
Shikav extensions to support networking
animation

Dissertation

submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Moniphal Say

(Roll no. 05329201)

under the guidance of

Prof. Sridhar Iyer

Prof. Abhiram Ranade

Department of Computer Science and Engineering (KReSIT)

Indian Institute of Technology Bombay

July-2007

Dissertation Approval Sheet

This is to certify that the dissertation entitled

Shikav extensions to support networking animation

by

Moniphal Say

(Roll no. 05329201)

is approved for the degree of Master of Technology.

Prof. Sridhar Iyer

(Supervisor)

Prof. Abhiram Ranade

(Co-supervisor)

Prof. Anirudha Sahoo

(Internal Examiner)

Dr. Vijay T. Raisinghani

(External Examiner)

Prof. V. M. Gadre

(Chairperson)

Date:

Place:

iii

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

CERTIFICATE OF COURSE WORK

This is to certify that Ms. Moniphal Say was admitted to the candidacy of the

M.Tech. Degree and has successfully completed all the courses required for the M.Tech. Pro-

gramme. The details of the course work done are given below.

Sr.No. Course No. Course Name Credits

Semester 1 (Jul – Nov 2005)

1. IT601 Mobile Computing 6

2. HS699 Communication and Presentation Skills (P/NP) 4

3. IT603 Implementation Techniques in DBMS 6

4. IT619 IT Foundation Laboratory 8

5. IT623 Foundation course of IT - Part II 6

6. IT605 Computer Networks 6

Semester 2 (Jan – Apr 2006)

7. CS686 Object Oriented Systems 6

8. HS700 Applied Economics (Institute Elective) 6

9. CS640 Natural Computing (DNA Computing) 6

10. IT680 Systems Lab. 6

11. IT694 Seminar 4

Semester 3 (Jul – Nov 2006)

12. CS601 Algorithms and Complexity 6

13. CS681 Performance Evaluation of Computer Systems and Net-

works (Audit)

6

Semester 4 (Jan – Apr 2007)

14. IT610 Quality of Service in Networks (Audit) 6

M.Tech. Project

15. IT696 M.Tech. Project Stage - I (Jul 2006) 18

16. IT697 M.Tech. Project Stage - II (Jan 2007) 30

17. IT698 M.Tech. Project Stage - III (Jul 2007) 42

I.I.T. Bombay Dy. Registrar (Academic)

Dated:

v

Acknowledgements

I would like to express my sincere gratitude toward my guides Prof. Sridhar Iyer,

and Prof Abhiram Ranade for their constant support and encouragement. Without

their invaluable guidance, this work would never have been a successful one.

I would like to thank Kushal for always being a supportive friend, providing con-

structive ideas and help me to fix bugs in my code. I also would like to thank Janak,

Ramdas for their helpful discussions and thanks to Ramanand for his help in reviewing

and correcting my English in this thesis.

I would like to thank my family for their love and support which always have been

a source of my inner strength. I would also like to thank to the whole family of Prof.

Sridhar Iyer for their kindness and love that make me feel like home. Last but not the

least, I would like to thank my friends and the KReSIT family for making my 2 years

in IITB memorable.

Moniphal Say

I. I. T. Bombay

July 16th, 2007

vii

Abstract

There is a growing interest in e-learning tools. One category of e-learning tools is

electronic lesson. In addition to the lectures in classroom, electronic lessons can also be

used, which help students in understanding the topics more completely by the use of

animation as interactive visual aids. For this purpose, many authoring tools have been

developed. Shikav 2.0 is one among them.

Shikav is a framework for constructing interactive electronic lessons, including anima-

tions using its own high level script language. The framework lets us create lessons in the

field of Mathematics, Algorithms, Biology, Physics, and Economics. Shikav is developed

in Java and has support for constructs such as point, line, arc, circle, triangle, rectan-

gle, anglecurve, edge, vertex. However these are not sufficient to easily create animations

of network protocols. Additional constructs need to be supported such as node, packet,

beacon, repeat loops, if else conditional statement.

We have added modules, and made modifications to Shikav to support lessons ex-

plaining the basic concept of network protocols. In this thesis, a detailed description of

the concepts, design, features of Shikav are presented. The design and the newly added

features to Shikav have also been thoroughly described. We also explain a new defined

script called “network script” language.

ix

Contents

Acknowledgements vii

Abstract ix

List of figures xiii

Abbreviations xv

1 Introduction and Motivation 1

1.1 Advantages of electronic lessons . 1

1.2 Shikav . 2

1.3 Motivation . 3

1.4 Problem statement . 4

1.5 Accomplishments . 5

1.5.1 Features added into Shikav script language 5

1.5.2 Network script language . 6

1.6 Thesis outline . 8

2 Shikav and Related work 11

2.1 Design of Shikav framework . 11

2.1.1 Compile, Issue, Update . 11

2.1.2 Features of Shikav . 13

2.2 Components of Shikav . 14

2.3 Shikav Script language . 15

2.4 Related tools . 20

2.4.1 JAWAA . 20

2.4.2 Samba and Polka . 20

xi

xii Contents

2.4.3 Compare with Shikav . 20

2.4.4 Tool for creating networking lesson - JSIM 21

2.4.5 Summary . 23

3 Examples for Shikav Extension 25

3.1 TCP 3 way handshake . 25

3.2 TCP slow start . 26

3.3 WiFiRe . 27

3.4 Summary . 30

4 Implementation details of Shikav Extension 33

4.1 Class Diagram of new added classes . 33

4.2 Enhancement in Shikav . 36

4.2.1 Object creation . 36

4.2.2 Shikav script . 36

4.3 Network script language . 37

4.3.1 Integration of new script language into Shikav 40

4.3.2 How does “NetworkParser” work? 41

4.4 Examples . 41

4.4.1 TCP 3 way handshake . 43

4.4.2 TCP slowstart . 43

4.4.3 WiFiRe . 44

5 Conclusion and Future extensions 49

5.1 Conclusion . 49

5.2 Future extensions . 49

A Examples of lecture files 51

A.1 TCP 3 way handshake . 51

A.2 TCP slowstart . 53

A.3 WiFiRe . 55

Bibliography 59

List of Figures

1.1 The work flow of Shikav . 2

1.2 Screen shot of lesson created in Shikav . 3

1.3 The screenshot of animation of node transferring packets in Shikav 8

2.1 Use case diagram of Shikav . 12

2.2 Components of Shikav . 14

2.3 Layer of packages in JSIM . 21

2.4 The screen shot of simulation of customers in MC Donald 23

3.1 The process of TCP 3 way handshake (TCP initial connection set up) . . . 26

3.2 High level network configuration for WiFiRe 28

3.3 Sequence diagram of initial ranging steps 29

3.4 Sequence diagram of registration steps . 30

3.5 Sequence diagram of UGS data connection 31

3.6 Sequence diagram of rtPS and nrtPS data connection 31

4.1 Relation between newly added classes . 34

4.2 The flow of Shikav . 42

4.3 Screenshot of animation showing the working of WiFiRe protocol 47

A.1 Screenshot of animation showing the working of TCP 3 way handshake . . 52

A.2 Screenshot of animation showing the working of TCP Slow Start 55

A.3 Screenshot of animation showing the working of WiFiRe protocol 58

xiii

Abbreviations

Abbreviations

BS : Base Station

BS ID : Base Station Identifier

JSIM : Java Simulation

IRRe : Initial Ranging Request

IRRes : Initial Ranging Response

nrtPS : non-real time Polling Service

rtPS : real time Polling Service

RSSI : Received Signal Strength Indication

ST : Subscriber Terminal

ST ID : Subscriber Terminal Identifier

UGS : Unsolicited Grant Service

xv

Chapter 1

Introduction and Motivation

There are various ways for students to learn a particular subject, by text book, by

visual aid, by animated representation, and by audio representation. Books provide tex-

tual and visual presentations. E-learning becomes popular topic of interests. Authoring

tools help non-professional programmers to create electronic lessons. Some of these tools

provide the facility to create interaction between the lessons and the end-users while some

provide the graphical interface to facilitate the creation of lessons. Students learn best by

interacting with the lessons. For the same purpose, many authoring tools such as Shikav

[8], JAWAA [9], Samba [2], JSIM [6] etc. have been developed. These provided different

sets of features.

1.1 Advantages of electronic lessons

Electronic lessons or courseware have many advantages, which are listed below:

• Multimedia content: courseware can contain multimedia features such as images,

animation, audio and video clips. These enrich the contents of the topic and make

their study more interesting.

• Interaction: students understand the studied topics better by varying the input

parameters, moving objects.

• Accessibility: courseware can be made available to more users by putting it online

on the Internet, Intranet, or by distributing it on CDs.

2 Chapter 1. Introduction and Motivation

1.2 Shikav

Shikav [8] is a framework for developing interactive electronic lessons. Its development

was initiated by Professor Abhiram Ranade at IIT Bombay. Shikav is written completely

in Java. Shikav has its own high level script language which is described in section 2.3.

