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Abstract

Evaluating a software design is an important practice required of software engineering students.

When students graduate and enter the software industry, they usually work on large existing

systems, and spend their first several months resolving bugs and writing additional features

based on new requirements. This requires students to comprehend an already existing design,

incorporate the required feature in the design, and evaluate if the design satisfies the intended

goals. The design of a software system is often specified as a set of Unified Modelling Language

(UML) diagrams, which describe different views of the system, such as the structural view (e.g.

class diagrams), and the behavioural view (e.g. sequence diagrams). However, students face

difficulties in understanding how the overall system specifications actually work based on these

views. Moreover, current software design courses do not place sufficient emphasis on teaching

students how to evaluate designs.

The broad research goal of this thesis is to “Design and develop a technology-enhanced

learning environment (TELE) which enables students to evaluate a software design against the

given requirements”. Evaluating a given design can be viewed from different perspectives.

These include checking for its syntactic quality (whether the UML diagrams are modelled ac-

cording to the syntax of the language), semantic quality (how well the design maps to the given

requirements), or pragmatic quality (how well a given design can be interpreted by different

stakeholders). In this thesis, we have focussed on enabling students to evaluate a design by

checking for its semantic quality. This requires students to think deeply about the design, and

understand the relationship between different diagrams in the design.

In order to answer this research goal, we began by analysing existing literature to identify

student difficulties in the design process, as well as practices and strategies experts use to eval-

uate a given software design. We then conducted two studies with students to understand how

they evaluate a given software design, and the difficulties they face. The key insight which we

gained from the literature review and novice studies is that effective evaluation of design dia-
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grams depends on the quality of mental models that students create based on the requirements

and the design. Experts create a rich mental model of the system and simulate various scenar-

ios of system behaviour in the design. Experts’ mental models contain information regarding

the control and data flow on simulation of such scenarios. However, novices were unable to

simulate such scenarios, and their models focussed on superficial aspects of the design.

These insights form the basis of the VeriSIM (Verifying designs by SIMulating scenarios)

pedagogy. VeriSIM trains students to identify and model scenarios in the design. The VeriSIM

pedagogy comprises two strategies - the design tracing and the scenario branching strategy. In

the design tracing strategy, students construct a model of the scenario, which is similar to a state

diagram. They trace the control and data flow of a scenario while constructing the state diagram.

In the scenario branching strategy, students identify different scenarios from the requirements

by constructing a scenario tree. Traversing the scenario tree enables them to identify scenarios

which do not satisfy the requirements.

The VeriSIM pedagogy has been operationalized into a technology-enhanced learning en-

vironment having two modules. In Module 1, students go through design tracing activities in

the VeriSIM learning environment. In Module 2, students go through the scenario branching

activity using a mapping tool, which is facilitated by an instructor. We believe that both the

broad exploration of the design by identifying scenarios, and a deep understanding of each sce-

nario by simulating the data and event flow for that scenario, can lead to effective evaluation of

a given software design.

We have used design based research (DBR) as our overarching research framework. DBR

is the systematic study of designing, developing and evaluating educational interventions, and

involves iterative cycles of problem analysis, solution design and evaluation of these solutions.

In this thesis, we conducted two cycles of DBR. In the first DBR cycle, we conducted studies

with students to identify difficulties they faced as they evaluated a given software design. Based

on these findings, we conceptualised the design tracing strategy and incorporated design tracing

activities into the VeriSIM learning environment. We conducted a study to investigate the effects

of VeriSIM in students’ ability to trace scenarios and evaluate a software design. In DBR cycle

2, reflections from the findings of DBR cycle 1 resulted in refining the pedagogy to include

the scenario branching strategy. We then investigated the effectiveness of the refined VeriSIM

pedagogy and how features in VeriSIM contributed towards learning.

The final outcome of the DBR cycles is the design and development of the VeriSIM ped-
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agogy and its operationalisation as the VeriSIM learning environment. We evaluated the ef-

fectiveness of VeriSIM and its pedagogical features in classroom studies across the two cy-

cles. In these studies, we examined differences in students’ pre-test and post-test responses for

evaluating a given software design, conducted focus-group interviews and analysed VeriSIM

interaction logs. The key findings from these studies are that (1) VeriSIM improved students’

ability to trace scenarios and evaluate the design diagrams against the given requirements (2)

Students perceived that the design tracing and scenario branching strategies are useful and (3)

Pedagogical features in VeriSIM contributed towards student learning.

The major contributions of this thesis is the VeriSIM pedagogy, and features in the VeriSIM

learning environment. The thesis also contributes towards computing education research by

extending the theory of program comprehension, and characterization of expert and novices

processes in software design evaluation.
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Chapter 1

Introduction

1.1 Background and Motivation

Software solutions are ubiquitous in our lives, ranging from software used in workplaces, to the

apps we use on our phone, to software controlling aircrafts and nuclear reactors. An increased

reliance on these software solutions calls for an increased reliability of the software as well.

In other words, software solutions must behave as they have been programmed to behave. A

failure to do so can result in undesired behaviours, ranging from minor errors (a gaming app

crash) to life-threatening scenarios (an airplane crash). According to a report by the National

Institute of Standards and Technology (NIST) in 2002, software bugs cost the US economy a

massive $59.5 billion (Newman, 2002). In 2016, that number jumped to $1.1 trillion (Cohane,

2017). The NIST report also states that a third of the cost in losses can be eliminated by earlier

and more effective identification and removal of software defects. Another study by NASA

showed that the cost to fix bugs escalates exponentially as the project progresses (Haskins et al.,

2004). These findings stress the importance of rigorous and effective evaluation of software in

earlier phases of the development cycle, especially in the design phase.
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In the design phase of the software development cycle, designers come up with the con-

ceptual design of a software system that satisfies the provided requirements. The conceptual de-

sign is often modelled using Unified Modelling Language (UML) diagrams (Rumbaugh et al.,

2004). UML diagrams specify behaviours and scenarios of the system across various levels of

abstraction. For example, the class diagram gives a structural view of the design, by providing

the classes and their relationships, along with its data members and functions. The sequence

diagram represents the behavioural view of the design, by describing how various objects pass

messages with each other for a particular use-case. It is essential that these diagrams represent

the actual working of the system and satisfy the intended requirements of the system. A failure

to do so can lead to inconsistent and incorrect designs, which can then trickle into the code

as well. Hence, it is necessary that students develop the ability to accurately reason about a

software system design, and evaluate it against the given requirements.

When students graduate and enter the software industry, they encounter projects which

require working on existing large and complex systems (Begel and Simon, 2008a). They usually

spend their first several months resolving bugs and writing additional features based on new

requirements (Begel and Simon, 2008b; Dagenais et al., 2010). When new requirements are

provided, they need to have an integrated understanding of the design in order to add features

into the design. This requires students to comprehend an already existing design, incorporate

the required feature in the design, and evaluate if the design satisfies the intended goals.

Evaluating a software design is an important practice of expert software designers as well.

They spend significant time evaluating their solution (Mc Neill et al., 1998). Experts create rich

mental models of the design, on which they routinely perform mental simulations (Adelson and

Soloway, 1986). They also use various reasoning techniques such as simulating scenarios in

the given problem (Tang et al., 2010; Guindon, 1990), constraints consideration and trade-off

analysis (Guindon, 1990), while reasoning about the design.

Considering the importance given to software design evaluation in the software industry,

we can conclude that analysing and evaluating a design is an essential skill which needs to be

incorporated in the curriculum. Design evaluation has been mentioned as a curriculum unit in

the ACM syllabus for software engineering (ACM, 2014). However, sufficient emphasis has not

been given on teaching and learning of evaluation techniques and practices in a software design

course, and hence graduating students find it difficult to critically analyse an existing design and
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improve upon it (Brechner, 2003). Learning to evaluate a software design is also non-trivial. It

involves going beyond understanding software design concepts, and requires developing certain

cognitive processes in students, such as creating an accurate mental model of the design, simu-

lating various scenarios in the design, and analysing how the design is satisfying/not satisfying

the given requirements.

In this thesis, we aim to address this gap in the current teaching and learning of software

design, by developing pedagogical strategies that enable students to evaluate a given software

design.

1.2 Research Objective

The broad research objective of the thesis is to

“Design and develop a technology-enhanced learning environment (TELE) which enables

students to effectively evaluate a software design against the given requirements”

The term “software design” has different meanings in different contexts. It can refer to a

high-level abstraction of the system, with their components, relations and interactions. Details

of various classes, methods or attributes are not mentioned in this context. At the next level,

the design can be depicted as a set of Unified Modelling Language (UML) diagrams, which

specify different views of the system, such as the structural and behavioural views. There is

a close correspondence between the UML diagrams and the implementation in this level. The

classes and methods are intended to be mapped to the code in the implementation stage. At the

other end of the spectrum, the design can refer to the code-level implementation of the system

itself. In this thesis, we refer to software design as the set of UML diagrams which model the

requirements of the system.

What does it mean to “effectively evaluate a software design against the given require-

ments?” Evaluating a software design involves assessing the quality of the design from differ-

ent perspectives. For example, one way to look at evaluation is to check if the syntax of all the

design diagrams are correct. Another way is to examine if the non-functional requirements in

the design such as modularity, extensibility etc. are met. In this thesis, software design evalu-
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ation refers to checking the semantic quality of a given design. Semantic quality refers to how

faithfully the modelled system is represented i.e. if there is an accurate mapping between the

design and the requirements. Issues in semantic quality occur when certain aspects of the re-

quirements are not conveyed in the design diagrams, leading to semantic defects. For example,

consider the case of an ATM system design. A requirement for this design is - “When the user

enters the ATM and inputs the correct PIN, the user can withdraw money from his/her account.

