
Interactive Tutoring System for High School Geometry

Dual Degree Report

Submitted in partial fulfillment of the requirements

for the Degree of

Bachelor of Technology

and

Master of Technology

by

Jayanth Tadinada

06D05016

Supervisors

Prof. Sridhar Iyer

Prof. Anirudha Joshi

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

June 2011

ii

Dissertation Approval Certificate

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

The dissertation entitled submitted by Jayanth Tadinada (Roll No: 06D05016)

is approved for the award of Dual Degree (BTech + MTech) in Computer

Science and Engineering from Indian Institute of Technology, Bombay.

Prof. Sridhar Iyer

CSE, IIT Bombay

Supervisor

Prof. Anirudha Joshi

IDC, IIT Bombay

Supervisor

Prof. Vijay Raisinghani

HoD, NMIMS

External Examiner

Prof. Sahana Murthy

CDEEP, IIT Bombay

Internal Examiner

Prof. Girish Saraph

EE, IIT Bombay

Chairperson

Place: IIT Bombay, Mumbai

Date: 28nd June, 2011

iii

iv

Declaration

I declare that this written submission represents my ideas in my own words and

where others’ ideas or words have been included, I have adequately cited and ref-

erenced the original sources. I also declare that I have adhered to all principles of

academic honesty and integrity and have not misrepresented or fabricated or falsified

any idea/data/fact/source in my submission. I understand that any violation of the

above will be cause for disciplinary action by the Institute and can also evoke penal

action from the sources which have thus not been properly cited or from whom proper

permission has not been taken when needed.

Signature

Name

Roll No

:

:

:

Jayanth Tadinada

06D05016

Date :

v

vi

Abstract

Most tutoring systems and self learning software are restricted to objective type

questions for assessment and evaluation. However, objective type questions are not

very effective in assessing the students’ ability to solve proof problems in mathematics.

The purpose of this project is to develop an interactive proof module which guides

high school students while solving proof type problems in mathematics. The content

creator enters the problems and the acceptable solutions into the system. The student

proves a problem by assembling the statements of a proof from a stack of options.

The system compares the proof assembled by the student with the model solutions

at each step and gives appropriate hints and feedback.

vii

viii

Acknowledgments

I wish to extend my most sincere thanks to my advisors Prof. Sridhar Iyer and Prof.

Anirudha Joshi for providing me with the opportunity of being a part of this project

and for their consistent directions. I want to thank Mrs. Suchi Srinivas, Mr. Sridhar

Rajagopalan and Ms. Anupriya Gupta of Educational Initiatives Pvt. Ltd. for their

suggestions and necessary information regarding the problem statement. I express

my gratitude to Prof. Sahana Murthy, Akhil Deshmukh and Kumar Lav for their

invaluable help in the project. Finally, I wish to thank the Department of Computer

Science and Engineering for providing an environment where I could work effciently.

ix

x

Contents

Abstract vii

Acknowledgments ix

1 Introduction 1

2 Literature Survey 3

2.1 Why is mathematics difficult? . 3

2.2 All about misconceptions . 4

2.2.1 What are misconceptions? . 4

2.2.2 Learning theories . 4

2.2.3 Why do students get misconceptions? 5

2.3 A few common misconceptions . 6

2.3.1 Counting numbers and early arithmetic 6

2.3.2 From positive numbers to negative numbers 7

2.3.3 Fractions and rational numbers 8

2.3.4 Geometry and measurement 9

2.3.5 Ambiguity in the mathematical language 10

2.4 Some computer based teaching tools 10

2.4.1 Mindspark . 10

2.4.2 Mindspark’s Proofs Module 11

2.4.3 Carnegie Learning’s Cognitive Tutor 12

2.4.4 Other Commercial Tools and Packages 14

3 The Problem Statement 15

3.1 Existing Work . 15

3.1.1 Mindspark’s Proofs Module 16

xi

3.1.2 Carnegie Learning’s Cognitive Tutor 16

3.1.3 Other Commercial Tools and Packages 18

3.2 Scope and Functional Requirements 18

3.3 Approach . 19

3.3.1 The Tree Model . 20

3.3.2 The Box Model . 24

4 Design 28

4.1 Proof Assembly Module . 28

4.2 Content Creation Module . 30

4.2.1 The Solution Tree . 31

4.2.2 The Content Creation Interface 32

4.2.3 The XML Tree . 34

4.3 The Solution Tree Module . 34

4.3.1 The Equation Node . 34

4.3.2 Merging Solutions . 35

4.3.3 The General Solution Tree . 35

4.4 Solution Matching Module . 36

4.5 Hint Generation Module . 37

5 Implementation 38

5.1 The Content Creation Module . 38

5.1.1 The Content Creation Interface 38

5.1.2 The XML Tree . 40

5.2 The Solution Tree Module . 43

5.2.1 The Equation Datastructure 43

5.2.2 Merging Solutions and generating the GST 44

5.3 Solution Matching Module . 46

5.4 Proof Assembly Module . 47

6 Conclusion and Future Work 49

6.1 Interfaces and Hint Generation . 49

6.2 Evaluation . 50

6.3 Integration . 50

6.4 Expanding the Scope . 50

xii

Bibliography 51

xiii

List of Figures

2.1 In a task given to fourth graders, a significant number of students

answered this way [14, p. 20] . 9

2.2 A screenshot of Mindspark’s existing module for geometry proof type

question . 12

2.3 A screenshot of Carnegie Learning’s Cognitive Tutor 13

3.1 A screenshot of Mindspark’s existing module for geometry proof type

question . 16

3.2 A screenshot of Carnegie Learning’s Cognitive Tutor 17

3.3 Workflow of the system showing all the modules 20

3.4 Figure for Example 1 . 21

3.5 The Tree representation of the four solutions of Example 1 24

3.6 Figure for Example 2 . 25

3.7 The Box representation of the two solutions of Example 2 26

4.1 Workflow of the system showing all the modules 29

4.2 A wireframe of the student’s interface 30

4.3 Structure of an I-node . 31

4.4 Example of each node . 32

4.5 A wireframe of the Content Creation Interface 33

4.6 P1, P2 of Example 2 represented as solution trees 35

4.7 GST formed after merging P1 and P2 of Example 2 36

5.1 Screenshots of the Content Creation Interface 39

5.2 Equation Class and it’s Attributes . 44

5.3 Screenshot of the Proof Assembly interface 48

xiv

Chapter 1

Introduction

With computers and the internet becoming increasingly capable and affordable,

use of technology in education has opened up avenues that have the potential to

change the educational landscape. The educational software market has flourished in

the past few years and a lot of research and development is happening on the use of

computers as genuine teaching tools.

Learning from a computer has a lot of advantages compared to traditional classroom

model. The learner can learn in a one-on-one setting at anytime of the day at his own

pace. Intelligent tutoring systems enable the learner to spend more time learning the

subject matter after school hours. Educational software can also be more effective

than text books because they can provide a higher level of interactivity and can be

motivating factor.

Most of the intelligent tutoring systems rely on objective type questions for eval-

uation and assessment. While smart design of questions and options can ensure the

effectiveness of objective questions in achieving the learning objectives, there are areas

where they are not suitable for assessment of student’s knowledge and understanding

of the concepts. One such area is mathematical proofs.

The goal of this project is to build a tutoring module that guides high school

students while solving geometry proof type problems. To achieve this goal, the system

should be highly interactive and it should be able to provide hints depending on the

student’s response and common misconceptions specific to the topic.

1

2 CHAPTER 1. INTRODUCTION

For such a system to work well, it is important to make the user experience as rich

and intuitive as possible. Otherwise using the system itself will become a non-trivial

task for the student which might result in cognitive overload of his working memory.

Hence the design of the interfaces is very vital for such a system and educational

software in general.

Chapter 2 describes some literature survey on student’s misconceptions in Mathe-

matics and discusses on how and why they occur. Chapter 3 details out the problem

statement, the scope of the problem and the functional requirements for the project.

