. The algorithm need not

ask queries in an orderly manner. The lower bound has to work for any algorithm, not just

the one that probes vertex-by-vertex.

Failed approach F2. All the students tried for exact bounds which is harder than proving

asymptotic bounds. Even when the students were reminded that only asymptotic lower

bound is sufficient, they could not figure out a way to make use of the relaxed constraint.

Failed approach F3. Three students came up with the correct adversary strategy, but failed to

do the analysis. The strategy was: The adversary always says ‘No’ unless saying so definitely

disconnects the graph. This strategy is intuitive and is also correct, but unfortunately none

of them were not able to prove that it works. The correct analysis of this strategy is given

in [2].

4.9.3 Phase III: Testing

In Table 4.1, we give the time taken by each student to construct the correct critical graph.

Some students gave different (correct) critical graphs than the ones we have given. For

example, for ‘Triangle’ property two students gave complete bipartite graph as the answer.

Similarly, for ‘Cycle’ property all the students gave ‘any spanning tree’ as the answer. As it

can be seen from Table 4.1, most students were able to construct critical graphs quickly. We

observed that three students who were not familiar with adversary arguments did equally

well as the other two students. We did not anticipate this but it seems reasonable in hind-

sight. After all, the main reason why our method is helpful is because it shifts the focus

from designing an adversary strategy to finding one critical graph. So prior knowledge of
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adversary arguments did not matter as much.

Inference. Although the textbook-proof was known to the students, all of the them chose to

prove using critical graphs. This shows that the students found our method easier to apply.

In the words of a student, “Instead of thinking about how the queries must be answered,

I just have to look for the right graph, which seems easier to do”. We also asked students

S1 and S5 to attempt solving the problems without using critical graphs. Student S1 was

able solve problems P1 and P5 and student S5 was able to solve P1 and P4. Both of them

could not solve the other problems in a time duration of 15 mins (per problem). This too

suggests that the textbook-proof is not easily applicable to other graph properties.

Phase Topic Students

S1 S2 S3 S4 S5

I Adv. Yes Yes No No No

II E4 F2 F1,2,3 F1,2 F1,2,3 F1,2,3

III

P1 8m 10m - 9m -

P2 5m 5m 9m 6m 6m

P3 8m - - 10m 9m

P4 1m 2m 4m 2m 2m

P5 1m 2m 2m 1m 2m

P6 1m 1m 1m 1m 1m

Table 4.1: Summary of data from the experiment. Phase I: ‘Yes’ means that the student already knew

the adversary method. Phase II: Subscripts in F refer to the failed approaches taken by the student

as discussed in Sec. 4.9.2. Phase III: Numbers give the time taken by the student to answer. A -

against a problem means that the student was not able to answer that problem within 15 minutes.

The time taken is shown in minutes.
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4.10 Discussion

WISE methodology was used only to solve the connectivity problem. Once we obtain the

insight about critical graphs, we discard the WISE scaffold and solve problems purely using

extremal critical graphs. Again, this points to the invisibility of WISE. In the next chapter

on tree learning, we see that this aspect is even more pronounced.

Remark. An alternate approach to proving lower bounds for graph-properties can be found

in [20]. However, this proof method is beyond the scope of most CS courses since it relies

on deep ideas in topology.

Remark. There is a lacuna in most traditional textbooks when discussing lower bounds.

But lower bounds as a topic in complexity theory has gained a lot of importance in the last

few years. In support of this claim, we would like to point out that the recent book by Arora

and Barak titled ‘Computational Complexity: A Modern Approach’ [2] has one-third of the

book devoted exclusively to lower bounds.
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Chapter 5

Tree Learning Algorithm using WISE

In the previous chapters, we used the WISE methodology to derive solutions to only text-

book problems. But the methodology is powerful enough to solve even a research problem.

We describe the problem and give an account of how the key ideas of the algorithm were

derived using WISE.

Problem Definition. Suppose T is an undirected binary tree containing n nodes. We know

the nodes in T but not the edges. The problem is to output the tree T by asking queries of

the form: “Does the node y lie on the path between node x and node z?”. In other words,

we can ask if removing node y disconnects node x from node z. Such a query is called a

separator query. Assume that each query can be answered in constant time by an oracle.

The objective is to minimize the time taken to output the tree in terms of n.

Role of WISE. By designing algorithms for certain extremal input instances we can get a

sub-quadratic algorithm. We weaken the problem by restricting the input instances to these

three graphs: path, complete binary tree and centipede. For each extremal instance, we get

an algorithm and extend it to more a general case (Table 5.1). Putting all the ideas together

gives an O(n1.8 log n) algorithm.

Remark. The problem is motivated by an application in machine learning. The details

of the motivation can be found in [26]. Also, [26] contains an improved algorithm that

runs in O(n1.5 log n) time. WISE methodology is useful only to the extent of obtaining

an O(n1.8 log n) algorithm. This is interesting since no sub-quadratic time algorithm was

known prior to our work. The result is joint work with Anindya Sen.

In Section 5.0.1 we discuss some preliminaries. In Section 5.0.2 we give a naïve O(n2)

algorithm. We then discuss the main result where we use WISE to derive a sub-quadratic
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algorithm for the problem.

5.0.1 Preliminaries

Notation. Let V (T ) refer to the node set of T and E(T ) to the edge set of T . Note that

n = |V (T )|. Let x   y   z denote the separator query “Does node y lie on the path

between node x and node z?”. We call y as the middle node in the query x   y   z.

Lemma 5.0.1. Let x and z be a pair of nodes in tree T . The set of all nodes that lie on the

path between x and z can be found in O(n) time using the separator queries.

Proof: A node i lies on the path between x and z only if x   i   z is true. This requires

n− 2 calls to the oracle. �

Lemma 5.0.2. Let x and z be a pair of nodes in the tree T . The path P between node x

and node z can be found in O(n log n) time using the separator queries.

Proof: Using Lemma 5.0.1, we find the set of nodes that lie on the path P. We then impose

a total order on the nodes on the path as follows: for any pair of nodes yi and y j belonging

to P, node yi is greater (resp. smaller) than y j if x   yi   y j is true (resp. false). Finally,

the path is obtained by ‘sorting’ the nodes according to the total order defined above. �

Lemma 5.0.3. Suppose we know that (p, q) is an edge in tree T . Let T1 and T2 be the two

subtrees that result from removing the edge (p, q). We can find the set of nodes that belong

to T1 and T2 in O(n) time.

