
Discovering Dependencies in Courseware
Repositories

M. Tech. Dissertation

Submitted in partial fulfillment of the requirements
for the degree of

Master of Technology

by

Nidhi Malik

Roll No: 06305002

under the guidance of

Prof. Sridhar Iyer

a
Department of Computer Science and Engineering

Indian Institute of Technology, Bombay
Mumbai

Acknowledgements

I would like to thank Prof.Sridhar Iyer for his keen guidance, insights and constant support. It
has been a good learning experience working with him.I thank him for always being there to
discuss problems, solutions and new ideas.

I deeply thank my family for their constant encouragement and support.

I want to thank Chintan for solving my JAVA related queries and discussing critical points.
I also thank Ramdasji for his valuable ideas. I also thank Janak, Pratabh, Manish for giving me
inputs to evaluate the performance of the system.

Last but not the least, I want to express my heartfelt gratitude to my friends, colleagues and
staff at CSE, IITB for making my stay here wonderful.

Nidhi Malik
Department of Computer Science and Engineering,

IIT Bombay

Abstract

Nowadays elearning has become popular, especially with the availability of large courseware
repositories such as NPTEL and OCW. A variety of e-learning tools and systems are also avail-
able. However, suppose a user wants to learn about a particular subject, the search tools typically
just return a large number of links to the user in response to his/her query. Many of these are
not directly relevant, so the user does not know which links to follow in order to enhance his
knowledge.

In this project we have built a system which not only provides the user with the most rel-
evant learning module for his query, but also provides him/her with the relevant pre-requisite
and follow-up modules also. This is done by creating a dependency graph of the courseware
modules in the repository. We have implemented and tested our system on six courses taken
from the NPTEL repository. For effective evaluation of our solution approach, we have not only
compared the results for four different heuristics but also compared them with the dependencies
determined by an expert in the subject area.

Contents

1 Introduction 1
1.1 Availability of Repositories . 1
1.2 Motivation for MTP . 2
1.3 Goal of MTP . 2
1.4 Solutions Approach . 3
1.5 Organization of Thesis . 3

2 Related Work 5
2.1 Repositories surveyed . 5

2.1.1 National Program on Technology Enhanced Learning (NPTEL) 5
2.1.2 MIT’s OCW . 5
2.1.3 CDEEP IIT Bombay . 6

2.2 Learning Management Systems . 6
2.2.1 ATutor . 7
2.2.2 OLAT . 8

2.3 Choice of Search Engine . 8

3 Overview of Solutions 9
3.1 Parsing . 9
3.2 Indexing text data . 9
3.3 Analysing the Index . 10

3.3.1 Refining counts . 10
3.3.2 Without any Threshold . 11
3.3.3 Mean Threshold . 12
3.3.4 Percentage ThreshHold . 12

3.4 Find out Pre-requisites and Follow-ups . 13
3.4.1 H1: Take count of words . 13
3.4.2 H2: Take position of the file . 13
3.4.3 H3: Take the Average count . 15
3.4.4 H4: Find correlation . 16

3.5 Generate DAG . 16
3.5.1 Refining the Graph . 16

i

4 Implementation Details 19
4.1 Parsing with PDFBox . 19

4.1.1 Using Lucene to Index and Search . 19
4.1.2 Indexing . 20
4.1.3 Searching the Index . 22

4.2 Using LUKE . 23
4.3 Generating graph with DOT . 23

5 Experiments 27
5.1 Testing . 27
5.2 Evaluation of the System . 40

6 Self-Assessment for the User 41
6.1 Evaluation for the learner . 41
6.2 Functioning of the System . 41
6.3 Feedback for the subject matter expert . 42

7 Conclusion and Future Work 43

Appendices 45

A Lucene Scoring Formula 45

B More Experimental Results 51

List of Tables

5.1 Requisites generated by our Program . 28
5.2 Evaluation results . 40

B.1 Requisites generated by our Program . 51

iii

List of Figures

2.1 Screen-shot of NPTEL . 6
2.2 Screen-shot of MIT’s OCW . 7

3.1 Screen-shot of the workflow . 10
3.2 Screen-shot of Luke . 11
3.3 Screen-shot of the Keyword Count table . 12
3.4 Screen-shot of the TopKWords for each file table 14
3.5 DAG for the Computer Networks course . 18

4.1 Architecture of Lucene [Lucene] . 20
4.2 Screen-shot of Luke . 23

5.1 DAG for the Computer Networks course- Heuristic H3 38
5.2 DAG for the Computer Networks course - Heuristic H4 39

B.1 DAG for the Embedded Systems course - Heuristic H4 65
B.2 DAG for the Artificial Intelligence course - Heuristic H4 66
B.3 DAG for the Software Engineering course - Heuristic H4 67
B.4 DAG for the Operating Systems course - Heuristic H4 68
B.5 DAG for the Systems Analysis and Design course - Heuristic H4 69

v

Chapter 1

Introduction

eLearning is becoming quite important due to the emerging technologies. It is used as a means
of learning by all categories of people from science, engineers,working professionals etc. A
number of benefits can be obtained through the use of eLearning:

• Increases conceptual understanding through the use of interactivity and animation, and
through the use of audio and video.

• Learners can learn at ones own pace and time. This is especially important for learners
who cannot attend school physically during the regular hours.

• The system may retain records of discussion and allows for later reference through the
use of threaded discussion on bulletin boards.

• eLearning permits instructors to develop materials using the world-wide resources of the
Web.

For more details about elearning and its importance see [Sie04].

1.1 Availability of Repositories

There are huge amounts of data available on the World Wide Web (WWW). Different types of
tools are available which help users in different ways from simply viewing the available con-
tent to creating lessons with the help of authoring tools. Many institutes/Universities have also
made their courses open source and have published them on the web. However, the content is
scattered over the WWW in the form of wikis, e-books, tutorials [GC05] etc. Some examples
of content repositories are:
MIT OpenCourseWare [MIT] is an idea developed by MIT to advance knowledge and edu-
cate students in science, technology, and other areas also. There are over 1,800courses in 33
academic disciplines. This content is available for download freely in the form of MIT’s Open
Course Ware and there is a dedicated website for this dissemination [MIT].

The National Programme on Technology Enhanced Learning (NPTEL) [NPT], a project

1

1. INTRODUCTION

funded by the Ministry of Human Resource Development (MHRD), India, was initiated in
1999 to pave the way for introducing multimedia and web technology to enhance learning of
basic science and engineering concepts. In order to facilitate the distribution of course material,
two modes of operation have been suggested, namely, digital video lectures of courses and web
based courses.

There are other repositories also including CDEEP IIT Bombay[CDE], Stanford University’s
open education initiative[Sta] and utahs university e-learning program[Uta] etc.

1.2 Motivation for MTP

Because of emerging technologies today, students have more options in choosing ways of
learning[Kha05]. Many academic institutions/organizations have their own search facilities
added to their content repository web sites [MIT], [NPT], [Sta]. However, suppose a user wants
to learn about a particular subject, the search tools typically just return a large number of links
to the user in response to his/her query. Many of these are not directly relevant, so the user does
not know which links to follow in order to enhance his knowledge.

We looked upon the search facility provided by NPTEL, CDEEP, and MITs OCW. We acted
as a user and gave queries to learn about topics such as TCP/IP, Ethernet etc. Although these
topics are covered in courses available at these websites, the search facilities did not give the
desired results. In this project we have built a system which not only provides the user with
the most relevant learning module for his query, but also provides him/her with the relevant
pre-requisite and follow-up modules also. There is no existing tool which actually serves this
purpose.

1.3 Goal of MTP

Given a set of lecture files from a courseware repository, we aim to build a system that provides
the user the most relevant answer (course module) to his query. We also create a dependency
graph for the entire course so that the user can refer to the previous and advanced topics as
required. We do not assume any prior knowledge of the ordering of the concepts covered in the
modules.

We have divided our system into three parts: providing learning module to the user, feedback
for the course co-ordinator and the proposed design of the overall system. We mainly focus on
providing the user the most relevant learning module for the query entered. We also provide the
prerequisites and follow ups for that topic. User can always refer to the prerequisites in case of
any doubts and follow-ups to enhance his/her knowledge further. The user can judge himself by
taking the self-evaluation quiz. The quiz will consist of multiple choice questions of that field.

2

1.4 SOLUTIONS APPROACH

1.4 Solutions Approach

Given the contents of a course from a repository (NPTEL in our case), we do the following:

1. We have used the Lucene, open source information retrieval library, in order to index the
content available.

2. We use this index in order to not only retrieve the relevant documents but also to determine
the dependencies among the modules.

3. Different strategies (heuristics) are used to order documents and then to arrange them in
the order of pre-requisites and follow ups.

4. We have implemented and tested our system on several courses taken from NPTEL. For
effective evaluation of our solution approach, we have not only compared the results for
the various heuristics but also compared them with the dependencies as determined by an
expert in the subject area.

5. Subsequently we have proposed a mechanism to present questions to the user in the form
of a self-evaluation quiz. The response of the quiz may be used to provide feedback not
only to the user but also to the content creator.

1.5 Organization of Thesis

In chapter 2, we look on different content repositories available emphasizing on NPTEL, CDEEP
and MITs OCW in particular. In chapter 3 we describe the different solution approaches fol-
lowed to implement our system. Chapter 4 gives the implementation details. In chapter 5 we
show the different experiments conducted to evaluate the performance of the system. In chapter
6, we present the quiz and feedback module. In chapter 7, we present the conclusions and future
extensions.

3

Chapter 2

Related Work

E-learning is used interchangeably in a wide variety of contexts. E-Learning can be used in
academic settings as well as for corporate training [Kha05], in this report, we focus only on the
use of eLearning in academic settings. The range of eLearning software spans the following
extreme end points: using simple presentation tools such as Microsoft PowerPoint; the use of
animation in tools such as JAWAA ; intelligent tutoring systems such as Andes etc.

2.1 Repositories surveyed

We have surveyed a number of content repositories available on different sites. These provide
access to all of it’s course’s contents free of cost.