It also discusses the related work in the field and the approach taken to find the solve

the problem.

Chapter 4 describes the workflow of the system and the nature of interaction be-

tween each of it’s modules. The remainder of the chapter describes the interfaces,

design and the functionalities of each module. The details, specifics and extent of

implementation are explained in chapter 5. Evaluation, possible extensions of the

module and future work are discussed in chapter 6,

Chapter 2

Literature Survey

2.1 Why is mathematics difficult?

If there is one thing that all teachers, students, parents, politicians and economists

agree upon, it is that mathematics is a difficult subject. Mathematics continues to

be one of the most difficult subjects to teach and to learn at the school level. The

reason partly could be because mathematics is presented as a mysterious subject in

which definitions, constructs and theorems etc. are to be accepted as they are! This

approach to teaching math inevitably creates a socio-mathematical norm in which the

student feels that mathematics does not always has to make sense, that the teacher

always knows and arbitrates the answer, and that math gets hard as the student

progresses in school. [1, chap. 1]

As a result of this approach, a fear of mathematics arises in the minds of the stu-

dents because they do not have an intuitive understanding of the numbers and the

abstract constructs that are built upon them. Without this intuitive understanding,

students develop misconceptions as early as primary school which are seldom identi-

fied and corrected. These misconceptions are carried forward to higher classes with

increasing complexity.

However, it is not fair to entirely blame the teachers or the educational system for

the way it is taught because math is indeed hard. Math has its own language, new

words, context and arrangement. It is the formal introduction to logic and teaches

children how to think and reason. It takes place entirely in the mind and hence

students may find it non-tangible and overwhelming sometimes.”[1, chap. 1]

3

4 CHAPTER 2. LITERATURE SURVEY

2.2 All about misconceptions

2.2.1 What are misconceptions?

Mistakes are an essential part of learning. Mistakes can either be slips, errors or

misconceptions. It is important to distinguish between the three. Slips are wrong

answers due to processing faults. They are not systematic and are carelessly made by

both experts and novices. They can be easily detected and spontaneously corrected.

Errors are wrong answers due to planning; they are systematic in that they are

applied regularly in the same circumstances. Errors are symptoms of the underlying

conceptual structures that are the cause of the errors. These underlying beliefs and

principles in the cognitive structure that are the cause of systematic conceptual errors

are called misconceptions. [12]

2.2.2 Learning theories

Two opposing learning theories are outlined below in a simple manner that will illus-

trate different approaches to handling pupils’ misconceptions. [8]

Behaviorist theory

The behaviorist theory of learning assumes that knowledge has a separate universal

existence and learning is defined as transfering that knowledge into the mind. The

pupil is viewed as a passive recipient of knowledge, an “empty vessel” to be filled, a

blank sheet (tabula rasa) on which the teacher can write. This theory sees learning as

conditioning the correct responses through stimulus-response bonds. These stimulus-

response bonds are strengthened by success and reward (positive reinforcements) and

weakened by failure and punishments (negative reinforcements).

From a behaviorist perspective, errors and misconceptions are not important be-

cause, it does not consider pupils’ current concepts as relevant to learning. Errors

and misconceptions are rather seen as faulty bytes in a computer’s memory i.e. those

which can be erased and overwritten through drill and practice.

2.2. ALL ABOUT MISCONCEPTIONS 5

Constructivist theory

The constructivist theory of learning assumes that concepts are not directly taken

from experience, but built upon existing knowledge. Hence a student’s ability to

learn from an experience depends on the quality of his observations and the quality

of his pre-existing theories. The student therefore is not seen as a passive recipient

of knowledge but as an active participant in the construction of his own knowledge.

This construction activity involves the interaction of a child’s existing ideas and new

ideas. New ideas are interpreted and understood in the light of that child’s current

knowledge. In addition to interpretation, children also organize and structure this

knowledge into large units of inter-related concepts called schemas.

When a new idea is presented to the student, the idea is interpreted in terms

of an existing schema. This is called assimilation. Sometimes the new idea may

be quite different from his existing schemas; in which case the student reconstructs

and reorganizes his existing schema to accommodate the new idea with the previous

knowledge intact. This is called accommodation.

From a constructivist perspective, misconceptions occur because of the gaps be-

tween existing schemas and the new ideas presented.

2.2.3 Why do students get misconceptions?

Rote learning

If a new idea is so different from the student’s existing schemas that assimilation

or accommodation is impossible, then the student creates a “box” that is entirely

disconnected with the existing knowledge schemas and tries to memorize the idea.

This is called rote learning. In such a case, the idea is not understood because it

is not linked to any existing knowledge. This isolated knowledge is also difficult to

remember. Such rote learning is the cause of many mistakes and misconceptions

among students. [8]

Intelligent overgeneralization

One of the main sources of misconceptions is overgeneralization of previous knowl-

edge (that was correct in an earlier domain), to an extended domain (where it is not

6 CHAPTER 2. LITERATURE SURVEY

valid). For example, assumption of commutativity in subtraction is a common mis-

conception. The children first observe commutativity in addition and multiplication

when learning their tables. In lieu of any contradictory evidence, they have no reason

to expect that subtraction will behave otherwise. In this case, the children are just

overgeneralizing over operators. Similar overgeneralization over operators has been

observed in division, and also in algebra. [14]

Sticking to misconceptions

“Erroneous conceptions are so stable because they are not always incorrect. A concep-

tion that fails all the time cannot persist. It is because there is a local consistency and

a local efficiency in a limited area, that those incorrect conceptions have stability”.

For example, a child newly learning about decimal system might overgeneralize

his prior knowledge of integers and think that 5.25 > 5.5 since 25 > 5. The problem

with this flawed conceptual model is that it works in a lot of cases when both the

numbers compared have the same number of digits after the decimal point. [12]

Conclusion

From a constructivist perspective, errors and misconceptions are a natural result of

children’s effort to construct their own knowledge. These misconceptions should not

be looked down as terrible things that need to be eliminated because that might

shake the child’s confidence on his previous knowledge which will only lead to more

misconceptions. These errors should be regarded as a part of the learning process

and as an opportunity to enhance learning.

2.3 A few common misconceptions

2.3.1 Counting numbers and early arithmetic

Misconceptions in mathematics can spring right from primary school. It is important

to identify them early on and resolve them. It is also important to study and under-

stand why misconceptions occur so that teaching strategies could be better designed

to avoid the misconceptions.

2.3. A FEW COMMON MISCONCEPTIONS 7

Counting troubles diagnose early problems

Counting is a very culture specific activity. Children who learn to count in English

often find it hard to make relations and see patterns in numbers. Japanese children

are found to have an advantage in recognizing patterns in numbers faster than their

English counterparts because linguistically, Japanese numbers capture the pattern

more efficiently than English which has an irregular sequence around ‘eleven, twelve,

thirteen, fourteen and fifteen’. Research has shown that this linguistic failure of the

English language explains many children’s delay in the mastery of the sequence of

numerals needed for counting. However, this advantage is only shortlived for the

Japanese students as most students make up for the initial hiccups irrespective of the

language. [14, chap. 4]

Subtracting smaller from larger over-generalization

When children are initially taught subtraction, they are usually taught ‘simple sub-

traction without decomposition’ first followed by two digit subtraction that involves

carrying. Teachers while teaching simple subtraction often give thumb rules like “al-

ways subtract smaller number from larger” which the student practices and masters.

But this rule of thumb is not valid in case of two digit subtraction with carrying. How-

ever, students intuitively tend to over-generalize rules like these and end up making

mistakes like 32− 17 = 25. [14, chap. 4]

2.3.2 From positive numbers to negative numbers

As we shall see below, a number of intelligent over-generalizations that the students

make when dealing with positive numbers break down when encountered with inte-

gers. This intelligent over-generalization is the root cause for quite a few misconcep-

tions. However, most of these misconceptions can be cleared with the use of a number

line. [14, chap. 3]

Why is minus times minus plus?