Proof: Every node i must lie on either side of the edge (p, q). If i   p  q is true, node i

belongs to T1 and if p  q  i is true, it belongs to T2. �

In the rest of the chapter, we assume that separator queries can be answered in con-

stant time and avoid explicit references to the oracle when describing algorithms.

5.0.2 A naïve O(n2) algorithm

We give an algorithm that learns the structure of a tree in O(n2) time. The result applies to

unbounded degree trees also.
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Lemma 5.0.4. The neighbors of any given node v with degree d(v) can be found in O(d(v)n)

time.

Proof: The procedure to find a neighbor is similar to finding the minimum element in a

given set of numbers. Suppose we want to find a neighbor of a node v. Initialize a variable

min to an arbitrary node other than v (say vx). Let vv1v2v3 . . . vx be the path from v to vx .

Suppose v  u  min is true for some node u, then it means that

• Node u is some vi.

• Node vi is closer to v than min. In other words, distance from node v to vi is lesser

than the distance from node v to min.

Iterate through every node i updating min to i if v   i   min is true. In the end,

min will contain v1. We found one neighbor of v in O(n) time. To find another neigh-

bor of v, throw away the newly-discovered neighbor v1 and the set of nodes S = {x :

v  v1  x is true} and repeat the above procedure. We keep repeating this step until all

the neighboring nodes of v are discovered. Since v has degree d(v), it takes O(d(v)n) time

to discover all the neighbors of v.

�

We can find the neighbors of every node using the above procedure and learn the

structure of the tree. Since the sum of degrees of all the nodes in the tree is 2(n− 1), the

above algorithm takes O(n2) time.

A sub-quadratic algorithm using WISE. We solve the problem for a few extremal input

instances and then use the key ideas to obtain a better algorithm for the tree learning

problem. The presentation style is as follows. We restrict the input to an extremal instance,

discuss the algorithm specific to that instance and then extend the idea to cover a more

general case. The extremal input instances and their generalizations are given in Table 5.1.

5.1 Iteration 1: From path to bounded leaves tree

Step 1-1 Analyze the problem

Instances of the problem: Tree. Properties of trees: Number of leaves, maximum degree of

vertex, diameter, etc. Extremal cases: Paths and complete binary trees.
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Iteration Extremal Input Generalization

1. Path Bounded leaves tree

2. Complete binary tree Short-diameter tree

3. Centipede Long diameter trees

Table 5.1: The algorithms designed for the extremal trees extend to more general input cases.

Step 2-1 Weakening

We weaken the instance of the problem to an extremal case: consider the simplest instance

when the tree is a path.

Step 3-1 Candidate problem 1: Path

We show how to solve the problem if T is restricted to a path.

Step 4-1 Solution

We can impose a total ordering among the nodes of a path as follows. Let x be a leaf node

in the path. Node a is greater (resp. lesser) than b if x   a  b is true (resp. false). Hence,

learning the structure of a path is equivalent to sorting n numbers on a comparison model.

We use the separator query like a comparison operator and get an O(n log n) algorithm.

Step 5-1 Generalization 1: Bounded leaves

Intuition. Consider the near-extremal case when the tree is a union of two paths. In this

case, we can first collect all the nodes that lie on one path. Learn one leaf-to-leaf path and

then learn the remaining path next. So if the tree had three leaves as shown below, then

the time taken to learn the tree is still O(n log n).
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We can generalize this idea to the case when the tree has l leaves.

Sol.

Lemma 5.1.1. The tree with n nodes and l leaves can be learnt in O(nl log n) time using

the oracle.

Proof: Select an arbitrary node r as the root node. Initialize a variable f to a node other

than r. If r   f   u is true for some node u, then it means that node u is farther to r than

f . Iterate through every node i updating f to i if r   f   i is true. In the end, f will

contain some leaf. We find all the nodes on the path from r to f . In this way we can learn

a root-to-leaf path in O(n log n) time. Since the tree has only l leaves it takes O(nl log n)

time to learn the tree. �

5.2 Iteration 2: From binary tree to short diameter

Step 1-2 Add a difficulty

Lemma 5.1.1 implies a sub-quadratic algorithm for the tree learning problem if the number

of leaves is o(n). So we consider the bad case when the number of leaves is O(n).

Step 2-2 Weakening

Which extremal structure has O(n) leaves? The complete binary tree serves the purpose

since it has n/2 leaves.

Step 3-2 Candidate problem 2: Complete binary tree

We solve the problem for the case when T is a complete binary tree.

Step 4-2 Solution to binary tree

Intuition. If we could find the root node we can recurse on the subtrees. Suppose we pick

a node (say 11 in Fig. 5.1) and learn its neighbours. We can move towards the root node

by going in the direction which contains the largest number of nodes. For example, since
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Figure 5.1: At each step, we can get closer to the root by moving in the direction of the larger

number of nodes

we have picked 11 we find its neighbours are 5, 8 and 13. Out of these neighbours the

maximum number of nodes lie in the direction of node 13, therefore node 13 is closer to

the root node.

Sol. We give an algorithm that runs in O(n log2 n) time. The idea is to pick a vertex and

get closer to the root.

We find the root node as follows:

1. Pick any vertex a.

2. Find the neighbours of the vertex a (say x , y and z).

3. If vertex a has exactly two neighbours, then we have found the root. Otherwise,

count the number of vertices that remain connected to x if edge (a, x) is removed.

Call this number C(x). Similarly find C(y) and C(z).

The vertex i with maximum C(i) is closer to the root than vertex a, so repeat the

above steps with vertex i.

Analysis. All the three steps can be done in O(n) time. We may have to move up log n

times, so it takes O(n log n) time to find the root node.

Once we find the root we recurse on the sub-trees, so overall it takes O(n log2 n) to

learn the tree.

Step 5-2 Generalization 2: Short diameter

We now generalize the above idea to trees with diameter D.

We state a folklore lemma that gives the analogue of a root node of a complete binary

tree. An edge is called an even separator if its removal splits the tree into two trees each of

whose size is between 2n/3 and n/3.
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Lemma 5.2.1. Every binary tree T has an even separator.