If the balance is less than Rs.1000, withdrawal is denied”. Semantic defects can occur when

the ATM design does not correctly model the minimum balance requirement. For example,

relevant variables which refer to the balance may be absent in the class diagram, or the se-

quence diagram does not call member functions from appropriate objects to check the balance

before withdrawal. Detecting such semantic deficiencies is non-trivial, as it requires students

to critically analyse the design and requirements, understand the relationship between different

diagrams and evaluate the design against the given requirements.

In this thesis, we have developed the VeriSIM pedagogy to scaffold students to effectively

evaluate a software design against the given requirements. We have instantiated the VeriSIM

pedagogy as a technology-enhanced learning environment, which is freely available online, and

can be used by instructors and students in their courses.

1.3 Solution Overview

During the software design process, experts create an accurate and rich mental model of the

design. What is the nature of these mental models and what knowledge does it contain? Our

findings from literature and novice studies show that the mental model contains information

about the diagram surface elements, main goals, and dynamic behaviours. Diagram surface

elements refer to the basic functions, data members, and messages in the design diagrams. Main

goals refer to the purpose of each diagram and its role in the design. Dynamic behaviours refer

to the control flow (such as what methods are called, which components call which functions,

how a function is reached, etc.) and the data flow (such as how data flows through a program,

change in data variable values on the basis of method calls etc.). During software design evalu-

ation, experts analyse the requirements and map it to the corresponding design. They focus on
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the diagram surface elements and the main goals to gain a broad understanding of the design.

They then might imagine how the system carries out specific scenarios to fulfil the stated re-

quirements. They model each scenario by simulating the control and data flow of the scenario

based on the design. In other words, they imagine all changes that occur in different diagrams

for a given scenario. By identifying and modelling various scenarios in the design, they examine

which scenarios and conditions violate the given requirement. This leads to effective software

design evaluation.

For example, consider how experts evaluate the minimum balance requirement stated in

Section 1.2. They focus on the relevant design diagrams (e.g. class diagram, sequence dia-

gram for withdrawal), and understand the main goals of these diagrams. They analyse diagram

elements such as functions (e.g. withdraw()) and data members (e.g. withdrawal_amount) rel-

evant to the requirement. They then imagine scenarios such as - ‘User entering incorrect PIN‘,

‘User having balance greater than Rs.1000, ‘User withdrawing amount greater than balance’.

For each scenario, they then visualize how the system realises these scenarios by simulating

the control and data flow for each scenario in the design. For example, for the following sce-

nario - ‘User withdrawing amount greater than balance’, one might visualize the execution of

the withdraw() method returning ‘false’, since the value of the withdrawal amount variable is

greater than the minimum balance variable.

However, in studies with students, we found that they focus on superficial aspects of the

design, and have difficulty in simulating the control flow and data flow of various scenarios in

the design. Thus, the key argument which we make in this thesis, which also forms the basis of

our solution, is that -

“Scaffolding students to identify and model different scenarios in the design enables them

to effectively evaluate the design against the given requirements.”
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1.3.1 The VeriSIM pedagogy for teaching-learning of evaluating design

diagrams

We have conceptualised the VeriSIM (Verifying designs by SIMulating scenarios) pedagogy to

scaffold students to identify and model different scenarios in the design (see Figure 1.3.) The

VeriSIM pedagogy trains students to model a given scenario in the design using the the design

tracing strategy, and trains them to identify various scenarios using the the scenario branch-

ing strategy.

Modelling scenarios using the design tracing strategy

Design tracing is an adaptation of the tracing strategy used in programming. Program tracing

is the process of emulating how a computer executes a program (Fitzgerald et al., 2005). While

tracing, programmers visualize how control flows and data values change during the execution

of a program. In design tracing, students trace the control flow and data flow across different

diagrams for a given scenario of system execution. They construct a model of the scenario exe-

cution, which is similar to a state diagram. The values in the states correspond to the values of

relevant variables, and the transitions correspond to different parts of the scenario.

For example, in the case of the minimum balance requirement mentioned earlier, a prob-

able scenario can be that the ‘User withdraws an amount greater than balance’. Using design

tracing, students identify different data attributes from the class diagram, which are added to

the states, as shown in Figure 1.1. They identify the main goals from the sequence diagram,

and these form the transitions of the state diagram. Based on the transitions, the values in the

states keep changing. For example, in Figure 1.1, the final transition in the state diagram results

in a change in the value of withdrawal_amount. The final state corresponds to when the user

enters the withdrawal amount greater than the balance. As students construct the state diagram,

they simulate the execution of the given scenario, and also simulate the change in control flow

and data flow. Hence, constructing such state diagram models for other scenarios in the design

scaffolds learners to simulate dynamic behaviours of these scenarios in the design.

6



Figure 1.1: The model state diagram for a given scenario generated using the design tracing

strategy

Identifying scenarios using the scenario branching strategy

Once students are trained to construct models of an already given scenario, the scenario branch-

ing strategy scaffolds them to identify different scenarios for each requirement in the design.

Scenario branching is adapted from cognitive mapping strategies which have been widely used

in requirement analysis (Montazemi and Conrath, 1986). In scenario branching, students anal-

yse each requirement, and break it down into units called subgoals. For each subgoal, they

identify relevant variables and different possibilities for these variables. They represent these

different possibilities for each subgoal in a visual tree-like representation, known as a ‘scenario

branching tree’. The tree captures the identified subgoals and different values for each of these

variables. After constructing the tree for a given requirement, students identify scenarios by

traversing from the root to a leaf in the tree. An example of a scenario branching tree is shown

in Figure 1.2.

Figure 1.2: The scenario branching tree for a given requirement

Consider the minimum balance requirement - “When the user enters the ATM and inputs

the correct PIN, the user can withdraw money from his/her account. If the balance is less than

Rs.1000, withdrawal is denied”. The subgoals for this requirement are - ‘User inputs correct
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PIN’, ‘Withdrawal of amount from account’. Based on these subgoals, students are scaffolded

to construct the scenario branching tree. as shown in Figure 1.2. The scenarios which can be

identified by traversing the tree are - ‘1. User inputs correct PIN, and balance after withdrawal

is less than 1000, 2. User inputs correct PIN, and balance after withdrawal is greater than

1000, 3. User inputs correct PIN, and withdrawal amount is greater than balance, 4. User

inputs the incorrect PIN” . Students can then examine whether these scenarios are present in

the design. Hence, the scenario branching strategy enables students to identify scenarios which

do not satisfy the given requirements.

The design tracing and scenario branching strategies help students develop a rich men-

tal model of the design by promoting both a broad as well as deep exploration of the design

(see Figure 1.3). Scenario branching helps students generate alternate scenarios for the given

requirements. This helps them broadly explore the design space. In design tracing, students

trace the execution of each scenario and examine the corresponding changes which occur in

the design diagrams. This enables students to develop a deep and integrated understanding of

each scenario in the design. We argue that both the broad and deep exploration of the design

space, using scenario branching and design tracing, helps students develop a rich and accurate

model of the design, thereby enabling them to effectively evaluate the design diagrams against

the given requirements.

Figure 1.3: The VeriSIM pedagogy
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1.3.2 Operationalising the VeriSIM pedagogy into a learning environment

We have incorporated the design tracing and scenario branching strategies as two modules into a

learning environment - VeriSIM. In the first module, students apply the design tracing strategy

to trace the given scenarios in the design. They are introduced to the design tracing strategy

and go through activities which enable them to trace given scenarios in the design (Figure 1.4

shows a screenshot of the design tracing activities in VeriSIM). The first module of VeriSIM is

a self-learning module. All information and scaffolds required for students to perform design

tracing are present in the learning environment itself.

Figure 1.4: Screenshot of the activities in the Design Tracing stage of VeriSIM

In the second module, learners are introduced to the scenario branching strategy. Learners

generate alternate scenarios in a given design using a mapping (CMAP) tool. This module is

partly guided by the instructor. Students are provided with a worksheet which contains the

requirements and design diagrams for a given problem (Figure 1.5). The instructor explains the

scenario branching pedagogy and facilitates alternate scenarios creation using the CMAP tool.
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Figure 1.5: Snapshot of the scenario branching worksheet

1.4 Research Methodology

We have used the design-based research (DBR) methodology to answer our broad research ob-

jective. According to Barab et al. (Barab and Squire, 2004), DBR is “a series of approaches,

with the intent of producing new theories, artifacts and practices that account for and poten-

tially impact learning and teaching in naturalistic settings.” DBR provides a framework to

study learning phenomena in the real world rather than the laboratory and goes beyond narrow

measures of learning. An important feature of the DBR process is the emphasis which it places

on advancing theories of learning. According to Barab et al. (Barab and Squire, 2004), “DBR

is more than just showing that a particular design works but demands that the researcher moves

beyond a particular design exemplar to generate evidence-based claims about learning that ad-
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dress contemporary theoretical issues and further the theoretical knowledge of the field”. Hence

DBR does not just aim at designing, developing and evaluating pedagogical solutions, but it also

aims at identifying underlying design principles or local learning theories (Cobb et al., 2003).

Another feature of DBR is that it follows an iterative design process, where an intervention

is progressively refined and new conjectures are developed and evaluated. This results in an

iterative design process featuring cycles of invention and revision (Cobb et al., 2003).

We have chosen DBR primarily for the above mentioned reasons. The focus of the thesis

is not only to evaluate the effectiveness of the TELE, but also understand how students evaluate

software design diagrams using the TELE. We wish to uncover how pedagogical features in the

TELE are contributing to the development of their evaluation skills. These design principles and

local learning theories can contribute to existing teaching-learning theories in software design

and programming.

1.4.1 DBR Cycles in this Thesis

A cycle of DBR mainly involves 3 phases - Problem Analysis and Exploration, Solution Design

and Development, and Evaluation and Reflection. Problems pertaining to a particular context

are identified, potential gaps are explored and based on these explorations, a solution is de-

signed. The solution is evaluated and refined using quantitative as well as qualitative methods.

Reflections from these evaluations feed into the next cycle of DBR.

