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Abstract

Radio Frequency IDentification (RFID) is slated to become a standard for tagging vari-

ous products. As more and more products become RFID enabled, fast tag identification

mechanisms will become important. Various tag identification (or anti-collision) algo-

rithms have been proposed for RFID systems. This work focuses on methods to improve

tag read efficiency in RFID Systems. We propose an Intelligent Query Tree (IQT) Pro-

tocol for tag identification that exploits specific prefix patterns in the tags and makes

the identification process more efficient. IQT is a memoryless protocol that identifies

RFID tags more efficiently in scenarios where tag IDs have some common prefix (e.g.,

common vendor ID or product ID). IQT is most suitable for readers deployed in exclusive

showrooms, and shipment points of big malls, where the products may come from same

manufacturers and may have same product type. We provide the worst case complexity

analysis of IQT and show the performance improvement of this protocol over traditional

Query Tree protocol in different scenarios. For other cases we show the improvement

using simulation results.
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Chapter 1

Introduction

Radio Frequency IDentification (RFID) is a means of identifying objects using radio

frequency transmission[1, 2, 3]. In an RFID system, very small RF chips (called tags

or transponders) communicate wirelessly with readers (interrogators) within a certain

range. Tags can either be active (powered by battery) or passive (powered by the reader

field).

1.1 RFID Components

• RFID Reader (Interrogator) : This unit is connected to the backend and it powers

the tag antenna in order to identify it.

• RFID Tag (Transponder) : A programmed memory device, which contains perma-

nent identification number and may also contain other re-writable information.

• RFID Antenna : A coil of wound copper wire, which emits radio frequency signals.

It also acts as a receiver.

1.2 Working

In a typical RFID System, tags are attached to objects. Each tag has a certain amount of

memory to store information about the object, such as its unique tag ID (serial number),

or in some cases, more details, e.g. manufacturing date, expiry date etc. When these

tags pass through an electromagnetic field generated by the reader, they transmit this

information back to the reader, thereby enabling object identification.

Figure 1.1: RFID System Components

1



2 1.3. Types of Tags

1.3 Types of Tags

There are two types of tags:

• Passive Tags : They operate without an internal battery source, deriving the power

to operate from the field generated by the reader.

• Active Tags : They are powered by an internal battery and are typically read/write

devices.

Characteristic Passive Active

Transponder size Small Medium

Range Short Long

Data capacity Small Large

Application requirements Small data storage, Large data storage

line of sight read with complex search capability

Typical applications Fixed asset identification, Identification in wide area ,

Bar Code replacement Container data storage and searching

Table 1.1: Features of Active and Passive Tags

1.4 Classes Of Tags

• CLASS 0 (Read Only Tags) These are the simplest type of tags, where the data,

which is usually a simple Tag ID is stored only once into the tag during manufacture.

• CLASS 1 (Write Once Read Only (WORM)) These can be factory or user pro-

grammed. In this case data can then either be written by the tag manufacturer or

by the user only once.

• CLASS 2 (Read Write) Data can be read as well as written into the tag’s memory.

They contain more memory space than what is needed for just a simple ID number.

• CLASS 3 (Read Write with on board sensors) These are active tags which may

contain sensors for recording parameters like temperature, pressure etc. and can

record the readings in tag memory.

• CLASS 4 (Read Write with integrated transmitters) These tags can communicate

with each other without any help from reader.
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1.5 Problems with RFID System

A major problem with RFID systems is that a tag might not be read, in spite of being in

the reader’s range, due to collisions[4]. A collision is said to have occurred when various

devices interfere with each others’ operations, or their simultaneous operations lead to

loss of data. The reading process is not efficient due to various types of collisions, which

are classified as follows :-

• Single Reader-Multiple Tags collision : Multiple tags are present to communicate

with the reader. They respond simultaneously and reader is not able to interpret

the signal.

• Single Tag-Multiple Readers collision : Single tag is in the range of two or more read-

ers. Tags are mainly passive entities, they do not have enough power to differentiate

between frequency range of the readers.

• Reader-Reader interference : Two or more readers within the same frequency range

interfere with each others’ operations.

These problems need to be resolved to provide efficient solution for tag identification and

these are the major research areas, where work needs to be done to practically implement

RFID systems.
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Chapter 2

MTP Problem Definition

In an RFID system, all tags can not be identified by a reader in a single read cycle due

to interference and various environmental factors. To ensure reliability while reading the

tags, multiple read cycles are required. We need faster read cycle so as to perform more

number of read cycles in given time. There are various ways in which the reader - tag

communication can be improved. There are several schemes proposed in literature that

attempt to solve this problem. Some papers do this by resolving reader-reader collisions,

some concentrate on multiple tag collision avoidance and some describe new MAC protocol

for inter-reader communication.

The project aims at improving the tag-reader communication so that tags can be iden-

tified efficiently and reliably in less time. The problem can be dealt with in the following

ways:

• Use of specific tagID assignment in specific domains.

• Use of previous read cycles’ history to reduce the number of collisions.

The first method can be used to devise protocols for specific domains. For example, if

we consider the case of godowns, agencies, and exclusive showrooms, where items come in

large numbers and there is a high probability that a single lot will contain similar items

or items from the same vendor, this information can be utilized for optimization of read

process at the shipment point. We have used this information in our Intelligent Query

Tree Protocol (IQT) to reduce the number of bits transferred between reader and tag

during the tag read process.

The second method deals with using history of previous tag reads to guide the reader

so as to reduce the number of single reader - multiple tag collisions.

The proposed IQT Protocol exploits these optimizations in order to improve the tag

read efficiency.

2.1 Motivation

RFID mechanism is inherently unreliable. Thus, we need multiple read cycles to improve

the reliability of tag identification. The conventional tag identification protocols do not

5
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have any mechanism to use the information contained in tagIDs to improve tag read

efficiency. Hence, there is need for a protocol, which can use information about specific

prefix patterns in tagIDs so as to speed up the tag read process.

2.2 Problem Formulation

There are practical scenarios where tags have some specific pattern in their tagIDs. For

example, items at godowns, shipment points in malls, exclusive showrooms etc., have

some common prefix such as EPC version, manufacturer ID or product ID. Our work

targets improvement in these deployment scenarios. Tag read efficiency can be improved

by reducing the number of bits transmitted during tag identification process and also by

using tag read history to reduce the number of collisions in subsequent read cycles.