Proof: We give a constructive proof. Orient every edge in T in the direction of the larger

number of nodes, breaking ties arbitrarily. If T has more than two nodes, then all the

leaves will have in-degree zero and out-degree one. Since the number of nodes in T are

fixed, any maximal directed path in T must end at some vertex m whose out-degree is

zero. Since m cannot be a leaf it has either two or three edges incident on it. We show

that one of the incident edges is an even separator. Root the tree at m. Let x , y and z

be the children of m. Let C(x), C(y), C(z) be the number of nodes sub-rooted at x , y and

z, respectively. Without loss of generality assume that C(x) ≤ C(y) ≤ C(z). The relations

C(x)+C(y)+C(z) = n−1 and C(x)+C(y)≥ C(z) ensure that C(z) ∈ [n/2, 2n/3]. Hence,

edge (m, z) is an even separator. �

Claim 5.2.2. A constant-degree tree with diameter D can be learnt in O(nD log n) time.

Proof: Here is an algorithm to learn the tree:

1. Pick any edge e with endpoints p and q.

2. Check if e is an even separator. This can be done by counting the number of nodes

that lie on either side of e.

3. If e is an even separator, label p and q and recurse on the subtrees rooted at p and q.

4. If e is not an even separator, move to a neighboring edge that lies in the direction

of the larger number of nodes and which gives a better split. For example, if p is in

the direction of the larger number of nodes then we check the other neighbours of

p and move to the edge that gives a better split. We get one step closer to the even

separator by doing this. Repeat Step. 2-4.

Since the diameter of the tree is D, it takes at most D steps to find the even separator. Each

step takes O(n) time. Once we get the separator, we divide and recurse on the subtrees.

Hence, we can learn the tree in O(nD log n) time. �

The above idea can be generalized to give a sub-quadratic algorithm whenever the

diameter of the tree is o(n). The hard-case is when the tree has a long diameter.

79



5.3 Iteration 3: From centipede to long diameter tree

Step 1-3 Add a difficulty

Now we know that if the tree has either small diameter or bounded leaves a sub-quadratic

time algorithm is possible. So the hard case is the class of trees which have Ω(n) diameter

and Ω(n) leaves.

Step 2-3 Weakening

We want an extremal graph that has a long diameter and a lot of leaves. A centipede serves

the purpose. A centipede is a tree which has a diameter of length n/2 and has n/2 leaves.

Step 3-3 Candidate problem 3: Centipede

How quickly can we learn if the tree is a centipede?

Sol. We describe an O(n log n) algorithm to learn a centipede.

Definition. A bead is a vertex with more than degree one and a leaf is a vertex with

degree one. A centipede has equal number of beads and leaves. The key idea in the

algorithm is to get one bead in constant time on an average.

Lemma 5.3.1. If a  x   b returns ‘Yes’ then the middle node x has to be a bead.

Proof: The centipede has only leafs and beads. A leaf cannot appear on a path between

two nodes. �

Claim 5.3.2. Suppose S is a set of nodes that lie on the right side of a bead r. If S has x

beads, we can find at least x − 1 beads in |S|(|S| − 1) queries.

Proof: For a, b ∈ S, if the query r   a  b returns true, then we know that node a must

be a bead. For every ordered pair (x , y) in S × S with x 6= y , we ask if r   x   y is true.

Let p denote the rightmost node in S. A bead m ∈ S must appear as the middle element in

the query r   m  p. So, all the beads in S other than possibly p will be detected. �
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Let A= a1a2a3 . . . a2k−1a2k denote an arbitrary ordering of all the nodes that lie on the

right side of a bead r. We know that there are k beads and k leaves in them.

Claim 5.3.3. Suppose we partition the nodes in A into blocks of size 3. Nodes a1a2a3 form

the first block, a4a5a6 form the second block and so on. So there are 2k/3 blocks in all. The

number of blocks that have at least two beads is greater than k/6.

Proof: Let us call a block good if it has at least two beads; and bad otherwise. Every bad

block has at least two leaves, so there cannot be more than k/2 bad blocks, which means

we have at least k/6 good blocks. �

If we happen to use a good block as our set S in Claim. 5.3.2 we retrieve a bead in six

queries (since |S|= 3). We try to get the beads from all the blocks. So in 4k queries we are

assured to collect k/6 beads.

Without loss of generality assume that the right side of r has at least n/2 nodes. Using

the above procedure, we get O(n) beads in linear time. Once we have the beads we find

their median and use divide-and-conquer to learn the tree. Hence, the algorithm takes

O(n log n) time.

Remark. The main take away that is that we can throw away all the leaves of the tree

in relatively short time provided that we are prepared to lose some non-leaves too. We will

refer to this idea as ‘pruning’.

Step 5-3 Generalization 3: Long diameter

We try to generalize the above algorithm to the case when the tree has a long diameter

but the rest of the graph has arbitrary structure (instead of all the leaves attached to the

diameter as in the case of centipede).

Intuition.

Consider the near-extremal case when the centipede has an additional path attached

to it (Fig. 5.2).

If we run the centipede algorithm on this, then we get a fraction of beads from the two

long paths. This idea can be generalized to l paths. If all the leaves are attached to l paths,

then the centipede algorithm retrieves a fraction of nodes from these l paths (Fig. 5.3).
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⇒

Figure 5.2: We retrieve most of the nodes from two paths after running the centipede algorithm

once.

⇒

Figure 5.3: Extending the centipede algorithm to l paths.

Suppose we pick a subset of nodes S and a node r, do pairwise comparisons of all

nodes in S with respect to r. If we remove all the nodes that never appear as the middle

node of any query, then we remove all the leaves from the tree (and possibly some other

nodes also). We refer to throwing away of all the leaves of a tree as a prune.

Observation 1. Suppose the number of blocks is B, one prune can remove only 2B

nodes from the diameter and all the leaves.

Observation 2. Each prune removes at least as many leaves as the previous one, so if

the tree is pruned ρ times, then there are no more than n/ρ leaves left.

But adjusting the parameters B and ρ we can get an efficient algorithm to retrieve the

a fraction of nodes from the long diameter. We introduce a structure called sample tree that

speeds up the pruning process.

5.3 Trees with long diameter

We give an algorithm to solve the following sub-problem:

Problem. Given an oracle for a tree which is assured to have a path of length nα, return a

path with length O(nα) in O(n2−α/2) time.
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Input. The oracle for the tree T and the parameter α.

Apart from the input parameter α, the algorithm uses two internal parameters β and

ρ. We describe the algorithm assuming general terms and set their specific values later.

Definitions. The longest path in the tree T is called the necklace. A bead is a node on the

necklace. Given a set of nodes S from the tree T , a leaf in S is a node that does not appear

between any two nodes from S in T .

Intuition. The high-level idea is to collect a good fraction of beads. Imagine taking

the tree T and pruning it once. We lose all the leaves among which only two are beads.