In this thesis, we conducted two cycles of DBR. A summary of these cycles is shown in

Figure 1.6. In the first DBR Cycle, review of literature and studies with novices resulted in

the VeriSIM pedagogy, and its operationalisation into the VeriSIM TELE. The VeriSIM TELE

scaffolds students to apply the ‘design tracing’ strategy to trace scenarios. We conducted a study

with students in order to measure the effectiveness of the VeriSIM TELE.

In the second DBR Cycle, we reflected on the study findings from the first cycle. This

led to the refinement of the VeriSIM pedagogy. We added a second module to the VeriSIM

TELE which included the ‘scenario branching’ strategy to help students identify scenarios in

the design. In this cycle, we also investigated the effects of various pedagogical features on

student learning, and derived a local learning theory, showing how VeriSIM enables students to
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develop an effective mental model of the design.

Figure 1.6: Overview of the DBR cycles in the thesis

1.4.2 Research Studies in this Thesis

We conducted four research studies in this thesis - three research studies in Cycle 1, and one

study in Cycle 2. Table 1.1 summarises the goals of each research study. The first two studies

aimed at identifying student processes and their difficulties while evaluating designs. The next

two studies involved investigating the effects of the VeriSIM TELE in students’ ability to trace

scenarios and evaluate the design diagrams against the requirements.

Study 1a: In Study 1a, we investigated the categories of written responses of 100 students

when asked to evaluate a given design against the requirements. This gave us indicators about

what students were thinking as they evaluated a given design. (More details about Study 1a can

be found in Section 4.2)

The research question guiding this study was - RQ 1.1: How do students evaluate a soft-

ware design against the given requirements?

Study 1b: In order to delve deeper into the findings from Study 1a, we conducted a
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qualitative study with 6 students. The aim of this study was to analyse the strategies which

students use, and investigate aspects of their mental models while they evaluated a given design.

(More details about Study 1b can be found in Section 4.3)

The research questions guiding Study 1b were as follows:

• RQ 1.2: What defects are students able to identify in the design evaluation task?

• RQ 1.3: What reading strategies do students use to evaluate software design diagrams

against the given requirements?

• RQ 1.4: What are the elements in their mental model?

The key findings from Study 1a and 1b is that students focus only on superficial aspects of

a design. Their mental models do not contain information about the control flow and data flow

of the design. They also focus on adding new functionalities instead of evaluating the design

against the given requirements. These findings informed the design and development of the

VeriSIM learning environment.

Study 2 and 3: In Study 2 and 3, we investigated the effects of the VeriSIM TELE in

students’ ability to trace scenarios and evaluate the design diagrams against the requirements.

In Study 2, students interacted with the first module of the VeriSIM TELE, i.e. the design

tracing strategy. (More details about Study 2 can be found in Section 6.1)

The research questions guiding Study 2 were as follows:

• RQ 2.1: What are the effects of VeriSIM in students’ ability to simulate dynamic be-

haviours in the design?

• RQ 2.2: What are the effects of VeriSIM in students’ ability to identify defects in the

design?

In Study 3, students went through both modules of the VeriSIM TELE, i.e. the design

tracing and scenario branching strategy (More details about Study 3 can be found in Section

7.6)

The research questions guiding Study 3 were as follows:
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• RQ 3.1: What are the effects of VeriSIM in students’ ability to identify scenarios in the

design?

• RQ 3.2: What are the effects of VeriSIM in students’ ability to uncover defects in the

design?

In both Study 2 and 3, we also investigated RQ 4: How are pedagogical features in the

VeriSIM learning environment contributing towards student learning? (More details about how

we answered this RQ can be found in Chapter 8).

Findings from Study 2 and 3 show that VeriSIM enabled students to simulate dynamic

behaviours in the design. They also shifted from adding or modifying features in the design,

to identifying scenarios which do not satisfy the requirements. These findings also show that

the pedagogical features in VeriSIM enabled students to build effective mental models of the

design.

Table 1.1: Summary of research studies in the thesis

Research Study Goal

Study 1a Identifying categories of students responses when asked to

evaluate a given design

Study 1b 1. Determine student mental models

2. Identify student difficulties

Study 2 Effects of VeriSIM TELE (design tracing)

Study 3 Effects of VeriSIM TELE (design tracing + scenario branching)

1.5 Scope of the Thesis

As mentioned earlier, the scope of software design evaluation is enabling students to detect

semantic deficiencies in the design. The VeriSIM TELE is intended to be used by engineer-

ing students who have undergone a basic course in software design. They should be familiar

with UML diagrams like class and sequence diagrams, and ideally should have created sim-
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ple designs using UML diagrams. This familiarity is important, because learners need to first

comprehend a given design before they can evaluate it.

In this thesis, the design diagrams which students evaluate are scoped to class and se-

quence diagrams. The class diagram and sequence diagram correspond to the structural and be-

havioural categories of design diagrams respectively. These diagrams are the most commonly

used design diagrams and the first diagrams which students learn about (Dobing and Parsons,

2006; Lange et al., 2006).

1.6 Contributions of the Thesis

This thesis makes the following contributions:

1. Unpacking novice strategies and mental models while evaluating software designs:

Although there has been sufficient emphasis in understanding student difficulties while

creating designs, there has been a lack of research on how students evaluate a given

design. In this thesis, we have investigated the strategies and mental models of novices,

as they evaluate a given design. Findings from our novice studies contribute towards the

theory of novice mental models and strategies used in design evaluation.

2. Pedagogy for teaching-learning of software design evaluation: The design tracing

and scenario branching strategy can be used by instructors in their software design and

engineering courses. We also show in this thesis that the VeriSIM pedagogy is beneficial

for students in developing an accurate model of the design, and contributes towards a local

learning theory of how students evaluate a software design against the given requirements.

3. VeriSIM Learning Environment: The VeriSIM learning environment is freely available

to use by instructors as well as students. It can be accessed at https://verisim.tech. Var-

ious design features in VeriSIM can also be used by learning environment designers in

related contexts of software design and programming.
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1.7 Structure of the Thesis

The thesis is structured as 10 chapters, as shown in Figure 1.7. In Chapter 2, we review related

work in computing education and empirical software engineering in order to investigate existing

teaching-learning in software design, and strategies which experts use while evaluating designs.

We also review difficulties which students face in the software design process. In Chapter 3,

we describe the overarching research methodology: design based research, which provides the

framework of our investigations. We provide reasons for why we have chosen this methodology,

and describe the research questions and analysis methods used in each DBR cycle.

Figure 1.7: Organization of the thesis

Based on the insights from our review of literature, in Chapter 4 we investigate how stu-

dents evaluate a given design and the difficulties they face (Study 1a and 1b). These findings

inform the design and development of our pedagogy. In Chapter 5, we describe the details of

the VeriSIM pedagogy and learning environment, and the rationale behind various activities

and pedagogical features in VeriSIM. In Chapter 6, we describe details of Study 2, which in-

vestigated the effects of VeriSIM in students’ ability to trace scenarios and evaluate a given
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design.

Chapter 7 describes the redesign of VeriSIM which is based on the reflections from Study

2, where we describe the scenario branching strategy, and argue for its appropriateness. We

then investigate the effects of the revised pedagogy in students’ ability to evaluate designs. In

Chapter 8, we show how various pedagogical features in VeriSIM are contributing towards the

learning of evaluation of design diagrams. In Chapter 9, we discuss the claims, limitations and

implications of the thesis. In Chapter 10, we summarize the contributions of the thesis and

discuss future directions which can be informed by this thesis.
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Chapter 2

Related Work

2.1 Teaching-learning of Software Design

Traditionally, teaching software design often means teaching object-oriented (OO) design, and

typically entails courses such as the Unified Modelling Language (UML), design patterns and

OO design principles (Topi et al., 2010; Sahami et al., 2013). These courses are expected to

enable learners to establish a requirements model of an application (object-oriented analysis,

OOA), successively transform those requirements into computer-based models of the applica-

tion (object-oriented logical design, OOLD), and further translate the models for specific techni-

cal platforms (object-oriented physical design, OOPD). This model-centric approach, known as

Model-Driven Engineering (MDE) is a prominent area in the software engineering field and has

languages, standards, tools, and well-defined practices (Burgueño et al., 2018). The purpose of

these models is to enable software designers to capture and precisely state all the requirements

and domain knowledge in a manner that is understandable to all stakeholders. These models

also enable developers design solutions easily before writing code.
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2.1.1 Unified Modelling Languages (UML)

In typical Model-Driven Engineering courses, various UML diagrams are taught, where each

diagram describes a particular view of the system. At the top level, views of the system can

be divided into these areas - structural classification, dynamic behaviour, physical layout and

model management.

• Structural Classification - These views define the structure of the software system. They

describe the things in the system and their relationship to other things. Different views

are the static view, design view, and use case view. A static view does not describe time-

dependant behaviour of the system, but describes the logical parts of the system, including

classes and relevant data and functions in these classes. The design view models the

design structure of the application, collaborations that provide functionality, and assembly

from components with well-defined artifacts. The use-case view models the functionality

of a subject, as perceived by outside agents, called actors, that interact with the subject

from a particular viewpoint.

• Dynamic behaviour - These views describe the behaviour of the system over time. Various

views include the state machine view, activity view and the interaction view. The state

machine view models the possible life-histories of an object of a class. The activity

diagram shows the flow of control among computational activities involved in performing

a calculation or workflow. The interaction view describes sequence of message exchanges

among parts of a system. It gives a holistic view of behaviour in a system by showing the

flow of control across many objects.

• Physical layout - These views come later in the design phase and is used to mainly model

computational resources and deployment of artifacts.

• Model management - Model management describes the organization of the models them-

selves into hierarchical units.

While designing a software system, the structural as well as dynamic behavioural views are par-

ticularly important. In order to model the structure of a system, various diagrams like the class
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diagram and use case diagram are used. A class diagram describes discrete objects that hold in-

formation, such as the data attributes and functions which implement specific behaviour related

to the requirements. In order to model the dynamic behaviour, diagrams like state machine,

activity diagrams and sequence diagrams are used.

