
ADAPTATION OF APPLETS AND LIVE VIDEOS TO MOBILE

DEVICES

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree of

Master of Technology

Juturu Manoj Kumar
under the guidance of

Prof. Sridhar Iyer

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

Dissertation Approval Certificate

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

The dissertation entitled “Adaptation of Applets and Live videos to Mobile

Devices”, submitted by Juturu Manoj Kumar (Roll No: 08305052) is approved for

the degree of Master of Technology in Computer Science and Engineering from

Indian Institute of Technology, Bombay.

Prof. Sridhar Iyer

CSE, IIT Bombay

Supervisor

Prof. Purushottam Kulkarni Dr. Vijay Raisinghani

CSE, IIT Bombay HoD NMIMS College, Mumbai

Internal Examiner External Examiner

Prof. Abhay Karandikar

EE, IIT Bombay

Chairperson

Place: IIT Bombay, Mumbai

Date: 28th June, 2010

ii

Declaration

“I declare that this written submission represents my ideas in my own words and where

others ideas or words have been included, I have adequately cited and referenced the orig-

inal sources. I also declare that I have adhered to all principles of academic honesty and

integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source

in my submission. I understand that any violation of the above will be cause for disci-

plinary action as per the rules of regulations of the Institute.”

Manoj Kumar Juturu

IIT Bombay

June 29, 2010

iii

Acknowledgements

I would like to thank my guide, Prof. Sridhar Iyer for his continuos support and guid-

ance. All this work and its successful completion would not have been possible without

him. His advice on possible directions in my work, and his guidance regarding critical

decisions has helped me in weighing the options wisely.

I would also like to thank Prof. Purushottam Kulkarni for his anaylysis of the various

aspects of the project and his suggestions during group meetings, gave me an idea of

what more could be done in my work.

J Manoj Kumar

Computer Science and Engineering

08305052

iv

Abstract

Many educational organizations provide E-learning content which is in the form of ani-

mations and lecture videos. Showing these content on mobile devices has many problems.

Mobile devices work on J2ME technology which is incompatible for showing these an-

imations in the form of Applets, where as Streaming of Live videos on mobile devices

is difficult because mobiles devices have limited memory resources. Also Live videos re-

quire large network bandwidth, so they cannot be shown over mobile device connections

like GPRS which has low network bandwidth.

The aim of this thesis is to adapt animations and live videos to mobile devices.

Different approaches for porting Java Applets on to Mobile devices like J2ME MIDlets

and flash files have been explored with their relative merits and demerits. It also presents

the differences in terms of feasibility, complexity in converting J2SE Applets in to J2ME

and Flash.

Similarly different possible ways to adapt live videos have been explored. An im-

plementation of Live Video Streaming of CDEEP lecture video’s in a cost effective and

adaptive way for mobile devices has been provided, which is integrated into the system

proposed by the supporting thesis named study element based adaptation.

v

Contents

Declaration iii

Acknowledgements iv

Abstract v

1 Introduction 1

1.1 OSCAR Applet Repository . 1

1.2 Adaptation of Applets to Mobile devices 1

1.3 Adaptation of CDEEP live videos . 3

1.4 Organization of Thesis . 4

2 Applet Adaptation Methodology 5

2.1 J2ME based adaptation . 5

2.1.1 J2SE . 5

2.1.2 Overview of J2ME . 5

2.1.3 J2ME vs Applets - Conversion Difficulties 9

2.1.4 J2SE Vs J2ME – Conversion Possibilities 11

2.2 Flash Based Adaptation . 12

2.2.1 Overview of Flash and Action script 12

2.2.2 Java to Action Script – Conversion Difficulties 13

3 Live video Adaptation 16

3.1 Video Transcoding and its limitations . 16

3.1.1 Video Transcoding . 16

3.2 Existing System – Study Element Based Adaptation 17

3.3 Proposed system . 19

3.4 Image Capture Methodologies . 20

vi

3.4.1 Approach 1: VideoLAN(VLC) . 21

3.4.2 Approach 2: FFmpeg . 22

3.4.3 Approach 3: Mplayer . 22

3.5 Comparison with Existing System . 23

4 System Implementation 24

4.1 Port Blocking and NAT in Mobiles . 24

4.2 System Diagram . 25

4.3 Watching Live video . 26

5 Conclusion and Future Work 27

Bibliography 28

vii

List of Figures

2.1 Architecture of J2ME . 6

2.2 Relation between CLDC, CDC, and J2SE 8

2.3 Architecture of J2ME MIDlet and J2SE applets 9

3.1 Transcoding process . 16

3.2 Existing Study Element Based Adaptation for stored videos 17

3.3 Types of Study Elements . 18

3.4 Block Diagram of Study Element Based Adaptation with Live video Adap-

tation . 19

3.5 Live video Adaptation Process . 19

3.6 Tagging process . 20

4.1 Sequence Diagram . 25

4.2 Seeing a Video . 26

viii

Chapter 1

Introduction

1.1 OSCAR Applet Repository

Project OSCAR (Open Source Course ware Animations Repository) aims to create a

repository of web-based, interactive animations for teaching various concepts and tech-

nologies. This could be useful not only for classroom teaching but also for enabling

independent-learning and distance education. It contains repository of animations on

concepts at Undergraduate and Postgraduate levels.