If we continue to prune, the well spread out portions of the tree disappear at a rate much

faster than the beads. After sometime, the tree becomes so wilted that it is no more than a

collection of a few long paths. This makes it amenable to an exhaustive search for a long

path. The algorithm basically implements this idea.

Our algorithm runs in three-phases:

5.3.1 Phase I: Growing sample trees

Divide the nodes into blocks of size β each. So there are n/β blocks each containing a

sample of β nodes from the tree T . To avoid notational clutter, we omit the floors and

ceilings throughout the chapter. So n/β is really dn/βe.

Description of the sample tree

Let T1 denote the sample tree built using β nodes of the first sample as follows:

1. An arbitrary node is designated as the root r.

2. Let x and y be two nodes from the sample. Node x has node y as its parent if y is

the last node from the sample that appears before x on the path from r to x in T .

Note that every node has a unique parent, so T1 is in fact a tree (Fig. 5.4).
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Figure 5.4: T is the original tree and T1 is the sample tree.

Learning the sample tree

We can learn T1 from the oracle for T by using the naive quadratic algorithm that learns

each edge in O(n) time. We build a sample tree for each block this way.

Running Time.. Building one sample tree takes O(β2) time. So building n/β sample trees

takes O(nβ) time. We denote this time as tsample.

5.3.2 Phase II: Pruning

We prune each sample tree ρ times. Doing this ensures that many leaves are lost but not

many beads.

Key #1. Each sample tree contains at most two strands of the necklace.

Lemma 5.3.4. All the beads in the sample tree appear in at most two root-to-leaf paths.

Proof: Let node t be the junction at which the path

from the root meets the necklace. Let b1 b2 b3 . . . bm be

the beads in the sample that are to the right side of t.

Due to the way we have constructed the sample tree ev-

ery bi must have bi−1 as its parent (for i > 1). This

means all the bis appear on some root-to-leaf path con-

secutively. Similar argument holds for beads on the left

side of t. �

t b1 b2 b3 bm

r

Lemma 5.3.5. At most 2nρ/β beads are lost after ρ prunes.

Proof: One prune can remove only two beads from a sample tree (Fig. 5.5). So at most

2n/β beads are lost from the all sample trees in one prune. �
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Figure 5.5: All the beads appear in at most two paths in the sample tree.

Lemma 5.3.6. The total number of leaves in all the sample trees is no more than n/ρ after

ρ prunes.

Proof: Let li denote the number of leaves in the sample tree Ti after ρ prunes. The number

of leaves in the sample tree cannot increase after a prune. Hence, each prune must have

removed at least li leaves. Since there were only β nodes in the sample tree liρ ¶ β . This

holds for all n/β samples trees, so (l1+ l2+ · · ·+ ln/β) ρ ¶ β × n/β �

Running Time. Since the trees are already built, pruning is easy. Pruning ρ times is the

same as doing this: For each node x , if the most distant leaf in the subtree rooted at x is

less than ρ nodes away then remove x . Finding these distances takes linear time in the size

of the tree by dynamic programming. So overall pruning time is β × n/β = O(n). Since

this takes less time than building the sample trees, we ignore this time.

5.3.3 Phase III: Retrieving the Necklace

We will find the longest path in the subgraph induced by all the remaining nodes in the

pruned sample trees.

Key #2. Pruning the sample trees has a similar effect of pruning the actual tree. Consider

the tree T ′ induced by all the remaining nodes in the sample trees. Let l denote the number

of leaves in this tree.

Lemma 5.3.7. l ¶ 2n/ρ.

Proof: A node w in the pruned sample tree that appears between the root r and a leaf v

must appear on the path from r to v in T ′. Hence node w cannot be a leaf in T ′. So every
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leaf in T ′ must either be a leaf or the root of some sample tree. A sample tree has only one

root, so there cannot be more roots than the leaves in a sample tree. So each sample tree

Ti can add at most 2li leaves to T ′. From Lemma 5.3.6 we have l ¶ 2n/ρ. �

Claim 5.3.8. The longest path in a tree with n nodes and l leaves can be found in O(nl log n)

time using the oracle.

Proof: Note that we can learn the structure of a tree that has l leaves in O(nl log n) time.

One we learn the tree we find the longest path in it. �

Running Time.. Since l ¶ 2n/ρ we can find the longest path in O(n2/ρ) time (ignoring

the log n factor). We denote this time as tsearch.

5.3.4 Tuning the parameters

Three parameters are under our control: one external parameter α and two internal pa-

rameters used by the algorithm: β and ρ. We will first set the internal parameters for a

given value of α.

Setting ρ: How long to prune?

We prune just enough number of times to retain half of the beads. Each prune discards at

most 2n/β beads (Lemma 5.3.5). How many times can we afford to prune so that at least

half of the beads remain?

ρ×
2n

β
¶

nα

2

ρ =
βnα−1

4
(5.1)

Setting β: What should be the sample size?

The parameter β controls the running time of the algorithm. There is a trade-off between

the running time of building the sample trees and exhaustive search. For example, if β is

a constant, then building the sample trees takes O(n) time but we can afford to prune only

constant number of times. This makes searching run in O(n2) time. On the other extreme,

if we set β to n then building the sample trees itself takes O(n2) time.
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The running time of the algorithm is max(tsample, tsearch). We get the optimal running

time by choosing β such that tsample ≈ tsearch.

tsample = nβ

tsearch = n2/ρ Ignoring the constants

nβ = n2/ρ

β = 4n/βnα−1 From Eq. 5.1

β2 = 4n2−α

β = 2n1−α/2

Setting β = n1−α/2 gives the optimal running time of O(n2−α/2).

5.3.5 Finding the splitter

Let D be the diameter of the tree T . The above algorithm runs in O(n2−α/2) time and returns

a path of length at least D/2 if D is greater than nα. Note that the running time depends

only on the input parameter α and not on the true diameter of the tree. If we overestimate

α, then we get a shorter path in the same time. Hence, we can use this algorithm as a

probe to see if the tree has a long diameter. We call the median edge of a long path as a

splitter. For α = 0.8, the algorithm will return a splitter in O(n1.6) time if the diameter of

the tree is greater than 2n0.8. Combining this fact with the short-diameter algorithm gives

a sub-quadratic bound.