Chapter 3

Related Work

The proposed IQT protocol belongs to the class of Single Reader-Multiple Tag colli-

sion resolution protocols. Other important protocols in this category are Query Tree

Protocol[5][6], Binary Tree Protocol[5], Framed Slotted Aloha based I-Code Protocol [7]

and Adaptive Memoryless Tag Anti-Collision Protocol[8].

There is another category of protocols to avoid Reader - Reader Collisions (Multiple

Reader - Single Tag Collision and Reader - Reader Interference). Important protocols in

the category of Multiple Readers collision avoidance protocols are Colorwave Algorithm

[9], T-Colorings based Algorithm[10], Q-Learning Algorithm [11]and Pulse Protocol[12]

3.1 Single Reader - Multiple Tags Collision Avoid-

ance Protocols

These protocols are for avoiding the collisions due to presence of multiple tags communi-

cating with a single reader, where simultaneous responses from various tags prevent the

reader from interpreting the signal correctly.

Passive tags are constrained in terms of energy since they derive power from the

readers’ signal only. Such a low energy supply requires the functionality of tag to be very

simple so that its power consumption can be reduced. Collision resolution protocols for

such kind of RFID tags should be simple enough. Following are various collision resolution

protocols that already exist.

3.1.1 Query Tree Scheme

Query Tree (QT) Protocol requires very less tag circuitry. It is a memoryless tag identi-

fication protocol, in which the tags do not need to remember their inquiring history. In

this protocol, the reader sends a query containing a prefix having length of 1 to n bits.

The tags whose prefixes match with the bits sent by the reader, reply back with their tag

ID. A queue of such prefixes is maintained and the queries are sent in order from this

queue. As and when a query is done, its corresponding entry is removed from the queue.

If there is a collision corresponding to any query, i.e., there are more than one tags with

the same prefix, the reader removes that query and adds two new queries to the queue,

7



8 3.1. Single Reader - Multiple Tags Collision Avoidance Protocols

first by appending a 0, and then a 1 to the current prefix. No collision implies either

an ID has been read successfully or there is no tag with matching prefix. An example is

shown in Table 3.1 where there are 3 tags with the IDs of 0000, 0010, 1000.

Reader sends Tags answer Status Queue Status(Initially {})
start * collision {0, 1}
0 * collision {1, 00, 01}
1 1000 read {00, 01}
00 * collision {01, 000, 001}
01 no response {000, 001}
000 0000 read {001}
001 0010 read {}

Table 3.1: The tag identification process of Query Tree Protocol

In Table 3.1, the first row corresponds to the first query (with null prefix), to read the

given set of tags. All tags reply to it. There is a collision as there are more than one tags

in the system. Then it sends query with prefix 0, which leads to collision again, as there

are two tags starting with 0. Next time it tries 1, there is only one tag starting with 1,

which will reply back with its tag ID, and is identified. Similarly process goes on till all

the tags have been identified.

IQT Protocol is closely related to QT Protocol. IQT Protocol improves QT Protocol

to reduce the communication overhead in the scenarios where tagIDs have some common

prefix.

3.1.2 Binary-Tree Scheme

Binary Tree Protocol requires tags to remember the inquiring history in a read cycle.

Reader sends one bit at a time and tags reply with the next bit. If there is no collision

i.e. only one tag replies with the corresponding bit, the reader repeats the bit sent by

the tag. If there is a collision, the reader will send randomly 0 or 1 as the next bit in the

inquiry process. Though it is very efficient, it is not good for passive tags, as tags have

to remember the previous bits read by the reader, which is not feasible for very low cost

passive tags.

An example of inquiring process on 3 tags with tagIDs 001, 011 and 100 is shown in

Table 3.2. Asterisk (*) denotes a collision detected by the reader.

3.1.3 Adaptive Memoryless Tag Anti - Collision Protocol

Performance of query tree protocol can be improved by maintaining the history of read

cycles in the form of Candidate Queue (CQ). Candidate queue maintains the list of leaf
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Reader sends Tags answer Identified tag

0 *

0 1 001

0 1

1 1 011

0

1 1

1 0 110

Table 3.2: The inquiry process of Binary-tree protocol

nodes of the last query process. Leaf nodes can be classified into one of the following

categories.

Identified Nodes These correspond to the set of tags which were identified in the last

read process.

No Response nodes These correspond to the leaf nodes in query tree which do not

lead to response from any tag.

In adaptive memoryless protocol, reader queries for Identified nodes present in candidate

queue, as well as it queries for No-Response nodes where the newly coming tagID may lie.

Even if some new tagID collides with the previously identified tagID, the total amount of

time saved using this protocol is significant. This is because we do not query for Collision

nodes.

3.1.4 I-Code Protocol

I-Code Protocol is a probabilistic protocol, based on framed slotted aloha principle,

in which tags randomly choose the slots to transmit. Adaptive Memoryless Tag Anti-

Collision Protocol is an improvement on Query Tree Protocol, to improve the subsequent

read cycles.

3.2 Reader - Reader Collision Avoidance Protocols

These protocols avoid the collisions occurring due to presence of a single tag within the

range of two or more readers, or, because of two or more readers interfering with each

other. Tags are mainly passive entities. They do not have enough power to differentiate

between the frequency ranges of the readers. Following are the protocols to avoid such

collisions.
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3.2.1 Colorwave

Colorwave is a distributed, online algorithm, based on graph coloring. Q-Learning Algo-

rithm learns from previous collision patterns and effectively assigns frequencies over time

to the readers.

3.2.2 Pulse Protocol

In this protocol readers can communicate with each other over control channel to minimize

the number of collisions. Reader can send control signal called beacon over separate

control channel notifying the neighboring readers that it is going to identify the tags, so

that signal from other readers do not interfere with its reading process.



Chapter 4

Intelligent Query Tree (IQT)

Protocol

IQT protocol exploits specific prefix patterns in the tagIDs to reduce the communication

overhead between reader and tags. The common prefix in tagIDs may be due to the fact

that items to which the tags are attached have the same manufacturer or product type.