2.1.1 National Program on Technology Enhanced Learning (NPTEL)

The National Programme on Technology Enhanced Learning (NPTEL) [NPT], a project funded
by the Ministry of Human Resource Development (MHRD) was initiated in 1999 to pave the
way for introducing multimedia and web technology to enhance learning of basic science and
engineering concepts. In order to facilitate the distribution of course material, two modes of
operation have been suggested, namely, digital video lectures of courses and web based courses.
E-Learning material are being created in such a form that it can be expanded and updated
continuously. Simple course management packages that provide features like e-mail queries by
students, bulletin board and Frequently Asked Questions (FAQ) are being incorporated.
There is no efficient search facility provided in NPTEL. The search option provided just works
for the course names and one can’t get any information about a particular query if it does not
appear in the course name.
Sample screen shot for the query TCP/IP is shown below in the Figure 2.1

2.1.2 MIT’s OCW

MIT OpenCourseWare is an idea developed by the MIT faculty to advance knowledge and
educate students in science, technology, and other areas of scholarship to best serve the world.
In 2000, MIT published the first proof- of-concept site in 2002, containing 50 courses. Now,

5

2. RELATED WORK

Figure 2.1: Screen-shot of NPTEL

there are over 1,800 courses in 33 academic disciplines. This content is available for download
freely in the form of MIT’s Open Course Ware and there is a dedicated website for this.
Most of the content has been made available in the form of PDF documents. Some of these
contain scans of material handwritten or drawn by the instructor and image captures of the
blackboard contents.

The output returned 82 results for TCP/IP. This is really not helpful for a new user. It will
be hard to decide out of the given 82 results which one he/she should follow and in which order.

2.1.3 CDEEP IIT Bombay

The Centre for Distance Engineering Education Programme has been established to make IIT’s
courses available to the Student community at large. There are courses available in fundamental
subjects, advance subjects. Different activities of CDEEP include laboratory demonstrations,
transmitting classroom lectures live to the destination, develop web-based course material, tu-
torials, assignments, studio recording of lectures etc [CDE].

Currently, there is no search facility in CDEEP which can display for a particular query that
whether it exist in any of the courses which are there in CDEEP curriculum or not.

2.2 Learning Management Systems

A Learning Management System (LMS) is a set of software tools designed to facilitate user
learning interventions. Most LMSs we surveyed are web-based to facilitate ’ ’anytime, any

6

2.2 LEARNING MANAGEMENT SYSTEMS

Figure 2.2: Screen-shot of MIT’s OCW

place, any pace ’ ’ access to learning content and administration. LMSs are based on a variety
of development platforms, from Java architectures to Microsoft.net and usually employ the use
of a database back-end [Lea]. The learning environment used by universities and colleges allow
instructors to manage their courses and exchange information with students for a course that in
most cases will last several weeks and will meet several times during those weeks. While in
case of the corporate world a course may be much shorter, completed in single instructor-led or
online session.

2.2.1 ATutor

ATutor is an Open Source Web-based Learning Management System [ATu].
ATutor is used in various contexts, including online course management, continuing profes-
sional development for teachers, career development, and academic research. ATutor is used
internationally and has been translated into over fifteen languages with support for over forty
additional language modules currently under development.

• Two, of many, accessibility features in the system are text alternatives for all visual ele-
ments, and keyboard access to all elements of the program. With these features, a blind
person can listen to the entire interface of the system with the help of a screen reader, and
he or she can access the system without needing a mouse.

• ATutor is also designed for adaptability to any of several teaching and learning scenar-
ios. There are four main areas that reflect this design principle: themes, privileges, tool

7

2. RELATED WORK

modules, and groups.

The ATutor theme system to allow administrators to easily customize the look and layout
of the system to their particular needs. Themes are used to give ATutor a new look, to give
categories of courses their own look, or to provide multiple versions of ATutor on a single
system, from which users could choose one as a preference setting.

2.2.2 OLAT

OLAT is the acronym for Online Learning and Training. It is a web application - a so called
Learning Management System which supports any kind of online learning, teaching, and tu-
toring [OLA]. OLAT is free open source software OLAT has a lot of features for e-learning
platforms such as content managing, forums, file discussions, quizzes with different kinds of
questions, surveys, chat, submission modules etc.

There are other open source LMSs also available such as Moodle, SCORM, eFront etc.
Every type of LMS supports the following features:

• Manage users, roles, courses, instructors, and facilities and generate reports.

• Course calendar

• Learner messaging and notifications

• Assessment/testing capable of handling student pre/post testing

• Display scores and transcripts

2.3 Choice of Search Engine

Each search engine has multiple characteristics that differentiates it from the other engines.
Each of the search engines can be characterized by the features they implement as well as the
performance they have in different scenarios. There are many search engines available based
on a number of factors such as open source, information type, business, metasearch engines etc.
[sea]. Of these, we have chosen to use Lucene [HG04], for the following reasons:

1. Lucene is not a standalone search application. Instead it is an API [Luc]. It can be
integrated in an application as a search and indexing API. Nutch is one popular search
engine that uses Lucene. Nutch does the functions of crawling and parsing and uses
Lucene for indexing. However, in our case, we do not need all the features of Nutch. The
API provided by Lucene are sufficient.

2. Lucene has been completely written in Java. Our system is also built in Java, hence it is
easy to integrate.

3. Lucene does not have any crawling and HTML parsing functionality. We do not require
these as we are targetting specific repositories. Also, we do not require any front-end
functionalities.

8

Chapter 3

Overview of Solutions

As mentioned earlier, we have currently taken NPTEL as our target content repository. In the
examples described in this chapter we will take the course Computer Networks from NPTEL as
a running example. This course has 40 pdf files in it. For every course what we have to do is:

1. Parse the pdf files to get textual data, using PDFbox.

2. Index the text files, using Lucene.

3. Analyze the keywords and their frequencies in the index, using LUKE.

4. Find pre-requisites and follow-ups for every file, using heuristics developed in this project.

5. Generate a DAG for the whole course, using DOT.

The step-by-step workflow of the processing of each step is shown in Figure 3.1.
Solutions for all the steps are described one by one in detail.

3.1 Parsing

Lucene requires the pdf files to be converted to text before indexing them. We made use of a
Nutch utility called PDFbox to parse the pdf files. PDFBox is a Java library for extracting text
contents from existing PDF documents. The implementation details of invoking PDFbox are
described in the next chapter.

3.2 Indexing text data

We can embed Lucene easily into our applications and implement indexing and searching func-
tionality. For specifically giving the right learning module we need to first index it. The basic
code involving all the classes needed to index is given in the Appendix B. The main classes
used for indexing are shown below:

9

3. OVERVIEW OF SOLUTIONS

Figure 3.1: Screen-shot of the workflow

Listing 3.1: simple lucene index
Analyzer analyzer = new StopAnalyzer();

StringBuffer contents = new StringBuffer();
Directory directory = FSDirectory.getDirectory(”/home/nidhi/Desktop/Computer Networks/index”);
IndexWriter iwriter = new IndexWriter(directory, analyzer, true);
iwriter.setMaxFieldLength(25000);

3.3 Analysing the Index

Once we have indexed our text data, we can print the index in different number of types. We
can print the index according to the frequency of the terms, and even highlight the occurrence
of the terms in the content. Lucene has its own default scoring mechanism on the basis of which
it calculates the score of the documents and displays them in some order of preference. In our
experiments we have taken the count of the index terms, i.e., the number of times each term
occurs in each file. Then further processing is performed.

3.3.1 Refining counts

We give the 40 lecture files (after converting to text) of the course Computer Networks course
to Lucene. Lucene indexes the text files and allows us to view and print the index with the help

10

3.3 ANALYSING THE INDEX

of LUKE (ref. Chapter 4 for more details). From there we get a collection of index terms (in the
same way as it is in a book). We remove the non-technical English words, as Lucene indexes
all the text data except some particular English words. The words which are removed from this
course can also be removed from other courses so that we need not again and again remove
them from other course’s indexes.

A sample screenshot of LUKE output for the course Computer Networks is given below in
Figure 3.2. Then we use the following strategies for refining the counts of the keywords.

Figure 3.2: Screen-shot of Luke

3.3.2 Without any Threshold

In this strategy, we simply take the count of all keywords in each file. Note that we do not take
the scores of the keywords in the document given by Lucene. Instead we have taken the counts
of the keywords in the document as this gives more accurate results.

A sample screen shot for the table showing counts of all keywords is given in Figure 3.3.
It is not sufficient to simply use the absolute values of the counts, since these could be

misleading. For example, in Figure 3.3, highest count of OSI is 58 and there are other smaller
counts such as 2, 1 ,2,3 etc. These counts are not meaningful because there are other keywords
in these files whose counts are much higher. So, we need not keep those valuse. So, we need to
apply some kind of normalization in order to capture the relative importance of the keywords.

11

3. OVERVIEW OF SOLUTIONS

Figure 3.3: Screen-shot of the Keyword Count table

3.3.3 Mean Threshold

We initially tried a simple idea of taking the Mean of the counts for each keyword and ignoring
values that are below the mean. Similarly, we can take the Mean of counts of the keywords in
each file and ignore keywords that are below the mean.

For example, if we take a look at the counts of the term ” csma ”, it has the maximum count
of 48 and minimum count is 1. Other counts for the keyword Frame are 1, 2 and 7. So we take
the mean of all the values and ignore the values which are less than the mean. These values are
simply assigned zero.

However, this idea does not work when there are some keywords which are not occurring in
more than 2-3 files. Their counts in those files are also less.Those values will be discarded due to
the mean threshhold. But we need to retain such values because there are no other modules for
those keywords. Hence we do not use the Mean Threshold idea but modify it to the Percentage
Threshold as described below.

3.3.4 Percentage ThreshHold

In this strategy, instead of taking the Mean of the counts for each keyword and ignoring values
that are below the mean, we normalize the values. We take the sum of the counts of all the
occurrences of that keyword. For each occurrence, we replace its absolute count with its per-
centage from the total.As a result of percentageThreshHold, pre-requisites for the query ” OSI ”
are ” Internet Protocol” , ” Transport and Application Layer Protocols ” and ” Layered Network
Architecture ”.

12

3.4 FIND OUT PRE-REQUISITES AND FOLLOW-UPS

Subsequently, the values whose percentage count is less than 10 are discarded. For more
explanation refer to chapter 5.

3.4 Find out Pre-requisites and Follow-ups

The lecture modules are given in a seqeuential order. We have not assumed any other informa-
tion about the dependencies of the concepts in the course. In order to facilitate the learning of
user, we now have to give him pre-requisites and follow-up modules also for his query. We now
describe a few heuristics used to identify these pre-requisites and follow-ups.