The negative numbers present learners with many problems when they are first in-

troduced and continue to be a problem for children who think mathematics ought

to be sensible. When the child for the first time sees something like subtracting −

8 CHAPTER 2. LITERATURE SURVEY

1 from+ 5 gives+ 6, she wonders how can one take away something from a number

and end up with a bigger number!

These are not easy questions to answer and unfortuntely, enough time is not

devoted by the teachers to address doubts like these. Perhaps because the student

fails to get answers that satisfy his intuition and common sense, she begins to think

that negative numbers are eccentric and capricious. [14, p. 111]

Other intelligent over-generalizations that fail

Children make a lot of generalizations when they are learning subtraction, multipli-

cation etc. Most of these generalizations are true over Whole numbers and are also

easily verifiable by intuition. Also most of these generalizations fail when the child

over-generalizes the same thumb-rules over integers.

An important example of such an over-generalization is the belief that ‘multipli-

cation makes bigger ’ (or that ‘division makes smaller ’). This is true in most cases

over Whole numbers but fails in case of integers and rational numbers. So children

end up making mistakes like 0.3× 0.2 = 0.6 or that 0.52 > 0.5 etc. [16]

2.3.3 Fractions and rational numbers

Modeling fractions – the fallacies of the cake model

Studies have shown that using the cake model does not mean that the student grasps

the concept of ratio and proportion. In a study, only 7% of 8-year old students have

correctly recognized that 1
2
, 2

4
and 4

8
are the same shaded fraction of a circle.

Most of the children who have grasped the concept of part-whole relationship with

respect to the cake model may be completely baffled when the whole rectangle is cut

into parts in different ways. In fact 75% of children aged nine have agreed that if

a round cake is divided into four parts using four parallel lines, then each piece is

one-fourth of the cake.[14, chap. 4]

Division and multiplication of rational numbers

Students often have a common misconception that decimals and fractions are different

types of numbers and hence find the concept of finding equivalent fractions confusing

and counterintuitive. Their intuition further breaks down when they have to divide

a whole number by a fraction. The concept of dividing by 2 or 5 is intuitive for them

2.3. A FEW COMMON MISCONCEPTIONS 9

but division by 1
4

is not straightforward and requires more thought. This difficulty

can be overcome by providing the student with appropriate scaffodling. For example,

the children can be taught to think of 3÷ 1
4

as ‘the number of 1
4
’s that fit into 3’.

Multipying decimals is also an area where students tend to have a lot of miscon-

ceptions. Students are quick to generalize from 1× 1 = 1 that 0.1× 0.1 = 0.1. Also

errors like 2.3× 10 = 2.30 or 20.3 etc. are quite common. [16]

2.3.4 Geometry and measurement

Identifying known geometric objects in a different orientation

Students are heavily influenced by the prototypes that they have been presented

with. For instance, in a typical math textbook, all rectangles are shown to be lying

‘flat’ on one of its longer sides. This often leads to a situation where the children

fails to recognize a rectangle when it is in a different orientation. Students also have

trouble recognizing that a square is also a rectangle and that a rectangle is also a

parallelogram. [14, chap. 4]

Figure 2.1: In a task given to fourth graders, a significant number of students answered
this way [14, p. 20]

From angles to triangles

Children are taught to identify acute, obtuse, right and straight angles. And soon

they are introduced to the concept of acute angled, right angled and obtuse angled

triangle. In a task given to sixth graders, more than 50% of the students were unable

10 CHAPTER 2. LITERATURE SURVEY

to explain why a triangle is obtuse angled even though the triangle has two acute

angles and only one obtuse angle. [6]

2.3.5 Ambiguity in the mathematical language

It is important for the student to grasp and understand the terminology, what it

means in a mathematical sense and realize the incoherence between the real world

meanings of the word with the mathematical usage of them. “In the real world, the

student has little problem realizing that a town square is not really square and that

the edge of a stream is not really straight but it is not so in the case of mathematics”.

[14, chap. 5] Here it is important for the student to understand the mathematical

sense when words like ‘square’ and ‘edge’ are used. Failure to grasp this mathematical

language leads to mistakes like these:

Question: How many times can you subtract 7 from 83, and what is left afterwards?

Response from a student: I can subtract as many times as I want, and it gives 76

every time. [14, chap. 5]

2.4 Some computer based teaching tools

Although a number of applications, softwares and interactive tools were developed in

the recent years to help teach mathematics, most of them are focused on students of

ages 4 - 9. It is important to notice that as the target age of the students increases, the

degree of interactivity in the system decreases and tend to take a standard, textbook

style approach without much interactivity. We review a few tools that are relevant

to the nature of the project in this section.

2.4.1 Mindspark

Mindspark is an adaptive self learning programme that helps children improve their

skills and conceptual understanding of the subjects in their curriculum. The student

interactively answers questions of progressively increasing complexity and learning

happens through answering the questions. The questions are carefully designed to

contain interactive animations and explanations which aim at strengthening the con-

ceptual understanding of the subject. Extremely finely graded questions allow the

2.4. SOME COMPUTER BASED TEACHING TOOLS 11

system to analyze a student’s understanding and pin point misconceptions.

The system has a built in adaptive logic that allows the student to learn at her

own pace. Typically, a student would select a topic, and start with fundamental

questions based on the topic. A student with a deeper understanding of the topic

automatically moves ahead quickly to more advanced levels, while those who need to

spend more time on the basics will be served up more questions of the basic level.

Whenever a student goes wrong in a particular type of question, a detailed expla-

nation is given addressing the conceptual misunderstanding and common misconcep-

tions. These explanations are usually visual or animated that engage students and

increase their motivation levels. If a student does poorly in a particular topic, she

is asked to take a remedial item which is much more interactive and focuses on the

basics.

Each student has a personal account in which her performance is tracked. Stu-

dents are awarded animated light bulbs called “sparkies” if they do well consistently

thereby providing them with some playful motivation. The system also provides live

feedback to parents and teachers so that they can track the child’s progress. For a

parent, the report provides details of how the child is doing in different topics and

concepts. For a teacher, the report not only provides a summary of the progress made

by her class, but also details of how each student is progressing in different topics and

concepts. [11]

2.4.2 Mindspark’s Proofs Module

Mindspark has experimented with a simple model for assessing geometry proofs. A

screenshot of the model is shown in figure 3.1. Although, the model forces the student

to think trough the proof before filling the blanks, it is very rudimentary. It lacks

interactivity, scalability, intelligent feedback and more importantly, it gives away all

the crucial steps of the solution that require conceptual understanding of the topic.

For all aforementioned reasons, this module needs to be completely redesigned from

scratch.

12 CHAPTER 2. LITERATURE SURVEY

Figure 2.2: A screenshot of Mindspark’s existing module for geometry proof type
question

2.4.3 Carnegie Learning’s Cognitive Tutor

Carnegie Learning, Inc. is a publisher and distributor of innovative research-based

mathematics curricula for middle-school, high-school and post-secondary students.

Cognitive Tutor is an intelligent tutoring software developed by Carnegie Learning

that is based on J. Anderson’s ACT∗ theory of learning.

According to ACT∗, all knowledge begins as declarative information; procedural

knowledge is learned by making inferences from already existing factual knowledge.

ACT∗ supports three fundamental types of learning: generalization, in which produc-

tions become broader in their range of application, discrimination, in which produc-

tions become narrow in their range of application, and strengthening, in which some

productions are applied more often. New productions are formed by the conjunction

or disjunction of existing productions. [7]

2.4. SOME COMPUTER BASED TEACHING TOOLS 13

Figure 3.2 shows a screenshot of a geometry proof problem in cognitive tutor. The

question is displayed on the left side of the screen and the student has to build a

flowchart for the proof on the right side of the screen using the interface. Each box

in the flowchart represents a step in the proof and each arrow represents implication.

The system gives live feedback and intelligent hints to guide the student through the

solution and also assesses the students performance and identifies his/her misconcep-

tions in the topic.