This language enables the author to create electronic lessons in various topics in fields

such as Mathematics, Biology, Algorithms, Physics, Economics.

Shikav can be run as a stand alone application or can be run on the Web. It takes the

script file called “lecture file” with “.lec” extension as argument.

How does it work?

The figure 1.1 shows the work flow of Shikav.

Figure 1.1: The work flow of Shikav

• Shikav first checks for a valid Java version installed (from version 1.3 upward) in the

system. If the version is valid, the default framework will be created with various

menu options as shown in the figure 1.2.

1.3. Motivation 3

• The script file (“.lec” extension) will first be compiled and then parsed sequentially.

The ParsedInfo object will be created corresponding to each command.

• The command gets executed with the creation of object based on the necessary

information in ParsedInfo object. The panel object gets registered in the panel

queue of the framework and the geometry object gets registered with the Geometry

panel. The method draw(Graphic g) of the geometry objects gets called and the

object gets display in the panel. Every time the Geometry panel gets repaint, the

method update() of its registered objects get called and objects get updated.

Figure 1.2 is the screen shot of a sample lesson created in Shikav.

Figure 1.2: Screen shot of lesson created in Shikav

1.3 Motivation

An answer to a question like “how does a particular protocol work?” would be simple

and easy to understand if it contains animation along with the explanation. As described

in section 1.1, interactive electronic lessons play an important role in helping students

4 Chapter 1. Introduction and Motivation

to understand the basic concepts of the lessons, so choosing an authoring tool becomes

a crucial decision for the authors (lesson content’s creators). Similar to other authoring

tools, Shikav [8] has been created with its own high level script language to enable the

authors to create lessons in the field of Mathematics, Algorithms, Biology, Physics, and

Economics. In comparison to other tools which are briefly described in Section 2.4, Shikav

has advantages such as it provides scope to extend its source code, it uses the “reflection”

technique of Java in which the designed was made in such a way that the behaviors of new

added classes into Shikav codebase could be accessed from the script, moreover electronic

lesson created in Shikav has the classroom board interface in which the frame can be

divided into multiples panels.

However the following capabilities are missing such as:

• Creation of nodes

• Creation of packets

• Creation of control packet (beacon)

• Loops

• If-Else conditional statement

In short Shikav doesn’t have intrinsic support for networking animations. For instance,

one can understand or experiment with various protocols in networking by using simu-

lations, but to understand its basic concepts and steps, the animated representation can

really be useful.

1.4 Problem statement

Our goal is to extend the Shikav framework to allows authors to create electronic

lessons in the topic of networking. Shikav has been created with many features which

enable authors to create lessons but the facility to create electronic lessons explaining

network protocols has not yet been provided. Hence, building the lessons in networking

by creating nodes, defining the behavior of each node to send, receive packets, etc. became

a difficult task for the authors. The goal of this project is:

1.5. Accomplishments 5

1. Adding necessary features into Shikav for supporting creation of networking anima-

tions

2. Defining and building a script language one level higher than Shikav script language

for the sole aim of creating networking animations.

Note that the purpose was not to build a simulation in Shikav i.e. the electronic

lesson created will not be able to show the analysis, the statistics of the packets which

are available in other simulations. It is only the representation of how the packets have

been transferred.

1.5 Accomplishments

Various network protocols and simulation tool [6] have been studied. The significant

work done is as follows:

1. One module of code has been implemented and added into the existing Shikav

codebase. This module enables the authors to create lessons explaining networking

which means it completes the missing features required for creating networking

animations in Shikav.

2. One higher level script for the unique purpose of creating animation explaining

network protocols has been defined and implemented.

1.5.1 Features added into Shikav script language

The newly added module allows authors to create objects of type Node, Packet, Beacon

explaining the basic working flow of any network protocols. For loop has also been added,

which is used in the cases where the same action repeats. The features added are:

• Entitynode enables the author to create nodes providing their name and coordinates,

which can be displayed in the Geometry panel

• Packet enables the author to create packets providing the content, source, and

destination. The display of packet can be seen only during its transfer from one

node to another node. The initial point of the packet is set to be the coordinate of

the source node.

6 Chapter 1. Introduction and Motivation

• Beacon enables the author to create beacon providing the source point and the

points of boundary.

• If-Else conditional statement allows the author to test condition and define state-

ment based on the result of the tested condition.

1.5.2 Network script language

A higher level script has been defined and implemented for creating animations in

networking. The terms used in this script are:

1. Node

2. send

3. receive

4. ConstructPacket

5. ConstructBeacon

6. repeat (this is being used in the place of For loops)

7. if < condition > else < statement > then < statement > endif

Authors who want to create animations explaining the work flow of network protocols

have the following choices:

• writing a script file by following Shikav script syntax by using the new added features

as described above and more in detail in Section 4.2.

• writing a script file by following the new defined script as described in Section 4.3

and passed into Shikav framework

Both are still named with “.lec” extension as usual Shikav lecture file.

The new scripts are defined to help the author in creating the animation in networking as

the terms used are really simple. Below is an example of a few commands in this newly

defined script language:

1.5. Accomplishments 7

Node A

Node B

repeat 2 i

ConstructPacket(A, B, "ACK", p)

send(p, A, B, 2*i)

end

With these simple commands, the author can create the animation with two nodes, named

A, and B. One packet named p is constructed with ACK as content, A as source and B

as destination. This file is passed as an argument to the Shikav framework with one more

argument as 0 to differentiate between Shikav lecture file and networking script. It gets

parsed with NetworkParser which translates into Shikav scripts language as:

reset("0","0","990","680","networkscriptexample")

text = TextPanel("5","5","460","610","blue","white","green")

g = Geometry("470","5","500","610")

timer = TimerPanel("0.2")

packetBuffer = PacketQueue()

A = EntityNode("A",325,22)

B = EntityNode("B",384,403)

i=ArithElement()

i.setValue(0)

p = Packet("ACK")

p.setSource(A)

p.setDestination(B)

text : A has packet "ACK" to send to B

text : A is sending packets to B

text :

A.send(p,2*i)

i=i+1

p = Packet("ACK")

p.setSource(A)

p.setDestination(B)

text : A has packet "ACK" to send to B

8 Chapter 1. Introduction and Motivation

text : A is sending packets to B

text :

A.send(p,2*i)

i=i+1

text :
 The explanation ends here !

The nodes are placed randomly in the Geometry panel as its coordinates get generated

randomly between the width and height of the geometry panel. In this case, the authors

need not worry about defining the points to place the nodes. Figure 1.3 illustrates the

animation of this script.

Figure 1.3: The screenshot of animation of node transferring packets in Shikav

More details of this newly defined script language are described in Section 4.3 of

Chapter 4.

1.6 Thesis outline

In order to help in understanding the Shikav framework in more detail, we describe

its description in Chapter 2. This also presents the related tools studied for creating

1.6. Thesis outline 9

networking electronic lessons. The chapter is followed by the description of case study

of a few network protocols such as TCP 3 way handshake[7], TCP slow start[10] and

WiFiRe[3] in Chapter 3. Next, chapter 4 explains the implementation details by class

diagrams. The enhancement of Shikav script, and a new defined script, and the example

of lecture files created for each network protocol are studied in the Case Study. This

thesis ends with the conclusion and future extensions.

Chapter 2

Shikav and Related work

2.1 Design of Shikav framework

There are 3 main actors or users in Shikav, Teacher or author, Student and Enhancer

which has different requirements.

1. Teacher/author: uses Shikav to create the lesson. They will need to know the

script of Shikav which is a high level language description consisting of sequences of

commands. There have been many efforts put into Shikav in order to try to make

the teacher’s task less difficult by making Shikav script richer and easier.

2. Student: acts as the end user of the system who will interact with the lesson created

by the teacher/author. Their basic requirement has been studied.

3. Enhancer: can make extensions to Shikav by adding new modules. Considering this,

the system has been designed to have modularity.

The figure 2.1 shows the use case diagram of Shikav.

2.1.1 Compile, Issue, Update

1. Compile time : Parser operates on each command in the .lec script file and creates

the ParsedInfo object corresponding to each command. All the ParsedInfo objects

are stored in ExecutionQueue. The ParsedInfo class contains:

String symbol Type of action to be taken. Example: “=” for assignment or cre-

ation of new object, “:” for appending text, and “.” for method call.

String objectName The Actor object (identify by its name)

11

12 Chapter 2. Shikav and Related work

Figure 2.1: Use case diagram of Shikav

String actorMethod Action to be taken, depends on the symbol defined above.

Example : “=” for creation of new object or call function, “:” for appending

the the parameters to the actor, and “.” for calling the method of the actor.

String printvalue Intermediate command.

String orgLine Original command (previous command).