Query Tree Protocol (QT) has been modified for the scenarios where the tags within

the range of the reader have some common prefix. It also uses history of read cycles to

further improve the tag read efficiency. Although IQT is best suitable for scenarios in

which there is some commonality in tagIDs, it performs reasonably well in other cases also,

where multiple read cycles are required. Following are its advantages over QT Protocol:

• Reduction in number of bits transmitted by the tag.

• Reduction in number of collisions by maintaining the history of tag read patterns.

• Reduction in number of collisions for subsequent read cycles by using the information

of previous read cycles.

4.1 Key Terms

• EPC Code[13][14] : Like universal bar code, EPC code is a standard Tag ID

assignment code that assigns globally unique IDs to RFID tags. EPC structure is

shown above.

EPC version Manufacturer ID Product Type Item ID

Table 4.1: EPC Structure

• Read Cycle : Read cycle refers to the set of queries required to read all the tags

that are in range of reader at a particular time. In a single read cycle, a reader may

not be able to read all the tags due to various factors like collisions, interference etc.

So multiple read cycles are required to improve reliability.

11



12 4.1. Key Terms

• Read Process : It refers to the set of multiple read cycles performed by reader to

ensure reliability.

• Query : It refers to the command containing some prefix sent by the reader, in

response to which all the tags with matching prefix reply back with their tag IDs.

• Invert Query Command : It is just the opposite of the normal query command.

Reader sends some prefix with the command and all the tags having prefixes different

from that sent by reader are supposed to reply to this command. This command is

issued to ensure that all the tags, that are read by the reader in the current read

cycle, have same prefix.

• Prefix Pool : It is a set of frequently occurring prefixes sorted according to rank

based upon the frequency of their occurrence, and how recently the prefix was used

in previous read cycles.

Figure 4.1: Different types of nodes in query tree

• No-Response Node : The leaf node in query tree where no tag ID starting with

that prefix is found. In Figure 4.1, nodes represented by diamond are No-Response

Nodes. For example, if we follow the edges 0 and then 1 starting from the root,

it directs to the No-Response node. This node indicates that there is no tag with

prefix 01.

• Identified Node : The node in the query tree that leads to response from single

tag i.e one and only one tag is identified using this prefix. Nodes represented by

filled circles in Figure 4.1 are Identified Nodes. If we follow the edges 0, 0, 0, 0, 0,

0 it directs us to the Identified Node.

• Collision Nodes : These are the internal nodes in the query tree which leads to

response from more than one tag IDs corresponding to a query using a prefix. In

Figure 4.1, unfilled circles represent the Collision or Internal Nodes.
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4.2 Notations Used

Table 4.2 shows various notations used in this chapter to describe IQT Protocol.

EPC Number of bits for EPC version.

Manufacturer id Number of bits for Manufacturer ID.

Product id Number of bits for Product ID.

Item no Number of bits for Item ID.

prefix1 Bits corresponding to EPC Version + Manufacturer id +

Product id in the EPC code.

prefix2 Bits corresponding to EPC Version + Manufacturer id in

the EPC code.

max tries Maximum number times, the reader tries the prefixes from

prefix pool, to guess the prefix for current read cycle.

k Number of bits in tag ID

prefix Refers to {prefix1 or prefix2}
cycle needed No of read cycles required in a single read process

rem (k − prefix) bits

Table 4.2: Notations Used

4.3 Working of Intelligent Query Tree Protocol

Mechanisms used in IQT to identify tags in the first read cycle are different from those for

subsequent read cycles. When IQT performs first read cycle, it has no knowledge of tag

IDs, but when it performs subsequent read cycles, it knows whether the tags have some

common prefix. If they have a common prefix, then it is known to the reader. Hence,

IQT does not read those bits again.

4.3.1 First Read Cycle

Intelligent Query Tree Protocol does the following steps to perform first read cycle.

Step 1 [Optional] - Try prefixes from Prefix Pool : For the first read cycle, prefix

with highest score from prefix pool is selected and Invert Query Command is executed

using first prefix2 bits to check whether all the tags have the same first prefix2 bits. If

there is a collision, next prefix from the prefix pool is tried and so on.

If it succeeds, then the reader tries other prefixes (which have same prefix2 bits as

that of the one which lead to success) by sending prefix1 bits. Reader now sends prefix1

bits to execute invert query command. This guessing phase continues for a maximum of
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max tries number of times. If it succeeds, then it knows the first prefix bits that are

common in all the tags present.

Step 2 - If Step 1 fails for First Read Cycle : If it is not able to know the prefix

in step 1, then it proceeds with normal Query Tree Protocol to know first prefix1 bits.

Step 3 : After reading first prefix1 bits either from step 1 or step 2, reader now

executes invert query command using prefix1, as many number of times as there are

cycles in the read process (cycles needed times). If the invert query fails even once (i.e.

if any tag replies), we do not execute the invert query command any further.

Figure 4.2: Tag Identification using Intelligent Query Tree Protocol

• If no tag replies, it means all tags have the same first prefix1 bits. Hence, com-

munication can take place using Item no only. This leads to reduction in number

of bits transmitted between reader and the tags. Area-2 in Figure 4.2, shows the

queries where communication takes place using fewer bits. Reader also ignores all

the queries with number of bits less than prefix1 as it has already read the prefix1

bits successfully and it knows that all the tags start with this prefix1. This leads

to saving in number of queries as shown by Area-1 in Figure 4.2. Here the nodes

marked with crosses represent the queries saved (not needed) in IQT Protocol. If

reader succeeds in guessing the prefix, it need not perform any other query in Area-1.

• If some tags reply, then the invert query is executed with prefix2, cycles needed

number of times. If no tag replies to this command, then it means that all the tags

have the same manufacturer ID. Hence, the reader can communicate using only

the bits of product type and item number. The reader ignores all the queries with

number of bits lesser than prefix2 for this read cycle.
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• If some tags reply to invert query with prefix2, it means that there are items from

different manufacturers in the lot. In this case normal Query Tree Protocol will be

used for tag identification.

4.3.2 Subsequent Read Cycles

IQT improves subsequent read cycles by storing information about previous read cycles.

This information is stored in the form of candidate queue as described in [8]. Candidate

queue contains Identified Nodes and No Response Nodes only, it does not include Collision

Nodes.

For subsequent cycles, query is issued using only the elements of candidate queue i.e.

using only the No-Response Nodes and the Identified Nodes of the previous read cycle.