Figure 2.3: A screenshot of Carnegie Learning’s Cognitive Tutor

The cognitive tutor is now implemented in a few of counties in the US. A number

of studies conducted on control groups have shown that a majority of teachers and

students have reacted positively to cognitive tutor showing improvements in both

efficiency and test scores. But a study of 10 schools that implemented Cognitive Tu-

toring by The Department of Educational Accountability, Fairfax County, Virginia

showed that students who had cognitive tutor did not outperform their traditional

mathematics counterparts in Standards of Learning (SOL) Algebra tests across two

and a half years. On the SOL Geometry total test, only in one year, students in cogni-

tive tutor schools demonstrated better performance than their tradition mathematics

curriculum counterparts. [18]

14 CHAPTER 2. LITERATURE SURVEY

2.4.4 Other Commercial Tools and Packages

A number of commercial tutorial and self help packages like Math Success Deluxe,

Math Advantage, High Achiever etc. are available online. Most of them are designed

specifically for the American curriculum. Their application and utility (by design)

is limited to being additional material for homework help rather than as teaching

tools for conceptual understanding. Most of the questions at the high school level are

numerical in nature in an objective format. The proof type problems are covered but

only as a guide with printed solutions at the back and the practice problems lacked

any sort of interactivity. [17]

Chapter 3

The Problem Statement

Carefully designed objective type questions can test a student’s conceptual under-

standing of most topics in mathematics at highschool level. Currently all questions

in the Mindspark program (with the exception of a few remedial items) are objective

type questions. However, there are a few areas where objective type questions are not

sufficient. Geometry proofs is one such area where student’s ability to construct a

proof by applying various rules and theorems cannot be assessed with only objective

type questions. The goal of this project is to design and build an interactive geometry

proof module for Mindspark which will guide students while solving geometry proof

type problems by giving appropriate feedback and hints.

This chapter defines the scope of the project and the functionalities of the proof

module, proposes a workflow for the system and discusses a few approaches for solving

the problem including their mertis and demerits.

3.1 Existing Work

Although a number of applications, softwares and interactive tools were developed in

the recent years to help teach mathematics, most of them are focused on students of

ages 4 - 9. For most tools focused on high school students, the explanation and the

review problems tend to become more standard and textbook-like as the complexity

of the concepts increases.

15

16 CHAPTER 3. THE PROBLEM STATEMENT

3.1.1 Mindspark’s Proofs Module

Mindspark has experimented with a simple model for assessing geometry proofs. A

screenshot of the model is shown in figure 3.1. Although, the model forces the student

to think trough the proof before filling the blanks, it is very rudimentary. It lacks

interactivity, scalability, intelligent feedback and more importantly, it gives away all

the crucial steps of the solution that require conceptual understanding of the topic.

For all aforementioned reasons, this module needs to be completely redesigned from

scratch.

Figure 3.1: A screenshot of Mindspark’s existing module for geometry proof type
question

3.1.2 Carnegie Learning’s Cognitive Tutor

Carnegie Learning, Inc. is a publisher and distributor of innovative research-based

mathematics curricula for middle-school, high-school and post-secondary students.

3.1. EXISTING WORK 17

Cognitive Tutor is an intelligent tutoring software developed by Carnegie Learning

that is based on J. Anderson’s ACT∗ theory of learning.

According to ACT∗, all knowledge begins as declarative information; procedural

knowledge is learned by making inferences from already existing factual knowledge.

ACT∗ supports three fundamental types of learning: generalization, in which produc-

tions become broader in their range of application, discrimination, in which produc-

tions become narrow in their range of application, and strengthening, in which some

productions are applied more often. New productions are formed by the conjunction

or disjunction of existing productions. [7]

Figure 3.2 shows a screenshot of a geometry proof problem in cognitive tutor. The

question is displayed on the left side of the screen and the student has to build a

flowchart for the proof on the right side of the screen using the interface. Each box

in the flowchart represents a step in the proof and each arrow represents implication.

The system gives live feedback and intelligent hints to guide the student through the

solution and also assesses the students performance and identifies his/her misconcep-

tions in the topic.

Figure 3.2: A screenshot of Carnegie Learning’s Cognitive Tutor

18 CHAPTER 3. THE PROBLEM STATEMENT

The cognitive tutor is now implemented in a few of counties in the US. A number

of studies conducted on control groups have shown that a majority of teachers and

students have reacted positively to cognitive tutor showing improvements in both

efficiency and test scores. But a study of 10 schools that implemented Cognitive Tu-

toring by The Department of Educational Accountability, Fairfax County, Virginia

showed that students who had cognitive tutor did not outperform their traditional

mathematics counterparts in Standards of Learning (SOL) Algebra tests across two

and a half years. On the SOL Geometry total test, only in one year, students in cogni-

tive tutor schools demonstrated better performance than their tradition mathematics

curriculum counterparts. [18]

3.1.3 Other Commercial Tools and Packages

A number of commercial tutorial and self help packages like Math Success Deluxe,

Math Advantage, High Achiever etc. are available online. Most of them are designed

specifically for the American curriculum. Their application and utility (by design)

is limited to being additional material for homework help rather than as teaching

tools for conceptual understanding. Most of the questions at the high school level are

numerical in nature in an objective format. The proof type problems are covered but

only as a guide with printed solutions at the back and the practice problems lacked

any sort of interactivity. [17]

3.2 Scope and Functional Requirements

The project aims to make a tool which helps students solve geometry proof problems

specific to congruency and similarity of triangles. The design of the interface and the

architecture should be flexible enough to be extended to proof type problems in all

topics of mathematics. An initial list of functional requirements has been prepared

after meetings with various members of the Mindspark team. A description of the

system is given through the initial functional requirements below:

• An intuitive interface for the content creator to upload questions, figures and

model solutions into the database.

• On the student end, a question is retrieved from the database and presented to

the student along with the images (if any)

3.3. APPROACH 19

• The student should be able to make geometrical constructions that are required

for solving the problem (dropping a perpendicular from a point onto a line etc.)

• The system should have constraints that force the students to explicitly state

what is given in the problem and what is to be proved. This is in accordance

with the NCERT guidelines for evaluating proof type problems.

• The students will simply type the proof. The interface for typing down math-

ematical symbols and equations should be child friendly to minimize cognitive

overload of the students’ working memory.

• The proof consists of a series of statements. Each statement, however trivial

should be supported by a reason. The system should check the validity of the

statement and give appropriate feedback.

• While typing the statements and reasons, an auto-complete suggestion mecha-

nism is desirable. (optional requirement)

• The reason for every statement will be selected from a drop down list. Elements

in the drop down list should be automatically populated by the system.

• The student should be able to mark equations and be able to refer them in the

subsequent steps of the proof.

• Whenever the student makes a mistake, the system should suggest intelligent

hints which will guide the student through the step. The hints should be based

on student response and common misconceptions in that particular topic.

• There should be a “hint” button in the interface which the student can use at

any point of time.

• There should be a “show next step” button to show the next step to the student.

• The module should seamlessly integrate into the existing Mindspark system.

3.3 Approach

Given the scope of the problem, the system should be designed in such a way that

it is easily extendable to proof type problems in other areas of mathematics and also

20 CHAPTER 3. THE PROBLEM STATEMENT

leave enough scope for improving individial components of the system like hints, user

interface etc. To allow the flexibility, the system is designed in a modular fashion.

Figure 3.3 shows the work flow of the system.

Figure 3.3: Workflow of the system showing all the modules

The crux of the design lies in the way the solution tree is modeled. Two approaches

that were considered (but later found inadequate) to model the solution tree are

discussed below.

3.3.1 The Tree Model

To explain this approach, we use the following example problem.

Example 1: In M ABC, BD and CE are perpendiculars to sides AC and AB of with BD =

CE. Prove that ABC is an Isosceles triangle.

There are numerous ways to solve this problem using only the properties of tri-

angles. Let us consider four of the possible solutions. Each statement in the proof

3.3. APPROACH 21

Figure 3.4: Figure for Example 1

is identified by a unique number. If the same statement appears in two different

solutions, the same number is used to identify that statement.