3.4.1 H1: Take count of words

For a given file we take its topKwords. For those topKwords we take the topKfiles. For each
file in those topKfiles, we simply check for how many keywords is the given file is appearing
in the topKfiles. After that we sort all the topKfiles (without duplicates) and assign the count.
Then we arrange the files in ascending order of the counts. Those files whose module numbers
are less than the module number of the file for which we are finding pre-requisites, are assigned
as pre-requisites. Those whose module numbers are greater are assigned as the follow-ups.

Algorithm 1 Heuristic 1
1: Take count of each Keyword in each file.
2: Store keywords as columns and files as rows.
3: For each file get topKkeywords
4: For each keyword
5: Sort the file entries and get unique files
6: Assign weight to each file based on sum of counts of all keywords appearing in it.
7: Order the files according to their weights.
8: For files whose index = 1 to i − 1; get the topK files according to weight.
9: For files whose index > i;get the topK files according to weight.

The top 3 files whose counts are less than the serial number of the given file will be consid-
ered as the pre-requisites. In the same way 3 top files whose counts are greater than the given
file will be given as the follow ups.

The Figure 3.4 below shows a view of topkWords for each file:

3.4.2 H2: Take position of the file

With the above approach it was the possibility that the file which was more important was not
appearing at the correct position and in the correct order. So what we decided that instead of
just taking the count, we shall also consider the position of the file in the topKfiles. We will
follow the simple formula c = k-p+1; where c will denote the final count of the file. K denotes
the total top files (in our case k = 5). p will denote the position of the file (varies from 1 to 5).

13

3. OVERVIEW OF SOLUTIONS

Figure 3.4: Screen-shot of the TopKWords for each file table

Algorithm 2 Heuristic 2; Without any threshold,take keyword position; i is the index of the file
for which we have to find requisites

1: Take count of each Keyword in each file.
2: Store keywords as columns and files as rows.
3: For each file get topKkeywords.
4: For each keyword get topKfiles.
5: Sort the file entries and get unique files.
6: For each file take position of the file for each keyword in topKfiles.
7: Assign weight as w = K-p+1.
8: For files whose index = 1 to i − 1; get the topK files.
9: For files whose index > i;get the topK files.

14

3.4 FIND OUT PRE-REQUISITES AND FOLLOW-UPS

After experiments we observed that it gave better ordering of the results with more relevant
files on correct positions.

3.4.3 H3: Take the Average count

Another approach we tried for the correct ordering of the pre-requisites and follow-ups is to
take the counts of the keywords appearing in that file. We took average counts of each file and
then sorted according to the average count.

Algorithm 3 Heuristic 3; With Percentage threshold,take average count; i is the index of the
file for which we have to find requisites

1: Take count of each Keyword in each file.
2: tore keywords as columns and files as rows.
3: For each file get topKkeywords
4: For each keyword get topKfiles
5: Sort the file entries and get unique files
6: Assign weight to each file based on the average of sum of counts of all keywords appearing

in it.
7: Order the files according to their weights.
8: For files whose index = 1 to i − 1; get the topK files according to weight.
9: For files whose index > i;get the topK files according to weight.

15

3. OVERVIEW OF SOLUTIONS

Another variation to this approach can be that we take the counts of the keywords appearing
in that file and divide by K(K = 5 in our case).

3.4.4 H4: Find correlation

Another heuristic we applied orders the files based on their correlation with the file for which
we are finding pre-requisites and follow-ups. Suppose i is the index of the file which we are
currently processing. we have count of each keyword in this file. For all the other files in
the array, we will correlate the corresponding entries with those of the ith file’s entries. We
multiply the corresponding entries and take summation of the resulting counts. In this way we
get another approach to order the files. After this, we will sort the files according to the latest
summation computed and separate out the pre-requisites and follow-ups.

Algorithm 4 Heuristic 4; With Percentage threshold,find correlationt; i is the index of the file
for which we have to find requisites

1: Take count of each Keyword in each file.
2: Store keywords as columns and files as rows.
3: For each file get topKkeywords
4: For each keyword get topKfiles
5: Sort the file entries and get unique files
6: Multiply all keyword entries of the ith file to those of the others.
7: Take sum of the resulting counts.
8: For files whose index = 1 to i − 1; get the topK files according to weight.
9: For files whose index > i;get the topK files according to weight.

By applying this heuristic the counts are increased accordingly due to multiplication and
when applied with the percentage threshold gives promising results

3.5 Generate DAG

Now, we have found out pre-requisites and follow-up files for all the files of a course. Our next
task is to generate dependency graph for the whole course. The purpose of creating dependency
graph is to let the user decide what should he know before learning any specific topic. By
viewing the dependency graph the user can easily identify which modules need to be learnt
before any specific topic and what can be learnt after that[ref. chapter 4 for more detail].We
have captured all the dependencies between the files and later we draw dependency graph with
the help of those dependency.

3.5.1 Refining the Graph

Now we have set of pre-requisites for all the chapters of the Computer Networks course. We
need to show them with the help of dependency graph. But while making the dependency graph

16

3.5 GENERATE DAG

we observed that the graph is kind of messy and has asymmetric relations between the pre-
requisites. So, we need to refine the dependencies for every file.
Let us say X and Y are two different files. When we make the dependency graph then we need
to check out that we are showing only symmetric relations in our graph to make the graph more
clean and readable. For every link between X and Y in the graph we need to ensure that there
exists a link between X and Y iff X is a pre-requisite for Y and Y is a follow up of X. This way
the graph will clearly depict the dependencies between the files in the course. The graph below
in Figure 3.5 shows dependencies in “Computer Networks” course.

17

3. OVERVIEW OF SOLUTIONS

Figure 3.5: DAG for the Computer Networks course

18

Chapter 4

Implementation Details

In this chapter we will see how all the processing is being done and which are the components
involved. We will one by one see the processing of each phase.

4.1 Parsing with PDFBox

As Lucene indexes only text information, we need to convert pdf files to text files. For that we
used PDFBox which is an open source Java PDF library for working with PDF documents. It
allows creation of new PDF documents, manipulation of existing documents and to extract con-
tent from documents. This functionality is encapsulated in the org.pdfbox.util.PDFTextStripper.
PDFBox also includes several other command line utilities such as merger PDF documents, cre-
ate images from pdf pages, print pdf etc. The code snippet is as shown below:

Listing 4.1: simple lucene index
File filename1 = new File(”/home/nidhi/Desktop/SAD/pdf/M14L1” +”.pdf”);

PDDocument doc1 = PDDocument.load(filename1);
PDFTextStripper stripper = new PDFTextStripper();
System.out.println(stripper.getText(doc1));
String str1=stripper.getText(doc1);
File outFile = new File(”/home/nidhi/Desktop/SAD/TextFiles/M14L1” +”.txt”);
FileWriter out = new FileWriter(outFile);

out.write(str1);
out.close();

.

4.1.1 Using Lucene to Index and Search

Lucene is a free open source information retrieval library, originally created in java.[HG04].
It lets the user add indexing and searching capabilities to their applications. Lucene doesn’t
care about the source of the data, its format, or even its language, as long as we can convert
it to text [Lucene] This means we can use Lucene to index and search data stored in files:

19

4. IMPLEMENTATION DETAILS

web pages on remote web servers, documents stored in local file systems, simple text files,
Microsoft Word documents, HTML or PDF files, or any other format from which we can extract
textual information. There is no efficient search facility provided in NPTEL. The search option
provided just works for the course names and one can’t get any information about a particular
query if it does not appear in the course name.

Figure 4.1: Architecture of Lucene [Lucene]

4.1.2 Indexing

Suppose we needed to search a large number of files, and we want to be able to find files that
contained a certain word or a phrase. A naive approach to do this would be to sequentially scan
each file for the given word or phrase. This approach has a number of flaws, the most obvious
of which is that it does not scale to larger file sets or cases where files are very large. This is
where we need indexing : To search large amounts of text quickly, we must first index that text
and convert it into a format that will let us search it rapidly, eliminating the slow sequential
scanning process. This conversion process is called indexing, and its output is called an index.
Most of the content has been made available in the form of PDF documents. Some of these
contain scans of material handwritten or drawn by the instructor and image captures of the
blackboard contents.

Creating an index

In this section we will see how to use a single class called Indexer and its static methods together,
they recursively traverse file system directories and index all files with a .txt extension. When
Indexer completes execution it leaves behind a Lucene index for the Searcher to search upon.
The core indexing classes and how we used them in our program is described as follows:

• IndexWriter is the central component of the indexing process. This class creates a new
index and adds documents to an existing index. Index-Writer gives us write access to the

20

4.1 PARSING WITH PDFBOX

index but does not let us read or search it. We can also run Indexer from the command-
line. It takes two arguments: A path to a directory where we store the Lucene index and
path to a directory that contains the files we want to index.

• Directory class represents the location of a Lucene index. It is an abstract class that al-
lows its subclasses (two of which are included in Lucene) to store the index. If we have
to store our index on the disk then we need to use FSDirectory, a Directory subclass that
maintains a list of real files in the file system.

The other implementation of Directory is a class called RAMDirectory. Although it ex-
poses an interface identical to that of FSDirectory, RAMDirectory holds all its data in
memory. This implementation is therefore useful for smaller indices that can be fully
loaded in memory and can be destroyed upon the termination of an application.

• Analyzer

Before text is indexed, it is passed through an Analyzer. The Analyzer, specified in the
IndexWriter constructor, is in charge of extracting tokens out of text to be indexed and
eliminating the rest. If the content to be indexed is not plain text, it should first be con-
verted to it. Analyzer is an abstract class, but Lucene has with several implementations
of it. Some of them deal with skipping stop words (frequently used words that do not
help distinguish one document from the other, such as a, an, the, in, and on); some deal
with conversion of tokens to lowercase letters, so that searches are not case-sensitive; and
so on. Analyzers are an important part of Lucene and can be used for much more than
simple input filtering. For a developer integrating Lucene into an application, the choice
of analyzer(s) is a critical element of application design.