We explain the structural and behavioural UML diagrams with the help of an example.

Consider the requirements of an ATM system -

1. A user with a valid account can register his/her ATM card and set a PIN if he/she has not

set a PIN yet. The PIN should be of length 4 and should contain only numbers.

2. When the user enters the ATM card and inputs the correct PIN, the following options are

shown.

Withdraw - The user can withdraw money from his/her account. If the balance is less

than Rs.1000, withdrawal is denied.

Change PIN - The user can change his/her PIN by entering the previous PIN correctly.

The structural view of the ATM system design can be modelled using a class diagram, as shown

in Figure 2.1. The class diagram describes the structure of a system by showing the system’s

classes, their attributes, operations (or methods), and the relationships among objects. We see

that the class diagram models relevant classes like the ‘Customer’, ‘ATM’ and ‘Account’. Each

of these classes contain data members and functions necessary to realise certain behaviours of

the ATM system. For example, the ‘Account’ class has a data attribute ‘balance’, which records

the balance of an account holder. The withdraw requirement is realised by the ‘withdraw()’

function in the Account class, which accordingly updates the ‘balance’ variable.

The behaviours corresponding to the requirements can be implemented using sequence di-

agrams. Figure 2.2 represents the sequence diagram which describes the behaviour of the ‘with-

draw’ requirement. The classes from the class diagram are represented in the sequence diagram

at the top, and have parallel vertical lines, called lifelines. The horizontal arrows are messages

exchanged between them, in the order that they occur. These messages can be functions from

the class diagram, such as ‘checkATM()’, ‘checkPIN()’ and ‘withdraw()’. This sequence of

messages correspond to the implementation of a given requirement or sub-requirement. In a

similar fashion, sequence diagrams can be constructed to model other requirements as well.
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Figure 2.1: Class diagram of the ATM system

Figure 2.2: Sequence diagram for withdrawing amount
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There are several other UML diagrams (such as state charts, communication diagrams,

activity diagrams etc.) which can be used to adequately model a given software design. Details

of various UML diagrams can be found in Rumbaugh et al. (1999). During the software design

process, a subset of these UML diagrams are used to create the design model. Various tools

have been used in the teaching and learning of software modelling, which we explain below.

2.1.2 Tools used in Software Modelling

Tools used in modelling courses are varied, which include modelling tools used in industry,

specific educational tools, or simply ignoring tools altogether in favour of pencil and paper

(Ciccozzi et al., 2018). Ciccozzi et al. conducted a survey with 47 instructors, asking them

which tools they used to construct UML models in a software design course. The findings show

that instructors use a wide variety of tools in their courses (Ciccozzi et al., 2018). The most

commonly used ones were the Eclipse Modeling Framework (EMF) 1, Xtext 2, Papyrus 3 and

ATL 4, Modelio 5 and Visual Paradigm 6. Most of these tools are plugins in EMF, and are

open-source. However, there have been concerns that software modelling tools are not well

suited to teach modelling, they are not mature enough, or are too complex to use (Ciccozzi

et al., 2018). There is also a lack of discussion about modelling tools that support software

engineering education (Whittle et al., 2014).

Sufficient emphasis has also not been given to teaching-learning of software design eval-

uation. Although software engineering courses teach the basic syntax of diagrams in UML,

important design evaluation aspects like well-formedness of models, and semantics of designs

are not given sufficient importance (Westphal, 2019). For example, while evaluating software

designs, apart from checking syntactic issues in the design, students need to focus on devel-

oping an integrated understanding of the UML diagrams in order to build designs which are

comprehensive and consistent. If we consider the case of the ATM system design, a designer

1https://www.eclipse.org/modeling/emf/
2https://www.eclipse.org/Xtext/
3https://www.eclipse.org/papyrus/
4https://www.eclipse.org/atl/
5https://www.modelio.org/
6https://www.visual-paradigm.com/
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should ensure that the class diagram and sequence diagrams adequately model all the given re-

quirements. They should also ensure consistency among elements in the design. For example,

functions called in the sequence diagram should match member functions in the class diagram.

Such semantic issues can affect the quality of software designs.

Hence, we see that there are different perspectives of quality while evaluating software

designs. We explain these software quality issues in detail below.

2.1.3 Software Quality of UML Models

There are three main types used to define the software quality of UML models - syntax, seman-

tics and pragmatics (Lindland et al., 1994; Unhelkar, 2005). These types are summarized in

Figure 2.3, and we describe each in detail below.

• Syntactic quality refers to how well the models adheres to the rules of the language

i.e. the rules and syntax of UML. Hence, issues in the syntactic quality can be due to

mistakes corresponding to the syntax and naming conventions in UML diagrams (e.g.:

Are notations in class and sequence diagrams adhering to the standard rules and syntax

of UML).

• Semantic quality refers to how faithfully the modelled system is represented i.e. if there

is an accurate mapping between the model and the requirements. There are three main

quality characteristics with regard to semantic quality - consistency, completeness, and

correctness. Consistency ensures that there is coherence between elements in a particular

UML diagram, and between different UML diagrams as well. Completeness of a model

ensures that all requirements for the system being developed have been represented. Fi-

nally, correctness of a model ensures that the UML diagrams represent the system require-

ments adequately. Issues in semantic quality can occur when the model lacks something

that is present in the requirements, or the model includes something that is not present

in the requirements. For example, in the ATM system design provided above, the ‘with-

draw()’ function in the withdraw sequence diagram does not check whether the balance

is above the withdrawal limit. In the class diagram, the type of ‘balance’ is incorrectly

represented as ‘String’.
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• Pragmatic quality refers to how well a given design can be interpreted by different stake-

holders, such as other team members, clients etc. There are several characteristics with

regards to pragmatic quality, such as maintainability (how easy is the system to maintain),

reusability (how can components of the design be used in building the model of another

system), complexity (how complex the system is to understand) etc. (Nelson and Piattini,

2012).

Figure 2.3: Types of software design quality

To summarize this section, we see that UML design diagrams are a prominent paradigm for

designing software systems. Although there are several tools that focus on modelling software

designs, sufficient emphasis has not been given on effective pedagogies for helping students

evaluate a given software design. In the next section, we describe common difficulties which

students face in the software design process.
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2.2 Student Difficulties in Design

Studies have shown that a majority of graduating students are not competent in designing soft-

ware systems (Eckerdal et al., 2006; Loftus et al., 2011). In a multi-national, multi-institutional

study conducted by Eckerdal et al. (2006), the authors analysed 149 graduating students’ soft-

ware designs. Based on the analysis of the designs, they conclude that “the majority of grad-

uating students cannot design a software system”. The analysis shows that around 60% of

the designs were either simple restatements of the specification, or just added an insignificant

amount beyond the specification. Only 9% produced partial or complete designs. Loftus et

al. conducted a similar study, allowing students to design software in groups, yielding similar

results (Loftus et al., 2011).

There are several studies conducted in order to understand what type of difficulties stu-

dents face as they create software designs. Based on the analysis of literature, we have cat-

egorized these difficulties as (1) insufficient understanding of domain and specifications (2)

inconsistency issues due to lack of an integrated understanding of the design diagrams and (3)

missing information between design diagrams.

When students are asked to design a software system, it is essential that they initially

develop an understanding of the problem domain and its specifications (Sonnentag, 1998). That

is, students are required to understand the concepts and entities in the problem for which they

have to create the design, so that they can translate these requirements to a concrete design.

However, students find it difficult to abstract real world problems and build models from the

problem domain because they do not know “what” to model (Sien, 2011). In a study conducted

by Chren et al., the authors analysed over 2,700 diagrams from 123 students to form a catalogue,

consisting of 146 types of mistakes in eight types of diagrams (Chren et al., 2019). Over 65%

of all mistakes present in the UML models were attributed to the insufficient understanding of

the system’s domain or specification. Thomasson et al. also came up with similar results, where

students know that they need a class to model a concept but could not figure out how to integrate

the class into their designs (Thomasson et al., 2006).

Students also face difficulties in developing a consistent understanding among different di-

agrams (Sien, 2011; Stikkolorum and Chaudron, 2016). While modelling designs, students are
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required to create models with multiple views, such as the structural view (e.g. class diagrams),

and the behavioural view (e.g. sequence diagrams). Students face difficulties in understand-

ing how the overall system specifications actually work based on these views (Burgueño et al.,

2018). They struggle to understand the purpose and relationship among these diagrams, and

tend to view the diagrams as existing in isolation (Stikkolorum and Chaudron, 2016). This lack

of understanding leads to consistency issues as well. For example, in a study conducted by

Loftus et al. (2011), students were asked to design a software system based on the given re-

quirements. The authors found that although students constructed use-case diagrams, they did

not link these use-case diagrams to other diagrams like the sequence diagram. In another study

conducted by Chren et al. (2019), it was found that messages in the sequence diagram were

not consistent with the class diagram. That is, students used wrong or made-up methods in the

sequence diagram which were not present in the class diagram. In another study by Thomasson

et al. (2006), students created classes in isolation without linking them to other classes.

Due to consistency issues, students also failed to add relevant information in design di-

agrams. For example, class diagrams would have missing class operations or dependencies

(Chren et al., 2019). Students would also create sequence diagrams with missing messages,

parameters and objects (Bolloju and Leung, 2006).