5.4 A Sub-Quadratic Algorithm

Run the long-diameter algorithm with α = 0.8. If it does not return a splitter, the diameter

of the tree must be less than 2n0.8. Learn the tree using the short-diameter algorithm. This

takes O(n1.8 log n) time. If we do get a splitter, divide and recurse on the subtrees. So for

any tree with n nodes we either get a splitter in O(n1.6) time or learn the tree in O(n1.8 log n)

time. The associated recurrence is given below:
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T (n) =







O(n1.8 log n) if the diameter is less than 2n0.8

T (n− n0.8) + T (n0.8) + n1.6 otherwise

The solution to T (n) implies that a constant-degree tree can be learnt in O(n1.8 log n)

time.

5.5 Discussion

In this chapter, we have shown the process of applying WISE methodology to tree learning

problem. The key idea was to restrict the input instances to extremal trees. In all the

chapters, we have seen the role of extremality in graphs. But the principle has broader

applicability. In the next chapter, we show how it could be useful in the context of linear

programming.
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Chapter 6

Extremality in Linear Programming

In the previous chapters, we saw how extremal graphs play a role in obtaining insight about

a problem. Here, we show how extreme points of a linear program play a similar role in

linear programming. Unfortunately, the application does not fit into the WISE methodology,

but uses only the extremality principle.

6.1 Motivation

Linear programming is an important topic in combinatorial optimization. There are several

good books on this topic that are aimed at senior undergraduate students. The current

texts on linear programming focus on computational aspects that need knowledge of linear

algebra as a prerequisite. It is well known that linear programming can also be used as

an analytical tool. For example, in theoretical computer science, duality is often used to

analyze approximation algorithms. Our plan is to introduce LPs by using the weaker form

of duality to solve Math-Olympiad problems. This style of introduction does not need linear

algebra as a prerequisite. Although our primary motive is exposition, all the proofs that are

presented are new.

Linear programming is a potential topic to highlight the usefulness of extremality. A

linear program (LP) defines a polytope in IRn. The ‘corners’ or the ‘tips’ of the polytope are

called extreme points. For example, if the polytope is a cube in IR3, then there are eight

extreme points. Just as extremal graphs have simple structures, the extreme points of LPs

also tend to have simple structures–this is what makes LPs effective as an analytical tool.
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6.2 Preliminaries

Let c denote a fixed vector from IRn.

Definitions. Linear programming is the problem of optimizing a linear function c>x over

x ∈ IRn, subject to linear constraints on x . The function to be optimized is called the

objective function. A linear program is usually written with the objective function on the

first line followed by the set of constraints on the variables. An example is shown in Eq 6.1

with x = (x1, x2, x3) and c = (1,2, 5).

min x1+ 2x2+ 5x3

s.t. x1+ x2 ≥ 5 (6.1)

2x1+ x3 ≥ 8

x1, x2, x3 ≥ 0

All the constraints in the above LP are ‘greater than or equal to’ kind. All the variables

are constrained to be non-negative. The LP is a minimization problem. Any LP can be

transformed into this form, hence it is called standard. A variable is said to be free if it is

not constrained to be non-negative. An assignment of variables in the linear program that

satisfies all the constraints is called a feasible point. For example, x1 = 3, x2 = 3, x3 = 0 is a

feasible point in the example.

Any LP must be one of the three types given below.

1. The LP is infeasible. That is, there is no assignment to the variables that will satisfy

all the constraints.

2. The objective function can be made arbitrarily large, in which case we say the LP is

unbounded.

3. There is a finite optimum value for the objective function, in which case we say the

LP is bounded.

6.2.1 Weak Duality

For any linear program P, we can associate another linear program D called its dual which

is defined as given below.
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Suppose P is written in the standard form:

min
n
∑

j=1

c j x j

s.t.
n
∑

j=1

ai j x j ≥ bi i ∈ 1, . . . , m (6.2)

x j ≥ 0 j ∈ 1, . . . , n

The following linear program is its dual:

max
m
∑

j=1

b j y j

s.t.
n
∑

i=1

ai j yi ≥ c j j ∈ 1, . . . , n (6.3)

yi ≥ 0 j ∈ 1, . . . , m

We call the original LP P as the primal.

The weak duality theorem is the following:

Theorem 6.2.1. If x ′ and y ′ are feasible solutions for the primal and the dual respectively,

then
n
∑

j=1

c j x
′
j ≥

m
∑

j=1

bi y
′
j

The proof of weak-duality and the procedure to find the dual of any LP can be found

in the lecture notes by Michel Goemans [15] or any standard book on combinatorial op-

timization. What is important to us is the consequence of weak-duality. Apart from weak

duality, we use two corollaries that follow from weak-duality:

1. If the dual is unbounded, then the primal is infeasible.

2. If the dual is bounded, then the primal is feasible.

All the problems we consider involve finding a feasible point in the dual to prove

bounds or feasibility of the primal. We call this feasible point in the dual as a certificate.

Remark. The main reason why LP works as an analytical tool is because the certificates

have simple structures. Most often the certificate is an extremal point in the dual polytope.
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6.2 LP-Method

For all the problems, we follow the three steps given below.

1. Formulate the given problem as an LP.

2. Take the dual.

3. Find a feasible point (certificate) in the dual. Invoke the weak-duality theorem.

The first two steps are trivial for all the problems. The last step is made easier by a

few tips which we describe below.

6.2.2 Tips

Tip 1: Scaling A constraint a>x ≤ b is said to be homogeneous if b is zero. If an inequality

is homogeneous, any feasible vector x multiplied by a positive number remains feasi-

ble. Scaling trick is useful in dealing with strict inequalities. A constraint (say) x > 0

can be written as x ≥ 1 sometimes.

Tip 2: Tightening When searching for a feasible point, it helps to make a group of inequal-

ities tight.

Tip 3: Zeroing Try setting all or some of the variables to zero or the same constant. This is

usually helpful if there are many variables, but only a few constraints (‘fat matrices’).

6.3 Problems

We illustrate the use of LPs to solve some Math Olympiad problems. In all cases, the solution

involves finding an extreme point of the dual and invoking the weak-duality theorem.

1 Baltic Olympiad 2006. For a sequence a1, a2, a3, . . . of real numbers it is known that

an = an−1 + an+2 for n = 2, 3,4, . . .. What is the largest number of its consecutive elements

that can all be positive?

Sol. We will show that the largest consecutive positive elements is 5. Without loss of

generality, we may assume that the largest such sequence begins with a1.