• Document

A Document represents a collection of fields. It can be a web page, an email message,
or a text file that we want to retrieve at a later time. Fields of a document represent
the document or meta-data associated with that document. For each text file we find,
we create a new instance of the Document class, populate it with Fields and add that
Document to the index,effectively indexing the file.

• Field

Lucene offers four different types of fields from which you can choose. Each field corre-
sponds to a piece of data that is either queried against or retrieved from the index during
search.

• Keyword

It is not analyzed, but is indexed and stored.This type is suitable for fields whose original
value should be preserved in its entirety, such as URLs, file system paths, dates, personal
names, Social Security numbers, telephone numbers, and so on. For example, we used
the file system path in Indexer as a Keyword field.

21

4. IMPLEMENTATION DETAILS

• Unindexed

Is neither analyzed nor indexed, but its value is stored in the index as is. This type is
suitable for fields that we need to display with search results (such as a URL or database
primary key), but whose values we will never search directly.

• UnStored

The opposite of UnIndexed. This field type is analyzed and indexed but is not stored in the
index. It is suitable for indexing a large amount of text that does not need to be retrieved
in its original form, such as bodies of web pages, or any other type of text document.

• Text

Is analyzed, and is indexed. This implies that fields of this type can be searched against,
but we have to be cautious about the field size.

4.1.3 Searching the Index

The Searcher program complements Indexer and it also provides command-line searching ca-
pability. It will take two arguments: The path to the index created with Indexer and a query to
use to search the index.

The core searching classes are

• IndexSearcher

It is a class that opens an index in a read-only mode. It offers a number of search methods,
the simplest taking takes a single Query object as a parameter and returning a hits object.

• Term

A Term is the basic unit for searching. Similar to the Field object, it consists of a pair of
string elements: the name of the field and the value of that field. Because the TermQuery
object is derived from the abstract parent class Query, it can be used with the Query type
on the left side of the statement.

• Query

Lucene comes with a number of concrete Query subclasses. The most basic Lucene
Query is TermQuery. Other Query types are BooleanQuery, PhraseQuery, prefixQuery,
PhrasePrefixQuery, RangeQuery, FilteredQuery, and SpanQuery.

• TermQuery

TermQuery is the most basic type of query supported by Lucene, and it is one of the
primitive query types. It is used for matching documents that contain fields with specific
values. A term query accepts a single term such as:

• Hits

This class simply points to the ranked search result documents that match a given query.
The hits collection is ordered by score by default.

22

4.2 USING LUKE

4.2 Using LUKE

The fundamental concepts in Lucene are index, document, field and term. An index contains a
sequence of documents.

• A document is a sequence of fields.

• A field is a named sequence of terms.

• A term is a string.

Lucene’s index falls into the family of indexes known as an inverted index. This is because it
can list, for a term, the documents that contain it. This is the inverse of the natural relationship,
in which documents list terms. When Lucene creates index it generates three files which are

Figure 4.2: Screen-shot of Luke

not readable. For reading and printing the index we need to use LUKE. [Luk] Luke is a handy
development and diagnostic tool, which accesses already existing Lucene indexes and allows
us to display and modify their contents in several ways such as browse by document number, or
by term, view documents and copy them, see the most frequent terms etc.

4.3 Generating graph with DOT

After we have identified the pre-requisites and follow ups for every chapter, we plan to prepare
a dependency graph for the whole course. Having the dependency graph, the user can clearly
make out which module he needs to learn in order to learn about a specific topic.
We make use of the DOT utility of the Graphviz package [DOT]. DOT is a plain-text graph
description language. It is a simple way of describing graphs that both humans and computer
programs can use. DOT graphs are files that end with the .dot extension.
We captured all the dependencies while finding out the pre-requisites and follow-up files for
each chapter. Those dependencies are saved in a text file with the .dot extension.Various at-
tributes can be applied to nodes and edges in DOT files. These attributes can control aspects
such as color, shape, and line styles.Sample graph are shown in the next chapters.

23

4. IMPLEMENTATION DETAILS

Code snippet for generating DAG:

Listing 4.2: Generate DAG
public static void generateDAG(String filename)
{

int requisites[] ;
int [] topKWords ;
int [] topKFiles ;
int [] noOfWordsHavingAFile;

//String to be written in the file
String str = ””;

//For each file
for(int i=0;i<Helper.arrFileNames.length;i++)
{

System.out.println(”Processing File : ” + Helper.extractFileNameFromAbsolutePath(Helper.arrFileNames[i
]));

//System.out.println(”Processing File : ” + Helper.arrFileNames[i]);
System.out.println

System.out.println(”Processing File : ” + Helper.extractFileNameFromAbsolutePath(Helper.arrFileNames [i]) +
” ” + Helper.arrFileTitles[i]);

//Fetch top K words of the file.
topKWords = Helper.getTopKWords(Helper.arrFileNames[i]);

requisites = new int[Helper.arrFileNames.length];
noOfWordsHavingAFile = new int[requisites.length];

//∗∗//
for(int j=0;j<requisites.length;j++)
{

requisites[j]=0;
noOfWordsHavingAFile[j] = 0;

}
//Process each word
for(int j=0;j<topKWords.length;j++)
{

// System.out.println(”\n\nProcessing word no. : ” + topKWords[j]);
int currentWordIndex = topKWords[j];
if(currentWordIndex==−1)

break;
// System.out.print(Helper.arrTechnicalWords[currentWordIndex] + ” : ”);

//Fetch top K files of the word being processed
topKFiles = Helper.getTopKFiles(Helper.arrTechnicalWords[currentWordIndex]);
for(int k=0;k<topKFiles.length;k++)
{

// System.out.println(topKFiles[k] + ” ”);
if(topKFiles[k]==−1)

break;
// System.out.print(Helper.extractFileNameFromAbsolutePath(Helper.arrFileNames[topKFiles[k]]) + ” ”);

//requisites[topKFiles[k]] += 1;

24

4.3 GENERATING GRAPH WITH DOT

requisites[topKFiles[k]] += (Helper.K − k);
//requisites[topKFiles[k]] += Helper.result[topKFiles[k]][currentWordIndex];
//noOfWordsHavingAFile[topKFiles[k]]++;

// System.out.println(Helper.result[k][j]);

}}

25

4. IMPLEMENTATION DETAILS

Code snippet for refining DAG:

Listing 4.3: Refine DAG
private static void pruneDAG()
{

int[] tempArray1,tempArray2,tempArray;
Vector tempVector;
for(int i=0;i<Helper.arrFileNames.length;i++)
{

tempArray1 = Helper.arrFoundPrerequisites[i];
tempVector=new Vector();
for(int j=0;j<tempArray1.length;j++)
{

if(tempArray1[j]==−1)
break;

if(doesArrayContainValue(Helper.arrFoundFollowups[tempArray1[j]], i, 2))
tempVector.add(new Integer(tempArray1[j]));

}
for(int j=0;j<Helper.MaxNoOfFollowups;j++)

Helper.arrFoundPrerequisites[i][j]=−1;
for(int j=0;j<tempVector.size();j++)

Helper.arrFoundPrerequisites[i][j] = ((Integer)tempVector.get(j)).intValue();

tempArray1 = Helper.arrFoundFollowups[i];
tempVector=new Vector();
for(int j=0;j<tempArray1.length;j++)
{

if(tempArray1[j]==−1)
break;

if(doesArrayContainValue(Helper.arrFoundPrerequisites[tempArray1[j]], i, 2))
tempVector.add(new Integer(tempArray1[j]));

}
for(int j=0;j<Helper.MaxNoOfFollowups;j++)

Helper.arrFoundFollowups[i][j]=−1;
for(int j=0;j<tempVector.size();j++)

Helper.arrFoundFollowups[i][j] = ((Integer)tempVector.get(j)).intValue();

}

}

26

Chapter 5

Experiments

We took NPTEL as the content repository. The examples given in the report are all in reference
with the Computer Networks course. Experiments are done on other courses also. For every
course, we have maintained specific files such as topkwords for each file, countofKeywords,
fileTitles, file containing the pre-requisites and follow-ups for each file of the whole course etc.
These files are kept for every course on which we did experiment. Finally a DAG is prepared
for every course. The DAG will be presented to the user so that he/she can decide what to learn.

5.1 Testing

We have done experiments for 6 courses namely: Computer Networks, Artificial Intelligence,
Software Engineering, embedded Systems, Operating System and Software Analysis and De-
sign.

First of all let’s take Computer Networks course. It has 40 pdf files. After parsing them with
PDFBox, we got 40 text files. Those 40 text files are given to Lucene for which it will create
index. At the time of indexing it creates segments file which are not readable by the user. We
used Luke to print the index for the course. From that we got our index terms(keywords). For
all those keywords, we took their count in each file in an excel file. We read all the counts in a
string and through .csv format, directly wrote into an excel file. We maintained a separate file
for topKwords of each file. We have maintained a dag.csv file which shows the pre-requisites
and follow-ups for each file.

We have tried all the functions described in the third chapter with both the mean and per-
centage threshHolds. We observed that results after applying percentageThreshHold with the
correlation function-Heuristic H4 are more promising.

27

5. EXPERIMENTS

Table 5.1: Requisites generated by our Program

File Name Pre-requisite Files Follow-up Files

Introduction and
Course Otline
(M1L1.txt)

• Wireless LANs
(M5L7.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Flow Control and Error
Control (M3L3.txt)

Layered Network
Architecture
(M1L2.txt)

• X 25 (M4L4.txt)

• Wireless LANs
(M5L7.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

Data Com-
munication
Fundamentals
(M2L1.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Transmission of Digital
Signal (M2L4.txt)

• Analog Data to Analog
Signal (M2L5.txt)

• Data Link Control
(M3L1.txt)

Transmission Me-
dia (M2L2.txt)

• Data Communica-
tion Fundamentals
(M2L1.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Data Link Control
(M3L1.txt)

• Wireless LANs
(M5L7.txt)

• Synchronous Opti-
cal Network SONET
(M4L3.txt)

Continued on next page...