Each animation is typically a Java Applet that focuses on one concept and provides the

following through a platform-independent, web-interface:

� A brief description of the concept, including relevant references.

� An in-built animation, to explain the concept in detail.

� An interactive animation, wherein the user defines the parameters.

1.2 Adaptation of Applets to Mobile devices

Applets are animations shown in web browsers, created using J2SE technology, but

animations in mobile devices are created using J2ME. Both are Java based only but

they have different libraries. So applets can not be viewed directly on mobile devices.

Two approaches have been proposed

1

CHAPTER 1. INTRODUCTION 2

Conversion To J2ME – This approach describes about automation of J2SE applets

int to J2ME MIDlets. The difficulties in automation of conversion process are summa-

rized below.

1. Architectural Differences in J2SE and J2ME — J2SE has a Hierarchical

architecture, while J2ME has a Flat-file architecture. Conversion of Hierarchical

structure to flat-file structure is a cumbersome process.

2. Text Adaptation — The amount of text in OSCAR animation is very high, which

cannot be displayed on mobile devices. Re-planning of Text Adaptation cannot be

automated.

3. Canvas Size and Image co-ordinates – The co-ordinates of images in applet

designed for desktops. Replanning of image co-ordinates cannot be automated.

The possibilities in automation process are summarized below.

1. Copy of paint method – Both J2SE and J2ME use the same graphics class. So

the paint method in J2SE can be copied into J2ME.

2. Buttons to Key mapping – J2ME uses mobile device keys to accept input

instead of buttons. So buttons in J2SE can be mapped to mobile device keys.

3. LWUIT – LWUIT solves the hierarchical problem in J2ME and allows use of

swings in J2ME.

Conversion to Flash – This approach discusses about the difficulties in converting

applets to flash. The difficulties are summarized as

1. Architectural differences between J2SE and flash – The architecture of flash

is different from that of J2SE, causing porting a cumbersome process

2. No Multithreading — Java is multithreaded environment where as Flash is a

single threaded environment, it lacks support of multithreading. Multithread to a

single thread environment conversion cannot be automated.

Syntax conversion – Java and Action script both have different syntax. Java syntax

can be converted into Action script syntax J2AS3.

CHAPTER 1. INTRODUCTION 3

These conversion methods are explained in detail in the consecutive chapters. In

conclusion, the automation of Java Applets into J2ME and Flash files is difficult and

not feasible.

1.3 Adaptation of CDEEP live videos

Centre for Distance Education and Engineering Programme (CDEEP) is distance learn-

ing initiative by IIT Bombay. It provides class lectures as offline and live videos to

remote locations. These CDEEP videos typically have a bit rate of 800 K bps - 1200

K bps. But GPRS connection has low bit rate of 40 k bps, causes huge delays. Also

mobile users are charged on basis of data transferred, in the range of 10paise per 10 KB.

Hence, for a viewing a video of size 600 MB of a one hour lecture video, the cost of

viewing would be enormous. Hence Live videos have to be adapted to suite low network

bandwidth of mobile device connection in real time.

There is a supporting thesis Study element based adaptation which adapts pre-

recorded CDEEP lecture videos to Mobile Devices. This method has been adapted

to support Live video Streaming of CDEEP lecture Videos.

Study element based System — In existing Study element based system, images are

extracted from a stored video.The Extracted Images are classified into study elements as

instructor, white paper and presentation. Images are sent to mobile devices at intervals

based on user experience. This system works for CDEEP stored videos only.

Live Video Adaptation In Live Video Adaptation method, sets of 300 images are

extracted from live video stream. The extracted images are classified into study elements

by Tagging Mechanism. Audio is also captured from live stream and stored chunks of

mp3 files. The extracted images and audio are sent to mobile user at different intervals

based on user experience provided.

Image extraction Different approaches for Image extracting using VideoLAN (VLC),

FFmpeg, and Mplayer have been explored. In VLC, image extraction has high cpu

utilization and delay. In FFmpeg, image extraction has high CPU utilization. Audio is

extracted using FFmpeg. In Mplayer the image extraction process is done.

CHAPTER 1. INTRODUCTION 4

Integrating into Existing System The Live Video adaptation module has been

successfully integrated into Existing Study element based system. A comparison to

existing system is also made in detail.

In conclusion, Live Video adaptation provides a cost effective and adaptive way for

live streaming of CDEEP videos.

1.4 Organization of Thesis

The Thesis is Organized as follows.

1. Chapter 1 – Introduction and Aim of thesis.

2. Chapter 2 – Discusses about Adaptation of Applets to mobile devices.

3. Chapter 3 – Discusses about Adaption of CDEEP live video streaming to mobile

devices.

4. Chpater 4 – Discusses about Implementation of Adaption of Live videos and com-

parison to Existing system

5. Chapter 5 – Conclusion and Future Work

Chapter 2

Applet Adaptation Methodology

Applets are animations shown in web browsers, created using J2SE technology, but

animations in mobile devices are created using J2ME. Both are Java based only but

they have different libraries. So applets can not be viewed directly on mobile devices.