Solution 1 (SOL1): This is the most standard and expected solution for the

problem where we use the congruency property of triangles.

Given:

1. ∠AEC = 90

2. ∠BDA = 90

3. BD = CE

To Prove:

6. AB = AC

Proof:

In M ABD and M ACE

3. BD = CE (given)

2. ∠AEC = 90 = ∠BDA (given)

4. ∠A = ∠A (common angle)

5. Therefore, M ABD ∼= M ACE (by A.A.S property)

6. AB = AC (corresponding parts of congruent triangles)

Hence Proved

Solution 2 (SOL2): SOL2, as we shall see is similar to SOL1 except that A.S.A

property is used to prove the congruency between M ABD& M ACE instead of A.A.S

property that is used in SOL1.

Given:

22 CHAPTER 3. THE PROBLEM STATEMENT

1. ∠AEC = 90

2. ∠BDA = 90

3. BD = CE

To Prove:

6. AB = AC

Proof:

In M ABD and M ACE

3. BD = CE (given)

7. ∠ABD = 90− ∠A (from figure)

8. ∠ACE = 90− ∠A (from figure)

9. ∠ABD = ∠ACE (from 7. and 8.)

5. Therefore, M ABD ∼= M ACE (by A.S.A property)

6. AB = AC (corresponding parts of congruent triangles)

Hence Proved

Solution 3 (SOL3): The proof in this case is a little different from the above two

solutions. In order to prove that M ABC is isosceles, we prove that ∠ABC = ∠ACB

instead of proving AB = AC as in the above solutions.

Given:

11. ∠BEC = 90

12. ∠BDC = 90

3. BD = CE

To Prove:

13. ∠ABC = ∠ACB

Proof:

In M BDC and M BEC

3. BD = CE (given)

11. ∠BEC = 90 = ∠BDC (given)

14. BC = BC (common side)

15. Therefore, M BDC ∼= M BEC (by R.H.S property)

16. ∠EBC = ∠DCB (corresponding parts of congruent triangles)

13. ∠ABC = ∠ACB (Same angle as above)

3.3. APPROACH 23

Hence Proved

Solution 4 (SOL4): This proof is entirely different from the above three proofs.

Here, we take a more algebraic approach to solving the problem rather than a geom-

etry approach. We calculate the area of the triangle in two different ways and equate

the areas to prove that AB = AC

Given:

1. ∠AEC = 90

2. ∠BDA = 90

3. BD = CE

To Prove:

6. AB = AC

Proof:

17. Area of M ABC = 1
2
·BD · AC (computing area of triangle)

18. Area of M ABC = 1
2
· CE · AB (computing area of triangle)

19. 1
2
·BD · AC = 1

2
· CE · AB (equating areas)

19. BD · AC = CE · AB (algebra manipulation)

6. AB = AC (because BD = CE)

Hence Proved

In the Tree Model for solution matching, all the correct solutions are repre-

sented by a Solution Tree. Each state consists of the set of all valid statements entered

by the user at that stage. The hypothesis (i.e. the set of statements that are given)

becomes the root of the Solution Tree. When a valid statement along with the correct

explanation is entered by the user, a transition is made in the tree depending on the

input. The figure below illustrates how the transitions are made. All the numbers

shown in each state correspond to the statements in SOL1, SOL2, SOL3 and SOL4.

The Solution Tree with four solutions for the example question that was discussed

above is represented in fig 3.5.

SOL1 and SOL2 are very similar except for the fact that they use two different

rules to prove the same thing and yet in the tree model, they are two completely dif-

ferent branches separated at the root. SOL1 and SOL3 interpret the same hypothesis

in slightly different ways but in this model SOL1 and SOL3 are completely disjoint

24 CHAPTER 3. THE PROBLEM STATEMENT

Figure 3.5: The Tree representation of the four solutions of Example 1

for all practical purposes.

In Solution 4, the transition from state [1, 2, 3, 17, 18, 19] → {1, 2, 3, 17, 18,

19} shows that algebraic manipulations using this models is inefficient in space. Also,

changing the order of the steps in any solution will spawn a completely different

branch in the solution tree. Thus, this model is very inefficient in both space and

time and hence we discard this model.

3.3.2 The Box Model

To illustrate this model, we use Example 2 which is a modification of Example 1 that

is used to describe the tree model.

Example 2: ABC is an Isosceles triangle with AB = AC. BD and CE are perpen-

diculars dropped on AC and AB respectively. Prove that BD = CE.

Proof 1 (P1): is the straight forward and expected solution to the problem using

3.3. APPROACH 25

Figure 3.6: Figure for Example 2

the congruency of triangles

Given :

1. AB = AC

2. ∠BDC = 90

3. ∠BEC = 90

ToProve :

9. BE = CD

In M ABE and M ACD

4. ∠A = ∠A (common angle)

1. AB = AC (given)

5. ∠ABE = 90− ∠A (from figure)

6. ∠ACD = 90− ∠A (from figure)

7. ∠ABE = ∠ACD (from 6. and 7.)

8. M ABE ∼=M ACD (by A.S.A property)

9. BE = CD (corresponding parts of congruent triangles)

Hence Proved

Proof 2 (P2): is similar to P1 except that a different pair of triangles are proved

to be congruent to arrive at the same result.

Given :

10. ∠ABC = ∠ACB

2. ∠BDC = 90

3. ∠BEC = 90

26 CHAPTER 3. THE PROBLEM STATEMENT

ToProve :

9. BE = CD

In M BDC and M CEB

11. BC = BC (common side)

5. ∠ABE = 90− ∠A (from figure)

6. ∠ACD = 90− ∠A (from figure)

7. ∠ABE = ∠ACD (from 6. and 7.)

12. ∠EBC = ∠ABC − ∠ABE (from figure)

13. ∠DCB = ∠ACB − ∠ACD (from figure)

14. ∠EBC = ∠DCB (from 10, 7, 12 and 13.)

10. ∠ABC = ∠ACB (given)

15. M BDC ∼=M CEB (by A.S.A property)

9. BE = CD (corresponding parts of congruent triangles)

Hence Proved

Figure 3.7: The Box representation of the two solutions of Example 2

The Box Model for solution matching, is built using the predicate logic princi-

ples for each layer of the box. All the steps at the same level are mutually independent

and the order of entering them in the solution does not matter. A step in a lower

level can be entered only when all the steps in the level above it are entered. For

example, step 5 and step 6 can be entered in any order whereas step 7 can be entered

3.3. APPROACH 27

only when both step 5 and step 6 are already entered. Figure 3.7 contains the Box

Models for Proofs P1 and P2. The numbers shown in the boxes correspond to the

statement numbers in P1 and P2.

Unlike the Tree Model, the user can enter statements in any order as long as

it is valid i.e. and the Box model handles it without using any extra space. The

disadvantages of this model is that the Boxes are not easy to build and the content

creator has to create models for every possible solution which in itself is a very tedious

task. The problem of representing algebraic manipulation is not addressed in this

model too. Though it is better than the Tree Model, the Box Model is also inefficient

and very tedious to implement and use.

Given the constraints of memory and processing power available in a browser and

the fact there are a lot of issues on interface design and hint generation which need

focus, the problem has to be scoped down to a simpler version of the problem. The

modified problem statement and the final design of the system is discussed in the

next chapter.

Chapter 4

Design

In the new scoped down model for geometry proofs module, the student instead of

manually typing each step of the solution has to assemble the proof given a set of

possible steps using a drag-and-drop mechanism on the interface. This is the first

step towards achieving the higher goal that is to enable the student to type the proof

into the system in a way that is as intuitive as writing it down on paper.