To summarize, the context of the studies mentioned in this section have been on difficul-

ties students face while creating designs. We saw that students’ difficulties are primarily based

on an inadequate knowledge of the domain, and inconsistent understanding between various

design diagrams. Moreover, studies have not examined how students evaluate an already given

software design and the difficulties they face. We believe that adequate knowledge of the prob-

lem domain and developing a consistent understanding of the design is essential in the case of

software design evaluation as well. This is evident from how experts evaluate a design, wherein

they build effective mental models of the problem domain and the design. We explain this in

detail in the next sections where we describe expert practices in software design and strategies

which they use while evaluating designs.
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2.3 Expert Practices in Software Design

Expertise in design has been studied in several fields of engineering, like electronic design

(Mc Neill et al., 1998) and aerospace design (Ahmed et al., 2003), and it has been shown

that evaluation is an important practice of experts. Mc Neill et al. conducted a study with

expert electronic designers, and found that throughout the design episode, experts spend time in

multiple cycles of analysis, synthesis and evaluation (Mc Neill et al., 1998). In another study,

Ahmed et al. conducted a study with expert and novice aerospace designers. The study showed

that experts performed a sound, preliminary evaluation of their tentative design decisions before

implementation, as opposed to novices who used trial-and-error techniques to evaluate their

design through several iterations (Ahmed et al., 2003).

We see a similar emphasis to evaluation in expert software designers as well. When experts

are asked to create a design, they start with an initial model of the design, evaluate it against the

requirements, and further expand the model until the design is complete (Adelson and Soloway,

1986). For example, Adelson and Soloway (1986) conducted a study with three expert designers

who were asked to design an electronic mail system and incorporate features such as ‘read’,

‘reply’, ‘send’, ‘delete’, ‘save’, and ‘edit’. Findings from this study showed that designers began

with a skeletal version of the mail system, known as the ‘sketchy model’, and gradually made it

more concrete as the design progressed. They divided the design into various modules, which

were defined at approximately the same level of detail at a particular point in time. During

the design process, they worked with the abstract state of the design and used their existing

knowledge of an electronic mail system (domain knowledge), to successively transform the

abstract state to a more concrete state based on the final goal. After each refinement, they

evaluated the difference between the behaviours of the current and the final goal state. These

successive refinements of the initial abstract model led them to finally develop a design which

satisfied the given requirements.

We can apply this process to the example of the ATM system described in Section 2.1 as

well. When experts are asked to create a design for the ATM system, they typically analyse

the requirements, apply knowledge of the domain and start with the initial design. They define

the classes, and the initial model can contain a preliminary class diagram, without the data and
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member functions. Based on each requirement, they then generally use appropriate objects

and design preliminary sequence diagrams which describe the behaviour based on the given

requirements. In subsequent iterations, they can refine the initial model, by adding elements

such as data variables, member functions, and relationships between classes, and refine the

sequence diagrams to include these elements as well. Based on the refinements, they evaluate

the intermediate model with the given requirements, and continue refinements till they build the

entire design which satisfies the intended requirements.

How do experts produce these initial and refined models of the design? They devise these

models by creating and manipulating abstract structures in their mind. These abstract mental

structures are referred to as “mental models”.

Mental models and mental simulation

A mental model is a “mental structure that represents some aspect of one’s environment” (Sorva,

2013). It is an abstract representation of a system that enables us to describe the underlying

mechanisms of systems, answer questions about the system, as well as predict future system

states (Schumacher and Czerwinski, 1992). As experts create software designs, they create

mental models of the initial design. They use these mental models to reason with the system,

and incrementally transform these models based on their reasoning to make the design more

concrete.

But what do their mental models consist of? Mental model elements have been investi-

gated in the context of how programmers comprehend code, and have resulted in several pro-

gram comprehension frameworks (Soloway and Ehrlich, 1984; Pennington, 1987; Von Mayrhauser

and Vans, 1996; Letovsky, 1987; Wiedenbeck, 1986). According to these frameworks, program-

mers’ mental models consist of cognitive structures such as goals (Pennington, 1987), plans

(Soloway and Ehrlich, 1984), control flow and data flow (Pennington, 1987; Burkhardt et al.,

2002), program models and situation models (Von Mayrhauser and Vans, 1996).

Goals refer to the purpose and role of a particular program, or parts of the program. For

example, in the electronic mail system described earlier, goals of the system can refer to spe-

cific purposes and functions present in the system, such as a function to ‘read’ and ‘send’ a mail.

Plans refer to a bag of tricks or solutions to problems that were solved in the past. For example,
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to sort all mails in the mail system, programmers can implement a sorting algorithm, which is

a plan in their mental model. Control flow and data flow refers to the sequence of changes

that occur during program execution, such as the flow of control in a program, and change in

values of variables on account of program execution. Programmers simulate the control flow

and data flow to make sense of the program execution (LaToza and Myers, 2010). For example,

for the ‘send’ function in the electronic mail system, programmers simulate the execution of

their code and examine if the control flow and data flow is leading to correct behaviours. In ad-

dition to these elements, programmers also require knowledge about the programming language

(program model), as well as knowledge about the problem domain (situation model).

In most frameworks which describe the mental model elements, the dominant external

representation has been code. However, an adaptation of these frameworks to design diagrams

as the external artifact has not been explored. We delve deeper into this in Chapter 4, where we

provide an adaptation for the elements of the mental model for design diagrams.

Mental models are capable of supporting mental simulations (Adelson and Soloway, 1985).

That is, mental models can be used to reason about systems in certain situations, and imagine

with the mind how the system will work based on a given set of conditions (Gentner and Gen-

tner, 1983). When asked to create a design from specifications, experts repeatedly conducted

mental simulation runs of their partially complete designs, and at different levels of abstrac-

tion (Adelson and Soloway, 1986). Visser et al. suggest that simulations can serve in problem

comprehension i.e. when the designer explores and simulates the problem environment in order

to understand the problem domain, as well as in evaluation i.e. the designer runs simulations

of tentative solutions, and chooses the effective one based on certain criteria (Visser and Hoc,

1990).

Experts also employ several reasoning techniques in the process of designing software.

Marian Petre claims that “reasoning is at the heart of expertise in software design” (Petre, 2009).

Experts have a repertoire of reasoning strategies and choose an appropriate strategy for the task

(Petre, 2009). Tang et al. provide a list of reasoning techniques that experts employ in software

design such as contextualising and simplifying the solution, scenario generation, constraints

consideration and trade-off analysis (Tang et al., 2010). Experts use such reasoning techniques

to make decisions and refine their mental models of the software design.
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Expert and novice differences

There are various differences between the mental models of novices and experts. Studies have

shown that experts’ mental models are more detailed and accurate than that of novices, and

are better able to handle mental simulations (Adelson and Soloway, 1985; Curtis et al., 1988;

Sonnentag, 1998). Experts are able to switch easily between the domain model and the situation

model, as compared to novices while understanding programs (Pennington, 1987). That is,

experts are able to understand the program, translate it to domain terms, and then verify the

domain terms back in program terms. However novices stick to either the program or domain

model, and are unable to build connections between the two models. Novices mental models

are likely to be incomplete, deficient, and prone to change at any time (Sorva, 2013). Their

models tend to contain surface-level features i.e., knowledge that is readily available by looking

at a program, as opposed to experts whose mental models contain information about control,

data flow and goals of the program (Pennington, 1987). Mental models of novices also lack

firm boundaries, i.e. a novice is unclear about what aspects of a system their model covers

(Sorva, 2013). Hence, experts’ mental models are more stable and accurate, and draw on general

principles rather than superficial characteristics (Sorva, 2013).

To summarise, expert designers develop a rich mental model of the design during the soft-

ware design process. They incrementally transform their initial mental models to more concrete

models based on goals at each stage of the design process. They routinely perform mental

simulations on these intermediate models to arrive at the solution. Since developing effective

mental models are necessary in the design process, we hypothesize that the cognitive strate-

gies of mental modelling and simulation are essential even in the case of evaluating software

designs. We build on this in the next section, where we review literature on specific strategies

which have been used to evaluate software designs, and also provide anecdotal evidence from

experts performing software design evaluation.

31



2.4 Strategies for Evaluating Software Designs

In this section, we describe strategies which have been used for evaluating software designs, and

studies which examine comprehension and maintainability of UML diagrams. We also describe

anecdotal evidence from software designers on how they went about evaluating a given software

design.

2.4.1 Reading Techniques for Software Design Evaluation

Strategies for evaluating software designs have been explored in the context of inspecting UML

design diagrams in order to identify defects. Inspecting design diagrams involve focusing on

relevant information in these diagrams in order to create an effective mental model of the de-

sign (Winn, 1994). These cognitive skills, which are needed to identify defects are referred

to as reading techniques (Hungerford et al., 2004). Experts are able to effectively evaluate a

model, primarily because of effective reading techniques and cognitive processes (Wohlin and

Aurum, 2004). Findings from our literature review show that experts use reading techniques

like fast switching, horizontal and vertical reading, and perceptual and conceptual processes

while evaluating design diagrams. We explain these strategies in detail below.

Hungerford et al. conducted a study with 12 experienced developers who were asked to

perform individual reviews on a software design (Hungerford et al., 2004). The results indicate

that reading techniques that rapidly switch between the two design diagrams are the most ef-

fective. The authors claim that these “fast switching” strategies help in building relationships

between diagrams and create a better mental model.

Travassos et al. formulated a set of reading techniques, termed as traceability based read-

ing, which help students integrate information across diagrams (horizontal reading) and also

between diagrams and textual requirements (vertical reading) (Travassos et al., 1999). A dia-

grammatic representation of horizontal and vertical reading is shown in Figure 2.4. In horizontal

reading, students focus their attention on a design diagram (such as class diagram), and inspect

it with respect to another diagram (such as sequence diagram). Steps are provided to students
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on what exactly has to be done during the reading. For example, in the case of horizontal read-

ing between a class diagram and a sequence diagram, students have to examine the sequence

diagram, identify all its functions, and examine if the class diagram has these functions. They

are trained to perform horizontal reading across different diagram types. As a result, they are

able to read the entire design and ensure that the design is consistent, i.e. all necessary informa-

tion is correctly and consistently represented in the design. This ensures that they are building

an integrated and correct mental model of the design. In vertical reading, the design diagrams

are read with respect to the textual requirements and use-cases. For example, a requirement

is read and the specific sequence diagram which realises this requirement is analysed. If there

are certain entities missing in the sequence diagram based on the given requirement, it can be

added. Thus vertical reading ensures correctness and completeness in the design, and ensures

that students build a complete mental model of the problem domain and map them to the corre-

sponding design. Using these horizontal and vertical reading techniques, students were asked to

report defects in the given design diagrams. Results from their study show that the techniques

did lead to defects being detected.