Vector parameters Parameters passed as arguments.

int lineNumber Command line number for error handling.

2. Issue time: Each time the users hit the Next button, the instruction (one command

line in the script file) gets executed. Then the objects get created and registered,

and the objects are stored in the hash table data structure as variable store that

has the pair {name, object} as {key,value}. The objects are referred by their

unique names.

3. Update time: During execution of the lesson, the attributes of the created ob-

2.1. Design of Shikav framework 13

jects could be changed dynamically. The update method of geometrical objects

gets called, then the draw method gets called for redrawing the objects which get

displayed on the Geometry panel.

2.1.2 Features of Shikav

Shikav has basic inbuilt geometric objects such as Point, Line, Circle, Rectangle, etc.

New features have been integrated in Shikav.

1. Double View Editor - It consists of “Code Editor” and “Debugging Editor” which

author can write, modify, or view Shikav script for purpose of debugging while the

lesson is running. End user can see the source code (script file with highlighted

current executed command line) while running the lesson. The source code can also

be edited and saved.

2. GeoShikav - (Freehand drawing tool): It is a free hand drawing tool in which end

user can do free hand drawing in the panel such as line, point, and circle. The

proper shape will be generated and the command script related to those drawing

will be added and can be saved in the source script file.

3. Mathematical Expression Parser - Parses complex mathematical expressions such

as a*(b+c)/(a-c)*d. These expressions will be parsed and the equivalent script

commands are generated.

4. New features in Shikav language which were added by Aditya Kelkar[5] :

• List: Act as a group of arithmetic or geometric elements which will be stored

in a vector. Some basic operations of list are supported such as add, delete,

extract element. With operations such as

(a) Map: Given a list of elements, we can apply the function (user defined

function or inbuilt function) to the list which affects all elements in the

list.

(b) Reduce: Given the list of elements, a specific function will be applied to

each element of the list and the final result will contain only 1 object in

the list.

14 Chapter 2. Shikav and Related work

(c) Filter: Given the list of elements, a specific function will be applied on

each element. Normally, the condition will apply to the elements with the

result true or false.

• User defined function - The lesson creator can use inbuilt functions or write

their own functions and call them for use at a later stage.

• “If condition Else statement” in user defined function - The condition and

statement can only be arithmetic expressions.

2.2 Components of Shikav

Figure 2.2 illustrates the main components of Shikav,

Figure 2.2: Components of Shikav

• Framework : The basic part of Shikav, it contains the panel queue, which consists

of different panels created such as :

– TextPanel: for displaying text

– Geometry: for displaying/running animation

2.3. Shikav Script language 15

– ImagePanel: for displaying images

– TimerPanel: logical panel for keeping the timer of the framework

• Lesson: the main part of Shikav, for each lecture file, an Lesson object is cre-

ated which interacts with Framework to execute each command in the lecture file

sequentially. The Lesson contains ExecutionQueue.

• ExecutionQueue: stores the ParsedInfo object created corresponding to each com-

mand in the script file during the compile time. The current index (PC - Program

Counter) is used to point to the position of ParsedInfo object in the Execution-

Queue.

• Hashtable (store variable): stores all objects created, including the GUI object (the

actual Framework itself), the registered objects to the Framework. Each object is

identified by its unique name as the “key”

• Vector (work variable) act as Draw Queue: store all the GeometryElement objects

that are registered to the Geometry panel.

• Vector (order variable) act as Update Queue: store all the GeometryArithmeticEle-

ment objects that are registered to the Geometry panel.

2.3 Shikav Script language

Shikav has defined its own high level script called “lecture file” with “.lec” in which

the syntax has to be followed properly. The teacher/author needs to write a lecture file

for each Lesson. Each command in the script file is called as “Instruction” which is

explained below. The user can interact with the Lesson by using “Next” and “Back”

buttons. Pressing the “Next” button executes one complete frame and displays results

in the framework. The user can interact with keyboard as well as mouse with the lesson.

Various events are captured by application and various handler functions are called.

Classification of Instructions

Set the lesson layout The instruction is of form :

16 Chapter 2. Shikav and Related work

reset("0", "0", "990", "670", "Testing Shikav script")

This reset method applies to the Framework to set the layout of the lesson to be

displayed. The Framework will start from coordinates (0, 0) (the top left corner),

width=990, height=670 and the title of the lesson is “Testing Shikav script”.

Creation of Panels New panel objects can be created by giving panel class name along

with the parameters such as the coordinates and colors. The name assigned to the

object will be used as its identity which can be referenced later.

• Geometry: used to display various geometrical objects such as points, lines.

User interaction can also be done in this panel due to its mouse handlers event.

The option for freehand drawing has also been provided. The textual data can

be displayed in this panel with help of Text objects. Below is the example on

how the instruction should be.

G = Geometry("500","5","400","150")

During issue time, a Geometry object is created and stored in name table

(Hashtable) as G. The panel would be with width of 400, height of 150 and

starting at coordinates (500, 5). The panel is also inserted in panel queue of

the Framework. At update time, the GeometryArithElement object that are

registered with update and draw queue of this panel are displayed with paint

method.

• ImagePanel: for displaying various images. The existing image filename is

given as parameter. The instruction would be :

I = ImagePanel("5","500","400","150")

I : icon.jpg

During issue time, ImagePanel object gets created and stored in name table

as I. The panel would be with width of 400, height of 150 and starting at

coordinates (500, 5). This panel also gets inserted in panel queue of framework

so that paint gets called at update time.

• TextPanel: for displaying various textual contents as the description. Various

HTML tags can be used inside the textual data for bold, italic, break lines,

headers etc.

2.3. Shikav Script language 17

S = TextPanel("5","5","500","150","black","white","red")

S ! This is an example of TextPanel

S : This is for appending this text to the previous text

- and this is for continuation line

During issue time, the TextPanel object with name S is created with coodinates

(5, 5), width=500, height=150, font color=“black”, background color=“white”,

and highlighted color=“red”. The text following the special symbol “!” will be

displayed in S and any existing contents will get overwritten. The “:” is used

to append the text contents in the panel. The symbol “-” is used for specifying

the continuation of previous instruction. During issue time, the TextPanel

object with parameters passed is created and is stored in name table as S. It

is registered in panel queue of Framework in which the repaint will get called.

This object is retrieved from store for next instruction and the text contents

passed get attached to String component of object S. During update time, the

paint method displays textual contents of object S.

• TimerPanel: for keeping track of clock which is used to specify time delays

in the Framework. It is used to give delay in animations. The symbol “:”

followed by value parameters specified the delay in seconds.

T = TimerPanel(".3")

T : ".2"

Same as other panel, during issue time, the TimerPanel is created identified

by its name T and registered in the name table.

Creation of Geometric objects : geometric objects such as points, lines, and circles

can be created with simple instructions, which get displayed in Geometry panel. In

the same way as the previous case, new objects can be generated by calling the class

names along with the coordinates and identified by its unique name. Example set

of instructions:

P1 = Point(50,50) // creation of Point with coordinates (50,50)

P2 = Point(10,100) // creation of Point with coordinates (10,100)

text = Text("BeginPoint",P1) // Textual data at specified Point position

18 Chapter 2. Shikav and Related work

line = Line(P1,P2) // creation of line with 2 points

C = Circle(P1,50) // creation of circle with P1 as center point and radius=50

C.H("blue") // high light the circle with "blue" color (fill the circle color)

During issue time, objects are created and stored in name table identified with their

name. These objects are also registered with update and draw queues of Geometry

panel. The pointers to parameters passed are set from the created objects. At

update time, the coordinates of points and lines gets updated with the values of

pointed parameters. The objects are redrawn with new values in the Geometry

panel.

Movement of objects Geometrical objects can be moved providing the new values of

parameters. The TimerPanel is needed for the delay in second of movement.

T = TimerPanel(".3")

P1 = Point(50,50) // creation of Point with coordinates (x1=50,y1=50)

C = Circle(P1,50) // creation of circle with P1 as center point and radius=50

T : ".1"

P1.moveby(5,5) // move the point P1 to (x2= x1+5= 55, y2= y1+5= 55)

T : ".1" // give delay of "1" second

P1.moveby(5,5) // move the point P1 to (x3= x2+5= 60, y3= y2+5= 60)

During update time, as the point move, the circle C is also moved accordingly.

Arithmetic Instructions Examples of standard symbols provided in the expression are

addition (+), multiplication (*), subtraction (-), division (/) along with comparison

operators (==, <, >), which can be used to performed basic arithmetic operations.

It also supports trigonometric functionalities.

a = b + c

p = cos a

All these arithmetic operations have two operands: ArithElements and an operator

as String. At issue time, these objects get created with operand pointers to the

parameter ArithElements. During update, the result value of actual operation is

2.3. Shikav Script language 19

calculated with updated operand values. So the value of result object is consistent

with operand values of the operation.