If any new tag appears which leads to the collision, then only the subtree rooted at that

node is further explored using normal QT Protocol, instead of following the whole query

tree from the root.

This helps to avoid the overhead of various read cycles wasted in collisions. In Figure

4.3, the nodes denoted by filled circles and the nodes denoted by diamonds, refer to the

elements of candidate queue. Crossed Nodes refer to the saving using this optimization.

Further improvement is possible if all the tags have the same prefix and it matches

with the one found in the previous read cycle. It can be checked by running Invert Query

Command with the prefix found in the previous read cycle. If all the tags have same

prefix which is same as the one found in previous read cycle, then query command with

prefixes less than prefix1 bits need not be executed. That means, all nodes in Area-1,

and Collision Nodes in Area-2 of Figure 4.3 represent the saving in terms of number of

queries. Hence, query command is only issued for the No-Response Nodes and Identified

Nodes of the previous read cycle and that too with lesser (rem) bits.

If a new tag is discovered, then either it will have one of the No-Response Node as its

prefix, or it will collide with one of the Identified Nodes. If it has some No-Response Node

as prefix, then that node will transform into an Identified Node if only single tag is there

with that prefix. Otherwise the node will become a Collision Node if there are multiple

tags with same prefix. Similarly, if new tag collides with Identified Node, then that node

becomes a new Collision Node and subtree rooted at that node is explored using normal

Query Tree Protocol. For example, Collision Node highlighted by arrow in Figure 4.3 was

Identified Node in query tree of Figure 4.2, but due to the appearance of some new tag it

becomes a Collision Node.

For subsequent read cycles, the protocol works as follows.

• Run invert query with maximum matched prefix (prefix1 or prefix2 ) found in the

first read cycle, cycles needed number of times. If the invert query fails even once

(i.e. if any tag replies), we do not execute the invert query command any further.
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Figure 4.3: Query using candidate queue entries for subsequent read cycles

– If query with prefix1 succeeds, it means that all the tags have common prefix

prefix1. Then the reader starts querying using only the No Response Nodes as

well as the Identified Nodes, having number of bits more than prefix1. It does

not query nodes having lesser number of bits, because it already knows the pre-

fix1 bits and has ensured that no tag has different prefix. Now communication

takes place using only Item no (bits below prefix1 ).

– Else If query with prefix2 succeeds, then reader starts querying with Identified

Nodes and No Response Nodes below prefix2 levels. Communication between

reader and tag now takes place using the bits below prefix2.

– Else reader has to send queries for all the Identified and No Response Nodes

using k bits (all the bits in tag ID).



Chapter 5

Comparative Analysis of IQT

Protocol with QT Protocol

IQT Protocol achieves substantially better performance with very minimal change in tag

hardware complexity. This is because along with the prefix, the query itself can contain

control information to determine whether query will take place using the entire tagID or

with the rem bits.

Performance of IQT Protocol is compared with normal QT Protocol. Better efficiency

can be obtained by decreasing the number of bits transmitted between reader and tag

in one query, as well as by reducing the number of queries in one read cycle. Different

optimization techniques for the first read cycle and the subsequent read cycles are ap-

plied. In the first read cycle, improvement is mainly due to reduction in bits transmitted

between reader and tag, while in subsequent read cycles, the improvement is mainly due

to reduction in number of queries.

5.1 Where IQT Protocol gains over QT Protocol ?

Figure 4.2 describes the tag reading using Intelligent Query Tree Protocol for the first

read cycle. Optimization is due to two factors.

• Crosses marked nodes in Area-1 of Figure 4.2 denote the reduction in number of

queries in IQT protocol over normal QT protocol. After reaching prefixth level, the

IQT protocol will check whether all the items have prefixes matching with the bit

sequence read till that point. If all the items have first prefix bits common, then

reader need not perform query for some other node, with less than prefix bits. Hence

on an average, half of the queries corresponding to No-Response Nodes till prefix

levels will be saved. Savings are even greater if we are able to guess the prefix in

certain number of tries, instead of learning it one bit at a time.

• Area-2 in Figure 4.2 denotes the improvement due to reduction in number of bits.

Queries in Area-2 need not be performed using the whole tag ID. Hence, if all the

items have first prefix bits common, then communication can take place using only

the remaining (rem) bits.

17
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Figure 4.3 describes the saving for subsequent read cycles using IQT protocol over QT

protocol. Again, optimization is due to two factors.

• For the nodes in Area-1 of Figure 4.3, we need not perform any query, as we already

know the prefix from first read cycle. We need to confirm that no tag with different

prefix appears, so we run Invert Query Command using the prefix found in first read

cycle. Hence we save all the queries in Area-1, and perform Invert Query Command,

cycles needed number of times. This will lead to success most of the times, as we

are using the protocol in the scenarios where there is high probability of items from

same vendor or product type i.e. tags with some common prefix are highly probable.

• In Area-2 of Figure 4.3, we will save the queries corresponding to Collision Nodes

(crossed nodes). Also for the remaining queries we will be using lesser number of

bits (rem) only.

5.2 Comparisons of IQT with QT in the worst case

of tag identification

In this section, we analyze performance of IQT Protocol over QT. We look at the worst

case scenario of tag identification, which occurs when the tags present in the system have

IDs such that maximum number of queries are required. We look at the worst case,

because it gives lower bound in terms of number of tag reads per cycle.

In this study, we look at two performance parameters: 1) the number of queries to

identify all the tags and 2) the number of bits transmitted per query. Note that these

two parameters decide the performance of a reader in terms of number of tags read per

unit time. We show that IQT protocol performs much better than QT. Hence, readers

running IQT protocol can read more tags per unit time.

We first calculate the number of queries required in the worst case of tag identification

i.e. size of the largest query tree. We present our results using the following lemmas and

theorems.

First, we define some important terms used:

Definition 1 TagPair is a set of two tags, which differ only in the last bit of their tag

IDs. This means that tags in the TagPair have the first k − 1 bits common in their tag

ID. Hence, to identify a TagPair, the query tree will have collisions upto k − 1 levels and

identification of the tags would happen at the kth level. ith TagPair in a system is denoted

as TagPairi.