2.1 J2ME based adaptation

2.1.1 J2SE

Java Technology is both a platform and language. Java can be used to create two types

of programs: Applications and Applets. An Application is a program that runs on any

computer, under the operating system of the computer. Java is not much different from

any other computer language. Rather it is Java's ability to create applets that makes

it important. An applet is an application designed to be transmitted over Internet and

executed by a Java-compatible web browser. Java is simple, secure, portable, Object-

oriented, Robust, Multi-threaded, and dynamic language.

2.1.2 Overview of J2ME

J2SE requires high processor memory and speed but mobile devices like mobiles and

PDAs do not have such high RAM and speed. So, Mobile phones are installed with

different version of Java Platform Micro Edition (J2ME).

5

CHAPTER 2. APPLET ADAPTATION METHODOLOGY 6

General Architecture of J2ME

J2ME uses configurations and profiles to customize the Java Runtime Environment

(JRE). As a complete JRE, J2ME is comprised of a configuration, which determines

the JVM used, and a profile, which defines the application by adding domain-specific

classes.

The configuration defines the basic run-time environment as a set of core classes and

a specific JVM that run on specific types of devices. The profile defines the applica-

tion; specifically, it adds domain-specific classes to the J2ME configuration to define

certain uses for devices. J2ME also provides technology specific APIs that extends the

capabilities of a Java application environment.

J2ME architecture doesnt replace the operating system of a small computing device.

Instead, J2ME architecture consists of layers located above the native operating system.

The following Figure 2.1 depicts the relationship between the different virtual machines,

configurations, and profiles.

Figure 2.1: Architecture of J2ME

The configuration defines the basic run-time environment as a set of core classes and

a specific JVM that run on specific types of devices. Currently, two configurations exist

for J2ME, they are:

Connected Device Configuration (CDC)

Connected Device Configuration (CDC) has been defined as a stripped-down version of

Java 2 Standard Edition (J2SE) with the CLDC classes added to it. Therefore, CDC

CHAPTER 2. APPLET ADAPTATION METHODOLOGY 7

was built upon CLDC, and as such, applications developed for CLDC devices also run

on CDC devices.

CDC was designed for devices with minimum 512KB of read-only memory (ROM),

256KB of random access memory (RAM), and some kind of network connection. Exam-

ple of CDC devices are smart phones, two-way pagers, PDAs, home appliances, point-

of-sale terminals, and car navigation systems. These devices run a 32-bit microprocessor

and have more than 2 MB of memory, which is needed to store the C virtual machine and

libraries. While the K virtual machine supports CLDC, the C virtual machine (CVM)

supports CDC. CDC is associated with the Foundation Profile.

Connected Limited Device Configuration (CLDC))

CLDC is aimed at smaller devices than those targeted by the CDC. It encompasses

mobile phones, pagers, PDAs and other devices of smaller size. CLDC is designed for

devices with 160KB to 512KB of total memory including a minimum of 160KB of ROM

and 32KB of RAM. The reference implementation of CLDC is based on small JVM called

KVM, and its KJava profile run on top of CLDC. KVM cant do everything a JVM does

in J2SE world. CLDC outlines the most basic set of libraries and Java virtual machine

features required for each implementation of J2ME on highly constrained devices.

CLDC Requirements CLDC defines the following requirements:

� Full Java language support (except for floating pointer support, finalization, and

error handling).

� Full JVM support.

� Inherited classes – all classes not specific to CLDC must be subsets of J2SE 1.3

classes.

� Classes specific to CLDC are in javax.microedition package and subpackages.

In addition to the javax.microedition package, the CLDC API consists of subsets of

the J2SE java.io, java.lang, and java.util packages. For example, the java.lang in J2ME

(CLDC 1.1 version) has 17 classes and 1 interface, compared with the java.lang of Java

SE (JDK 1.6 version), which has 35 classes and 8 interfaces. J2ME also possesses many

features which are specific and limited to J2ME itself. The table 1 shows the core Java

API’s supported by CLDC 1.1 [9].

CHAPTER 2. APPLET ADAPTATION METHODOLOGY 8

1. Native methods cannot be added at runtime. All native functionality is imple-

mented in KVM only.

2. The KVM only includes a subset of the standard byte code verifier. This means

that the task of verifying classes is split between the CLDC device and some

external mechanism.

CLDC Vs CDC

The following figure 2.2 depicts the relationship between CDC and CLDC. It also illus-

trates their relationship to the full J2SE API.

Figure 2.2: Relation between CLDC, CDC, and J2SE

Profile

A profile defines the type of device supported. The Mobile Information Device Profile

(MIDP), for example, defines classes for cellular phones. It adds domain-specific classes

to the J2ME configuration to define uses for similar devices. Two profiles have been

defined for J2ME and are built upon CLDC: KJava and MIDP. Both KJava and MIDP

are associated with CLDC and smaller devices.

Profiles are built on top of configurations. Because profiles are specific to the size

of the device (amount of memory) on which an application runs, certain profiles are

associated with certain configurations. A skeleton profile upon which you can create

your own profile, the Foundation Profile, is available for CDC.