28

5.1 TESTING

Transmission
Impairments and
Channel Capacity
(M2L3.txt)

• Data Communica-
tion Fundamentals
(M2L1.txt)

• Transmission Media
(M2L2.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Transmission of Digital
Signal (M2L4.txt)

• Data Link Control
(M3L1.txt)

• Digital Data and Analog
Signal (M2L6.txt)

Transmission of
Digital Signal
(M2L4.txt)

• Data Communica-
tion Fundamentals
(M2L1.txt)

• Transmission Impair-
ments and Channel
Capacity (M2L3.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Data Link Control
(M3L1.txt)

• Synchronous Opti-
cal Network SONET
(M4L3.txt)

• Analog Data to Analog
Signal (M2L5.txt)

Analog Data to
Analog Signal
(M2L5.txt)

• Data Communica-
tion Fundamentals
(M2L1.txt)

• Transmission of Digital
Signal (M2L4.txt)

• Transmission Media
(M2L2.txt)

• Wireless LANs
(M5L7.txt)

• Digital Data and Analog
Signal (M2L6.txt)

• Data Link Control
(M3L1.txt)

Digital Data and
Analog Signal
(M2L6.txt)

• Transmission of Digital
Signal (M2L4.txt)

• Analog Data to Analog
Signal (M2L5.txt)

• Data Communica-
tion Fundamentals
(M2L1.txt)

• Data Link Control
(M3L1.txt)

• Wireless LANs
(M5L7.txt)

• Synchronous Opti-
cal Network SONET
(M4L3.txt)

Continued on next page...

29

5. EXPERIMENTS

Multiplexing of
Digital Signals
(M2L7.txt)

• Analog Data to Analog
Signal (M2L5.txt)

• Data Communica-
tion Fundamentals
(M2L1.txt)

• Transmission Impair-
ments and Channel
Capacity (M2L3.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

• Data Link Control
(M3L1.txt)

• Synchronous Opti-
cal Network SONET
(M4L3.txt)

Data Link Control
(M3L1.txt)

• Transmission of Digital
Signal (M2L4.txt)

• Data Communica-
tion Fundamentals
(M2L1.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Wireless LANs
(M5L7.txt)

• Error Detection and Cor-
rection (M3L2.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

Error Detection
and Correction
(M3L2.txt)

• Data Link Control
(M3L1.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Transmission of Digital
Signal (M2L4.txt)

• Wireless LANs
(M5L7.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

• Flow Control and Error
Control (M3L3.txt)

Flow Control and
Error Control
(M3L3.txt)

• Data Link Control
(M3L1.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Error Detection and Cor-
rection (M3L2.txt)

• Wireless LANs
(M5L7.txt)

• Transport and Appli-
cation Layer Protocols
(M6L3.txt)

• HDLC (M3L4.txt)

Continued on next page...

30

5.1 TESTING

HDLC
(M3L4.txt)

• Data Link Control
(M3L1.txt)

• Flow Control and Error
Control (M3L3.txt)

• Error Detection and Cor-
rection (M3L2.txt)

• Wireless LANs
(M5L7.txt)

• X 25 (M4L4.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

Switching Tech-
niques Cir-
cuit Switching
(M4L1.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Data Communica-
tion Fundamentals
(M2L1.txt)

• Data Link Control
(M3L1.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

• Switching Techniques
Circuit Switching II
(M4L2.txt)

• Frame Relay (M4L5.txt)

Switching Tech-
niques Circuit
Switching II
(M4L2.txt)

• Switching Techniques
Circuit Switching
(M4L1.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Transmission Media
(M2L2.txt)

• Basics of Routing
(M7L1.txt)

• RIP Routing Information
Protocol (M7L2.txt)

• Border Gateway Protocol
BGP (M7L4.txt)

Synchronous
Optical Net-
work SONET
(M4L3.txt)

• Data Communica-
tion Fundamentals
(M2L1.txt)

• Transmission of Digital
Signal (M2L4.txt)

• Data Link Control
(M3L1.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

• Frame Relay (M4L5.txt)

• High Speed LANs Token
Ring Based (M5L5.txt)

Continued on next page...

31

5. EXPERIMENTS

X 25 (M4L4.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Data Link Control
(M3L1.txt)

• Flow Control and Error
Control (M3L3.txt)

• Frame Relay (M4L5.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

• Congestion Control
(M7L5.txt)

Frame Relay
(M4L5.txt)

• X 25 (M4L4.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Data Link Control
(M3L1.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

• IEEE Ring LANs
(M5L4.txt)

• High Speed LANs Token
Ring Based (M5L5.txt)

Asynchronous
Transfer Mode
Switching ATM
(M4L6.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Frame Relay (M4L5.txt)

• Data Link Control
(M3L1.txt)

• High Speed LANs
CSMA CD based
(M5L6.txt)

• Wireless LANs
(M5L7.txt)

• Internet Protocol IP
(M6L2.txt)

Network Topol-
ogy (M5L1.txt)

• Switching Techniques
Circuit Switching
(M4L1.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

• IEEE Ring LANs
(M5L4.txt)

• High Speed LANs Token
Ring Based (M5L5.txt)

• Satellite Networks
(M5L10.txt)

Continued on next page...

32

5.1 TESTING

Medium Access
Control Tech-
niques MAC
(M5L2.txt)

• Switching Techniques
Circuit Switching II
(M4L2.txt)

• X 25 (M4L4.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

• IEEE Ring LANs
(M5L4.txt)

• Wireless LANs
(M5L7.txt)

• Congestion Control
(M7L5.txt)

IEEE CSMA
CD based LANs
(M5L3.txt)

• Data Link Control
(M3L1.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

• Transmission Media
(M2L2.txt)

• Wireless LANs
(M5L7.txt)

• High Speed LANs
CSMA CD based
(M5L6.txt)

• High Speed LANs Token
Ring Based (M5L5.txt)

IEEE Ring LANs
(M5L4.txt)

• Medium Access Con-
trol Techniques MAC
(M5L2.txt)

• Frame Relay (M4L5.txt)

• Network Topology
(M5L1.txt)

• High Speed LANs Token
Ring Based (M5L5.txt)

• Congestion Control
(M7L5.txt)

• Wireless LANs
(M5L7.txt)

High Speed
LANs Token
Ring Based
(M5L5.txt)

• IEEE Ring LANs
(M5L4.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

• Frame Relay (M4L5.txt)

• High Speed LANs
CSMA CD based
(M5L6.txt)

• Wireless LANs
(M5L7.txt)

• Internetworking Devices
(M6L1.txt)

Continued on next page...

33

5. EXPERIMENTS

High Speed
LANs CSMA CD
based (M5L6.txt)

• High Speed LANs Token
Ring Based (M5L5.txt)

• IEEE CSMA CD based
LANs (M5L3.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

• Wireless LANs
(M5L7.txt)

• Internetworking Devices
(M6L1.txt)

• Satellite Networks
(M5L10.txt)

Wireless LANs
(M5L7.txt)

• Data Link Control
(M3L1.txt)

• Flow Control and Error
Control (M3L3.txt)

• Transmission Media
(M2L2.txt)

• Bluetooth (M5L8.txt)

• Cellular Telephone Net-
works (M5L9.txt)

• Internetworking Devices
(M6L1.txt)

Bluetooth
(M5L8.txt)

• Wireless LANs
(M5L7.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

• Satellite Networks
(M5L10.txt)

• Congestion Control
(M7L5.txt)

• Transport and Appli-
cation Layer Protocols
(M6L3.txt)

Cellular Tele-
phone Networks
(M5L9.txt)

• Wireless LANs
(M5L7.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

• Bluetooth (M5L8.txt)

• Satellite Networks
(M5L10.txt)

• Congestion Control
(M7L5.txt)

• Transport and Appli-
cation Layer Protocols
(M6L3.txt)

Continued on next page...

34

5.1 TESTING

Satellite
Networks
(M5L10.txt)

• Transmission Media
(M2L2.txt)

• Asynchronous Transfer
Mode Switching ATM
(M4L6.txt)

• Wireless LANs
(M5L7.txt)

• RIP Routing Information
Protocol (M7L2.txt)

• Internet Protocol IP
(M6L2.txt)

• Transport and Appli-
cation Layer Protocols
(M6L3.txt)

Internetworking
Devices
(M6L1.txt)

• High Speed LANs
CSMA CD based
(M5L6.txt)

• Wireless LANs
(M5L7.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Basics of Routing
(M7L1.txt)

• RIP Routing Information
Protocol (M7L2.txt)

• Open Shortest Path First
OSPF (M7L3.txt)

Internet Protocol
IP (M6L2.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Switching Techniques
Circuit Switching II
(M4L2.txt)

• X 25 (M4L4.txt)

• Transport and Appli-
cation Layer Protocols
(M6L3.txt)

• Basics of Routing
(M7L1.txt)

• RIP Routing Information
Protocol (M7L2.txt)

Transport and
Application
Layer Protocols
(M6L3.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Internet Protocol IP
(M6L2.txt)

• Flow Control and Error
Control (M3L3.txt)

• Congestion Control
(M7L5.txt)

• Secured Communication
(M8L2.txt)

• Firewalls (M8L3.txt)

Continued on next page...

35

5. EXPERIMENTS

Basics of Routing
(M7L1.txt)

• Internetworking Devices
(M6L1.txt)

• Switching Techniques
Circuit Switching II
(M4L2.txt)

• Internet Protocol IP
(M6L2.txt)

• RIP Routing Information
Protocol (M7L2.txt)

• Open Shortest Path First
OSPF (M7L3.txt)

• Border Gateway Protocol
BGP (M7L4.txt)

RIP Routing In-
formation Proto-
col (M7L2.txt)

• Basics of Routing
(M7L1.txt)

• Internetworking Devices
(M6L1.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Border Gateway Protocol
BGP (M7L4.txt)

• Open Shortest Path First
OSPF (M7L3.txt)

• Congestion Control
(M7L5.txt)

Open Shortest
Path First OSPF
(M7L3.txt)

• RIP Routing Information
Protocol (M7L2.txt)

• Basics of Routing
(M7L1.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• Border Gateway Protocol
BGP (M7L4.txt)

• Congestion Control
(M7L5.txt)

• Cryptography
(M8L1.txt)

Border Gateway
Protocol BGP
(M7L4.txt)

• RIP Routing Information
Protocol (M7L2.txt)

• Basics of Routing
(M7L1.txt)

• Open Shortest Path First
OSPF (M7L3.txt)

• Congestion Control
(M7L5.txt)

• Secured Communication
(M8L2.txt)

• Cryptography
(M8L1.txt)

Continued on next page...