The work flow of the system is shown in figure 4.1. The system has five modules –

The Proof Assembly Module (PA), The Content Creation (CC) module, The Solution

Tree (ST) module, The Solution Matching (SM) module and The Hint Generation

(HG) Module. The PA module is essentially the student’s interface using which the

proof is assembled. The CC module is for the content creator to enter questions

and all acceptable solutions into the system. The solutions are represented using an

XML Tree model. Once the solutions are entered, they are merged to form a General

Solution Tree (GST) in the ST module which will be used by the SM module for

solution matching. If the student makes any mistake or requests for a hint, then the

HG module is invoked and approriate hints are suggested. The details and design of

each module is described in this chapter.

4.1 Proof Assembly Module

The PA module is essentially the student’s interface for the system. A wire frame of

the PA module is shown in fig. 4.2.

The interface consists of three major divisions the functionalities of which are

discussed below:

28

4.1. PROOF ASSEMBLY MODULE 29

Figure 4.1: Workflow of the system showing all the modules

• The Question: The question is displayed in this division. If the question

contains an image, then it is also displayed. Sometimes, the student will have

to do constructions (like dropping a perpendicular etc.) while solving the proof.

In such cases, the image initially displayed will be replaced by a new image.

• The Assertion Stack: On the right is the assertion stack. A fixed number

of assertions are displayed in the stack at any point of time. The student can

drag and drop the assertions into the proof assembly area. The assertion stack

refreshes itself to give new options after every step.

• Proof Assembly: To complete the solution, the student has to pick correct

assertions one by one and place them in the correct order. Every assertion

should be justified by a reason. The reason is chosen from a drop down menu

that is automatically populated by the system whenever an assertion is made.

There are options in the interface for the student to ask for a hint or the next

30 CHAPTER 4. DESIGN

Figure 4.2: A wireframe of the student’s interface

step whenever she wants. If the student makes a mistake anywhere, the system

will give appropriate feedback along with hints.

4.2 Content Creation Module

As the name suggests, this module is for the content creator to enter questions and

the model solutions into the system. A question can have any number of solutions.

A question can consist of both text and images. The solution is entered in the form

of a tree using the content creation interface which is discussed in the subsequent

sections. Once all the solutions are entered into the system, the module will export

the solution into an XML format which is processed subsequently by the Solution

4.2. CONTENT CREATION MODULE 31

Tree Module.

4.2.1 The Solution Tree

The solution tree consists of “nodes” which are connected by “links”. Nodes are of four

types. Hypothesis nodes (G-node) to represent standard results, theorems and other

statements that are provided into the hypothesis of the question. Implication nodes

(I-node) to represent statements that are inferred from other G-nodes and I-nodes.

Hint nodes (H-node) to save problem specific hints for the question and Dummy nodes

(D-node) for storing the related wrong options which are either manually entered by

the content creator or automatically generated as extra options. Each node consists

of an Id to uniquely identify the node, a type to denote which type of node it is, a

statement and a reason.

Figure 4.3: Structure of an I-node

The structure of an I-node is shown in figure 4.3. The structure of G-node and

D-node are similar except that the reason field is by default marked as “Given” and

“Dummy” respectively. H-nodes are a little different from the other three because

imposing a structure on the hints would mean restricting their effectiveness. Keeping

this in mind, the hint node has just an Id, a type and an html field in which any

valid html can be written. This will ensure ensure the flexibity in the structure of the

hints. With this hints can be anything from simple text explanations to embedded

animations or youtube videos.

Fig. 4.4 shows an example each kind of node. The node is with id = 1 is a G-node

and is represented by a rounded cornered rectangle. The one with id = 2 is an I-node

and is represented by a rectangle. The D-node with id− = 3 is represented with a

dotted rectangle while the hint node is represented by a grey rectangle.

32 CHAPTER 4. DESIGN

Figure 4.4: Example of each node

4.2.2 The Content Creation Interface

A wireframe of the content creation interface is shown in figure 4.5. The interface

consists of six major divisions as shown the functionalities of which are discussed

below:

• Question: This division is for the content creator to enter the question into

the system.

• Images: Most questions in Geometry contain figures. The content creator can

upload images into the system here. Some problems require the student to make

constructions as part of the solution (like dropping a perpendicular) in which

case the image that is displayed should be replaced by another image. All the

images that are to be used in the course of the solution are uploaded here.

• Menu: This menu contains buttons and tools to enable the content creator to

construct the solution tree.

• Entity Directory: A proof consists of many entities like line segments, angles,

triangles etc. All such valid entities are to be defined by the user in this division

before using them in the proof. Having a list of all valid entities serves two

purposes. It ensures that entities are not duplicated. i.e. M ABC and M BAC

mathematically mean the same and defining the entity here prevents duplication

of entities and helps in maintaining uniformity of notation.

4.2. CONTENT CREATION MODULE 33

Figure 4.5: A wireframe of the Content Creation Interface

A standard and consistent naming of entities and variables will help make it

easier for automating the generation and creation of dummy options. Further it

is sometimes convenient to call ∠ABC as just ∠B. The entity directory allows

the content creator to define such short notations for entities and use them in

proofs.

• Solution Tree The Solution Tree can be constructed with the help of the tools

provided in the menu. A question can have any number of solutions. The

content creator has to create a new tree for each solution.

34 CHAPTER 4. DESIGN

• Node Directory: Like we have seen in Example 1 and Example 2 of section

3.3, a single statement might appear in different different solutions. The node

directory provides a quick reference for all the nodes that have been entered so

far so that they can be easily reused thereby avoiding repetitive typing.

4.2.3 The XML Tree

Once the content creator enters the question and constructs the solution trees, the

information should be saved for further use. All the information related to the problem

are saved and exported as XML. The platform independent nature of XML and the

availability of XML parsers for most programming languages makes it an ideal choice

for providing the required modularity for the system. If the interface needs to be

changed in the future or to be coded in a different language, it can easily be done as

long as the new module also adheres to this XML schema.

4.3 The Solution Tree Module

Different solutions of the same problem invariably have a lot of common nodes which

are repeated in the XML (CCXML) generated by the CC module. The idea is to

remove redundancies in the XML representation, merge individual solution trees along

the common nodes, generate extra Dummy Nodes (if required) and form a General

Solution Tree (GST) which the Solution Matching Module can use to match the

solution that is entered by the student to one of the solutions entered by the content

creator. The Solution Tree Module generates GST from the CCXML.

4.3.1 The Equation Node

The Equation Node is the fundamental element of the GST. An Equation Node should

contain all the information present in solution tree node. In addition to that the

Equation Node should also have the flexibity to act as a hinge node (a node common

to two or more solutions) along which two solutions are merged. The datastructure

must be implemented in such a way that no information is lost when merging two

occurrences of the same statement in different solutions. A detailed implementation

of the Equation Node is described in section 5.2.1

4.3. THE SOLUTION TREE MODULE 35

4.3.2 Merging Solutions

The first step towards generating the GST is to merge the independent solution

trees. The solution trees are merged along the nodes that have the same statement.

Merging is done by identifying the hinges i.e. the nodes that are common to two

or more solutions. Once the hinges are identified, all the links associated with hinge

nodes must be categorized per solution and rewritten accordingly. The tree that is

generated after merging all the solutions is called Merged Solution Tree (MST).

Figure 4.6: P1, P2 of Example 2 represented as solution trees

4.3.3 The General Solution Tree

Once the MST is created, additional Dummy Nodes which are not part of the solution

but are misleading options based on commmon student misconceptions are created

and attached to the MST at appropriate nodes. Dummy Nodes can also be added by

the CC while constructing the solution tree. Automatic generation of Dummy Nodes

is not a trivial task and requires considerable intelligence and expert knowledge coded

36 CHAPTER 4. DESIGN

into it’s algorithm. The MST with the Dummy Nodes attached is called the General

Solution Tree (GST).

Figure 4.7: GST formed after merging P1 and P2 of Example 2

4.4 Solution Matching Module

The Solution Matching module reacts to what the student is doing. It gets the input

from the PA Module and then gives the appropriate output to the student. The

student makes an assertion and gives a reason for it. By traversing through the GST,

the Solution Matching Module determines if that particular step is allowed as the

next step. If it is correct, then it adds that statement to the proof, refreshes the

Assertion List and prepares for the next step. Otherwise, it calls the Hint Generation

Module.