MIDP is geared toward mobile devices such as cellular phones and pagers. The

MIDP, like KJava, is built upon CLDC and provides a standard run-time environment

that allows new applications and services to be deployed dynamically on end-user devices.

CHAPTER 2. APPLET ADAPTATION METHODOLOGY 9

MIDP is a common, industry-standard profile for mobile devices that is not dependent

on a specific vendor. It is a complete and supported foundation for mobile application

development.

MIDP contains the following packages, the first three of which are core CLDC pack-

ages, plus three MIDP-specific packages. They are: java.io, java.util, javax.microedition.io,

javax.microedition.lcdui, javax.microedition.midlet, javax.microedition.rms.

2.1.3 J2ME vs Applets - Conversion Difficulties

Incompatability of Architectures of J2SE and J2ME

The Architecture of Applets in J2SE is different from a J2ME MIDlet. The below figure

shows general architecture of Applets and MIDlets.

Figure 2.3: Architecture of J2ME MIDlet and J2SE applets

From the Figure 2.3 it can be observed that a MIDlet consists of a screen which is

used to display content. Only one form can be displayed on screen and all the items are

added to this form. MIDlet has a flat-file architecture. The screen cannot be divided in

to multiple panels.

But in-case of J2SE applets, a window is divided into multiple panels. Each panel

holds multiple components. So it has hierarchical architecture. The process of converting

this hierarchal architecture to flat-file architecture is cumbersome process.

Amount of text on screen

The following code shows portion of a sample OSCAR animation.

public void init(){

CHAPTER 2. APPLET ADAPTATION METHODOLOGY 10

ta = new TextArea("", 31, 47);

ta.setText("\n\t Energy Transaction in Biological Systems\n"+

"\nIn this animation you will learn the concepts of ATP Metabolism.\n"+

"ATP is the energy currency of the cell and transfers energy from

chemical bonds to endergonic (energy absorbing) reactions within the cell.\n"+

"\nATP stands for Adenosine Tri Phosphate which is a Nucleotide."+

"\nThis nucleotide consists of a Ribose, three Phosphate groups and a Nitrogenous

base Adenine.\n"+ "\n ADP + Energy + Pi -----> ATP\n"+"\nADP or Adenosine

Di Phosphate is formed by the removal of one phosphate from an ATP molecule.\n"+

"\nThe formation of ADP from ATP releases usable metabolic energy.");

}

The amount of text displayed in one applet screen is designed desktop resolution.

This cannot be fit in one mobile screen. So the amount of text that has to be put per

screen has to be replanned. This replanning cannot be automated.

Canvas size and co-ordinates of Image object

The Co-ordinates of various Image objects in an OSCAR animation screen has been

designed for desktop resolution. For example the following code shows paint method

in an OSCAR animation with the co-ordinates set manually at the coding time of the

program.

public void paint(Graphics G){

g.drawImage(Image img1, 480, 600,this);

g.drawImage(Image img2, 530, 400,this);

g,drawImage(Image img3, 60, 370, this);

}

The position of image objects has to be replanned for mobile device resolution. This

replanning cannot be automated.

Other General Differences between J2ME and J2SE

The other general differences between J2ME and J2SE are

� No floating point support in J2ME: The CLDC does not support floating point

numbers. Therefore, no CLDC-based application can use floating point numbers

CHAPTER 2. APPLET ADAPTATION METHODOLOGY 11

or types such as float or double. This is mainly because CLDC target devices do

not have floating point support in their hardware.

� No finalize method : The CLDC APIs do no include the Object.finalize method

so final cleanup operations can not be performed on object data before the object

is garbage collected.

� No Java Native Interface (JNI) : A Java virtual machine supporting the CLDC

does not implement the Java Native Interface (JNI) primarily for security reasons.

Also, implementing JNI is considered expensive, given the memory constraints of

CLDC target devices.

� No user-defined class loaders : A Java virtual machine supporting the CLDC

must have a built-in class loader that cannot be overridden or replaced by the user.

This is mainly for security reasons.

� No thread groups or daemon threads : While a Java virtual machine sup-

porting the CLDC implements multithreading, it cannot support thread groups

or daemon threads. So to perform thread operations for groups of threads, use

collection objects to store the thread objects at the application level.

2.1.4 J2SE Vs J2ME – Conversion Possibilities

Copy of paint method

J2SE uses Graphics class to show animation in applet. J2ME also uses the same Graphics

class with some minor changes. So the paint method can be copied as it is during

conversion. The following code shows paint method in J2SE animation.

In applet

public void paint(Graphics g)

{

g.drawString("Sending",150,75);

g.drawRect("40,50,10,20);

g.drawImg(Image img,20,30,center);

g.drawArc(30,40,10,30,60,120);

}

CHAPTER 2. APPLET ADAPTATION METHODOLOGY 12

These methods are common for J2SE and J2ME from the above example

� drawString

� drawImage

� drawArc

� drawRect

Buttons to Key Mapping

Though J2ME doesn’t display visual buttons, it uses mobile device keys to accept input.

OSCAR animations on the other hand use visual buttons for accepting input like start,

stop of animation. These visual buttons in the applets can be mapped to mobile device

keys to get the same effect.