Figure 2.4: Summary of reading techniques based on Hungerford et al. (2004)

Kim et al. conducted a study to explore the cognitive processes which one uses to under-

stand a system represented by multiple diagrams (Kim et al., 2000) . They proposed a theoret-

ical framework which focuses on perceptual and conceptual processes. A perceptual process

is a bottom-up activity of sensing something and knowing its meaning and value. Perceptual
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processes while reasoning with design diagrams involves linking relevant information from dif-

ferent diagrams. A conceptual process is a top-down activity which is used to generate, refine

and validate hypotheses based on the provided design diagrams. The authors claim that rea-

soning with multiple design diagrams involves performing effective perceptual and conceptual

processes. Based on the analysis of participants interacting with multiple diagrams, successful

participants’ perceptual integration processes involved making several round-trip transitions,

enabling them to relate information from different diagrams. By doing so, they were able to

develop an integrated mental model of the design. Conceptual integration processes involved

creating and refining several hypotheses while inspecting several diagrams. Based on these

hypotheses, participants refined and adapted their mental model of the design as well.

2.4.2 Anecdotal Evidence from Expert Software Designers

We conducted individual interviews with two software designers, who have extensive expe-

rience designing software, and have taught various computer science courses as well. In the

interviews, they were provided with the requirements and design (1 class diagram and 3 se-

quence diagrams) of an automated door locking system (the requirements and design are part

of future studies with students. More details about the design can be found in Section 4.3.3).

The requirements were provided on paper, and the design diagrams in a modelling tool. They

were asked how they would go about evaluating one of the requirements provided. We describe

the process they followed below.

Expert E1 read all the requirements, and then broadly analysed the class diagram. He then

proceeded to the relevant sequence diagram required to check the requirement. He analysed

the messages and function calls in the sequence diagram, and switched to the class diagram to

examine these functions. He then went back to the relevant requirement, and checked different

parts of the requirement with the design diagrams. While doing this, he realised that a part

of the requirement was not being satisfied, and flagged it as a defect (“there is a discrepancy

between the requirement and Message 11 in the sequence diagram”)

Expert E2 also followed a similar process. He first read the requirements and broadly

analysed all the design diagrams. He chose the relevant requirement for which the design was
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to be evaluated and divided that requirement into parts. He represented the requirement in a

tree like form on paper, and drew several branches, indicating possible scenarios for the given

requirement. He then proceeded to the relevant sequence diagram, and went through the mes-

sages in the sequence diagram. Like E1, E2 also went back to the class diagram to check for

the methods mentioned in the sequence diagram. He used the mouse pointer to move across

messages, talking out aloud the message names and the sender and receiver of messages.

From these interviews, we see certain common characteristics in the evaluation process

followed by experts. They start by analysing the requirements and the design diagrams, and

build a rough, initial mental model. E1 said that at the start he was “building a big picture of

what all things are there in the system, I’m not really worried about the details, what exactly are

the data members, is it providing the correct return type”. They also analyse the requirement,

and think of different scenarios which realise this requirement. For example E2 said - “basically

you have to look at all the different conditions under which that property becomes relevant, and

ensure that in each of these conditions, that property is satisfied. You enumerate the different

scenarios and check whether these are the only scenarios, and for each scenario I check whether

the property can be satisfied or not.”.

They then focus on the appropriate design diagrams, and switch between these diagrams,

in order to develop an integrated understanding of the design. E1 said - “What I’m creating in

my mind is a flow of function calls, based on the class diagram and the sequence diagrams. I’m

tracing the sequence diagram along with the corresponding calls that are being made in the

class diagram, with the values which the variables are having”.

From these statements, we see instances of control flow and data flow simulation, as well

as instances of horizontal reading when they switch between the class and the sequence diagram.

They simulate the control flow and data flow for each part of the requirement. For example,

while analysing the first part of the requirement, E1 said - “The entire sequence of actions

through the class diagram and variables I have played out in my mind to say that and that

is happening.”. When they encounter a discrepancy between their mental simulation and the

provided design, they flag these as defects.

To summarize the previous sub-sections, we see from literature that experts apply reading

techniques to build an integrated mental model of the design. Our interviews with experts also

confirm this, and show that experts construct and refine their mental models of the design during
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the evaluation process. They also show instances of control flow and data flow simulation to

evaluate their models. Hence, in order to effectively evaluate a design and ensure that it satisfies

the given requirements, students should be able to analyse and reason about the given require-

ments, develop an integrated mental model of the given design diagrams, visualize different

scenarios, and perform control flow and data flow simulations on these models.

2.4.3 Comprehension and Maintainability of UML Diagrams

Prior work has also explored evaluation of design diagrams in the context of reading, com-

prehension, and maintainability of UML diagrams (Lange and Chaudron, 2006; Chaudron

et al., 2012; Budgen et al., 2011; Fernández-Sáez et al., 2016; Nugroho, 2009; Genero et al.,

2011). Studies examining comprehension of UML diagrams have looked at which diagrams

(and in what combination) lead to better diagram comprehension (Glezer et al., 2005; Otero

and Dolado, 2004; Swan et al., 2005). For example, Swan et al. (2005) conducted a study with

students comparing sequence diagrams and collaboration diagrams (collaboration diagrams are

a variation of sequence diagrams). Otero and Dolado (2002) conducted a similar study com-

paring sequence diagrams, collaboration diagrams and state diagrams. Both studies found that

sequence diagrams have the highest comprehension performance. Findings from Torchiano

(2004)’s study found that students who are provided with class diagrams and object diagrams

perform better than those provided with class diagrams alone.

Studies have also examined how providing UML diagrams along with source code have led

to better comprehension and defect identification in source code (Dzidek et al., 2008; Scanniello

et al., 2012; Arisholm et al., 2006). Arisholm et al. (2006) conducted a controlled experiment

with software engineering students to investigate the impact of UML diagrams in a software

maintenance task. Participants in both groups were asked to add new functionalities to the

existing system and thus had to modify the source. The experimental group was provided the

UML diagrams along with the code, whereas the control group was provided the code alone.

Findings from this study show that there is no significant difference in time spent in making

modifications. However, the authors observed that the quality of modifications were higher for

those participants who were provided the UML diagrams. Dzidek et al. (2008) conducted a

similar study with 20 professional developers, but the UML diagrams along with the source
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code had to be modified in this study. The findings are similar to Arisholm et al. (2006), in that

although the group provided with UML diagrams took more time to update the source code and

UML diagrams, the quality of modifications were higher. In a study conducted by Scanniello

et al. (2012), the authors found that comprehension of source code increases when participants

are provided with UML class and sequence diagrams.

To summarize, several studies have highlighted the usefulness of UML diagrams in soft-

ware comprehension and maintenance tasks. These studies have shown that quality of code

improves when UML diagrams are provided along with source code. However, there is a lack

of studies which specifically look at strategies which novices use to evaluate design diagrams

and the difficulties they face.

2.5 Summary

In this chapter, we presented an extensive literature review of current teaching in software de-

sign, student difficulties in software design, and strategies experts use while evaluating software

designs. Our review of teaching-learning in software design reveals that although there are sev-

eral tools to model designs, these tools are not mature enough and are complex to use. There

is also a lack of pedagogical interventions which focus on the teaching-learning of software

design diagram evaluation.

Our review of student difficulties in creating software designs show that they have in-

adequate knowledge of the domain, and inconsistent understanding between design diagrams.

However, sufficient emphasis has not been given on difficulties which students face while eval-

uating an already given design, and the relation between these difficulties and students’ mental

models. We believe that these difficulties can be attributed to a deficient mental model of the

design in students. An insufficient understanding of the domain can be due to an inadequate

problem model. Consistency issues can be due to a lack of an elaborate and comprehensive

mental model in students. We examine this in detail in Chapter 4, where we examine students’

mental models of how they evaluate design diagrams against the given requirements.

Review of expert practices and strategies in software design show that experts create rich

and detailed mental models of the design, employ various reasoning techniques, and perform
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mental simulations on these designs. They closely analyse the design by employing efficient

reading techniques like fast switching, horizontal reading and vertical reading. They simulate

the control flow and data flow of various scenarios while evaluating the design against the given

requirements. Knowledge of expert practices can be used for the design and development of

a learning environment which fosters these cognitive processes in learners. Hence, in order to

foster software design evaluation skills in students, the teaching-learning environment should

provide activities and affordances that enable students to

• develop an adequate mental model of the problem and the design diagrams

• employ effective reading techniques to analyse the design

• simulate various scenarios in the design and

• simulate the control flow and data flow of these scenarios in the design to ensure that it

satisfies the given requirements

We go into more details of the activities and affordances in the learning environment in Chapter

5 by also drawing on literature from modelling in science education and mental models in

programming education.

In the next chapter, we describe the underlying research methodology which we applied

to the investigation of fostering effective software design evaluation skills in students.
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Chapter 3

Research Methodology

3.1 Key Questions Guiding Research in this Thesis

As mentioned in Chapter 1, our broad research goal is to “design and develop a technology-

enhanced learning environment (TELE) which enables students to effectively evaluate a soft-

ware design against the given requirements”

We approach addressing this goal by answering the following questions:

1. What is the existing gap in teaching-learning of evaluating software design diagrams?

2. How do students evaluate software design diagrams and what difficulties do they face?

3. What are pedagogical strategies which can enable students to effectively evaluate soft-

ware design diagrams?