Upper bound. We first show that the length is less than six. The primal and corre-

sponding dual is given below.
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min 0

s.t. a2− a1−a4 =0

a3− a2−a5 =0 (6.4)

a4− a3−a6 =0

ai ≥1 i ∈ [6]

max
∑

βi

s.t. β1−α1 ≤0

β2+α1−α2 ≤0

β3+α2−α3 ≤0 (6.5)

β4+α3−α1 ≤0

β5−α2 ≤0

β6−α3 ≤0

Certificate. Set β2,β3,β4 to zero. The rest of the variables can be set to any positive

constant. This makes the dual unbounded which implies that the primal is infeasible.

Lower bound. To prove that a consecutive sequence of length five is possible, we

need to show that the following dual is feasible and bounded. Verify that the LP has only

all-zeros as the solution, hence the primal must be feasible when restricted to five numbers.

max
5
∑

i=1

βi

s.t. β1+α1 ≤0

β2+α1−α2 ≤0

β3+α2 ≤0 (6.6)

β4−α1 ≤0

β5−α2 ≤0

2 Folklore. Suppose bi ≥ 0 prove that :

a1+ · · ·+ an

b1+ · · ·+ bn
≥

n
min
i=1

ai

bi
(6.7)
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Sol. Let us define f (x) as follows:

f (x) =
a1 x1+ · · ·+ an xn

b1 x1+ · · ·+ bn xn

We will show that the RHS of (6.7) is the minimum value that f (x) attains in the

positive orthant. This proves the inequality since f (1) is equal to the LHS of (6.7). So we

have the following optimization problem:

min
a1 x1+ · · ·+ an xn

b1 x1+ · · ·+ bn xn
s.t x i ≥ 0

By scaling trick, we may assume that the denominator takes the value 1 when f (x)

attains the minimum. This is always possible since bis are non-negative. Hence, we can

write the optimization problem as an LP:

min
n
∑

i=1

ai x i s.t.
n
∑

i=1

bi x i = 1 x i ≥ 0

The dual is:

max α s.t. biα≤ ai i ∈ [n]

Certificate. Setting α=min ai/bi, gives a feasible point.

Hence the value of the primal is bounded by min ai/bi.

3 IMO 1965. Consider the system of equations with unknowns x1, x2, x3.

a11 x1+ a12 x2+ a13 x3 = 0

a21 x1+ a22 x2+ a23 x3 = 0

a31 x1+ a32 x2+ a33 x3 = 0

The coefficients ai j of the following equations satisfy the following conditions.

1. Coefficients a11, a22, a33 are positive numbers.

2. The remaining coefficients are negative.
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3. The sum of the coefficients in each equation is positive.

Prove that the only solution is x1 = x2 = x3 = 0.

Sol. Conditions (2) and (3) imply the first, so we can drop the first condition. We treat the

coefficients ai js as variables of the LP and x is as the coefficients. We scaling to deal with

positivity and negativity constraints.

min: 0 s.t

a11 x1+ a12 x2+ a13 x3 = 0 α1

a21 x1+ a22 x2+ a23 x3 = 0 α2

a31 x1+ a32 x2+ a33 x3 = 0 α3

−ai j ≥ 1 ∀i, j s.t i 6= j βi j

a11+ a12+ a13 ≥ 1 δ1

a21+ a22+ a23 ≥ 1 δ2

a31+ a32+ a33 ≥ 1 δ3

free variables: ai j ∀i, j s.t i 6= j

The dual (D) is as follows:

max δ1+δ2+δ3+
∑

i 6= j βi j s.t (6.8)

x1α1+δ1 ≤ 0 a11

x2α2+δ2 ≤ 0 a22

x3α3+δ3 ≤ 0 a33
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x2α1− β12+δ1 = 0 a12

x3α1− β13+δ1 = 0 a13

x1α2− β21+δ2 = 0 a21

x3α2− β23+δ2 = 0 a23

x1α3− β31+δ3 = 0 a31

x2α3− β32+δ3 = 0 a32

free variables: αis

We show that the dual 6.8 is unbounded if any of the x is is strictly positive. Since

the constraints are homogeneous, any scalar multiple of the feasible point is also feasible.

Hence, it is enough to show that there exists a feasible point with positive objective value.

We set the first group of constraints to equality (Tip 6.2.2).

δ1 =−x1α1

δ2 =−x2α2

δ3 =−x3α3

The second set of constraints now becomes:

β12 = α1(x2− x1)

β13 = α1(x3− x1)

β21 = α2(x1− x2)

β23 = α2(x3− x2)

β31 = α3(x1− x3)

β32 = α3(x2− x3)

96



Certificate. Suppose all the x is are not zero. Let x j have the largest positive value. We set

α j = −1 and all other αs to zero. This ensures that all the δs are non-negative. We need

to show that βs are also non-negative. Observe that x i − x j is non-positive for all values of

i since x j is chosen to be the largest positive number, hence all the βs are zero except the

ones that have α js on the right hand side of the equation.

4 IMO 1977. At a stockholders’ meeting, the board presents the month-by-month profits

(or losses) since the last meeting. “Note,” says the CEO, “that we made a profit over every

consecutive eight-month period.” “Maybe so,” a shareholder complains, “but I also see we

lost money over every consecutive five-month period!” What is the maximum number of

months that could have passed since the last meeting? The description of the problem is

taken from Peter Winkler’s book ‘Mathematical Puzzles’.

Sol. What we want is a sequence of numbers such that the sum of every eight consecutive

numbers is positive but sum of every five consecutive numbers is negative. We show that

the maximum length of such a sequence is 11.

First, we prove the upper bound by showing that a sequence of length 12 is not possi-

ble. Using the scaling tip, we can write the constraints as follows:

(Primal)

x1+ x2+ · · · + x7 + x8 ≥ 1 α1

x2+ x3+ · · · + x8 + x9 ≥ 1 α2

x3+ x4+ · · · + x9 + x10 ≥ 1 α3 (6.9)

x4+ x5+ · · · + x10+ x11 ≥ 1 α4

x5+ x6+ · · · + x11+ x12 ≥ 1 α5
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x1+ x2+ x3+ x4+ x5 ≤−1 β1

x2+ x3+ x4+ x5+ x6 ≤−1 β2

x3+ x4+ x5+ x6+ x7 ≤−1 β3 (6.10)

x4+ x5+ x6+ x7+ x8 ≤−1 β4

x5+ x6+ x7+ x8+ x9 ≤−1 β5

x6+ x7+ x8+ x9+ x10 ≤−1 β6

x7+ x8+ x9+ x10+ x11 ≤−1 β7

x8+ x9+ x10+ x11+ x12 ≤−1 β8

All the variables in the primal are free. The dual is as follows:

max
5
∑

i=1

αi +
8
∑

j=1

β j

s. t.
k
∑

p=1

αp −
k
∑

q=1

βq = 0 k ∈ {1, . . . , 5}

5
∑

p=1

αp −
k
∑

q=k−4

βq = 0 k ∈ {6,7, 8}

5
∑

p=k−7

αp −
8
∑

q=k−4

βq = 0 k ∈ {9, . . . , 12}

(6.11)