LWUIT

Light Weight User Interface Toolkit (LWUIT) is a UI library provided by Sun under

GPLv2. It offers advanced UI capabilities and a clean API that is inspired by swing.

It removes the necessity to write device specific code for different screen sizes. This UI

library solves the hierarchical problem present in J2ME. LWUIT allows user to have

multiple panels in one screen.

2.2 Flash Based Adaptation

2.2.1 Overview of Flash and Action script

Adobe Flash is a multimedia platform language used to create animations, advertise-

ments. Flash has support for an embedding scripting language called Action Script (AS),

which is based on ECMA script. Flash animations can be controlled, provides interac-

tion with animation. Flash movies are easier to create, more stable on web browsers

than to Java applets. Action Script has its own rules for grammar and punctuation that

determine which characters and words are used to create meaning and in which order

they can be written. Action Script has evolved in to an Object Oriented Script which

has the capability similar to Java Script. Action Script in flash lets to do anything with

animations and also things which cannot be done using animation techniques. Action

CHAPTER 2. APPLET ADAPTATION METHODOLOGY 13

Script can be used to create almost all of the interactivity seen in many flash applica-

tions. Flash movies are saved as Shock Wave Files with .swf file extension, which can

be played in Flash Player. Recently Flash has also provided support for XML to render

rich content in the browser. This technology has been made a formal approach called

Adobe Flex, which uses Flash runtime to build Rich Internet Applications.

Adobe Flash Lite is a highly optimized implementation of Flash runtime for mobiles,

consumer electronic devices, and Internet connected digital home devices. Flash tech-

nology on mobile phones provides the same advantages as using flash on desktop. Rich,

interactive, files can be built providing a quicker time to market. Flash Lite has the

ability to send and receive data over HTTP. This enables user to load data (and SWFs)

into your application from web browser, giving benefit of dynamic content in an installed

application.

2.2.2 Java to Action Script – Conversion Difficulties

No Multi-Threading

Multi-Threading – A multithreaded program contains two or more parts that can

run concurrently. Each part of such a program is called a thread,and each thread defines

a separate path of execution. Thus, multithreading is a specialized form of multitasking.

Java is multithreaded environment.

Flash is a single threaded environment, means it does not have support of threads.

Threading is essential ability to have the code do something in background while the UI

is doing something else. Because action script is single-thread environment it spends a

lot of time doing heavy computation, the UI can not be updated. If the action script

does not stop running, flash will kill after 60 seconds.

The following code shows a part of OSCAR animation with thread class. This cannot

be implemented incase of action script.

class Timer extends Thread {

public int myTime = 0;

public static int myTime1 = 0;

Network myNetwork;

CHAPTER 2. APPLET ADAPTATION METHODOLOGY 14

Component myComponent;

int myInterval;

void set time(){

....

}

void sleep(){

....

}

No Function Overloading

Action Script doesn’t allow programmer to overload a functions. For example in Java a

default overloading will be like

public void defaultSetter(int iValue) {

setter(iValue, false);

}

public void setter(int iValue, boolean bForce) {

// whatever

}

In Action script it is written as

public function setter(iValue:int, bForce:Boolean = false):void {

// whatever

}

This overload can be done for one function. But if there are multiple methods

that take different types, then there will be a lot funtions like setFormString() and set-

FormInt(), etc. This is fine but if the constructor is the one being overloaded, it is a

cumbersome process to porting java to action script.

Other General Difficulties in Action script compared to Java are

� Limited Data Structures: Action script only supports Arrarys and Dictionary,

no queues, no linked list, no stack compared to Java. It would cause a trouble if

CHAPTER 2. APPLET ADAPTATION METHODOLOGY 15

porting is performed to action script from Java classes. It is better to re-implement

the data structures that are wrapped.

� No Yielding or Blocking There is no yielding or blocking in Actionscript. If

the next line of code is supposed to run, user cannot prevent the next line of code

from running. That means that when you call Alert.show(), the next line of code

following that runs right away. In many other runtimes, the Alert window has

to be closed before the next line of code continues. The application has to be

refactored into event driven.

Syntax Conversion from Java to Action Script

Action Script is much similar to Java Script with a little change in syntax. For example

a Java function looks as

public ReturnType methodName(ParamType1 param1, ParamType2 param2)

Action Script Equivalent is

public function methodName(param1:ParamType1, param2:ParamType2):ReturnType

Syntax is easy to change. So, Java Script to Action Script 3 (J2AS3) [13] converter

was developed. It is an open source application written in Adobe AIR that can use to

convert Java Files to Action Script 3 files. It only does Syntactic conversion of functions,

data types of variables. Manually change other parts of the code has to be done in or-

der to build an action script file. The rest of the conversion process cannot be automated.

�Thus adaptation of applets to mobile devices is difficult and not feasible, so Adapta-

tion of Live videos has been explored in next chapter.