36

5.1 TESTING

Congestion Con-
trol (M7L5.txt)

• Basics of Routing
(M7L1.txt)

• RIP Routing Information
Protocol (M7L2.txt)

• Open Shortest Path First
OSPF (M7L3.txt)

• Cryptography
(M8L1.txt)

• Firewalls (M8L3.txt)

• Secured Communication
(M8L2.txt)

Cryptography
(M8L1.txt)

• Wireless LANs
(M5L7.txt)

• Error Detection and Cor-
rection (M3L2.txt)

• Open Shortest Path First
OSPF (M7L3.txt)

• Secured Communication
(M8L2.txt)

• Firewalls (M8L3.txt)

Secured Com-
munication
(M8L2.txt)

• Cryptography
(M8L1.txt)

• Border Gateway Protocol
BGP (M7L4.txt)

• RIP Routing Information
Protocol (M7L2.txt)

• Firewalls (M8L3.txt)

Firewalls
(M8L3.txt)

• Layered Network Archi-
tecture (M1L2.txt)

• RIP Routing Information
Protocol (M7L2.txt)

• Congestion Control
(M7L5.txt)

After generating the requisites for every file, we also draw the DAG as specified in the
third chapter. In the DAG, we need to ensure that there exists a link between X and Y iff X
is a pre-requisite for Y and Y is a follow up of X. This way the graph will clearly depict the
dependencies between the files in the course.

The graph for the same course with percentage Threshold and counts - Heuristic H3 is as
shown below in Figure 5.1.

The graph for the same course with percentage Threshold and counts - Heuristic H4 is as
shown below in Figure 5.2.

37

5. EXPERIMENTS

Figure 5.1: DAG for the Computer Networks course- Heuristic H338

5.1 TESTING

Figure 5.2: DAG for the Computer Networks course - Heuristic H4

39

5. EXPERIMENTS

5.2 Evaluation of the System

To know about the performance of the system, we have compared results generated by our pro-
gram with those of the expert results. We created goodness metric for all of the 6 courses. We
have created goodness metric separately for pre-requisites and follow-ups.

In the following description, Pi denotes the number of prerequisites suggested by expert for
the ith lecture. Fi denotes the number of followups suggested by expert for the ith lecture.
Xi denotes the number of correct prerequisites found by the program. Yi denotes the number
of correct followups found by the program. GP denotes the goodness metric (performance of
the program) for prerequisites. GF denotes the goodness metric for followups. G denotes the
overall goodness metric.

GP =
N∑

i=1

Pi

Xi

(5.1)

GF =
N∑

i=1

Fi

Yi

(5.2)

G =
GP + GF

2
(5.3)

Table 5.2: Evaluation results

Course T0 - F0 T0 - F1 H1 H2 H3 H4
Networks 76.87 77.49 78.95 78.54 79.16 81.25
AI 60.56 69.91 73.57 72.76 73.17 80.89
SE 87.1 90.67 88.69 83.92 85.11 86.5
Embedded 81.15 77.97 85.11 76.38 78.96 81.74
OS 80.15 81.74 86 77.77 78.57 82.19
SAD 92.85 92.85 90.85 91.85 92 92.85

where T0 - F0 = Without any threshold
T0 - F1 = Without any threshold just take position

40

Chapter 6

Self-Assessment for the User

After we have found pre-requisites and follow-ups for each lecture of our course, we can con-
centrate on how to help the user to let him know how much he has learnt. In this section, we
explain how the “Quiz” module proposed by the system can be used by the learner for self-
evaluation. In addition, this module can also be used by the subject matter expert for getting
feedback about the learning material.

6.1 Evaluation for the learner

After the learner finishes reading the recommended material for the topic, a quiz is offered
related to that topic with the intention that the learner can judge whether the material was learnt
well enough. When the learner takes the quiz, the scores of the learner are shown immediately
along with the answers for those questions that the learner had got wrong. The learner is shown
the scores of the quiz along with the average scores for that topic. The intention of this is that
by looking at the absolute or average scores, the learner can get an idea of how much material
was grasped. If the learner feels that the absolute score is not good enough, the learner can go
through the pre-requisite material for the topic.

The quiz is objective in nature with the learner having to choose from multiple alternatives.
The quiz questions, alternative answers, and the right choice are prepared by the subject matter
expert per topic. These are stored in the “Quiz Question Bank” in a database.

6.2 Functioning of the System

The functioning of the system from the user perspective will be as follows:

1. User will enter the query or broadly speaking the area which he wants to learn.

2. User will get the most relevant link corresponding to the entered query.

3. User will be given the dependency graph for the course.

4. Quiz will be given to the student for self-evaluation.

41

6. SELF-ASSESSMENT FOR THE USER

5. Based on the outcomes of the results of quiz feedback will be provided to the user.

6.3 Feedback for the subject matter expert

The quiz results can also serve as a feedback for the subject matter expert as explained in this
section.

Periodically, the subject matter expert can view various statistics about the topics handled
by him / her. These include the following:

• Number of learners that used the search along with the keyword

• Number of learners that used the pre-requisite material, the actual topic material, and
those that viewed the follow-up material

• The quiz scores per topic per learner, and the average score per topic

Based on this information, the subject matter expert can decide if the material being offered
by the search engine is adequate or not. The subject matter expert can then decide to use
some other material for the topic that may be better than the one currently narrowed down by
the search engine If the subject matter expert find some problem related to the relevance of
the topics such that he feels some topic is not given much weightage and the other is not that
inmportant,then he can think about the default scoring mechanism of Lucene and decide the
topics which are more relevant should be given more boost value.

42

Chapter 7

Conclusion and Future Work

We have tried out all the heuristics for 6 different courses. We can say that the heuristic with
percentage Threshold and correlation function gives promising results as compared to the other
heuristics.We have observed some conflicts in the system and the expert answers in the sense
that for some files our program is generating requisites and in the expert views there are no
requisites in that domain for the particular file. The things which need to be focused on for
future work are: At this stage we had assumed the simple evaluation of the quiz given to the
student. We can simply set some manual range to evaluate the quiz and inform the student about
his/her progress. We have not taken into account the design and level of questions for the quiz.
There can be many variations for the structure of the quiz such as fixing the number of questions
of different difficulty levels and how to incorporate the level of difficulty with each question. We
can observe the previous quizzes of the students. If a particular question is answered correctly
by most of the students then that can be considered as easy and so on.

43

Appendix A

Lucene Scoring Formula

score(q, d) = coord(q, d) �queryNorm(q) �
∑
t in q

(tf(t in d) � idf(t)2 � t �getBoost() �norm(t, d))

tf(t in d) defines the number of times the term t appears in the sored document d. Documents
with more occurrences of a given term have high score. The dafault value in Similarity class is:

tf(t in d) = frequency
1
2

idf(t) denotes the Inverse Document Frequency and correlates to the inverse of docFreq. The
dafault computation is:

idf(t) = 1 + log(
numDocs

docFreq + 1
)

coord(q,d) calculates how many of the query terms are found in the specified document. A
document having more query terms will receive a higher score other than the document with
fewer query terms.

queryNorm(q) is a normalizing factor which is used to make scores between queries compa-
rable. This factor does not affect document ranking (since all ranked documents are multiplied
by the same factor), but rather just attempts to make scores from different queries (or even dif-
ferent indexes) comparable. This is a search time factor computed by the Similarity in effect at
search time. The default computation in DefaultSimilarity is:

queryNorm(q) = queryNorm(sumOfSquaredWeights) =
1

sumOfSquaredWeights
1
2

The sum of squared weights (of the query terms) is computed by the query Weight object.
For example, a boolean query computes this value as:

t.getBoost() is a search time boost of term t in the query q.

sumOfSquaredWeights = q � getBoost()2 �
∑
t in q

(idf(t) � t.getBoost())2

norm(t,d) takes a few (indexing time) boost and length factors:

• Document boost - set by calling doc.setBoost() before adding the document to the index.

45

A. LUCENE SCORING FORMULA

• Field boost - set by calling field.setBoost() before adding the field to a document.

• lengthNorm(field) - computed when the document is added to the index in accordance
with the number of tokens of this field in the document, so that shorter fields contribute
more to the score. LengthNorm is computed by the Similarity class in effect at indexing.

When a document is added to the index, all the above factors are multiplied. If the document
has multiple fields with the same name, all their boosts are multiplied together:

norm(t, d) = doc.getBoost() � lengthNorm(field) �
∏

field f in d named as t

f.getBoost()

Sample code for LUcene Indexing is shown below:

46

Listing A.1: Sample code Lucene

∗ This code was originally written for
∗ Erik’s Lucene intro java.net article

public class Indexer {
public static void main(String[] args) throws Exception {

if (args.length != 2) {
throw new Exception(”Usage: java ” + Indexer.class.getName()

+ ” <index dir> <data dir>”);
}

File indexDir = new File(args[0]);
File dataDir = new File(args[1]);

long start = new Date().getTime();
int numIndexed = index(indexDir, dataDir);
long end = new Date().getTime();
System.out.println(”Indexing ” + numIndexed + ” files took ”

+ (end − start) + ” milliseconds”);
}
// open an index and start file directory traversal
public static int index(File indexDir, File dataDir)

throws IOException {

if (!dataDir.exists() || !dataDir.isDirectory()) {
throw new IOException(dataDir

+ ” does not exist or is not a directory”);
}

IndexWriter writer = new IndexWriter(indexDir,

new StandardAnalyzer(), true);
writer.setUseCompoundFile(false);
indexDirectory(writer, dataDir);
int numIndexed = writer.docCount();
writer.optimize();
writer.close();

return numIndexed;
}
// recursive method that calls itself when it finds a directory
private static void indexDirectory(IndexWriter writer, File dir)

throws IOException {
File[] files = dir.listFiles();
for (int i = 0; i < files.length; i++) {

File f = files[i];
if (f.isDirectory()) {

indexDirectory(writer, f);
} else if (f.getName().endsWith(”.txt”)) {

47

A. LUCENE SCORING FORMULA

indexFile(writer, f);
}

}
}
// method to actually index a file using Lucene
private static void indexFile(IndexWriter writer, File f)

throws IOException {
if (f.isHidden() || !f.exists() || !f.canRead()) {

return;
}
System.out.println(”Indexing ” + f.getCanonicalPath());
Document doc = new Document();

doc.add(Field.Text(”contents”, new FileReader(f)));

doc.add(Field.Keyword(”filename”, f.getCanonicalPath()));

writer.addDocument(doc);