Groups These are used to bind various objects as a single set and operations can be

performed on all these objects at same time. This can be a set of heterogeneous

objects. Simple methods like move, hide, highlight etc can be performed on all the

component objects of Group.

grp = Group{P,L,T} //P is Point, L is Line, T is Text

At issue time, the parameter objects are extracted from name table. In case they

are not created earlier, the default creation as doubleconstants or String object is

performed. These objects get inserted in component Vector of Group object and

is stored in name table as grp. At update time, the update method of Group calls

update on all its components.

Macros These are used to define various values with simple names which can be used

further in instructions. These gets preprocessed and replaced in actual instructions.

\macro(red,)

These commands get stored in a table with the mapping of symbol and actual values.

All the commands are preprocessed to figure out any of the macro symbols and get

replaced with values from this macro table.

Scenes Scenes are the topics which are going to be discussed in the lesson. Every lecture

file should have a scene which will act as title of lesson.

\scene(Name of scene)

For example:

\scene(Theorem of Pythagoras)

Frames User interaction is achieved by specifying a blank line command which indicates

termination of one frame where the lesson execution stops for input from user. The

user can play with the geometric diagrams with help of mouse or navigate for next

or previous frames. At issue time, when such blank command is detected, further

execution stops and control is passed to user. Whenever Next interrupt is obtained

from user, the issue cycle for next frame begins.

20 Chapter 2. Shikav and Related work

2.4 Related tools

2.4.1 JAWAA

JAWAA [9] stands for Java And Web-based Algorithm Animation, developed

at Duke University by Professor Susan Rodger and Duke undergraduates. It is a scripting

language enables authors to create animations that can be able to run on web. JAWAA

provides graphical editor, the authors can drag and drop the objects to be displayed in

the animation, then the corresponding JAWAA script gets generated and the users can

run it as Java Applet.

2.4.2 Samba and Polka

POLKA [1] is an open source animation system which provides the possibility for users

to build algorithms and program animations. The main aim for the system was to build

animations of parallel programs and computations. POLKA is written in C++. Along

with Polka, SAMBA [2] is an interactive front-end which is an animation interpreter that

reads one ascii command per line, then performs that animation directive. The Java

version of Samba called, Jsamba which is an in progress project.

2.4.3 Compare with Shikav

Shikav has some additional features such as :

• Stage Metaphor: Shikav provides the facility of creating electronic lessons with the

blackboard-like interface as taught by the teacher in classroom. Each lesson can be

divided in to various panels which can be used for various purpose such as a text

panel for explaining in text, a geometry panel for explanations using animation.

• Cross linking and referencing: Shikav has handled this feature effectively. The

students can link from one lesson to another.

• Advanced Patterns: These features are being developed by some students in IIT-

Bombay as their B-Tech projects, as exampled, they built the recursion tree for any

algorithm that use recursion.

2.4. Related tools 21

2.4.4 Tool for creating networking lesson - JSIM

JSIM [6] is web-based simulation developed purely in Java by John A. Miller, Andrew

F. Seila and Xuewei Xiang at University of Georgia. The simulations created include

animation and statistical data. JSIM provide the graphical interface editor which allows

authors to create the simulation. Once the author saves the file, the correspondent Java

files needed to run the simulation are generated. There are three foundation layers of

group of packages in JSIM as shown in Figure 2.3.

Figure 2.3: Layer of packages in JSIM

• The bottom layer, Foundation layer, is for collecting statistics of the simulation,

providing the difference variety of queues such as FIFO, LIFO, and a variety of

random variates, for different distribution functions for service time, arrival rate,

etc.

• The middle layer, Engine layer, the Event package provide the event-scheduling

simulation model and the Process package giving the model of interactive-process

paradigm.

22 Chapter 2. Shikav and Related work

• The top layer, Environment layer, provides the flexibility to the simulation, for

creating the visual designer (graphical interface) for the simulation, and for con-

necting to the database.

The simulations created in JSIM are mainly for queueing networks, the model has

various types of nodes such as Source, Server, Facility, Sink, Signal. From the JSIM

graphical interface, the authors can select:

• Source: for generating entities (SimObject, it is defined in JSIM as a single simu-

lation entity such as customer of the system or requests) depending on the random

inter-arrival time (number of entities to be created per unit time). The distribution

function is defined by authors, for example, the inter-arrival time is Poisson with

mean λ = 3.

• Server: for providing the service units to the entities arriving at the node depending

on service time distribution defined by authors (e.g: the service time is exponential

with mean µ = 4). If all the service units are busy, the client entities will be lost as

the server doesn’t allow the entities to be queued.

• Facility: derives from the Server class which has similar features but provides for

the entities to be queued. This means the entities will be enqueued if all the service

units are busy. The authors can set the queue type to be FIFO, LIFO, PriorityQueue

but presently, only FIFO (using LinkedList) is supported.

• Sink: for consuming the entities, in contrast of Source. Generally, it is the exit of

the system.

• Signal: for decreasing or increasing the service units in the server/facility. For

example, when the queue length of the facility is large, the signal will increase the

service units in the Facility in order to restraint the queue overflow.

Nodes are connected with the Transport which act as the edges in the graph. It sends

entities from one end to another end, the speed of the transport is controlled by the

adjustSpeed method and the entities are moved by the move method.

Example of simulation in JSIM

Here is an example of a simulation in JSIM for a food court in McDonalds, the customers

2.4. Related tools 23

will wait in the queue if the servers are all busy. The figure 2.4 is the screen shot of the

simulation.

Figure 2.4: The screen shot of simulation of customers in MC Donald

We have thoroughly seen the details of Shikav, its infrastructure, its working phases

and its features. The study of JSIM shows that the tool was mainly created for the

purpose of creating simulation showing queueing networks. Our purpose was not to show

the simulation of queueing networks but to explain the working flow of a particular network

protocol. Hence JSIM has not been taken into the solution to our problem.

2.4.5 Summary

We have chosen Shikav since it has the following advantages:

• Shikav has been designed with modularity, which provides the scope to extend its

source code.

• Shikav uses the reflection technique of Java. The classes added into Shikav code

can be used from the script file and its methods can also be called within the script

file itself.

• Shikav also provides the facility of creating electronic lessons with the blackboard-

like interface as taught by the teacher in classroom. Each lesson can be divided in

24 Chapter 2. Shikav and Related work

to various panels which can be used for various purpose such as a text panel for

explaining in text, a geometry panel for explanations using animation.

• Cross linking and referencing has been handled effectively by Shikav. The students

can link from one lesson to another.

In order to understand the new features required to be added into Shikav enabling

creating of animations explaining network protocols, a few network protocols such as TCP

3 way handshake, TCP slow start and WiFiRe have been studied and presented in the

succeeding chapter.

Chapter 3

Examples for Shikav Extension

Various basic protocol steps in networking have been thoroughly studied in order to

understand various features and constructs that need to be incorporated into Shikav.

Some examples are given in this Chapter. The first two are simple examples while the

third describes a more complex protocol.

3.1 TCP 3 way handshake

To create the connection in TCP (Transmission Control Protocol) [7], the initial step is

called “TCP 3 way handshake”. The client host requests connection to the server host by

sending SYN. When server host grants the connection, it sends SYN ACK back to client

host, the latter sends ACK back to inform the former that the connection is established.

1) A --> B SYN my sequence number is X

2) A <-- B ACK your sequence number is X

3) A <-- B SYN my sequence number is Y

4) A --> B ACK your sequence number is Y

As step 2) and step 3) can be combined into a single step, hence called “TCP 3 way

handshake”. Figure 3.1 illustrates this processes. In this case, the features needed are:

• Node: represents the Client host or Server host. The method required are receive

and send which needed packet, source and destination as its parameters.

• Packet: represents the packet to be sent between nodes, the packet will have source,

destination, and content

Section 4.4.1 has the lecture file created for this case.

25

26 Chapter 3. Examples for Shikav Extension

Figure 3.1: The process of TCP 3 way handshake (TCP initial connection set up)

3.2 TCP slow start

Also known as “Fast retransmission, fast recovery”[10] algorithm used as one part

for congestion avoidance (congestion control, collision avoidance) phase in TCP. It works

together with congestion avoidance to avoid sending data more than the capability of

network transmission. There are two variables required to be maintain for each connec-

tions, “congestion window, cwnd” and “slow start threshold size, ssthresh”. A slow-start

algorithm consists of two distinct phases: the exponential growth phase, and the linear

growth phase. Assume there are 2 hosts A and B, the basic slow start algorithm works

as follows:

set cwnd = IW (Initial Window) = 1 or 2

set ssthresh = 65535

send 1 packet

receive ACK

cwnd = cwnd * 2 = 2

send 2 packets

receive ACK

cwnd = cwnd * 2 = 4

send 4 packets

receive ACK

...

cwnd = cwnd * 2 = ssthresh

3.3. WiFiRe 27

Entering “congestion avoidance” phase in which cwnd = cwnd + 1, if time out occurs

set ssthres = cwnd/2

set cwnd = IW

and then re-entering slow start phase. The slow start algorithm begins in the exponential

growth phase initially with 1 or 2 segments (depending on the variant) for the congestion

window size, and increases this size exponentially (cwnd = cwnd * 2) until a predefined

slow-start threshold is reached. Once the threshold is reached, the congestion window

size is increased linearly (cwnd = cwnd + 1). When segment acknowledgements are not

received, it means time out, the slow-start threshold is set to half of the current congestion

window size, and the algorithm restarts.