Chapter 3

Live video Adaptation

3.1 Video Transcoding and its limitations

3.1.1 Video Transcoding

Video Transcoding is the operation of converting a video from one format into another

format. A format is defined by characteristics like bit rate, frame rate, spatial resolution,

coding syntax and content. A multimedia system may consist of various devices like

PCs, Laptops, PDAs, mobile phones, etc interconnected via heterogeneous wireline and

wireless networks. Each client in Heterogeneous system has diverse capabilities like

screen resolution, speed, memory, decoders, etc. Transcoding enables Heterogeneous

systems to exchange content on the Internet. Transcoding process is shown in Figure

3.1.

Figure 3.1: Transcoding process

The bit rate is the main determinant of the quality of encoded video file — the more

the bits, the better in general the video will look. But, some types of images like JPG

require fewer bits to look good. Each picture is called a frame and multiple frames

are required to create the illusion of moving picture. The frame rate defines how many

16

CHAPTER 3. LIVE VIDEO ADAPTATION 17

frames are displayed per second and this value usually ranges from about 24 to 60. The

minimum frame rate needed for motion is about 24 frames per second (fps) and this is

standard used for movies. Resolution is number of pixels used to display a frame. The

bandwidth required to display is approximately equal to resolution multiplied by frame

rate. Thus video transcoding is one of the essential components for providing universal

access.

3.2 Existing System – Study Element Based Adap-

tation

Centre for Distance Education and Engineering Programme (CDEEP) is an distance

initiative learning by Indian Institute of Technology Bombay. CDEEP provides Video

Lectures and Live Streaming to remote locations. The instructor uses mainly two modes

of instructions namely presentational slides and explanation on a white paper element.

One of the Methods of adaptation is Study Element Based Adaptation [10].

The existing system using Study Element Based Adaptation for pre-recorded CDEEP

Live videos to Mobile Devices. The Architecture of Existing system is shown in Figure

3.2.

Figure 3.2: Existing Study Element Based Adaptation for stored videos

In the Existing system, the videos are pre-recorded and stored in repository viz. en-

tire video is available for processing. The images extracted from stored video are sent

to tagging mechanism. In the Tagging Mechanism, the images are classified in to Study

elements. After classification, the images and extracted audio are stored in the server

manually. The server sends images and audio to mobile user based on user experience

and network bandwidth. This system works only stored CDEEP live videos. All the

extracting and tagging mechanism are performed offline.

CHAPTER 3. LIVE VIDEO ADAPTATION 18

Three types of study elements are categorized according to [10]. They are

1. Presentation Element - Portion of video that shows one slide of a presentation

2. White Paper Element - Portion of video that shows white paper on which

instructor is writing

3. Instructor Element - Portion of video that shows instructor talking

Sample images of the elements are shown in Figure 3.3

(a) Instructor Element (b) White Paper Element (c) Presentation Element

Figure 3.3: Types of Study Elements

The study element based adaptation procedure has 3 basic steps

1. Video Tagging

2. Building User experience

3. Finding Sending Intervals

Building User experience and Finding sending Intervals can be referred from [10]. In

this thesis, Video Tagging method is exploited to generate the specific results. Video

Tagging Technique uses feature based tagging to identify the boundaries of the study

element. This is used identify the Starting time, Ending time and Type of Element,

details are stored in an XML file.

Classifying Images into Elements

As mentioned above Study Element Based Tagging uses feature based tagging. Here

three elements are classified based on some features present in element.

1. Instructor element — feature used is Face Recognition

2. White paper element — feature used is CDEEP logo image

CHAPTER 3. LIVE VIDEO ADAPTATION 19

3. Presentation Element — No specific feature, categorized based on background color

(since it doesn’t change)

The downside of this method is that there can be misclassification because some times

features could not recognized correctly like face recognition. In real time these errors

can not be corrected, corrections cause huge delay.

3.3 Proposed system

A supporting thesis Study element based adaptation which adapts pre-recorded CDEEP

lecture videos to Mobile Devices. This method has been adapted to support Live video

Streaming of CDEEP lecture Videos. The Block Diagram is shown in Figure 3.4.

Figure 3.4: Block Diagram of Study Element Based Adaptation with Live video Adap-
tation

Figure 3.5: Live video Adaptation Process

CHAPTER 3. LIVE VIDEO ADAPTATION 20

Figure 3.6: Tagging process

In this system, Live video Adaptation has been integrated as shown in above diagram

3.4, marked as Live video Adapatation module. In Live video adaptation module figure

3.5, Images are extracted from Live video Stream. The existing system can extract

images from stored videos only because the entire video is available completely. In Live

stream entire video is not available. So different approaches for extraction of images

are discussed in later sections. Audio is extracted and saved as chunks. The Extracted

images sent to Tagging mechanism to classify images as study based elements. After

Tagging, Images and Audio chunks are stored dynamically in real-time in server and

sent to mobile device at desired experience.

The Tagging process generates an XML file. This process for live video streaming is

shown in Figure 3.6. The process is used for every 300 images for the total video. Each

time new XML file is appended to old XML file. Thus making it to provide a live video

stream on mobile devices.

Reason for choosing 300 images The method implemented may some times cause

errors, because the Tagging procedure used has a constraint that it should start only

with a Instructor Element. But after every 300 images it can not be sure that there

is an instructor element. The tagging of 300 images took approximately 90 sec from

analysis. Therefore, by reducing the no of bulk images processed at one time, it may

result in more errors. If the number images processed at every time is increased, then

initial delay will become high. So it better to take a value which is not very higher or

very lesser.