}
}

48

Listing A.2: Sample code Lucene
∗ This code was originally written for
∗ Erik’s Lucene intro java.net article
∗/

public class Searcher {
public static void main(String[] args) throws Exception {

if (args.length != 2) {
throw new Exception(”Usage: java ” + Searcher.class.getName()

+ ” <index dir> <query>”);
}

File indexDir = new File(args[0]);
String q = args[1]; Query string
if (!indexDir.exists() || !indexDir.isDirectory()) {

throw new Exception(indexDir +
” does not exist or is not a directory.”);

}
search(indexDir, q);

}
public static void search(File indexDir, String q)

throws Exception {
Directory fsDir = FSDirectory.getDirectory(indexDir, false);

IndexSearcher is = new IndexSearcher(fsDir);

Query query = QueryParser.parse(q, ”contents”,
new StandardAnalyzer());

long start = new Date().getTime();

Hits hits = is.search(query);
long end = new Date().getTime();
System.err.println(”Found ” + hits.length() +

” document(s) (in ” + (end − start) +
” milliseconds) that matched query ’” +

q + ”’:”);
for (int i = 0; i < hits.length(); i++) {

Document doc = hits.doc(i);
System.out.println(doc.get(”filename”));

}
}

}

49

Appendix B

More Experimental Results

In the Experiments chapter, we have shown the experiments for “Computer Networks” course
only. The other courses for which we have also done experiments for are “Artificial Intelli-
gence”, “Embedded Systems”, “Software Engineering”, “Operating System”, “System Analy-
sis and Design”. The table for Embedded Systems is shown here:

Table B.1: Requisites generated by our Program

File Name Pre-requisite Files Follow-up Files

Introduction to
Real Time Em-
bedded Systems
Part I (M1L1.txt)

• Wireless Communication
(M5L27.txt)

• Testing Embedded Sys-
tems (M8L38.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

Introduction to
Real Time Em-
bedded Systems
Part II (M1L2.txt)

• Testing Embedded Sys-
tems (M8L38.txt)

• AD and DA Converters
(M3L18.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

Continued on next page...

51

B. MORE EXPERIMENTAL RESULTS

Embedded Sys-
tems Components
Part I (M1L3.txt)

• Introduction to Real
Time Embedded Systems
Part II (M1L2.txt)

• AD and DA Converters
(M3L18.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• Embedded Proces-
sors and Memory I
(M2L5.txt)

Embedded Sys-
tems Components
Part II (M1L4.txt)

• Embedded Systems
Components Part I
(M1L3.txt)

• Introduction to Real
Time Embedded Systems
Part II (M1L2.txt)

• AD and DA Converters
(M3L18.txt)

• Embedded Proces-
sors and Memory I
(M2L5.txt)

• Embedded Processors I
(M2L10.txt)

Embedded Pro-
cessors and Mem-
ory I (M2L5.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• Embedded Systems
Components Part I
(M1L3.txt)

• Introduction to Real
Time Embedded Systems
Part II (M1L2.txt)

• Embedded Proces-
sors and Memory II
(M2L6.txt)

• Field Programmable
Gate Arrays and Appli-
cations (M4L20.txt)

• General Purpose Proces-
sors I (M2L8.txt)

Continued on next page...

52

Embedded Pro-
cessors and
Memory II
(M2L6.txt)

• Embedded Proces-
sors and Memory I
(M2L5.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• Embedded Systems
Components Part I
(M1L3.txt)

• General Purpose Proces-
sors I (M2L8.txt)

• Interfacing bus Protocols
ISA bus etc (M3L13.txt)

• Testing Embedded Sys-
tems (M8L38.txt)

Digital Sig-
nal Processors
(M2L7.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• Introduction to Real
Time Embedded Systems
Part II (M1L2.txt)

• Embedded Proces-
sors and Memory I
(M2L5.txt)

• AD and DA Converters
(M3L18.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Analog Interfacing
(M3L19.txt)

General Purpose
Processors I
(M2L8.txt)

• Embedded Proces-
sors and Memory II
(M2L6.txt)

• Embedded Proces-
sors and Memory I
(M2L5.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• Embedded Processors I
(M2L10.txt)

• Concepts in Real Time
Operating Systems
(M6L31.txt)

• Introduction to Hardware
Description Languages I
(M4L21.txt)

Continued on next page...

53

B. MORE EXPERIMENTAL RESULTS

General Purpose
Processors II
(M2L9.txt)

• General Purpose Proces-
sors I (M2L8.txt)

• Embedded Proces-
sors and Memory II
(M2L6.txt)

• Embedded Systems
Components Part I
(M1L3.txt)

• Interfacing bus Protocols
ISA bus etc (M3L13.txt)

• Concepts in Real Time
Operating Systems
(M6L31.txt)

• Serial Data Communica-
tion (M5L25.txt)

Embedded
Processors I
(M2L10.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• General Purpose Proces-
sors I (M2L8.txt)

• Embedded Proces-
sors and Memory I
(M2L5.txt)

• Embedded Processors II
(M2L11.txt)

• Serial Data Communica-
tion (M5L25.txt)

• Concepts in Real Time
Operating Systems
(M6L31.txt)

Embedded
Processors II
(M2L11.txt)

• Embedded Processors I
(M2L10.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• Embedded Proces-
sors and Memory I
(M2L5.txt)

• Boundary Scan Meth-
ods and Standards
(M8L41.txt)

• Interfacing bus Protocols
ISA bus etc (M3L13.txt)

• Serial Data Communica-
tion (M5L25.txt)

Continued on next page...

54

Memory Interfac-
ing (M2L12.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• Embedded Processors I
(M2L10.txt)

• Embedded Proces-
sors and Memory I
(M2L5.txt)

• Interfacing bus Protocols
ISA bus etc (M3L13.txt)

• Boundary Scan Meth-
ods and Standards
(M8L41.txt)

• AD and DA Converters
(M3L18.txt)

Interfacing bus
Protocols ISA bus
etc (M3L13.txt)

• General Purpose Proces-
sors II (M2L9.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• Introduction to Real
Time Embedded Systems
Part II (M1L2.txt)

• Serial Data Communica-
tion (M5L25.txt)

• DMA (M3L16.txt)

• Interrupts (M3L15.txt)

Timers
(M3L14.txt)

• Interfacing bus Protocols
ISA bus etc (M3L13.txt)

• Embedded Processors I
(M2L10.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• Interrupts (M3L15.txt)

• Introduction to Hardware
Description Languages II
(M4L22.txt)

• Introduction to Hardware
Description Languages I
(M4L21.txt)

Interrupts
(M3L15.txt)

• Interfacing bus Protocols
ISA bus etc (M3L13.txt)

• Timers (M3L14.txt)

• Embedded Processors I
(M2L10.txt)

• DMA (M3L16.txt)

• Concepts in Real Time
Operating Systems
(M6L31.txt)

• Commercial Real Time
Operating Systems
(M6L32.txt)

Continued on next page...

55

B. MORE EXPERIMENTAL RESULTS

DMA
(M3L16.txt)

• Interfacing bus Protocols
ISA bus etc (M3L13.txt)

• Interrupts (M3L15.txt)

• General Purpose Proces-
sors I (M2L8.txt)

• Analog Interfacing
(M3L19.txt)

• Software Design Part 2
(M7L37.txt)

• Serial Data Communica-
tion (M5L25.txt)

USB and IrDA
(M3L17.txt)

• Interfacing bus Protocols
ISA bus etc (M3L13.txt)

• Interrupts (M3L15.txt)

• Embedded Systems
Components Part I
(M1L3.txt)

• Wireless Communication
(M5L27.txt)

• Serial Data Communica-
tion (M5L25.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

AD and DA
Converters
(M3L18.txt)

• Digital Signal Processors
(M2L7.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• Introduction to Real
Time Embedded Systems
Part II (M1L2.txt)

• Analog Interfacing
(M3L19.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Introduction to Hardware
Description Languages I
(M4L21.txt)

Analog Interfac-
ing (M3L19.txt)

• AD and DA Converters
(M3L18.txt)

• Interfacing bus Protocols
ISA bus etc (M3L13.txt)

• DMA (M3L16.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Introduction to Hardware
Description Languages I
(M4L21.txt)

• Design for Testability
(M8L39.txt)

Continued on next page...

56

Field Pro-
grammable
Gate Arrays and
Applications
(M4L20.txt)

• Embedded Proces-
sors and Memory I
(M2L5.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• General Purpose Proces-
sors I (M2L8.txt)

• Introduction to Hardware
Description Languages I
(M4L21.txt)

• Design for Testability
(M8L39.txt)

• Introduction to Hardware
Description Languages
III (M4L23.txt)

Introduction
to Hardware
Description
Languages I
(M4L21.txt)

• Field Programmable
Gate Arrays and Appli-
cations (M4L20.txt)

• AD and DA Converters
(M3L18.txt)

• Timers (M3L14.txt)

• Introduction to Hardware
Description Languages
III (M4L23.txt)

• Introduction to Hardware
Description Languages II
(M4L22.txt)

• Modelling Timing Con-
straints (M7L35.txt)

Introduction
to Hardware
Description
Languages II
(M4L22.txt)

• Timers (M3L14.txt)

• Introduction to Hardware
Description Languages I
(M4L21.txt)

• Interfacing bus Protocols
ISA bus etc (M3L13.txt)

• Introduction to Hardware
Description Languages
III (M4L23.txt)

• Software Design Part 2
(M7L37.txt)

• Design for Testability
(M8L39.txt)

Continued on next page...

57

B. MORE EXPERIMENTAL RESULTS

Introduction
to Hardware
Description
Languages III
(M4L23.txt)

• Introduction to Hardware
Description Languages I
(M4L21.txt)

• Field Programmable
Gate Arrays and Appli-
cations (M4L20.txt)

• Introduction to Hardware
Description Languages II
(M4L22.txt)

• Modelling Timing Con-
straints (M7L35.txt)

• Built In Self Test BIST
for Embedded Systems
(M8L40.txt)

• Introduction to Software
Engineering (M7L33.txt)

Parallel Data
Communication
(M5L24.txt)

• Interfacing bus Protocols
ISA bus etc (M3L13.txt)

• DMA (M3L16.txt)

• Interrupts (M3L15.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Serial Data Communica-
tion (M5L25.txt)

• Commercial Real Time
Operating Systems
(M6L32.txt)

Serial Data
Communication
(M5L25.txt)

• Interfacing bus Protocols
ISA bus etc (M3L13.txt)

• USB and IrDA
(M3L17.txt)

• Embedded Processors I
(M2L10.txt)

• Wireless Communication
(M5L27.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Network Communication
(M5L26.txt)

Continued on next page...