Note that, to identify only a TagPair, the query tree will grow to level k, root of the tree

being level 0.
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Figure 5.1: Overlapped and Non Overlapped Regions in query tree

Definition 2 Pairwise Subtree (SQTi
) is defined as the query tree formed while iden-

tifying only two tags belonging to TagPairi. It is obvious that SQTi
would be a subtree of

QT . QT is the query tree formed while identifying all the n tags in the system. Figure

5.1(a) shows the Pairwise Subtree (SQTi
) corresponding to the tag pair TagPairi

Definition 3 Overlapping Region (SOL) is the subtree of the query tree QT from level

0 to level L, as shown in Figure 5.1(c), where L is given by

L = maximum level at which ∀i,∃j|SQTi

⋂
SQTj

6= ∅. (5.1)

In other words, at each level in Overlapping Region, at least one node is common among

Pairwise Subtrees.

Definition 4 Non Overlapping Region (SNOL) is the region of the query tree from

level L + 1 to level k where L is given in Equation 5.1. In other words, in this region,

there is no overlap among all the Pairwise Subtrees, as shown in Figure 5.1(c).

Lemma 1 If we have only two tags with k bit tag IDs, then the query tree will have

maximum of k levels with 2 ∗ k + 1 nodes. This happens when the two tags form a

TagPair.

Proof 1 If there are only two tags, the query tree will have two nodes at each intermediate

level before they are identified. At any intermediate level, one node would be a Collision

Node and the other one would be a No-Response Node. At the last level, there will be one

Identified Node. If first i−1 bits of the tags are same, then there will be i−1 intermediate

levels (with 2 nodes at each level), and finally the tag will be identified at the ith level.

Thus, there will be i levels and 2 ∗ i + 1 nodes in the query tree. Maximum possible value

of i can be k. Thus, the query tree in this case will have k levels with 2∗k +1 nodes. And

in this case, the tag IDs differ in the last bit only i.e. they form a TagPair.
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Lemma 2 If we have an even number of tags and all of them form TagPairs, the query

tree will have n nodes at every level in the Non Overlapping Region.

Proof 2 Each Pairwise Subtree has 2 nodes at each level below the root and there is no

node common between two Pairwise Subtrees in the Non Overlapping Region. If we have

n tags, all forming TagPairs, then there are n/2 Pairwise Subtrees. Hence, the query tree

will have n/2 ∗ 2 = n nodes, at each level in Non Overlapping Region.

Lemma 3 If the number of tags (n) is odd and the tags form (n − 1)/2 TagPairs, then

the query tree will have n − 1 nodes at every level in the Non Overlapping Region.

Proof 3 If we have odd number tags and the tags form (n− 1)/2 TagPairs, then we have

(n − 1)/2 Pairwise Subtrees. These Pairwise Subtrees will have (n − 1)/2 ∗ 2 = n − 1

nodes at each level in Non Overlapping Region. The remaining one tag will not lead to

any extra node in the Non Overlapping Region. It will just convert one No Response Node

to Identified Node.

Lemma 4 In the Overlapping Region, query tree having an even number of n tags, which

forms n/2 TagPairs, will always have less than n nodes at each level. If the number of

tags n is odd and they form (n − 1)/2 TagPairs, then the query tree will have less than

n − 1 nodes at each level in the Overlapping Region.

Proof 4 From Lemma 2 and Lemma 3, there are n or n − 1 nodes at each level in

Non Overlapping Region when n is even or odd respectively. As per definition, in the

Overlapping Region, there will be some nodes that will be common to two or more Pairwise

Subtrees. Hence, at any level in the Overlapping Region, the number of nodes will be less

than n or n − 1 when n is even or odd respectively.

Lemma 5 Number of levels in Overlapping Region will be at least blog2(n − 2)c, n > 2,

when there are n tags forming bn/2c TagPairs.

Proof 5 From Lemma 4, at any level in the query tree if the number of nodes is less

than n (for even n) or less than n − 1 (for odd n), then that level would be a part of

Overlapping Region. So when n is even, the minimum level of Overlapping Region is

blog2(n − 1)c, n > 1 (since it can have upto n − 1 nodes at that level). Similarly, when n

is odd, the minimum level of Overlapping Region is blog2(n − 2)c, n > 2. Combining the

two cases, the lemma follows.

Theorem 1 If n is the number of tags, then the maximum number of nodes in the query

tree is given by:{
2blog2(n−2)c+1 − 1 + (k − blog2(n − 2)c) ∗ (n) if n is even

2blog2(n−2)c+1 − 1 + (k − blog2(n − 2)c) ∗ (n − 1) if n is odd
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Proof 1 From Lemma 1, size of query tree will be maximum if tags occur as TagPairs.

Lemma 4 shows that the largest query tree for a given number of n tags (forming bn/2c
TagPairs) will be obtained if there are least number of levels in the Overlapping Region.

This is because, Overlapping Region has fewer nodes than Non Overlapping Region.

Nodes in the query tree are divided into two parts:

• Nodes in Overlapping Region

• Nodes in Non Overlapping Region

Maximum number of nodes in the Overlapping Region is given by the maximum possible

nodes in the complete binary tree of height blog2(n − 2)c, n > 2 . This is equal to:

20 + 21 + . . . + 2blog2(n−2)c = 2blog2(n−2)c+1 − 1 for n > 2

Consider the case when n is even. From Lemma 3, each level in Non Overlapping

Region will have n nodes. Since there are (blog2(n−2)c) levels in the Overlapping Region

i.e. there are (k−blog2(n−2)c) in the Non Overlapping Region, hence maximum number

of nodes in Non Overlapping Region is n ∗ (k − blog2(n − 2)c). Hence, number of nodes

in largest query tree is given by:

2blog2(n−2)c+1 − 1 + (k − blog2(n − 2)c) ∗ (n) for n > 2

Now consider n to be odd. In this case, maximum number of nodes will be equal to

nodes in the largest query tree with n − 1 nodes, since last odd tag will just replace one

No-Response Node with Identified Node.