Certificate. We will show that the dual is unbounded. Since the constraints are

homogeneous it is enough to show that there exists a feasible point with positive objective

value. Notice that in all the constraints the number of αs is equal to the number of βs. This

means that the we can set all the variables to 1 and satisfy the constraints. This shows that

the primal is infeasible. Hence, there is no profit sequence of length 12. We will prove that

there exists a profit sequence of length 11. The primal in this case will remain the same

except that we drop the last constraint in Eq. 6.9 and 6.10. The corresponding dual is given
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below. The constraints are shown after some simplification.

max
5
∑

i=1

αi +
8
∑

j=1

β j

s. t. α1 = β1 x1

α2 = β2 x2

α3 = β3 x3

α4 = β4 x4

β5 = 0 x5

α1 = β5 x6

α2 = β6 x7

α3 = β7 x8

α4 = β5 x9

α4 = β6 x10

α4 = β7 x11

(6.12)

Certificate. The constraint β5 = 0 forces all the variables to be zero. Hence, all-zeroes is

the only feasible solution to the dual. Since the dual is feasible and bounded the primal

must be feasible which implies that there exists a profit sequence of length 11.

5 Engel Chap. 9 [8]. Let a1, . . . , an be a sequence of real numbers such that a0 = an = 0

and ak−1− 2ak + ak+1 ≥ 0 for k = 1,2, 3, . . . , n− 1. Prove that ak ≤ 0.

Sol. We need to bound the maximum value of ak under the given constraints. Let us

associate dual variables α0 and αn with equality constraints and βi with the ith inequality.

The dual is as follows:
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min 0

s.t. β1−α0 = 0

− 2β1+ β2 = 0

β1− 2β2+ β3 = 0

β2− 2β3+ β4 = 0

...

βk−1− 2βk + βk+1 = −1

...

βn−2− 2βn−1 = 0

αn− βn−1 = 0

free variables: α0 and αn

Since the objective is zero, we have to show that the equations are feasible. The basic

idea is to make use of the following observation: if βis are in an arithmetic progression all

but one of the equations are satisfied. We show that combining two A.P.s suffices to fix the

problem.

Lemma 6.3.1. There exists two positive values p and q such that setting βi = ip for (1 ≤

i ≤ k) and βn− j = jq for (1≤ j ≤ n− k) satisfies all the equations.

Proof: Observe that βk is both kp and and (n− k)q, so we need:

kp = (n− k)q

For any values of p and q, all the equations in the dual, except possibly the one correspond-

ing to ak, are satisfied. That equation will also be satisfied if:

(k− 1)p− 2kp+ (n− k− 1)q =−1

Since kp = (n − k)q, both p and q must have the same sign. Adding the previous two

equations gives p+q = 1, so p and q must be positive. Hence, we can find their values and

substitute to get the values of βs. �
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6 Matematikai Lapok, Budapest. Show that if 2n+ 1 real numbers have the property

that the sum of any n is less than the sum of the remaining n+ 1, then all these numbers

are positive. Titu Andreescu’s book ‘Mathematical Olympiad Challenges’.

Sol. We first solve the problem for the case when n = 3. This gives an idea to solve the

general case. Without loss of generality, assume that x1 is the minimum element of the

sequence. We need to show that x1 is positive. Using the scaling trick, we can write the

constraints as follows:

min x1

s.t. + x1+ x2−x3 ≥1

+ x2− x2+x3 ≥1

− x3+ x2+x3 ≥1

The dual is as follows:

min α1+α2+α3

s.t. +α1+α2− α3 =1

+α2−α2+ α3 =0

−α3+α2+ α3 =0

What is a feasible solution to the dual? Observe that setting α1 = 1/2, α2 = 1/2 and

α3 = 0 satisfies the constraints. Since the objective value is now positive, we have proved

the statement for n = 3. The special case gives a way to solve the general case which is

captured by the following lemma.

Lemma 6.3.2. There is always a dual solution in which two variables are set to 1/2 and

the rest of them to zero.

Proof: Let S =
�

x2, . . . , x2n
	

. Let A and B = S \ A be any two subsets with |A| = |B| = n.

Let variables αi and α j correspond to primal constraints x1+A− B ≥ 1 and x1+ B−A≥ 1,

respectively. We set αi and α j to 1/2. We use this as a certificate. �

Remark. The dual gives an insight to solve the problem combinatorially. The two con-

straints mentioned in the proof are sufficient to show that x1 ≥ 1.

7 IMO 2007. Real numbers a1, . . . , an are given. For each i, (1≤ i ≤ n), define
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di =max{a j | 1≤ j ≤ i} −min{a j | i ≤ j ≤ n}

and let d =max{di|1≤ i ≤ n}.

Prove that for any real numbers x1 ≤ x2 ≤ · · · ≤ xn the following relation holds:

max{|x i − ai| | 1≤ i ≤ n} ≥
d

2
. (6.13)

Sol. The problem can be formulated as an LP:

min t

s.t. t ≥+ x i − ai i ∈ [n] αi

t ≥− x i + ai i ∈ [n] βi (6.14)

x i+1≥x i i ∈ [n− 1] γi

All the variables are free. We need to show that the value of the above LP is at least

d/2. The dual is the following:

max
n
∑

i=1

ai(βi −αi)

s.t.
n
∑

i=1

(αi + βi) =1

β1−α1− γ1 =0

βi −αi − γi + γi−1=0 2≤ i ≤ n− 1

βn−αn− γn−1 =0

Let p and q, be the indices for which ap−aq is maximum. This quantity is equal to d if

p < q. We need to prove that the dual has a feasible solution whose value is d/2. This can

be done by setting βp = 1/2 and αq = 1/2 and the rest of αs and βs to zero. Now we need

to show that there exists a feasible solution within this assignment. The values of γs are

determined by the values of αs and βs. Variables γps through γq−1 are set to 1/2, while the

rest of them are zero. Since all the variables are non-negative and the value of the objective

is d/2, we have proved the relation given in (6.13).
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8 IMO 1979. Determine all real numbers a for which there exists positive reals x1, . . . , x5

which satisfy the relations

5
∑

k=1

kxk = a
5
∑

k=1

k3 xk = a2
5
∑

k=1

k5 xk = a3

Sol. Since we only need to check the feasibility of the equations, the dual can either be

considered as a minimization or maximization problem. Here is one possible dual:

max αa3+ βa2+ γa

s.t. i5α+ i3β + iγ≤0 i ∈ [5]

Lemma 6.3.3. If a = k2 for some k ∈ [5]∪ {0}, then the dual is feasible and bounded. For

any other value, the dual is unbounded.