In this case, the features needed are :

• Node: represents the network hosts. The methods required are receive and send

which needed packet, source and destination as its parameters.

• Packet: represents the packet to be sent between nodes, the packet will have source,

destination, and content

• For loop: as the congestion window size keeps on increasing till the threshold, hence

many rounds of sending packets are needed.

• If-Then-Else conditional statement: is used to test on the content of received packets

in order to define corresponding replied action.

Section 4.4.2 has the lecture file created for this case.

3.3 WiFiRe

WiFiRe (Wireless Fidelity for Rural Extension) [3] is an approach that use most of

the features of WiMAX (802.16) as MAC layer with some modification and it continues

to use the existing Physical layer of WiFi (802.11b), but unlike WiFi, WiFiRe will be

able to provide long range communications with high bandwidth by replacing the MAC

mechanisms of existing WiFi (802.11b), so that the range of communication can be ex-

tended up to 15–20km, with low cost and easy availability of the chipsets. WiFiRe divides

28 Chapter 3. Examples for Shikav Extension

the whole area into sectors, each has its own PHY layer which will be controlled by one

single MAC layer. Each sector will have one Base Station. Only one frequency will be

used in WiFiRe for uplink and downlink. Each sector is allocated frequency based on

Time Division Duplex- Multi-sector TDM (TDD-MSTDM). Figure 3.2 shows the high

level network configuration of WiFiRe.

Figure 3.2: High level network configuration for WiFiRe

Basic steps in WiFiRe

Below are the basic protocol steps in WiFiRe:

1. Network Initialization: The association between a ST and a System S is static.

But deciding on which BS to use for communication is done through ranging and

registration. An ST should communicate with only one S.

2. Ranging: New and Unsynchronized STs are allowed to range and register. On

power on, ST will listen for beacon sending periodically from system S, with some

specific ranging slots defined in the beacon. ST notes down all necessary information

and sends ranging requested at the defined slots. Once ST get the ranging reply

from system S, it goes into Ranging in order to synchronize the clock and other

3.3. WiFiRe 29

physical parameters with the system S. It is also performed periodically to keep in

synchronization with S. In this process S assigns ST two connection-ID’s (CIDs)

called the Primary CID, which will be used further for exchanging management

services, and Basic CID, which will be used further for periodic ranging requests.

Figure 3.3 illustrate the sequence diagram of ranging.

Figure 3.3: Sequence diagram of initial ranging steps

3. Registration: ST will send registration request to the system S which will send a

reply back. Once this is done, it means that ST has been added to system S and

ST has been assigned one IP address. During this process, ST and S exchanges

operational parameters and capabilities. Registration process enable ST to get IP

address in order to set-up provisioned connections. Figure 3.4 illustrate the sequence

diagram of registration.

4. Connection Management: Once the registration is done, ST can request for

any number of further connections. The MAC is connection-oriented and data

flow between BS and ST occurs as per the service flow type associated with that

particular data flow. Service can be added, modified or deleted. There are three

types of data flow, UGS (Unsolicited Grant Service), the Figure 3.5 illustrates the

sequence diagram of UGS data connection. rtPS(real time Polling Service) and

nrtPS(non-real time Polling Service), Figure 3.6 is the sequence diagram of rtPS

and nrtPS data flow.

30 Chapter 3. Examples for Shikav Extension

Figure 3.4: Sequence diagram of registration steps

In this case, the features needed are:

• Node: represents the Base Station or Subscriber Station which has method receive

and send which needed source and destination as its parameters.

• Packet: represents the packet to be sent between nodes. The packet will have source,

destination, and content

• Beacon: represents the signal broadcasting from BS to ST. The animation would

show from one starting point spread to the sector.

• If-Then-Else conditional statement: is used to test on the content of received packets

in order to define corresponding replied action.

Section 4.4.3 has the lecture file created for this case.

3.4 Summary

After studying these protocols, it was observed that it would take a lot of effort if

we were to create the animations explaining the above protocols using only the current

features of Shikav. As packets have to be sent from source to destination, the authors

need to carefully calculate the coordinates of the packets to move and also they have to

repeat the same step of moving the packet until it reaches the destination. In the case of

3.4. Summary 31

Figure 3.5: Sequence diagram of UGS data connection

Figure 3.6: Sequence diagram of rtPS and nrtPS data connection

TCP slow start, the number of packets to be sent keep on increasing exponentially, and

it would take a lot of effort to write the Shikav script language. Hence, after the study of

32 Chapter 3. Examples for Shikav Extension

the above protocols, the features to be added into Shikav have been determined as:

1. Node

2. Packet

3. Beacon (control packet)

4. Repeat (for loops)

5. If-Then-Else conditional statement

We believe that these are sufficient to support the creation of networking animations.

The designs and implementation of these features are clearly explained in next chapter.

Also, a newly defined script language at one more level higher than Shikav script for the

purpose of creating animations in networking is also described in succeeding chapter.

Chapter 4

Implementation details of Shikav

Extension

Referring to the various protocols presented in Chapter 3, the features Node, Packet,

Beacon, repeat loops, if-then-else conditional statement are needed. Node, Packet are

commonly required objects that are used in explaining a particular network protocol. The

Node is required to be added to represent each node in the network that has the behavior

as send, receive. The Packet is needed for creating packets that can have content, source

and destination. The Beacon is used for creating a beacon starting from a source and

spreading to an area limited by the range and the angle. The repeat loops is required in

case an author wants to create many numbers of packets or send many number of packets.

The loop is defined and implemented in the new script as detailed in Section 4.3 and not

with Shikav script language.

4.1 Class Diagram of new added classes

Figure 4.1 illustrates the relations between the new classes added to existing code of

Shikav.

• Entity: an abstract class derives from GeometryElement class in order to be able

to get displayed and gets registered in Geometry panel. It is the base class for

representing node which provide the basic definitions of the behaviors of node. Below

are the description of few important method:

draw(Graphic g) Defining the shape of the node. The shape to be used as for

now is “triangle”.

33

34 Chapter 4. Implementation details of Shikav Extension

Figure 4.1: Relation between newly added classes

send(Packet p) An abstract method to be defined by the derived classes.

receive(PacketQueue buffer) An abstract method to be defined by the derived

classes.

getCls() returns “Entity” as its class name. This is for identifying the type of class

when the object is retrieved from the name table.

• EntityNode: derives from Entity class. It represents the node in the network and

it implements the abstract methods defined by the based class.

4.1. Class Diagram of new added classes 35

EntityNode(String name, ArithElement x, ArithElement y) The construc-

tor of the class.

send (Packet p) is the method to send packets from one node to another node.

The source of the packet is the node who provoke this method, and the desti-

nation is defined in the packet itself.

The animation of the packet transferring is done by calling the method moveby().

receive(PacketQueue buffer) The method to receive the packet. It returns the

Packet object, if there is no packet received, the object to be returned is null.

send(Beacon b, String radius) The method to send the beacon. The radius of

the beacon are needed to be specify because the beacon is sending as spreading

signal in a sector or a particular area defined by a source point and the points

of boundary

update The method to be called during update time of Shikav, it is used to up-

dating the value of (x,y). The coordinate (x, y) taken as parameters from the

constructor are used as the top vertex of the triangle. By default, it takes

(x− 5, y + 15) for bottom left vertex and (x + 5, y + 15) for the bottom right

vertex.

• Packet: derives from BasePoint class as it is considered to be displayed in the form

of ellipse with given radius. The source and destination of the packet are taken as

the parameters of this class constructor. It also has “type” of the packet.

Packet(Entity src, Entity dst, String payload) The class constructor.

setSource(Entity src) set the source of the packet.

setDestination(Entity dst) set the destination of the packet.

setRadius(String radius) set the radius of the ellipse.

update(ArithElement xnew, ArithElement ynew) the method to be called

during the update time when the framework get repaint.

• Beacon(Entity src, String content, ArithElement range, ArithElement

angle): derives from AngleCurve class in order to get the angle curve shape. The

range parameter is needed for spreading the range of the Beacon for the purpose of

animation, the angle is counting from the horizontal line.

36 Chapter 4. Implementation details of Shikav Extension

4.2 Enhancement in Shikav

We have seen the features of Shikav in Section 2.1.2, more to those, new features have

been added as described in following sections.