Educational research is conducted based on an underlying research framework, which guides

the progress of answering the broad research goal. We have chosen the design based research

methodology in answering our broad research goal.
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3.2 Design Based Research

Design based research (DBR) is “the systematic study of designing, developing and evaluating

educational interventions (such as programs, teaching-learning strategies and materials, prod-

ucts and systems) as solutions for complex problems in educational practice, which also aims at

advancing our knowledge about the characteristics of these interventions and the processes of

designing and developing them.” (Plomp, 2013). The design based research paradigm emerged

due to certain limitations of ‘traditional’ research approaches such as experiments and surveys.

These approaches focussed on examining learning processes as isolated variables within labo-

ratory settings (Barab and Squire, 2004). Such results often did not translate to the naturalistic

settings such as classrooms and laboratories. They also did not provide sufficient contributions

towards practice, i.e. how instructors can apply these findings in their classrooms.

Design based research comprises the following phases:

1. Problem Analysis: In this phase, the researcher determines the research problem which

needs to be addressed. The specific problem to be investigated is often determined by a

synthesis of literature and/or empirical studies with students.

2. Solution Design and Development: Based on the problems identified in the previous

phase, the researcher develops solutions which address this problem. These solutions and

design decisions are grounded in existing theory relevant to the context.

3. Evaluation and Reflection: Research studies are conducted in order to examine the

effectiveness of the designed intervention. The findings and reflections from these studies

feed into the next cycle of the design based research process.

As seen in Figure 3.1, each research cycle begins by analysing a specific problem which

has to be addressed. These problems stem from either the analysis of literature, or reflections

from studies. Based on this analysis, certain design decisions are made towards the development

of the pedagogy. The effectiveness of these decisions are measured by conducting studies which

focus on certain research questions.

The DBR process is iterative in nature i.e. the cycles of problem analysis, solution design

and evaluation continue till the broad research problem is satisfactorily examined. A critical
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component of design-based research is that findings from research should not only solve prob-

lems in the local context, but also help in advancing educational theory (Barab and Squire,

2004). Hence the output of the DBR process should also contain design principles and ‘local

learning theories’ which can be applied to other similar contexts as well.

Figure 3.1: Phases in a DBR Cycle

3.3 Research Cycles in this Thesis

Research in this thesis has been done over two design-based research cycles. In each cycle, we

have looked at uncovering aspects of the three key questions guiding our research - exploring

existing gaps in teaching-learning, understanding students’ evaluation processes, and pedagog-

ical strategies to help them in their evaluation process. The DBR cycles in this thesis have been

summarised in Figure 3.2.

3.3.1 DBR Cycle 1

The primary objectives of DBR Cycle 1 are to (i) Identify existing gaps in teaching-learning of

software design evaluation, (ii) Identify student difficulties while evaluating designs, and (iii)

Design a pedagogy which addresses these gaps and difficulties. The primary contributions of

this cycle are (i) Identifying student difficulties and (ii) the VeriSIM pedagogy which comprises

the design tracing strategy.
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Figure 3.2: DBR cycles in the thesis
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1. Problem Analysis and Exploration: In this phase, we explored literature in order to

identify existing gaps in teaching and learning of software design evaluation. We ex-

amined strategies and cognitive processes which experts use during the software design

process. We also reviewed literature on student difficulties in software design, and re-

alised that sufficient emphasis has not been given on identifying student processes and

difficulties in evaluating design diagrams. This led us to conduct two studies (Study 1a

and Study 1b) with the focus on understanding how students approach an evaluation task

and the difficulties they face.

2. Solution Design and Development: Our analysis of literature, and findings from the

novice studies informed the design of the VeriSIM pedagogy. This helped us make de-

sign decisions regarding the pedagogy and activities in VeriSIM. We operationalised the

pedagogy into the VeriSIM learning environment.

3. Evaluation and Reflection: In this phase, we investigated the effects of the VeriSIM

TELE on students’ ability to model scenarios and evaluate the design diagrams against

the given requirements (Study 2).

3.3.2 DBR Cycle 2

In DBR Cycle 2, we reflected on certain difficulties students faced in evaluating designs, even

after interaction with VeriSIM. The objectives of this cycle are (i) The redesign of VeriSIM,

based on reflections from previous study and (ii) Understanding how students learn using vari-

ous features in the VeriSIM learning environment.

1. Problem Analysis and Exploration: In this phase, we reflected on the difficulties faced

by students in Study 2. The main reflection was that students need explicit help to gen-

erate and identify scenarios which do not satisfy requirements. We analysed literature to

address this difficulty and inform the redesign of VeriSIM.

2. Solution Design and Development: In this phase, we developed the scenario branching

strategy, which helped students explicitly identify scenarios from the requirements. This

led to the revised VeriSIM pedagogy, which comprises the design tracing and scenario
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branching strategy. We operationalised the revised VeriSIM pedagogy by adding another

module in VeriSIM. The modified TELE VeriSIM 2.0 has two modules. Module 1 is

identical to the intervention provided in the previous cycle. In Module 2, the scenario

branching pedagogy has been operationalised as a worksheet, which is facilitated by an

instructor.

3. Evaluation and Reflection: We conducted a study (Study 3), which investigated the

effects of VeriSIM 2.0. We also looked at how various features in VeriSIM 2.0 helped

students evaluate the design diagrams against the given requirements.

3.4 Research and Design Questions answered in this Thesis

There are two categories of questions which we answer in this thesis: Design Questions (DQ)

and Research Questions (RQ).

1. Design Questions (DQ) - DQs are answered by referring to how specific education and

learning science theories can be operationalised into the pedagogy design which addresses

students’ difficulties or improves their understanding. DQs are answered in the ‘Solution

Design and Development Phase’ of the DBR cycle.

2. Research Questions (RQ) - RQs are answered by conducting research studies to examine

how students’ approach a given task, and to understand the effects of the designed ped-

agogy. RQs are answered in the ‘Problem Analysis’ and ‘Evaluation’ phase of the DBR

Cycle.

In this thesis, we answer 4 RQs and 2 DQs across the two cycles of DBR.

RQ 1: How do students evaluate a design against the given requirements

and what difficulties do they face?

We investigated RQ 1 in the ‘Problem Analysis and Exploration’ phase of DBR Cycle 1 (see

Figure 3.2). To answer RQ 1, we conducted two studies. We conducted the first study (Study
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1a) with 100 students. The goal of this study was to identify categories of responses students

provided when they were asked to evaluate a design against the given requirements. Details

about Study 1a can be found in Section 4.2. The research question guiding this study is -

RQ 1.1: How do students evaluate a software design against the given requirements?

To answer this RQ, we analysed student responses using content analysis (Baxter, 1991).

We analysed each response and came up with categories of student responses. Answer to RQ

1.1 was useful in helping us determine what are the broad types of responses, and what students

may be thinking when asked to evaluate a given design.

To understand students’ cognitive processes and their underlying mental models during

the evaluation task, we conducted a qualitative study with 6 students (Study 1b). Details about

Study 1b can be found in Section 4.3. The research questions guiding this study are -

RQ 1.2: What defects are students able to identify in the design evaluation task?

RQ 1.3: What reading strategies do students use to evaluate software design diagrams against

the given requirements?

RQ 1.4: What are the elements in their mental model?

To answer RQs 1.2-1.4, we used video data of participants solving an evaluation task, their

writing, and interviews after the task, as the primary data sources. We used video data analysis

(Derry et al., 2010) to infer student reading strategies, and thematic analysis (Braun and Clarke,

2012) to infer elements in their mental model. Study 1b revealed that students’ ability to identify

defects depends on their mental model of the design, when used appropriately with a strategy

they use to read the design diagrams. We found that students have difficulty in simulating

dynamic behaviours i.e. the control and data flow of various scenarios in the design.

Hence, the key insight gained from RQ 1 is that scaffolding students to identify and model

(simulate the control and data flow of) relevant scenarios in the design can lead to effective

evaluation of the design diagrams against the given requirements. These findings and insights

informed the design of the VeriSIM pedagogy.
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DQ 1: What is an appropriate pedagogy that can scaffold students to iden-

tify and model various scenarios in the design?

We investigated DQ 1 in the ‘Solution Design and Development’ phase of DBR Cycle 1. To

answer DQ 1, we draw insights from model based learning in science education, and mental

models in introductory programming, to design the VeriSIM pedagogy. In VeriSIM, students

are introduced to the design tracing strategy. In design tracing, students simulate the control and

data flow of various scenarios in the design, by constructing a model similar to a state diagram.

We have operationalised the design tracing strategy into the VeriSIM learning environ-

ment. In VeriSIM, students go through stages and challenges which help them progressively

trace various scenarios in the design. Our hypothesis is that as students trace various scenarios

in the design, they will be able to effectively evaluate the design against the given requirements.

RQ 2: What are effects of VeriSIM in students’ ability to evaluate a design

against the given requirements?

We investigated RQ 2 in the ‘Evaluation and Reflection’ phase of DBR Cycle 1. RQ 2 is part of

Study 2, which was conducted with 86 students. Details about Study 2 can be found in Section

6.1. The research questions guiding this study are -

RQ 2.1: What are the effects of VeriSIM in students’ ability to simulate dynamic behaviours in

the design?

RQ 2.2: What are the effects of VeriSIM in students’ ability to identify defects in the design?

Students solved a pre-test, followed by interaction with VeriSIM, and solved a post-test

in the end. We analysed the differences in students’ pre-post responses to understand the ef-

fects of the pedagogy in students’ ability to trace scenarios and uncover defects (RQ 2.1 and

2.2). We also conducted focus group interviews, and analysed the transcripts using a thematic

analysis approach (Braun and Clarke, 2012) in order to understand students’ perceptions of the

usefulness of the VeriSIM TELE and its features.

The key reflections from Study 2 was that although students were able to simulate dynamic
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behaviours of various scenarios in the design, they were not able to identify scenarios in the

design which do not satisfy the requirements. Hence, these reflections formed the basis of the

next DBR cycle, where we sought to refine the VeriSIM pedagogy to include explicit scaffolds

to identify scenarios in the design.

DQ 2: What additional scaffolds are needed to enable students to identify

scenarios in the design?