4.5. HINT GENERATION MODULE 37

4.5 Hint Generation Module

The Hint Generation is responsible for giving appropriate feedback when the student

makes a mistake or presses the hint button or the ”show next step” button.

There are four ways in which HG module can be invoked:

• The Assertion is wrong: In this case, if the mistake is a known misconception

and a related Hint Node exists in the GST, then the contents of that Hint Node

are displayed. Otherwise a new hint is constructed based on the next steps of

the solution.

• The Assertion is correct but the reason is wrong: In this case one good

hint could be to pop out the definition of the wrong option selected. If the

mistake is a known misconception, then the system should take appropriate

action.

• The student presses the hint button: In this case, the system can look at

the next possible steps, pick one of the nodes that is not a G-node and construct

a hint based on its parents.

• The student presses the show next step button: In this case, the system

can look at the next possible steps, pick one of the nodes that is not a G-node

and show the next step.

Developing algorithms for hint generation is an open ended problem and there

can be a number of ways to approach it. Some of them are discussed in Chapter 6.

Chapter 5

Implementation

The system was designed taking into account all aspects of the system. The im-

plementation however is limited to the core functionalities of the system only. The

Content Creator Interface has been simplified to a form based input and intelligent

hint generation is not implemented due to various constraints. The project is imple-

mented using Adobe Flex 4.0 SDK which is based on the Adobe Flash platform and

PHP for file handling.

5.1 The Content Creation Module

5.1.1 The Content Creation Interface

Since the project is focused on developing the core architecture of the system, the

CC Interface has been vastly simplified into a form-based input with an accordion for

constructng the tree rather the proposed interactive GUI as described in chapter 4.

The content creator first creates a problem by specifying the problem id. Once the

problem is created, the question details can be entered using the ‘Question’ interface

as shown in Fig. 5.1

To enter the solution, the user can switch the accordion to ‘Solution’ mode, create

a new solution and enter nodes and links one by one. The confirmation of each action

will be visible in the output frame on the right. The user can let the system know

that the solution has been complete by clicking the ‘Finish Solution’ button. The

user can now begin a new solution by repeating the process or save and export the

solution by clicking on the ‘Save and Export’ button.

38

5.1. THE CONTENT CREATION MODULE 39

(a) Screenshot of the Content Creation Interface in ‘Question′ mode

(b) Screenshot of the Content Creation Interface in ‘Solution′ mode

Figure 5.1: Screenshots of the Content Creation Interface

40 CHAPTER 5. IMPLEMENTATION

5.1.2 The XML Tree

As mentioned in section 4.2.3, the solution tree once created by the content creator is

saved in XML format. The XML grammar has been carefully designed to be intuitive

and generic enough to accommodate extensions of the system to handle proof type

problems in all topics in mathematics. This XML model is described below.

• Operands are defined between their respective tags. For example M ABC and

line segment AB are represented as:

<tri>ABC</tri>

<lineseg>AB</lineseg>

• Operators like = , +, − etc. have their own tag defined. The operands

are written as the children on the operator in the XML. All the operators are

ranked according to their priority in evaluation. Brackets are also considered

as operators in this design. The equation AB = AC is represented as:

<eq>

<lineseg>AB</lineseg>

<lineseg>AC</lineseg>

</eq>

• Statement is constructed using operator and operands and is contained within

the <statement >. For example, the statement ∠ABC +∠BAC = 90 is repre-

sented as:

<statement>

<eq>

<plus>

<ang>ABC</ang>

<ang>BAC</ang>

</plus>

<num>90</num>

</eq>

</statement>

5.1. THE CONTENT CREATION MODULE 41

• Node is most fundamental unit of the Solution Tree. The id, type, statement

text, parsed statement and reason are saved in respective tags as shown below.

<node id="2" type="g-node">

<text>BDC = 90</text>

<statement>

<eq>

<ang>BDC</ang>

<num>90</num>

</eq>

</statement>

<reason>given</reason>

</node>

• Link can be formed between two any nodes. The linking is done using node IDs.

Suppose we have two nodes n1 and n2 with node IDs “4” & “6” respectively

and n1 ⇒ n2. This link is represented as:

<link type="implication" source="4" target="6" />

Suppose there is another node n3 with node ID “5” such that n1, n3 ⇒ n2.

Then these two links are represented as:

<link type="implication" source="4" target="6" />

<link type="implication" source="5" target="6" />

• Each solution is represented as a collection of nodes and links. The structure

of a solution with id = 2 is as follows:

<solution id="2">

<node id="1" type="g-node">

<text>AB = AC</text>

<statement>

<eq>

<lineseg>AB</lineseg>

42 CHAPTER 5. IMPLEMENTATION

<lineseg>AC</lineseg>

</eq>

</statement>

<reason>given</reason>

</node>

...

...

...

<node id="8" type="i-node">

<text>\vartriangle ABE \cong \vartriangle ACD</text>

<statement>

<cong>

<tri>ABE</tri>

<tri>ACD</tri>

</cong>

</statement>

<reason>ASA property</reason>

</node>

<link type="implication" source="1" target="3" />

<link type="implication" source="2" target="5" />

...

...

...

<link type="implication" source="4" target="8" />

</solution>

• Each problem is saved as a different XML file. The structure of the saved file

is as follows.

<problem id="2">

<question>

Contains the text of the question as entered by the

5.2. THE SOLUTION TREE MODULE 43

content creator

</question>

<image src="path/to/image" />

<image src="path/to/second/image">

<solution id="1">

...

...

...

</solution>

...

...

...

<solution id="n">

...

...

...

</solution>

</problem>

5.2 The Solution Tree Module

The Solution Tree Module consists of two parts. In the first part, the CCXML

is parsed and all the nodes are converted into the Equation datastructure. In the

second part, different solution trees are merged to form the GST which is then saved

and exported as an XML file.

5.2.1 The Equation Datastructure

The Equation Node is the basic element of the General Solution Tree and is defined

by the Equation datastructure. Each Equation node has an id to uniquely identify

the node, a stmtText which contains the statement (verbatim) as entered by the CC

and a stmtXML which is the stmtText parsed into XML format in the CC Module.

44 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Equation Class and it’s Attributes

Any two nodes in the original XML which have the same stmtText are merged

into the same Equation node. Their original user defined node Ids are stored in the

array userDefinedId where the array is indexed by the solution id.

A statement may be repeated in two different solutions of the same problem but

it is not necessary that they need to have the same reason or the parents. Hence the

reasons for each statement are also in an Array (indexed by solution id) in reasons.

The children of each node are saved in children which is a three-dimensional array

with solution id, Vector of all children and the type of nature of link connecting to

each child as it’s three dimensions. parents is an array of vectors indexed by solution

id which contain the parents of the node.

5.2.2 Merging Solutions and generating the GST

The CCXML is first parsed and each node is converted to an Equation node. All the

generated Equation Nodes are pushed into a Vector (stmtVec). When a new node is

parsed, we check if an Equation Node with the same statement exists in the statement

vector. If it exists, then the contents of this node are merged with the node that is

already present in the statement vector. If it doesn’t exist, a new Equation is created

from the node. The children and parents arrays in Equation Node are populated by

parsing the links in CCXML. The working is illustrated by Algorithm 1.

The design of the Equation datastructure ensures there is no loss of data during

the merging. Once GST is created, it is exported and saved as an XML file. The

XML format is as follows.

<problem id="2">

5.2. THE SOLUTION TREE MODULE 45

foreach node in Solution Tree do
if Equation with same Statement as node exists then

Merge contents of node with Equation
else

Create new Equation with contents of node
end

end
foreach link in Solution Tree do

update children and parents arrays of corresponding Equations
end

Algorithm 1: Merging Solutions

<question>

Contains the text of the question as entered by the

content creator

</question>

<image src="path/to/image" />

<image src="path/to/second/image">

<equations>

<equation id="$eqn_id">

<text>AB = AC</text>

<statement>

<eq>

<lineseg>AB</lineseg>

<lineseg>AC</lineseg>

</eq>

</statement>

</equation>

...