4.2.1 Object creation

With the new added classes as described above, the nodes, packets can be created by

calling the class name provided the necessary parameters. For example:

Client = EntityNode("ClientNode", 50, 100) // Creating a node named ClientNode

// with coordinates (50, 100)

// in the Geometry panel

Server = EntityNode("ServerNode", 90, 100)

p = Packet("SYN") // Creating a packet with content "SYN"

p.setSource(Client} // set Client as source,

p.setDestination(Server) // set Server as destination

Client.send(p) // send a packet p

With this script, two nodes has been created, with the name ClientNode and ServerNode

with (50, 100), (90, 100) coordinates respectively. A packet with content SYN, Client as

source and Server as destination. The Client node send the packet p to Server node.

4.2.2 Shikav script

IF-ELSE conditional statement

In order to differentiate the action to do corresponding to the packet received, the

condition statement has to be defined and add into Shikav script language. As described

in Section 2.3, the IF-ELSE condition was defined only in user defined function, and only

with arithmetic expressions as example f = func(x,y){if x<y then x+5*y else x-2*y}

the IF-ELSE condition was not yet defined to be used outside user defined function.

The IF-ELSE conditional statement is defined to be used outside user defined function

and the statement of the condition are defined to accept not only arithmetic expressions

but also other command such as creation of object, invoking method. The grammar rule

of the IF-ELSE conditional statement is as following:

4.3. Network script language 37

IF condition THEN expr_list ELSE expr_list ENDIF

The condition is of arithmetic expression. The expr list is a set of expressions separated

by semicolon “;”. Following is the example of the use of this conditional statement:

p = nodeA.receive()

a = p.content("SYN")

if a==1 then p1=Packet(nodeA, nodeB, "ACK"); nodeA.send(p1);

else timer:"0.2"; endif

The above fragment is to test if the content of received packet is "SYN" then construct

packet with content "ACK" and send to nodeB else delay the timer of the animation by 2

seconds.

Detailed implementation

The grammar rules for If-Then-Else conditional statement are added into Java cup

grammar file named “inter.cup”, the grammar added are as follow:

• expr_part ::= state SCOLON | copy SCOLON {:Symboltable.store("\n",1);:}

| SCOLON

• state ::= IF cond name:l THEN expr list:e1 ELSE expr list:e2 ENDIF

In the symbol file “inter.lec”, the definition of DSTR has been modified to

[a-zA-Z][a-zA-Z0-9]*[]*:+[^\r\n;]*[\r\n]* {

return sym(sym.DSTR,yytext());

}

4.3 Network script language

A higher level of script has been defined providing facility to the authors who want

to create lessons explaining networking. The authors can create a node and define its

behavior using simple networking terms. The details of the key words of the script is

described below:

38 Chapter 4. Implementation details of Shikav Extension

Node < name > This command is used to create node. It gets translated into Shikav

script as EntityNode("name", x, y), the value of x and y is generated randomly

between the value of width and height of the Geometry panel.

Node < name > < x > < y > This command is same as previous command but give

an option to author to set the coordinates of the node in the display panel. It gets

translated into Shikav script as EntityNode("name", x, y), but in this case, the

value of x and y is fixed by the author.

ConstructPacket (“< content >”, < packetName >) It defines the packet construc-

tion that gets translated into Shikav script as

packetName = Packet ("content")

text : "source" has packet "content" to send to "destination"

send (< packet >, < source >, < destination >) is used to send the packet that gets

translated into Shikav script as

packetName.setSource(source)

packetName.setDestination(destination)

source.send(packet)

text : "source" sends packet to "packet.destination"

send (< packet >, < source >, < destination >, < number of packet to send >) is used

to send the packet with the last parameter as the number of packet needed to be

sent. This command gets translated into Shikav script as

packetName.setSource(source)

packetName.setDestination(destination)

source.send(packet, number_of_packet_to_send)

text : "source" sends packets to "packet.destination"

ConstructBeacon (< source >, < content >, < range >, < angle >, < beaconName >)

It defines the beacon construction that gets translated into Shikav script as

4.3. Network script language 39

beaconName = Beacon (source, range, angle)

beaconName.setContent("content")

text : "source" has beacon to send

send (< beacon >, < source >) is used to send the beacon from the source node with

the range specified when the beacon is constructed, this command gets translated

into Shikav script as

source.send(beacon)

delay < seconds > is used to set the delay in the animation. This will get translated

into Shikav script as

timer : "seconds"

Repeat < constant > < variable > < loopbody > end This loop works as for loops which

is used to eliminate the effort in writing same command script so repeatedly, the

commands inside this loops are defined of above type. The example of the use of

this command is as following

repeat 2 i

ConstructPacket(source, destination, "content", p1)

send(p1, source, destination, 2^i)

end

The corresponding Shikav script is as following

i=ArithElement()

i.setValue(0)

p1 = Packet("content")

p1.setSource(source)

p1.setDestination(destination)

text : source has packet "content" to send to destination

text : source is sending packets to destination

text :

40 Chapter 4. Implementation details of Shikav Extension

source.send(p1,2^i)

i=i+1

p1 = Packet("content")

p1.setSource(source)

p1.setDestination(destination)

text : source has packet "content" to send to destination

text : source is sending packets to destination

text :

source.send(p1,2^i)

i=i+1

IF < condition > THEN < statement > ELSE < statement > ENDIF is used to test

the content of the packet receive in which the condition is of the form “< nodename >

RECEIVE < content− of − packet >”. And the statement can be command of

the above type. This will get translated into Shikav script as

pcnt = nodename.receive(buffer) \\ the buffer is the packet buffer

bcnt = pcnt.isPayload(content) \\ this returns the value 1 or 0

if bcnt ==1 then [process statements]

else [process statements] endif

Title “< lesson title >” This command is used to give the title of the lesson in an

introduction line of the animation. It gets translated into Shikav script as

text : we are going to explain lesson_title

In Shikav framework, geometrical objects and text get displayed only on Geometry

panel and TextPanel respectively, hence these two panels need to be created. The Timer-

Panel also need to be created for setting the delay in the animation. For this purpose,

following commands are added by default into the lecture file “.lec.net” translated from

the network script language file.

reset("0","0","990","680","lesson title")

text = TextPanel("5","5","460","610","blue","white","green")

g = Geometry("470","5","500","610")

timer = TimerPanel("0.2")

4.3. Network script language 41

4.3.1 Integration of new script language into Shikav

This higher script will remain with “.lec” extension and is passed as an argument to

Shikav framework but the user needs to provide the second argument as number “0”. In

the main method of shikav class, test if there are two arguments, and if the second argu-

ment is number “0”, set type of file to “network”. In the executeFramework method of the

Framework object, test if the passed file type is “network” then call NetworkParser which

writes the translated command into normal Shikav script and write into intermediate file

with “.lec.net” extension. Then set the file type to “org” and changed the file pointer

to the current “.lec.net” extension and the processing of this file will be done according

to usual Shikav working phases and the lesson get generated. Figure 4.2 illustrates this

process.

4.3.2 How does “NetworkParser” work?

Referring to the description in Section 4.3.1, Shikav can differentiate the file type

depending on the second argument, if the file type is of network script language then

NetworkParser is called before passing to the normal working phase of Shikav. The

detailed working flow of NetworkParser is as following:

• Read from the input file

• If the command starts with one among the predefined key word such as “Node, Con-

structPacket, send, receive, delay, title, repeat”, tests if the arguments are properly

given, if yes, for each case, translates the command into corresponding Shikav script

language as described in Section 4.3 and write them into “.lec.net” file.

• There is a special case for the key word repeat as it has to read a block of command.

In this case, the parser will read each line from the file buffer until it reaches the key

word end and store in a vector as repeat body and gets parsed as normal command

of the above type.

• Set the file type to “org” and passed it to the existing phase parser of Shikav.

42 Chapter 4. Implementation details of Shikav Extension

Figure 4.2: The flow of Shikav

4.4. Examples 43

4.4 Examples

The lecture files created corresponding to each network protocol described in Chapter 3

are given below. The file is first written in the newly defined “network script language”

and then gets translated into the Shikav script language. Appendix A gives the resulting

Shikav script after the lecture file is processed by NetworkParser.

4.4.1 TCP 3 way handshake

The procedure has been already explained in Chapter 3, the animation created would

comprised of two hosts, named HostA, HostB and three packets are to be created with

content of SYN, SYN_ACK, ACK. The lecture file created in new defined language (Net-

woking script) is as follows:

Title "TCP 3 way handshake"

Node HostA

Node HostB

ConstructPacket(HostA , HostB , "SYN" , p1)

send(p1, HostA, HostB)

if (HostA receive "SYN") then

ConstructPacket(HostB,HostA,"SYN_ACK",p2)

send(p2, HostB, HostA)

else

delay(2)

endif

if (HostB receive "SYN_ACK") then

ConstructPacket(HostA, HostB, "ACK", p3)

send(p3, HostA, HostB)

else

delay(2)

endif

The title of the animation is “TCP 3 way handshake”, there are two nodes HostA,HostB.