Hence, number of nodes is given by:

2blog2(n−2)c+1 − 1 + (k − blog2(n − 2)c) ∗ (n − 1) for n > 2

5.2.1 Performance Improvement in the First Read Cycle

IQT would be deployed where it is highly probable that tag IDs have common manufac-

turer ID or product ID fields i.e. all the tags have first prefix bits same. prefix is equal

to prefix1, if all the items have same EPC version, manufacturer and product type, and

it is equal to prefix2 if all the items have same EPC version and manufacturer, but they

are of different product types. In this scenario, we assume that first prefix bits of all the

tags are same. We will consider only even number of tags to derive expressions for the

complexity, since all the calculation remain same, just the term 2blog2(n−2)c+1−1+(rem−
blog2(n− 2)c) ∗ (n) will be replaced by 2blog2(n−2)c+1 − 1 + (rem−blog2(n− 2)c) ∗ (n− 1),

for odd values of n, as explained in Theorem 1

Number of queries required in QT Protocol:

Assuming even number of tags and n > 2, Query Tree Protocol requires 2∗prefix+1 queries

to identify first prefix bits, as shown in Figure 4.2. Theorem 1 shows that with n (even)

tags, we require maximum of 2blog2(n−2)c+1−1+(k−blog2(n−2)c)∗(n) queries. But in our

case, we are assuming that tags have common prefix, and tag IDs are distributed according
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to worst case scenario for the levels below prefix i.e. for (k − prefix)(i.e. rem) levels. For

rem levels the largest query tree will have 2blog2(n−2)c+1 − 1 + (rem − blog2(n − 2)c) ∗ (n)

nodes. Hence, total number of queries required are:{
2 ∗ prefix + 1 + 2blog2(n−2)c+1 − 1 + (rem − blog2(n − 2)c) ∗ (n) for n > 2 (5.2)

Since tags reply with their k bit tag IDs in the QT Protocol, the total number of bits

transmitted by tags in the first read cycle is given by{
(2 ∗ prefix + 1 + 2blog2(n−2)c+1 − 1 + (rem − blog2(n − 2)c) ∗ (n)) ∗ k bits. (5.3)

Number of queries required in IQT Protocol:

Case 1: prefix is guessed within max tries:

Suppose reader is able to guess the prefix in no of guesses tries. Further, cycles needed

times, Invert Query Command is required to confirm that all the tags have the same first

prefix number of bits. Then, total number of queries required by IQT protocol will be:{
no of guesses + cycles needed + 2blog2(n−2)c+1 − 1 + (rem − blog2(n − 2)c) ∗ n (5.4)

Every unsuccessful guess of Invert Query command will be responded by a tag with k

bits. But once the Invert Query command succeeds, the remaining queries (queries below

prefix levels) will only require rem bits.

Hence, the total number of bits transmitted by the tags are given by{
(no of guesses + cycles needed) ∗ k

+(2blog2(n−2)c+1 − 1 + (rem − blog2(n − 2)c) ∗ n) ∗ rem bits.
(5.5)

So, performance improvement of IQT over QT, in terms of number of queries, is given

by

(2 ∗ prefix + 1 − no of guesses − cycles needed) (5.6)

and the improvement, in terms of bits transmitted by a tag, is{
(2 ∗ prefix + 1 − no of guesses − cycles needed) ∗ k

+(2blog2(n−2)c+1 − 1 + (rem − blog2(n − 2)c) ∗ n) ∗ (k - rem) bits.
(5.7)

Case 2: prefix is not guessed within max tries: This is the case, when the

prefix is not guessed within max tries tries. Hence, first prefix bits are learnt using the

normal query tree protocol. In the worst case, we need 2∗prefix+1 queries to learn the first

prefix bits, as needed by normal Query Tree Protocol. Hence performance improvement

in terms of the number of bits will only be{
(2blog2(n−2)c+1 − 1 + (rem − blog2(n − 2)c) ∗ n) ∗ (k − rem)

−(cycles needed + max tries) ∗ k bits,
(5.8)
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since we waste max tries queries to guess the prefix. Here in the equation, cycles needed

term is there. This is because, to confirm that first prefix bits are same in all the tagIDs,

invert query command is executed cycles needed times.

Table 5.1 shows the performance improvement in two scenarios. First, where all the

tags have first prefix1 bits common, and second, where all the tags have first prefix2 bits

common. Second and Third columns in the table show the percentage saving in bits where

prefix is guessed in 4 tries. Fourth and Fifth columns show the improvement when the

reader is not able to guess the prefix and it learns first prefix bits using the normal QT

Protocol.

5.2.2 Performance Improvement in the Subsequent Read Cycles

If the set of tags is exactly the same as in the first read cycle, we will save queries

corresponding to all the nodes in Area-1, and Collision Nodes in Area-2 of Figure 4.3.

Also, we will need lesser number of bits for No-Response and Identified Nodes in Area-2

if there is some matching prefix among all the tags. In this case, when set of tags is

exactly same as that of first read cycle, we will save 2 ∗ prefix + 1 queries in Area-1,

but Invert Query Command needs to be executed cycles needed times to confirm that

all the tags have same first prefix bits. Hence, number of queries saved in Area-1 will

be 2 ∗ prefix + 1 − cycles needed. In Area-2, we will save queries corresponding to all

the internal nodes. Since, in worst case, we have (2blog2(n−2)c+1 − 1) + (rem − blog2(n −
2)c) ∗ n nodes in the subtree below prefix levels, the number of internal nodes will be

[(2blog2(n−2)c+1 − 1) + (rem − blog2(n − 2)c) ∗ n + 1]/2 − 1. Number of leaf nodes (No-

Response and Identified Nodes) = [(2blog2(n−2)c+1 − 1) + (rem− blog2(n− 2)c) ∗ n + 1]/2,

which leads to saving of [(2blog2(n−2)c+1 − 1) + (rem−blog2(n− 2)c) ∗ n + 1]/2 ∗ (k− rem)

in terms of bits, for the leaf nodes at the levels below prefix.

Therefore, performance improvement of IQT over QT, in terms of number of queries

is {
2 ∗ prefix + 1 − cycles needed + [(2blog2(n−2)c+1 − 1)

+(rem − blog2(n − 2)c) ∗ n + 1]/2 − 1
(5.9)

and the improvement, in terms of bits transmitted by a tag, is
(2 ∗ prefix + 1 − cycles needed + [(2blog2(n−2)c+1 − 1)

+(rem − blog2(n − 2)c) ∗ n + 1]/2 − 1) ∗ k

+[(2blog2(n−2)c+1 − 1) + (rem − blog2(n − 2)c) ∗ n + 1]/2*(k − rem) bits.