3.4 Image Capture Methodologies

The first part of process is getting images from buffered Live Stream. Many media

players can be used to extract images from stream, among them Video LAN (VLC) [16],

FFmpeg [2], and Mplayer [5] are used as part of experiment. Many media players do

CHAPTER 3. LIVE VIDEO ADAPTATION 21

not have the support to get images from Live Stream especially.

3.4.1 Approach 1: VideoLAN(VLC)

In Live video stream, the entire stream is not available. So initial approach was to

record/save a small part of live stream say 5 minutes, and generate images from video.

Using VLC, the video was recorded from live stream and also transcoded into the spec-

ified format.

Recording Live Stream to Video File

vlc --run-time=300 url :sout=#transcode{vcodec=mp2v,vb=3072,scale=1,acodec=mpga,

ab=128,channels=2} :duplicate{dst=std{access=file,mux=ps,dst="C:\VLC\myTestMovie.MPG"}}

The above command records a video from url, transcodes the video into specified

MPG format. Once recorded, the images were extracted from saved file by take a screen

shot of VLC window using the following command.

Extracting images from recorded file

vlc -V image --image-out-format jpg --image-out-ratio 24 --image-out-prefix snap

test.mpg vlc:quit

Disadvantages

� This process requires high CPU utilization because of transcoding.

� Delay between actual video and seeing video increases for each iteration as transcod-

ing of video file takes time.

Extraction from MJPEG stream

Since incoming stream could not be edited directly, another alternate idea was to transcode

live video stream to MJPEG [1] stream (sequence of images) and chain stream it. These

MJPEG images are separated by delimiter, which might help in extracting images from

stream directly.

CHAPTER 3. LIVE VIDEO ADAPTATION 22

Problems with MJPEG stream

In this process transcoding itself has high CPU utilization. At the receiver side the

extracted images with out delimiters could not displayed, only VLC was able to display

them. These images can only be rendered on a browser with a special multimedia type.

3.4.2 Approach 2: FFmpeg

In this approach, the images were extracted from Live Stream with out saving the video.

Here FFmpeg [2] tool is used to extract images from live stream directly.

Extracting Images

ffmpeg -i url -an -r 1 -f image -s 320x240 video%d.jpg

Images are saved in sequential order at 1 second interval in a single file. A group of

images say every 300 images are sent to Tagging Mechanism. The tagging mechanism

classify images in to study elements. Audio is recorded from live stream in small audio

chunks using ffmpeg.

Extracting Audio chunks

ffmpeg -i url -t 00:00:20 -acodec libmp3lame -ab 24 -ar 8000 audio.mp3

The Audio chunk of every 20 seconds is recorded and saved in the mp3 format with

bit rate of 24 Kbits and sampling rate of 8000 Hz.

3.4.3 Approach 3: Mplayer

In this approach, the extracting and grouping mechanism are combined in to one state-

ment. Mplayer can capture images directly from the live stream and could separate as

a set of images in separate directories which is easier to process.

Extracting Images

mplayer -nosound -vf framestep=25 -vo jpeg:subdirs=img:maxfiles=300 url

The above command captures an image every 25 frames, store every group of 300

images in to a single directory [5] with sequential numbering. The directories are given

to Tagging Mechanism. This approach is currently used in this process for extracting of

images. The Audio is generated as explained in approach 2 using ffmpeg

CHAPTER 3. LIVE VIDEO ADAPTATION 23

3.5 Comparison with Existing System

� Supports Automatic Creation of offline copy of live video. In the existing system,

the process of creating the offline copy has to be done by video author using

automated tools shipped as part of it.

� Enables Viewing of live video as soon as it starts. The existing system works only

for pre-recorded videos and hence after completion of lecture.

� In the existing system, any misclassification of images is corrected by the video

author. But incase of Live video Streaming misclassifications can not be corrected.

Chapter 4

System Implementation

The system is meant to provide content to mobile device user. There are certain issues

that arouse during implementation on mobile device which are briefly discussed below.

4.1 Port Blocking and NAT in Mobiles

Mobile device IP address bases on the NAT (Network Address Translation) performed

by the gateway of the service provider. This will result a ”masquerading” IP address,

for which reason the mobile device is not visible to the outside world with that IP.

Such IP address is called ”private”. As a result, the mobile device web browser in a

”masqueraded network” can browse a outside website, but this does not work the other

way. It depends on the network administrator if the translation table entries will be

configured for permanent use, often referred to ”static NAT” or port forwarding, thus

allowing traffic from outside network to access into that ”hidden” network.

The proxy server implemented by service provider does not allow direct TCP socket

connections to any port except for HTTP ports 80 and 8080, all other ports are blocked

by service provider. This is tested by a small program that simply listens on a specific

port say 1234. The program would display whenever the remote host is connects and

would display anything the remote is sending. When mobile host tried to connect to

server through GPRS, the connection could not be made.