HostA constructs a packet p1 with SY N as content, HostB as destination, and then send

p1 to HostB. HostB constructs a packet p2 with SY N ACK as content and sends back

44 Chapter 4. Implementation details of Shikav Extension

to HostA. Finally HostA constructs a packet with ACK as content and sends to HostB.

The animation ends here. The resulting Shikav script language is shown in Appendix A.

4.4.2 TCP slowstart

The procedure has been already explained in Chapter 3, the animation created would

comprised of two hosts, named HostA, HostB and three packets are to be created with

content of SYN, SYN_ACK, ACK. The lecture file created in new defined language (Net-

woking script) is as follows:

title "TCP Slow Start"

node A

node B

constructPacket(A, B, "payload", p)

send(p, A, B)

repeat 15 i

if (A receive "ACK") then

constructpacket(A,B,"payload",p1)

send(p1, A, B, 2^i)

else

endif

end

The title of the animation is “TCP Slow Start”, there are two nodes A,B. A constructs

a packet p with payload as content, B as destination, and send packet p to B. The pro-

cedure of sending is defined as in the case study, the number of packets to send increases

exponentially till the threshold 65536=2^16 in our case. As written in the above script,

the command constructPacket(A , B , "payload" , p) and send(p, A, B, 2^i)

repeat 16 times which is get translated into over a hundred lines of commands in Shikav

lecture file as shown in Appendix A.

4.4.3 WiFiRe

There is one BS and there are many STs, and EU connects to ST, these are all created

as EntityNode objects. Then Beacon object is created as BS needs to send Beacon that

4.4. Examples 45

is spread as a signal to the entire sector. Then one ST start the communication with the

procedure that has been already explained in Section 3.3.

The network script language for this example is as follows:

Title "WiFiRe"

Node BS 20 30

Node ST 150 200

Node ST1 200 250

Node ST2 170 150

Node EU 50 200

ConstructBeacon(BS, "beacon", 400, -60, b)

send(b, BS)

ConstructPacket(ST , BS , "IRRe" , irre)

send(irre, ST, BS)

if (BS receive "irre") then

ConstructPacket(BS,ST,"IRRes",irres)

send(irres, BS, ST)

else

delay(1)

endif

if (ST receive "IRRes") then

ConstructPacket(ST, BS, "RegReq", regreq)

send(regreq, ST, BS)

else

delay(1)

endif

if (BS receive "RegReq") then

ConstructPacket(BS,ST,"RegRes",regres)

send(regres, BS, ST)

else

delay(1)

endif

ConstructPacket(EU, ST, "SYN", syn)

46 Chapter 4. Implementation details of Shikav Extension

send(syn, EU, ST)

if (ST receive "SYN") then

ConstructPacket(ST, BS, "DSA-Req", dsareq)

send(dsareq, ST, BS)

else

delay(1)

endif

if (BS receive "DSA-Req") then

ConstructPacket(BS,ST,"DSA-Res",dsares)

send(dsares, BS, ST)

else

delay(1)

endif

if (ST receive "DSA-Res") then

ConstructPacket(ST, EU, "SYN_ACK", synack)

send(synack, ST, EU)

else

delay(1)

endif

ConstructPacket(EU, ST, "SYN_ACK_ACK", ack2)

send(ack2, EU, ST)

ConstructPacket(EU, ST, "data", data)

send(data, EU, ST)

if (ST receive "data") then

ConstructPacket(ST, BS, "data", data1)

send(data1, ST, BS)

else

endif

The resulting Shikav script language is shown in Appendix A. Figure A.3 is the screenshot

of the animation.

These examples show that the newly added features and the newly defined script

(Network script language), as described in Section 4.2 and Section 4.3 respectively, work

4.4. Examples 47

Figure 4.3: Screenshot of animation showing the working of WiFiRe protocol

as expected and can be used to explain network protocols in general.

Chapter 5

Conclusion and Future extensions

5.1 Conclusion

We have seen a detailed description of the Shikav framework, and a few network

protocols. The basic features required to be added into Shikav enabling the creation of

lessons explaining network protocols have been defined and implemented as described in

Chapter 4. It enables authors to create lessons explaining the working flow of network

protocols. This is shown by using various examples in Chapter 3. Above this, a higher level

script with networking terms as key words has been defined, implemented and successfully

integrated into Shikav. The script facilitates the author in creating animations explaining

network protocols. Without this, the authors would take a lot of effort to write the

Shikav script language to create electronic lessons explaining network protocols. This is

not because Shikav does not have an effective script language but because Shikav has no

intrinsic support for animations explaining network protocols.

However, further enhancements in Shikav and the newly defined script could be made.

A few of them are discussed in the succeeding section.

5.2 Future extensions

This enhancement into Shikav for supporting animation in networking is mainly for

visual representation. The actual simulation of packets has not been included.

• Integration with simulation: recently simulation capabilities have been added into

Shikav by Ankit [4], but that version does not support packet animation. This could

be done by integrating the new enhancement of representing the animation with the

49

50 Chapter 5. Conclusion and Future extensions

simulation. The option of showing animation can be added into the Shikav menu

using which the user can see the animation of packets transferring.

• Drag/Drop object: the user would be given an option to drag and drop the Enti-

tyNode.

• Enrich networking script: the script has been defined with basic functionalities.

More features can be added to enrich the script language such as allowing the node

to randomly send the packets. This means that author can create many nodes, then

call send, and the node starts to send packet in random order so that the author

need not to specify the order of node to send packet.

Scope for other improvements in Shikav

After a detailed studied of Shikav framework, it has been observed that some improve-

ment need to be done into Shikav, such as listed belows:

• The grammar rules which are defined in file “inter.cup” are complicated, this could

be simplified and reduce some expressions and make the rule generic enough to use.

The documentation on the grammar and especially the Symboltable class which

stores all the commands successfully parsed by Java cup parser (first parser of

Shikav) would be very helpful because it is not quite trivial to understand why

Symboltable class is needed and how things have been done there. Also It would

reduce the work load of the enhancer of Shikav by providing the documentation on

the code, especially the relation between classes because as for now ones need to

actually look into the code in almost each and everyline in order to figure out how

it works.

• The code could be classified into packets depending upon their functionalities. As

lately, many enhancements has been added into Shikav from different enhancer and

mixed it all together into the Framework for which the source code become a bit

unorganized.

Appendix A

Examples of lecture files

In this appendix, we present the resulting Shikav script language lecture files corre-

sponding to each of the protocol example studied in Chapter 3

A.1 TCP 3 way handshake

The procedure has been already explained in Chapter 3, the lecture file in networking

script language is shown in Section 4.4.1 and its resulting Shikav script language is as

follows:

reset("0","0","990","680","tcp3wayHandshake")

text = TextPanel("5","5","460","610","blue","white","green")

g = Geometry("470","5","500","610")

timer = TimerPanel("0.2")

packetBuffer = PacketQueue()

text ! We are going to explain <h3>"TCP 3 way handshake"</h3>

HostA = EntityNode("HostA",259,487)

HostB = EntityNode("HostB",14,289)

p1 = Packet("SYN")

p1.setSource(HostA)

p1.setDestination(HostB)

text : HostA has packet "SYN" to send to HostB

text : HostA is sending packet to HostB

text :

HostA.send(p1)

packetBuffer.add(p1)

51

52 Chapter A. Examples of lecture files

p0 = HostA.receive(packetBuffer)

b0 = p0.isPayload("SYN")

if b0 == 1 then p2 = Packet("SYN_ACK"); p2.setSource(HostB);

p2.setDestination(HostA); text : HostB has packet "SYN_ACK" to send to HostA;

text : HostB is sending packet to HostA; text :
 ;

HostB.send(p2); packetBuffer.add(p2); else timer : "0.2"; endif

p1 = HostB.receive(packetBuffer)

b1 = p1.isPayload("SYN_ACK")

if b1 == 1 then p3 = Packet("ACK"); p3.setSource(HostA);

p3.setDestination(HostB); text : HostA has packet "ACK" to send to HostB;

text : HostA is sending packet to HostB; text :
 ;

HostA.send(p3); packetBuffer.add(p3); else timer : "0.2"; endif

text :
 The explanation ends here !