Proof: Case 1: Suppose a is negative. The dual is unbounded. We set α = β = 0 and

γ=−∞.

Case 2: Suppose a = k2 for some k ∈ [5]. The objective is same as the L.H.S of one

of the constraints. Since each constraint is at most zero, the objective is upper bounded by

zero. Setting the dual variables to zero would give a feasible point.

Case 3: Suppose a is positive but is not equal to k2 for any k ∈ [5]. Since the inequalities

are homogeneous it is enough show that there exists a feasible point with positive objective

value. We will prove that there exists a feasible point with positive objective value in which

γ=−1. We rewrite the LP as follows:

max αa2+ βa− 1

s.t. i4α+ i2β − 1≤ 0 i ∈ [5]

Suppose k2 < a < (k+ 1)2 for some k ∈ [4]. We set the constraints corresponding to

i = k and i = k+1 to equalities. We prove that doing so satisfies all the other constraints and

also makes the objective positive. Let α′ and β ′ be the values that α and β take respectively,

when we solve these two equations. Consider the quadratic p(x) = α′x2 + β ′x − 1 = 0

(Fig. 6.1). Note that p(k2) = 0 and p((k + 1)2) = 0 and p(a) > 0. p(a) has the form of
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x

y

Figure 6.1: If a is in between two roots, then the objective is positive and the constraints are

negative.

objective function, so the objective is positive. The quadratic has negative values for all x

lesser than k2 or greater than (k+ 1)2, hence the other constraints are also satisfied.

�

9 Folklore. Prove that a 10x10 board cannot be tiled using 4x1 tiles.

Sol. Assume that the bottom-left corner denotes the cell (1, 1). Let hi, j denote the horizontal

tile that covers the cell (i, j) and three cells to its right. Similarly let vi, j denote the vertical

tile that covers the cell (i, j) and three cells above it. Let T be the set of all possible tiles,

that is, T =
¦

h1,1, . . . , h7,10

©

∪
¦

v1,1, . . . , v10,7

©

.

We formulate the problem as follows: What is maximum number of non-overlapping

tiles we can place? If a tiling exists then the answer must be 25. We show that it not

possible to place more than 24 non-overlapping tiles.

LP-formulation. We want to pick the maximum number of tiles subject to the constraint

that no two tiles overlap. We ensure this by saying that among all the tiles that cover a

cell c, at most one should be picked. The corresponding linear program is given below. C

denotes the set of all cells and Tc denotes the tiles in T that cover the cell c.

max:
∑

t∈T

t

∑

t∈Tc

t ≤ 1 ∀c ∈ C

The dual will have one variable for each cell. Let C ′ denote the set of dual variables.

Let C ′t ⊂ C ′ denote the dual variables that correspond to the cells covered by the tile t. The

dual is given below.
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Figure 6.2: The dual variables corresponding to shaded cells are set to 1 and the rest to 0. This

assignment gives a feasible solution with objective value 24.

.

min:
∑

c∈C ′
c

∑

c∈C ′t

c ≥ 1 ∀t ∈ T

Certificate. There is a feasible solution to the dual with objective value 24. We set all the

dual variables corresponding to the shaded cells in Fig. 6.2 to 1 and the rest to zero. Since

there are 24 shaded cells, the objective has value 24. To check for feasibility notice that

every possible tile contains exactly one shaded cell, so all the dual constraints are satisfied

with equality.

Remark. We can give a direct counting proof using the certificate. Suppose, for contradic-

tion’s sake, there was a tiling of the board. Then each tile would be placed on exactly one

shaded cell (Fig. 6.2). This impossible since there are only 24 shaded cells. The problem

appears in a nice survey paper on tilings by Ardila and Stanley [1]. The combinatorial proof

given in their paper is different from ours.

6.4 Discussion

Most textbooks and lectures use examples like matching, shortest path and network flow as

introductory examples for duality. These examples rely on linear algebra in some way. We

have given simpler illustrative examples for weak-duality. In all the problems we discussed,

the key to the solution was finding a certificate with a simple structure. This is also one of

the keys to solve a few research problems. Popular examples can be found in [33].
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Chapter 7

Conclusion

All mathematicians are familiar with the concept of an open research problem.

I propose the less familiar concept of an open exposition problem. Solving an

open exposition problem means explaining a mathematical subject in a way that

renders it totally perspicuous. Every step should be motivated and clear; ideally,

students should feel that they could have arrived at the results themselves.

-Timothy Chow [5]

7.1 Direct proofs vs WISE

We have seen that in all three applications the use of WISE methodology is invisible in

the final solutions. For example, the anchor method can be described solely in terms of

extremal discrepancy graphs. We can describe query lower bounding technique solely in

terms of extremal critical graphs. It is a convention in textbooks to describe solutions in a

way that makes them easy to verify. We feel that from an educational point of view this

does not do justice to the craft of designing algorithms. Hence, we have chosen a style of

exposition that makes the source of ideas transparent to the student.

There are many problems in computer science with short clever results but for which

no exposition exists that describe their route to discovery. It would be interesting to give

such an account for such problems using the WISE methodology. A few possible candidate

problems are listed below:

• Linear-time median finding algorithm.

• Katona’s proof of Erdos-Ko-Rado theorem.
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Problem Solution

WISE

Figure 7.1: Direct proofs are simpler to explain but deriving via WISE, though long-winded, makes

the process of discovery transparent.

• Karger’s randomized min-cut algorithm.

• Schoning’s algorithm for 3SAT.

• Perceptron algorithm for finding a separating plane.

7.2 Problems related to teachability of WISE

Among the steps discussed in WISE, we believe the following two are critical:

1. Formulating a set of weak candidate problems There are hardly any questions in text-

books whose objective is to come up with a list of weaker problems for a given prob-

lem. Most instructors also assume that this step will be implicitly done as part of

solving a problem.

2. Coming up with multiple proofs In some instances, we may have to come up with

multiple proofs for the weak problem before finding the proof that generalizes. This

is also a skill that is not given due importance in the textbooks.
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