Hence a web server along with Java servlets has been used as a server to which all

client mobile application connect. Since all requests goes through HTTP, do not have

port block issue. Port blocking has direct impact on streaming, the stream can not be

24

CHAPTER 4. SYSTEM IMPLEMENTATION 25

send directly to mobile client. Instead streaming has to be RTSP based, simply as audio

on demand with a RTSP server. There are issues in deploying using RTSP, because

mobile devices have small memory and computing power which makes it difficult to

buffer stream and play it at the same time. It uses progressive download technique only,

it will only play after the entire the stream is downloaded.

4.2 System Diagram

The system has 3 components.

1. Web Server — Contains all images and audio files, Java servlet which handles

all requests.

2. Mobile Client — A J2ME application used to connect to server and display

content.

3. user

The Fig 4.1 shows the sequence of commands involved in playing video. Initial and

default settings of speed and user experience are set, but these can be changed according

to user demands.

Figure 4.1: Sequence Diagram

CHAPTER 4. SYSTEM IMPLEMENTATION 26

The user requests for current list of video’s. The server returns with list of current

Live video’s video’s. Once user selects the video, the images are sent based on user

experience input, one after the other. In the background the audio file is played on

mobile device using progressive download technique i.e., when is first chunk is being

played, the second chunk is being downloaded and so on. Every time 300 images are

inserted in the server after the tagging process in real time. Before the first 300 images

can be sent, the next 300 images will be kept in server with updated XML file.

4.3 Watching Live video

The below images 4.2 show live video’s being streamed on mobile phones. User inputs

enters the http URL of the server. He is shown the list of Live video’s being streamed,

user selects the Live video. According to the user settings, images are downloaded one

after the other with specified user interval. While the Images are being downloaded, new

images are added dynamically to the server. So, there will be no delay once the Live

Video Stream is started.

(a) Start Page (b) Video List (c) Slideshow of Images

Figure 4.2: Seeing a Video

In Figure 4.2, the Start page shows user input screen for URl. The Video list screen

shows the current list of Live and Stored CDEEP Videos in the repository. Once the

video is selected, the images are downloaded to mobile device and shown as Slideshow

of Images. The Audio is played along with the slideshow.

Chapter 5

Conclusion and Future Work

In conclusion Java applets cannot be ported on to mobiles directly. J2SE code trans-

formation to J2ME or Action script is very difficult and not feasible. It requires large

resources. It is easy to start from scratch in both J2ME and Action Script to build the

similar applet. The present Study Based Based Element Adaptation to Live CDEEP

video lectures can be adapted to Mobile devices with low memory and networks with

low bandwidth as a cost effective method.

As Future, there are certain area’s that can be improved in Live Streaming of CDEEP

video to make it more efficient. They are

1. Tagging Efficiency – The study based element adaptation is prone to errors in

classification of images, improving this method by better classification methods is

necessary.

2. Text Improvement – The presentation and white paper elements have much text

content. Improving text quality in these elements

3. Synchronization of Images and Audio – There is no synchronization between

audio and images. Implement synchronization will give better user experience.

27

Bibliography

[1] Mjpeg tools. http://mjpeg.sourceforge.net.

[2] Fabrice Bellard. Ffmpeg codec manual. http://www.ffmpeg.org/ffmpeg-doc.

html.

[3] Hojung Cha, Jongmin Lee, Jongho Nang, Sungyong Park, Jin-Hwan Jeong, Chuck

Yoo, and Jin-Young Choi. A video streaming system for mobile phones: Practice

and experience. Wireless Networks, 11(3):265–274, 2005.

[4] Adobe Flex. Programming action script 3.0 manual. http://livedocs.adobe.

com/flex/3/progAS_flex3.pdf.

[5] Free Software Foundation. Mplayer manual. http://www.mplayerhq.hu/DOCS/

HTML/en/index.html.

[6] H.264. H.264 format. http://ati.amd.com/products/pdf/h264_whitepaper.

pdf.

[7] ISO/IEC. Mpeg-1 coding of moving pictures and associated audio for digital storage

media at up to about 1,5 mbit/s. ISO/IEC 11172, 1993.

[8] ISO/IEC. Mpeg-2 generic coding of moving pictures and associated audio informa-

tion. ISO/IEC 13818, 1996.

[9] Jonathank Knudsen and Sing Li. Beginning J2ME: From Novice to Professional.

Apress, third edition, 2005.

[10] G.N. Murthy and S. Iyer. Study element based adaptation of lecture videos to

mobile devices. In Communications (NCC), 2010 National Conference on, pages

1–5, 29-31 2010.

[11] OSCAR Project. Overview. http://oscar.iitb.ac.in/.

28

BIBLIOGRAPHY 29

[12] Herbert Schildt. Java 2 the complete reference. Osborne/McGraw-Hill, fourth edi-

tion, 2001.

[13] Java to Action Script Converter. Home. http://code.google.com/p/j2as3/.

[14] Transcoding. Internet transcoding for universal access. http://www.research.

ibm.com/networked_data_systems/transcoding/.

[15] A. Vetro, C. Christopoulos, and Huifang Sun. Video transcoding architectures and

techniques: an overview. IEEE Signal Processing Magazine, 20(2):18–29, mar 2003.

[16] VLC. Video lan project. http://www.videolan.org/.