Figure A.1: Screenshot of animation showing the working of TCP 3 way handshake

A.2. TCP slowstart 53

A.2 TCP slowstart

The procedure has been already explained in Chapter 3, the lecture file in networking

script language is shown in Section 4.4.2 and its resulting Shikav script language is as

follows:

reset("0","0","990","680","tcpSlowStart")

text = TextPanel("5","5","460","610","blue","white","green")

g = Geometry("470","5","500","610")

timer = TimerPanel("0.2")

packetBuffer = PacketQueue()

text ! We are going to explain <h3>"TCP Slow Start"</h3>

A = EntityNode("A",472,299)

B = EntityNode("B",191,558)

p = Packet("payload")

p.setSource(A)

p.setDestination(B)

text : A has packet "payload" to send to B

text : A is sending packet to B

text :

A.send(p)

packetBuffer.add(p)

i=ArithElement()

i.setValue(0)

p0 = A.receive(packetBuffer)

b0 = p0.isPayload("ACK")

if b0 == 1 then p1 = Packet("payload"); p1.setSource(A);

p1.setDestination(B); text : A has packet "payload" to send to B;

text : A is sending packets to B; text :
; A.send(p1,2^i);

else ; endif

i=i+1

p1 = A.receive(packetBuffer)

b1 = p1.isPayload("ACK")

54 Chapter A. Examples of lecture files

if b1 == 1 then p1 = Packet("payload"); p1.setSource(A);

p1.setDestination(B); text : A has packet "payload" to send to B;

text : A is sending packets to B; text :
; A.send(p1,2^i);

else ; endif

i=i+1

p2 = A.receive(packetBuffer)

b2 = p2.isPayload("ACK")

if b2 == 1 then p1 = Packet("payload"); p1.setSource(A);

p1.setDestination(B); text : A has packet "payload" to send to B;

text : A is sending packets to B; text :
; A.send(p1,2^i);

else ; endif

i=i+1

....

....

p13 = A.receive(packetBuffer)

b13 = p13.isPayload("ACK")

if b13 == 1 then p1 = Packet("payload"); p1.setSource(A);

p1.setDestination(B); text : A has packet "payload" to send to B;

text : A is sending packets to B; text :
; A.send(p1,2^i);

else ; endif

i=i+1

p14 = A.receive(packetBuffer)

b14 = p14.isPayload("ACK")

if b14 == 1 then p1 = Packet("payload"); p1.setSource(A);

p1.setDestination(B); text : A has packet "payload" to send to B;

text : A is sending packets to B; text :
; A.send(p1,2^i);

else ; endif

i=i+1

text :
 The explanation ends here !

A.3. WiFiRe 55

Figure A.2: Screenshot of animation showing the working of TCP Slow Start

A.3 WiFiRe

The procedure has been already explained in Chapter 3, the lecture file in networking

script language is shown in Section 4.4.3 and its resulting Shikav script language is as

follows: The resulting lecture file created in Shikav script language is as follows:

reset("0","0","990","680","wifire")

text = TextPanel("5","5","460","610","blue","white","green")

g = Geometry("470","5","500","610")

timer = TimerPanel("0.2")

packetBuffer = PacketQueue()

text ! We are going to explain <h3>"WiFiRe"</h3>

BS = EntityNode("BS",20,30)

ST = EntityNode("ST",150,200)

ST1 = EntityNode("ST1",200,250)

ST2 = EntityNode("ST2",170,150)

EU = EntityNode("EU",50,200)

b = Beacon(BS, 20, -60)

b.setContent("beacon")

56 Chapter A. Examples of lecture files

b.setRange(400)

b.H("blue")

text : BS has beacon to send

text : BS is sending beacon

text :

BS.send(b)

irre = Packet("IRRe")

irre.setSource(ST)

irre.setDestination(BS)

text : ST has packet "IRRe" to send to BS

text : ST is sending packet to BS

text :

ST.send(irre)

packetBuffer.add(irre)

p0 = BS.receive(packetBuffer)

b0 = p0.isPayload("irre")

if b0 == 1 then irres = Packet("IRRes"); irres.setSource(BS);

irres.setDestination(ST); text : BS has packet "IRRes" to send to ST;

text : BS is sending packet to ST; text :
 ;

BS.send(irres); packetBuffer.add(irres); else timer : "0.1"; endif

p1 = ST.receive(packetBuffer)

b1 = p1.isPayload("IRRes")

if b1 == 1 then regreq = Packet("RegReq"); regreq.setSource(ST);

regreq.setDestination(BS); text : ST has packet "RegReq" to send to BS;

text : ST is sending packet to BS; text :
 ; ST.send(regreq);

packetBuffer.add(regreq); else timer : "0.1"; endif

p2 = BS.receive(packetBuffer)

b2 = p2.isPayload("RegReq")

if b2 == 1 then regres = Packet("RegRes"); regres.setSource(BS);

regres.setDestination(ST); text : BS has packet "RegRes" to send to ST;

text : BS is sending packet to ST; text :
 ; BS.send(regres);

packetBuffer.add(regres); else timer : "0.1"; endif

A.3. WiFiRe 57

syn = Packet("SYN")

syn.setSource(EU)

syn.setDestination(ST)

text : EU has packet "SYN" to send to ST

text : EU is sending packet to ST

text :

EU.send(syn)

packetBuffer.add(syn)

p3 = ST.receive(packetBuffer)

b3 = p3.isPayload("SYN")

if b3 == 1 then dsareq = Packet("DSA-Req"); dsareq.setSource(ST);

dsareq.setDestination(BS); text : ST has packet "DSA-Req" to send to BS;

text : ST is sending packet to BS; text :
 ; ST.send(dsareq);

packetBuffer.add(dsareq); else timer : "0.1"; endif

p4 = BS.receive(packetBuffer)

b4 = p4.isPayload("DSA-Req")

if b4 == 1 then dsares = Packet("DSA-Res"); dsares.setSource(BS);

dsares.setDestination(ST); text : BS has packet "DSA-Res" to send to ST;

text : BS is sending packet to ST; text :
 ; BS.send(dsares);

packetBuffer.add(dsares); else timer : "0.1"; endif

p5 = ST.receive(packetBuffer)

b5 = p5.isPayload("DSA-Res")

if b5 == 1 then synack = Packet("SYN_ACK"); synack.setSource(ST);

synack.setDestination(EU); text : ST has packet "SYN_ACK" to send to EU;

text : ST is sending packet to EU; text :
 ; ST.send(synack);

packetBuffer.add(synack); else timer : "0.1"; endif

ack2 = Packet("SYN_ACK_ACK")

ack2.setSource(EU)

ack2.setDestination(ST)

text : EU has packet "SYN_ACK_ACK" to send to ST

text : EU is sending packet to ST

text :

58 Chapter A. Examples of lecture files

EU.send(ack2)

packetBuffer.add(ack2)

data = Packet("data")

data.setSource(EU)

data.setDestination(ST)

text : EU has packet "data" to send to ST

text : EU is sending packet to ST

text :

EU.send(data)

packetBuffer.add(data)

p6 = ST.receive(packetBuffer)

b6 = p6.isPayload("data")

if b6 == 1 then data1 = Packet("data"); data1.setSource(ST);

data1.setDestination(BS); text : ST has packet "data" to send to BS;

text : ST is sending packet to BS; text :
 ; ST.send(data1);

packetBuffer.add(data1); else ; endif

text :
 The explanation ends here !

Figure A.3: Screenshot of animation showing the working of WiFiRe protocol

Bibliography

[1] GVU center - Polka. http://www.gvu.gatech.edu/gvu/softviz/parviz/polka.

html.

[2] The Samba homepage. http://www.cc.gatech.edu/gvu/softviz/algoanim/

samba.html.

[3] Sridhar Iyer, Krishna Paul, Anurag Kumar, and Bhaskar Ramamurthi. Broadband

wireless for rural areas–

WiFiRe: medium access control (mac) and physical layer (phy) specifications.

http://www.cewit.org, August 2006.

[4] Ankit Jain. Adding simulation capabilities to shikav. Technical report, Department

of Computer Science and Engg., Indian Institute of Technology Bombay, India, 2007.

[5] Aditya Kelkar. Shikav - A FrameWork for Interactive Electronic Lessons . Master’s

thesis, Department of Computer Science and Engg., Indian Institute of Technology

Bombay, India, 2006.

[6] John A. Miller, Andrew F. Seila, and Xuewei Xiang. JSIM Web-based Simulation.

Future Generation Computer Systems (FGCS), Special Issue on Web-Based Modeling

and Simulation, 17(2):119–133, 2000.

[7] Jon Postel, editor. Transmission Control Protocol-DARPA INTERNET PROGRAM

PROTOCOL SPECIFICATION. RFC793, September 1981.

[8] Abhiram Ranade, Aditya Kelkar, and Prasad Naik. Electronic teaching using shikav.

Technical report, Department of Computer Science and Engg., Indian Institute of

Technology Bombay, India, 2006.

59

60 Bibliography

[9] Susan Rodger. Java and Web based Algorithm Animation. http://www.cs.duke.

edu/csed/jawaa2/.

[10] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast

Recovery Algorithms. RFC2001, January 1997.