(5.10)

Column number six and seven in Table 5.1, shows the percentage reduction in bits

transmitted by the tags, when they have same prefix1 or prefix2 respectively. These

performance improvements are based on the assumption that the set of tags remains

same, as for the previous read cycle and each tag shows up in each of the read cycles. If

some tags are different in the subsequent read cycle, performance improvement drops and

it depends upon the number of nodes in the new subtree, explored using QT Protocol.
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In this chapter, we have analyzed the performance improvement of IQT over QT in

the first and subsequent read cycles separately, assuming that same set of tags show up in

all the read cycles in a single read process. In the next chapter, we have shown through

simulations, the performance improvement for the cases when tags respond with some

probability, that is, there can be different set of tags for different read cycles in a read

process.

No.

Of

Tags

First Read Cycle Subsequent Read Cycles

. same

prefix1

(guessed

in 4 tries)

same

prefix2

(guessed

in 4 tries)

same

prefix1

(unable to

guess the

prefix)

same

prefix2

(unable to

guess the

prefix)

same pre-

fix1

same pre-

fix2

5 76.25 48.58 33.98 27.50 90.00 75.90

10 71.31 43.74 44.22 31.87 85.83 72.28

15 69.00 41.85 49.01 33.57 85.43 71.74

25 66.81 40.23 53.56 35.04 83.70 70.56

50 64.87 38.92 57.60 36.22 82.54 69.80

75 64.14 38.46 59.10 36.63 81.06 69.01

100 63.76 38.23 59.88 36.84 81.88 69.40

125 63.53 38.09 60.37 36.97 82.38 69.63

150 63.37 38.00 60.70 37.05 80.54 68.73

Table 5.1: Percentage reduction in number of bits
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Simulation Results

We analyze the performance of IQT protocol over QT protocol and simulation results are

shown for different scenarios. The improvement in efficiency of IQT protocol over QT

protocol is due to reduction in the number of bits transmitted between reader and tag

in one query, as well as decrease in the number of queries in one read cycle. Different

optimization techniques are applied in the first read cycle and subsequent read cycles. In

the first read cycle, improvement is mainly due to reduction in number of bits transmitted

between reader and tag, while in subsequent read cycles, the improvement is mainly due

to reduction in number of queries.

All the simulations have been performed without considering the intelligent way to

guess the tagID prefix. If we use this optimization, there will be a slight improvement in

the efficiency in all cases, however this improvement will be constant for different number

of tags. So the graphs have been shown for one case only.

According to current EPC standards tag ID is of 96 bits with the following breakup.

• EPC version 8 bits : Manufacturer ID 28 bits: Product Type 24 bits : Item ID 36

bits

Above EPC structure is used for all the simulations. Performance improvement is shown

for the following three scenarios:

Scenario 1: Items to which RFID Tags are attached have same manufacturer and product type

i.e first prefix1 bits are common in all the tagsIDs.

Scenario 2: Items have different product type, but are from the same manufacturer i.e. first

prefix2 bits are common in all the tagsIDs.

Scenario 3: Items belong to different manufacturer i.e. tagIDs do not have any common prefix

(prefix1/prefix2) bits.

For all the graphs, we have plotted average performance improvement of IQT over

QT, with the confidence interval of 95%. For scenario 1, 2, and 3, we have assumed tag

read probability equal to 0.95. In the graphs, mean performance curves are sandwiched

between thin black lines of upper and lower confidence interval.
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6.1 Scenario 1 - Items have the same manufacturer

as well as product type

This means that the tagIDs have first prefix1 bits common. In this scenario, tag read speed

improves due to two factors - reduction in the number of queries, and reduction in the

number of bits transmitted by the tag per query. The reduced number of queries gives the

lower bound in tag read speed improvement, independent of the physical communication

method. There will be further saving due to reduced number of bits per query, which

depends on the communication method used, i.e. whether bits are transmitted one per

time cycle, or multiple bits can be transmitted in a single time cycle. That will determine

how much time we save by transmitting lesser number of bits in a single query.

Figure 6.1: % Reduction in number of queries in IQT over QT when tagIDs have first

prefix1 bits common

Figures 6.1 and 6.2 show the improvement in terms of percentage reduction in the

number of queries and percentage reduction in the number of bits required respectively.

With increase in the number of read cycles in a single read process, percentage saving

increases. This is because IQT saves more in subsequent read cycles than in the first read

cycle, due to additional information available from the first read cycle. More the number

of read cycles in a read process, more will be the saving.

With the increase in number of tags, the performance improvement increases in the

case when there are more read cycles per read process, relative to the case when there

are lesser read cycles. This is because, with more number of read cycles there is constant

extra overhead associated with our protocol, as it has to perform invert query command

more number of times (equal to the number of cycles in a read process).

Saving in terms of the number of bits is more than the saving in terms of the number
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Figure 6.2: % Reduction in number of bits in IQT over QT when tagIDs have first prefix1

bits common

of queries. This is because reduction in the number of queries also corresponds to the

reduction in number of bits; additionally reduction in the number of bits transmitted by

the tag per query also leads to further reduction in terms of bits.

In Figure 6.2, the curve with seven read cycles in a single read process intersects with

the curve with thirteen read cycles. Initially with lesser number of tags, the case when

we have seven read cycles is better. This is because, if we have thirteen read cycles, we

need to perform invert query thirteen times for each of the cycles, to confirm that all the

tags have same prefix1 bits, as opposed to seven times in the other case, and with lesser

number of tags this constant overhead affects the percentage improvement more.

Figure 6.3 shows the lower bound on the increase in tag read speed by taking into

account the effect of reduction in the number of queries only. The actual reduction might

be much more because of saving due to transmission of lesser number of bits by the

tag. This depends on the underlying physical communication method, and hence is not

considered in the simulations.

Due to similar reasons as described for graphs in the figures 6.1 and 6.2, tag read

speed will also increase with increase in number of read cycles in single read process as

shown in Figure 6.3.

6.2 Scenario 2 - Items have same manufacturer, but

different product type

This means that the tagIDs have first prefix2 bits common. The explanation for the

graphs in scenario 2 is similar to those for scenario 1, except that common prefix will
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Figure 6.3: % Improvement in tag read speed in IQT over QT when tagIDs have first

prefix1 bits common

be of first prefix2 bits instead of prefix1 bits. Trend in graphs will be same, but the

performance improvement and tag read speed in this case will be lesser than that in case

of scenario 1. Following is the reason for decrease in performance improvement.