...

...

</equations>

<solution id="1">

<link src="4" target="7" type="implication" />

...

...

...

46 CHAPTER 5. IMPLEMENTATION

<link src="11" target="14" type="implication" />

<reason id="$eqn_id">Given</reason>

...

...

...

<reason id="$eqn_id">Given</reason>

</solution>

...

...

...

</problem>

5.3 Solution Matching Module

The Solution Matching reacts to the student’s actions. First, the XML file which

contains the GST is parsed into a tree of Equation Nodes. The SM module gets it’s

input from the Proof Assembly Module. If the assertion and reason that are entered

by the student are correct, it accepts the solution and moves on to the next step. If

there is any mistake in any of the steps, it invokes the Hint Generation module. The

GST lies at the heart of the SM module. The working of the SM Module is explained

through the following definitions and pseudocode.

• children(n, GST): This function takes a node n and GST as input and returns

an array of all the children of node n.

• parents(n, GST): This function takes a node n and GST as input and returns

an array of all the parents of node n.

• refreshAssertionStack(): Refreshes the assertion stack to bring new options.

• entered list: List of all nodes that have been entered as part of the solution.

• allowed list: List of all nodes that are valid as a next step.

• refreshAllowedList(n): This function refreshes the allowed list when node n

is added to the entered list. The function is defined in Algorithm 2.

5.4. PROOF ASSEMBLY MODULE 47

refreshAllowedList(n)

foreach child m of n;
do

if all parents of m are in entered list then
add m to allowed list;

end

end

Algorithm 2: Refresh Allowed List

• Working: When the child enters a new assertion along with the reason, the

solution matching module has to check if the assertion is valid or not. We main-

tain two lists, entered list and allowed list. At the beginning, the entered list

is empty and all the hypothesis nodes are in the allowed list. Suppose a node

n is entered by the student:

if assertion AND reason are correct then
add node n to entered list;
refreshAllowed(n);
refreshAssertionStack();

else
callHintGenerationModule();

end

Algorithm 3: Working of SM Module

5.4 Proof Assembly Module

The Proof Assembly Module is the interface that the student uses to construct the

proof. A screenshot of the interface is shown in 5.3. The question is shown in the

Question division along with any images present. The student has to choose one

of the statements from the Assertions on the left, drag and drop it in the Proof

area using the mouse. Once the assertion is dropped, the “Select Reason”division

will show four options from which the student has to choose the correct reason for

the statement. Once the correct reason is selected, the assertion will be accepted.

Otherwise appropriate feedback will be given. The student can also ask for a hint or

ask for the next step using the Help menu in the right bottom corner.

The hint generation module has not been implemented. All the hints shown in the

demo are inputted by the content creator as hint nodes through the content creation

48 CHAPTER 5. IMPLEMENTATION

Figure 5.3: Screenshot of the Proof Assembly interface

interface.

Chapter 6

Conclusion and Future Work

In chapter 3, it is mentioned that the ultimate goal of the project is to have a system

in which students can solve proof type problems and get instant feedback and hints

in a way that is as intuitive as writing on paper. This project is only a first step

towards achieving that goal. The modular architecture ensures that each module can

be extended and developed independently. This opens up a lot of avenues for future

research and development. The Hint Generation Module and the Content Creation

Module have ample of scope for improvement.

6.1 Interfaces and Hint Generation

The Content Creation Interface needs to be developed on the lines of the design

described in 4.2.2. The interfaces are built only for the prototype. More effort is

required towards creating a flawless user experience for both PA interface and CC

interface.

Automatic hint generation is not implemented as part of the project. The XML

representation of the GST gives the required cross platform compatibility to use logic

and functional programming languages like Prolog or Haskell to incorporate artificial

intelligence methods for generating hints and dummy options. Further, concepts in

Formal methods can be used to build the Solution Matching Module to accept any

valid mathematical statement from the student and give feedback on it’s correctness.

This will eliminate the need for the content creator to manually enter all the possible

solutions.

49

50 CHAPTER 6. CONCLUSION AND FUTURE WORK

6.2 Evaluation

The system must be evaluated from both a design perspective and from an Educa-

tional Technology perspective. Evaluation must be done for each module and also for

the whole integrated system. The interfaces must be evaluated for the user experi-

ence. As mentioned earlier, a flawless user experience is crucial for the success of the

system as an effective learning tool because a bad interface could lead to cognitive

overloading of the student’s working memory.

The quality of the automatically generated hints, options and dummy nodes must

be independently evaluated by a subject expert. Over all, the effectiveness of the

system as a learning tool should also be evaluated either in a laboratory setting with

a control group or by subject experts.

6.3 Integration

The prototype once finished into a product must be integrated into the Mindspark’s

system. Additional functionalities like logging student’s reactions, meta data for the

questions etc. need to be added to the system. Once the system is integrated, a lot

of data regarding mistakes that students make, hints students are likely to ask etc.

can be easily logged and collected.

Data mining techniques can be used to get valuable insights into common miscon-

ceptions the students might have in a particular topic. If these misconceptions are

identified, then teachers can address them by taking some extra care while teaching.

6.4 Expanding the Scope

It is important to note that the underlying premises that the system is based on

upon are not exclusive to geometry. The system can be extended to other areas

of mathematics for the middle school level and for higher classes as well. However,

the drag and drop mechanism for solving proofs is suitable primarily for geometry

proofs. Proofs in algebra are different from proofs in geometry because the next step

is algebra is easy to predict when there are options to choose from. A subjective

typing based input would be preferred for proofs in Algebra [3].

Bibliography

[1] William Curtis. How to Improve Your Math Grades. Occam Press California,

2538 Milvia St. Berkeley, CA 94704-2611, 2008. chap. 1.

[2] David Foster. Assessing Mathematical Proficiency, volume 53. MSRI Publica-

tions, 2007. Chap. 12.

[3] Brian Grossman. Intelligent algebraic tutoring based on student misconceptions.

Master’s thesis, Massachusetts Institute of Technology, 1996.

[4] Adobe Inc. Adobe flex documentation, June 2011.

http://www.adobe.com/devnet/flex/documentation.html.

[5] Berinderjeet Kaur. Some common misconceptions in algebra. Teaching and

Learning, 11(2),33-39, 1990.

[6] Lindsay M. Keazer. Students’ misconceptions in middle school mathematics.

Master’s thesis, Ball State University Muncie, Indiana, 2003.

[7] K. R. Koedinger and A. T Corbett. Cognitive tutors: Technology bringing

learning science to the classroom. The Cambridge Handbook of the Learning

Sciences, 2006.

[8] Roblyer M. and Doering A. Integrating Educational Technology into Teaching.

Pearson Education, 5th edition, 2009.

[9] M. Matz. Towards a process model for high school algebra errors. Intelligent

tutoring systems (pp. 25-50), 1982.

[10] Robert McCormick. Conceptual and procedural knowledge. Inter-

national Journal of Technology and Design Education, 7:141–159, 1997.

10.1023/A:1008819912213.

51

52 BIBLIOGRAPHY

[11] http://www.mindspark.in Mindspark.

[12] Alwyn Olivier. Handling pupils’ misconceptions. Mathematics Education for

Pre-Service and In-Service, 1992. page 193-209.

[13] Learn Quebec. Algebra: Some common misconceptions, August 2010. Algebra

misconceptions with visuals.

[14] J. Ryan and J. Williams. Mathematics 4-15: learning from errors and miscon-

ceptions. Open University Press Maidenhead, 2007.

[15] World Wide Web Consortium (W3C). www.w3.org/xml, June 2011.

[16] www.counton.org. Misconceptions in mathematics, August 2010.

http://www.counton.org/resources/misconceptions/.

[17] www.toptenreviews.com. Algebra software review.

[18] Zhicheng Zhang. Carnegie learning cognitive tutor algebra 1 and geometry follow-

up report. 2007.