58

Network Com-
munication
(M5L26.txt)

• Serial Data Communica-
tion (M5L25.txt)

• Interfacing bus Protocols
ISA bus etc (M3L13.txt)

• DMA (M3L16.txt)

• Requirements Analy-
sis and Specification
(M7L34.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Modelling Timing Con-
straints (M7L35.txt)

Wireless Com-
munication
(M5L27.txt)

• Serial Data Communica-
tion (M5L25.txt)

• USB and IrDA
(M3L17.txt)

• Interfacing bus Protocols
ISA bus etc (M3L13.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Real Time Task Schedul-
ing Part 2 (M6L30.txt)

• Software Design Part 2
(M7L37.txt)

Introduction to
Real Time Sys-
tems (M6L28.txt)

• AD and DA Converters
(M3L18.txt)

• Serial Data Communica-
tion (M5L25.txt)

• Field Programmable
Gate Arrays and Appli-
cations (M4L20.txt)

• Modelling Timing Con-
straints (M7L35.txt)

• Testing Embedded Sys-
tems (M8L38.txt)

• On line Testing of
Embedded Systems
(M8L42.txt)

Continued on next page...

59

B. MORE EXPERIMENTAL RESULTS

Real Time Task
Scheduling Part 1
(M6L29.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• Introduction to Real
Time Embedded Systems
Part II (M1L2.txt)

• Real Time Task Schedul-
ing Part 2 (M6L30.txt)

• Concepts in Real Time
Operating Systems
(M6L31.txt)

• Testing Embedded Sys-
tems (M8L38.txt)

Real Time Task
Scheduling Part 2
(M6L30.txt)

• Real Time Task Schedul-
ing Part 1 (M6L29.txt)

• Wireless Communication
(M5L27.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• Concepts in Real Time
Operating Systems
(M6L31.txt)

• Commercial Real Time
Operating Systems
(M6L32.txt)

• Built In Self Test BIST
for Embedded Systems
(M8L40.txt)

Concepts in Real
Time Operat-
ing Systems
(M6L31.txt)

• Real Time Task Schedul-
ing Part 2 (M6L30.txt)

• Real Time Task Schedul-
ing Part 1 (M6L29.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Commercial Real Time
Operating Systems
(M6L32.txt)

• Software Design Part 2
(M7L37.txt)

• Built In Self Test BIST
for Embedded Systems
(M8L40.txt)

Continued on next page...

60

Commercial
Real Time Op-
erating Systems
(M6L32.txt)

• Concepts in Real Time
Operating Systems
(M6L31.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Real Time Task Schedul-
ing Part 2 (M6L30.txt)

• Software Design Part 2
(M7L37.txt)

• Testing Embedded Sys-
tems (M8L38.txt)

• Design for Testability
(M8L39.txt)

Introduction
to Software
Engineering
(M7L33.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Introduction to Hardware
Description Languages I
(M4L21.txt)

• Introduction to Hardware
Description Languages
III (M4L23.txt)

• Software Design Part 1
(M7L36.txt)

• Requirements Analy-
sis and Specification
(M7L34.txt)

• Software Design Part 2
(M7L37.txt)

Requirements
Analysis and
Specification
(M7L34.txt)

• Introduction to Software
Engineering (M7L33.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Introduction to Hardware
Description Languages I
(M4L21.txt)

• Software Design Part 1
(M7L36.txt)

• Software Design Part 2
(M7L37.txt)

• Testing Embedded Sys-
tems (M8L38.txt)

Continued on next page...

61

B. MORE EXPERIMENTAL RESULTS

Modelling Tim-
ing Constraints
(M7L35.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Introduction to Hardware
Description Languages I
(M4L21.txt)

• Introduction to Hardware
Description Languages
III (M4L23.txt)

• Testing Embedded Sys-
tems (M8L38.txt)

• Software Design Part 2
(M7L37.txt)

• Design for Testability
(M8L39.txt)

Software De-
sign Part 1
(M7L36.txt)

• Introduction to Software
Engineering (M7L33.txt)

• Requirements Analy-
sis and Specification
(M7L34.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Software Design Part 2
(M7L37.txt)

• Testing Embedded Sys-
tems (M8L38.txt)

• Design for Testability
(M8L39.txt)

Software De-
sign Part 2
(M7L37.txt)

• Software Design Part 1
(M7L36.txt)

• Introduction to Software
Engineering (M7L33.txt)

• Concepts in Real Time
Operating Systems
(M6L31.txt)

• Boundary Scan Meth-
ods and Standards
(M8L41.txt)

• Testing Embedded Sys-
tems (M8L38.txt)

• Design for Testability
(M8L39.txt)

Continued on next page...

62

Testing Embed-
ded Systems
(M8L38.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Introduction to Software
Engineering (M7L33.txt)

• Introduction to Real
Time Embedded Systems
Part II (M1L2.txt)

• Built In Self Test BIST
for Embedded Systems
(M8L40.txt)

• On line Testing of
Embedded Systems
(M8L42.txt)

• Design for Testability
(M8L39.txt)

Design for
Testability
(M8L39.txt)

• Field Programmable
Gate Arrays and Appli-
cations (M4L20.txt)

• Introduction to Hardware
Description Languages I
(M4L21.txt)

• Testing Embedded Sys-
tems (M8L38.txt)

• Boundary Scan Meth-
ods and Standards
(M8L41.txt)

• Built In Self Test BIST
for Embedded Systems
(M8L40.txt)

• On line Testing of
Embedded Systems
(M8L42.txt)

Built In Self Test
BIST for Em-
bedded Systems
(M8L40.txt)

• Testing Embedded Sys-
tems (M8L38.txt)

• Design for Testability
(M8L39.txt)

• Embedded Systems
Components Part II
(M1L4.txt)

• On line Testing of
Embedded Systems
(M8L42.txt)

• Boundary Scan Meth-
ods and Standards
(M8L41.txt)

Continued on next page...

63

B. MORE EXPERIMENTAL RESULTS

Boundary Scan
Methods and
Standards
(M8L41.txt)

• Software Design Part 2
(M7L37.txt)

• Design for Testability
(M8L39.txt)

• Built In Self Test BIST
for Embedded Systems
(M8L40.txt)

• On line Testing of
Embedded Systems
(M8L42.txt)

On line Testing of
Embedded Sys-
tems (M8L42.txt)

• Built In Self Test BIST
for Embedded Systems
(M8L40.txt)

• Introduction to
Real Time Systems
(M6L28.txt)

• Testing Embedded Sys-
tems (M8L38.txt)

DAG for the course wth Heuristic percentage Threshold and correlation H4 is as shown
below in Figure B.1.

64

Figure B.1: DAG for the Embedded Systems course - Heuristic H4

65

B. MORE EXPERIMENTAL RESULTS

DAG for the course Artificial Intelligence wth Heuristic percentage Threshold and correla-
tion H4 is as shown below in FigureB.2

Figure B.2: DAG for the Artificial Intelligence course - Heuristic H4

66

DAG for the course Software Engineering wth Heuristic percentage Threshold and correla-
tion H4 is as shown below in FigureB.3

Figure B.3: DAG for the Software Engineering course - Heuristic H4

67

B. MORE EXPERIMENTAL RESULTS

DAG for the course Operating System wth Heuristic percentage Threshold and correlation
H4 is as shown below in FigureB.4

Figure B.4: DAG for the Operating Systems course - Heuristic H4

68

DAG for the course Systems Analysis and Design wth Heuristic percentage Threshold and
correlation H4 is as shown below in FigureB.5

Figure B.5: DAG for the Systems Analysis and Design course - Heuristic H4

69

References

[ATu] [online, cited 02-07-2008]Available from World Wide Web: http://www.

atutor.ca/atutor/index.php.

[CDE] CDEEP - centre for distance engineering education program [online, cited 02-07-
2008]. Available from World Wide Web: http://www.cdeep.iitb.ac.in.

[DOT] [online, cited 02-07-2008]Available from World Wide Web: http://en.

wikipedia.org/wiki/DOT_language.

[GC05] Weimin Ge and Yuefeng Chao. Implementation of e-learning system for unu-iist.
2005.

[HG04] Erik Hatcher and Otis Gospodnetic. Lucene in Action (In Action series). Manning
Publications Co., Greenwich, CT, USA, 2004.

[Kha05] Khan. Managing e-learning: Design, delivery, implementation and evaluation. 2005.

[Lea] [online, cited 02-07-2008]Available from World Wide Web: http://en.

wikipedia.org/wiki/Learning_management_system.

[Luc] [online, cited 02-07-2008]Available from World Wide Web: http://en.

wikipedia.org/wiki/Lucene.

[Lucene] [online, cited 02-07-2008]Available from World Wide Web: http://www.

onjava.com/pub/a/onjava/2003/01/15/lucene.html.

[Luk] [online, cited 02-07-2008]Available from World Wide Web: http://www.

getopt.org/luke/.

[MIT] MIT open courseware [online, cited 02-07-2008]. Available from World Wide Web:
http://ocw.mit.edu.

[NPT] National programme on technology enhanced learning [online, cited 02-07-2008].
Available from World Wide Web: http://www.nptel.iitm.ac.in.

[OLA] [online, cited 02-07-2008]Available from World Wide Web: http://en.

wikipedia.org/wiki/OLAT.

[sea] [online, cited 02-07-2008]Available from World Wide Web: http://en.

wikipedia.org/wiki/List_of_search_engines.

71

REFERENCES

[Sie04] Siemens. Categories of e-learning. 2004.

[Sta] [online, cited 02-07-2008]Available from World Wide Web: http://scil.

stanford.edu/news/eLearning.html.

[Uta] [online, cited 02-07-2008]Available from World Wide Web: http://www.

hewlett.org/Programs/Education/OER/OpenContent/Utah+

State+University.htm.

72