In the case of first read cycle, there will be lesser number of crossed nodes (which

gives the number of queries saved in IQT) in Area 1 of Figure 4.2 for scenario 2. This is

because, in scenario 2, Area 1 has lesser(prefix2 ) levels. Also queries denoted by nodes in

Area 2 of the same figure take place using Product id as well as Item no bits in scenario

2, where as in scenario 1 queries take place using only the Item no bits.

In the case of subsequent cycles for scenario 2, all the queries in IQT take place

using Product id as well as Item no bits, while in scenario 1, all the queries in IQT take

place using Item no bits only.

Figure 6.4 and 6.5 show the percentage reduction in terms of the number of queries,

and in terms of the number of bits respectively. Figure 6.6 shows the lower bound on

improvement in tag read speed in scenario 2.

6.3 Scenario 3 - Items have different manufacturer

ID

Different manufacturer ID means that the tagIDs do not have first prefix (prefix1/prefix2)

bits common. This is the case when IQT protocol achieves least performance improvement

since all the queries take place using the whole tagID. The saving will be in terms of

number of queries only and not in terms of number of bits per query.

Since there is no commonality in the tagIDs, there will be no improvement for first
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Figure 6.4: % Reduction in number of queries in IQT over QT when tagIDs have first

prefix2 bits common

Figure 6.5: % Reduction in number of bits in IQT over QT when tagIDs have first prefix2

bits common

read cycle, hence IQT protocol gains only in subsequent read cycles. Saving in subsequent

cycles depends upon the probability of successful tag reads. Lesser the probability of tag

showing up, lesser will be the improvement. This is because IQT protocol needs to explore

the subtree for more new tagIDs in each read cycle.

In this scenario, we can directly find the increase in number of tags read per second

from the reduction in number of queries. This is shown in Figure 6.7

The saving in number of bits is due to two factors - saving due to number of queries,
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Figure 6.6: % Improvement in tag read speed in IQT over QT when tagIDs have first

prefix1 bits common

Figure 6.7: % Reduction in number of queries in IQT over QT when tagIDs are random

and do not have any common prefix bits

and saving in number of bits transmitted per query. In this case, since the entire tagID

is used in each query, the reduction is due to the first factor only. Hence the graphs for

percentage reduction in number of queries, and that for percentage reduction in number

of bits are similar.

The curves are approximately parallel. This is because there is no extra overhead to

perform invert query in case of IQT (that was there in other scenarios). In this case invert

query will fail in the first time only, and we need not try it again. Secondly we are saving
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quite less as compared to the other cases, because we are saving in terms of queries only

and also there is no saving in Area 1 of Figure 4.2.

Figure 6.8: % Improvement in tag read speed in IQT over QT when tagIDs are random

and do not have any common prefix bits

Since there is no extra reduction in the number of bits per query, the improvement in

tag read speed can be directly calculated from the reduction in queries. This is shown in

Figure 6.8.

6.4 Effect of tag read probability on the performance

improvement of IQT over QT

Lesser the tag read probability, lesser will be percentage improvement in the efficiency of

IQT with respect to QT. This is because, if the tag read probability is less, more new

tags will show up in each of the subsequent cycles. This leads to exploring the nodes in

the subtree corresponding to the new tags, hence more queries.

Figure 6.9 shows the effect of tag read probabilities on the tag read speed. In this case

tagIDs are totally random and they have first prefix1 bits common. For simulation, we

consider that ten read cycles per read process are required to identify the tags.
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Figure 6.9: % Improvement in tag read speed in IQT over QT when tagIDs are random

and do not have any common prefix bits



Chapter 7

Conclusions and Future Work

We have presented IQT, an efficient Query Tree based tag identification protocol. IQT

is suitable for readers deployed in godowns, exclusive showrooms and shipment points,

and large malls etc., where a single lot has similar items (with same product ID and/or

vendor ID). The protocol exploits the fact that tags may have common prefixes. IQT

also uses the history of read cycles to further optimize the read process. Using history of

read cycles leads to fair amount of saving even in the scenario where tagIDs are totally

random, that is they do not have same manufacturer or product type.

We have studied the performance of IQT in different tagID distribution scenarios. We

have presented the worst case analysis and performed simulations for the other cases.

IQT can even be used in the moving belt scenario with a small feasible constraint.

The belt should move discreetly instead of moving continuously and the different chunks

should be separated by small RF absorbing partitions. When the reader completes the

desired number of read cycles, the belt is moved ahead so that the next chunk is in the

range of reader.

As future work, the ranking criteria of prefixes stored in the prefix pool, used to

guess the prefix in first read cycle, needs to be tuned to provide better results and make

this optimization applicable in more general scenarios. We can further look into how

this reader-tag protocol can be adopted along with other reader-reader communication

protocols to achieve better read rates.
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Appendix A

Definitions and Key Terms

• EPC Code : Like universal bar code, EPC code is standard Tag Id assignment

code so that they are globally unique.Following is the structure of EPC Code.

– EPC version : Manufacturer ID : Product Type : Item ID

• Read Cycle : Read cycle refers to the set of queries required to read all the tags

that are in range of reader at a particular time. In a single read cycle, a reader may

not be able to read all the tags due to various factors like collisions, interference etc.

So multiple read cycles are required to improve reliability.

• Read Process : It refers to the set of multiple read cycles performed by reader to

ensure reliability.

• Query : It refers to the command containing some prefix sent by the reader, in

response to which all the tags with matching prefix reply back with their tag IDs.

• Invert Query Command : It is just the opposite of the normal query command.

Reader sends some prefix with the command and all the tags having prefixes different

from that sent by reader are supposed to reply to this command. This command is

issued to ensure that all the tags, that are read by the reader in the current read

cycle, have same prefix.

• Prefix Pool : It is a set of frequently occurring prefixes sorted according to rank

based upon the frequency of their occurrence, and how recently the prefix was used

in previous read cycles.

• prefix1 = First (EPC + Manufaturer id + Product id) bits

• prefix2 = First (EP + Manufaturer id) bits

39