We investigate DQ 2 in the ‘Solution Design and Development’ phase of the second DBR

Cycle. Based on the reflections from the previous cycle, we refined the VeriSIM pedagogy and

included the scenario branching strategy. The theoretical basis of scenario branching is taken

from cognitive mapping techniques used in requirement analysis of software design (Montazemi

and Conrath, 1986). In scenario branching, students are provided with a mapping tool and

scaffolds which enable them to construct a scenario tree. As they traverse each path of the

tree from the root to a leaf, they identify various scenarios for each requirement. The scenario

branching strategy has been incorporated as a worksheet which is facilitated by an instructor.

The design tracing strategy and the scenario branching strategy has been incorporated into the

VeriSIM 2.0 learning environment.

RQ 3: What are effects of VeriSIM 2.0 in students’ ability to evaluate a

design against the given requirements?

To investigate the effects of VeriSIM 2.0 (RQ 3), we conducted Study 3 with 22 students. De-

tails about Study 3 can be found in Section 7.6. The research questions guiding this study are -

RQ 3.1 What are the effects of VeriSIM 2.0 in students’ ability to identify scenarios in the

design?

RQ 3.2 What are the effects of VeriSIM 2.0 in students’ ability to uncover defects in the design?

The study procedure and analysis methods were similar to Study 2.
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RQ 4: How are features in the VeriSIM learning environment contributing

towards student learning?

RQ 2 and RQ 3 helped us understand the effects of the design tracing and the scenario branching

strategies in students’ ability to identify and model scenarios, and evaluate the design diagrams

against the given requirements. RQ 4 investigates how features in VeriSIM contributed towards

students’ learning. The VeriSIM learning environment captured various student interactions and

has stored them as logs. These included actions such as how they constructed the state diagram

model during design tracing, their answers to certain reflection and evaluation questions etc. We

analysed these logs along with the focus group interviews in order to understand how various

feature in VeriSIM contributed towards student learning. More details about how we answered

RQ 4 can be found in Chapter 8.

3.5 Analysis Methods used in this Thesis

In this section, we describe the analysis methods we used to analyse the research questions of

this thesis. This section primarily serves as a reference to analysis descriptions in subsequent

chapters.

3.5.1 Video Data Analysis

To answer RQ 1.3 (What reading strategies do students use to evaluate software design diagrams

against the given requirements?), we used the video data analysis method outlined by Derry et

al. (Derry et al., 2010). The authors provide guidelines for researchers conducting research ex-

amining video data using complex learning environments. Specifically, they address challenges

pertaining to Selection i.e., deciding which elements of a video data analysis to select for study,

and Analysis i.e., deciding what analytical frameworks are appropriate for the given research

problem. The key steps in selecting and analysis of video data are outlined below.
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• Chunking - In this step, researchers may chunk the video records into segments. The

criteria for chunking can be event boundaries i.e. dividing a video based on specific events

which occur. It can also be chunked based on time markers, i.e. dividing a video based

on specific time intervals (e.g. every 5 seconds etc.) Researchers may choose relevant

parts of the video to chunk at first, depending on guiding questions, or to understand

unexpected phenomena which occurred.

• Marking, Transcribing and Categorizing - After chunking, researchers may mark cer-

tain chunks of video which are of interest. They also create intermediate representations

which aid them in the analysis process. Some commonly used representations are index-

ing (time-indexed notes which provide a basic outline of the events), macrolevel coding

(mark major events as topics or themes), narrative summaries (lengthy description of

events) and transcription (transcripts that represent some portion of the events recorded).

These representations are used in the next step of analysis and reporting.

• Analysis and Reporting - The analysis and reporting of video data is often interleaved.

The result of video data analysis depends on the research questions which is being asked,

and can lead to quantitative or qualitative findings. For example, researchers can mark

chunks of video, and produce codes or themes for each of these chunks. They can then

conduct a quantitative analysis on the corpus of codes to generate findings related to

number of codes, or patterns occurring in the codes. In a qualitative research study,

researchers can provide a rich and detailed description of the video chunks, and hence do

not count types of events.

3.5.2 Content Analysis

We used content analysis to analyse students’ written responses which described the defects

they identified based on the given design. The purpose of the content analysis method is to take

data sources, such as texts and analyses, and transform them into a summary form. This can

be done by either categorising these texts into pre-existing categories, or generate categories

based on the data. It involves breaking down the text into units of analysis, performing certain

statistical analysis of these units, and presenting the analysis in an appropriate form. We draw
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on the content analysis method described by Cohen (Cohen et al., 2017), and describe the key

steps.

• Defining the unit of analysis - The text to be analysed must be broken down into appro-

priate units so that analysis can be performed on these texts. These unit of analysis can

be at different levels, such as a word, phrase, sentence, paragraph, or even the whole text.

The unit of analysis must be defined before proceeding further.

• Coding of texts - Once the unit of analysis is defined, appropriate codes have to be

chosen which map to these texts. These codes can be at different levels of specificity and

generality. Researchers can start with a prescribed set of codes, but usually, the codes

are also derived from the data responsively. As a researcher starts assigning codes, the

codes themselves go through modifications as coding progresses. Hence the researcher

might have to go through a data set more than once, to ensure consistency, refinement,

modification and exhaustiveness of coding.

• Construct categories based on codes - After performing coding, the researcher is able to

detect patterns among codes. Different codes are then linked and grouped together under

broad categories and subcategories. During this process, memos and notes are created

which describe the category definitions and criteria for assigning descriptive codes to

these categories.

• Analysing the codes and categories - Once the texts have been assigned codes and cat-

egories, the researcher can count the frequency of each code and/or category. Based on

these frequencies, the researcher can summarize the inferences from the text, look for

patterns and relationships between the codes and categories. Statistical analysis such as

graphical representations, factor analysis, regression etc. can be done to summarize these

results.

3.5.3 Thematic Analysis

We used thematic analysis to analyse individual and group interviews with students, as well

as student responses to certain open ended questions in the TELE. The purpose of thematic
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analysis is to identify patterns of meaning across a dataset that provide an answer to the research

questions. The process followed in thematic analysis is similar to content analysis. However,

the key difference is that while content analysis uses a descriptive approach in its interpretation

of quantitative counts of the codes, thematic analysis provides a purely qualitative, detailed

and nuanced account of the data. The different themes emerging from the data can help the

researcher in richly describing the phenomenon under investigation.

We broadly followed the thematic analysis approach outlined by Braun and Clarke (2012),

and describe the steps we used in the analysis.

• Familiarization with the data - In this step, researchers go through transcripts once or

twice in order to familiarize themselves with the data. They usually make observational

notes as they read through these transcripts.

• Generating descriptive and inferential codes - Once researchers are familiar with the

data, they create codes which describe a particular sentence or groups of sentences. The

usually start by creating descriptive codes. Descriptive codes stay close to the data, and

researchers make sure that they avoid any prejudices or preconceptions while creating

these codes. They then generate interpretative or latent codes which identify meanings

underlying the descriptive codes. As coding progresses, researchers will usually modify

existing codes to incorporate new data. By the end of this step, researchers will have

enough codes to capture the diversity as well as patterns within the data.

• Searching, reviewing and defining themes - In this step, researchers review the coded

data to identify areas of similarity and overlap between codes, and assign themes to these

codes. Themes capture something important about the data in relation to the research

question, and represents some level of meaning within the data set. During this step,

researchers also have to define the theme, its boundaries, and whether there is enough

data to support this theme.

• Reporting the themes - Finally, while presenting the findings, the themes should be

presented in a systematic manner. Themes should connect logically and meaningfully

and, if relevant, should build on previous themes to tell a coherent story about the data.
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3.6 Summary

In this chapter, we described the overarching methodology guiding our research. We describe

Cycle 1 in Chapters 4, 5 and 6, and Cycle 2 in Chapter 7 and 8. Details of the research questions,

analysis methods and findings are described in detail in subsequent chapters.
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Chapter 4

Characterising Student Mental Models

and Identifying Difficulties in Evaluating

Design Diagrams

In Chapter 2, we reviewed literature to understand the cognitive processes of expert soft-

ware designers, and the difficulties students face in the design process. We observed that there

hasn’t been much research emphasis on how students evaluate a given design, the elements in

their mental models while evaluating designs, and the difficulties they face. In this chapter, we

specify the mental model elements for design diagrams by adapting the Block Model (Schulte,

2008), a framework which has been used for teaching-learning of program comprehension.

This adaptation serves as the basis for identifying the elements in students’ mental models, as

they perform design evaluation. We describe two studies (Study 1a and Study 1b), which we

conducted with students, to understand how they approach a given evaluation task. In Study

1a, we conducted a study with 100 final year undergraduates. We sought to understand what

categories of written responses students provide when they are asked to “identify defects in the

design based on the requirements.” These categories gave us certain indicators of what students

53



were thinking while they were doing the evaluation task. In Study 1b, we conducted a study

with 6 computing undergraduates, where we focussed on inferring students’ strategies and their

mental models of the design during the evaluation task. Findings from both these studies gave

us insights to the pedagogical design of VeriSIM.

4.1 Characterizing Mental Models for Software Design Dia-

grams

In this thesis, we have adapted the “Block Model” proposed by Schulte (Schulte, 2008) to de-

scribe the elements of the mental model for design diagrams. The Block Model is an educational

model for program understanding. It breaks down the process of comprehending a given pro-

gram based on understanding blocks of code, present at different levels and dimensions (more

details follow in Section 4.1.1). By developing student understanding of each of these blocks,

the overall understanding of the program also improves. Thus, situating teaching and learning

of programming in terms of the Block Model can help researchers and teachers understand what

learning process and competencies are needed by learners. It also helps support theory-driven

processes of developing pedagogical interventions, such as learning sequences, and teaching

methods (Schulte, 2008)

The Block Model has been designed primarily to help students understand programs,

where the external representation is in the form of program code. Schulte et al. have suggested

that future research directions for the Block Model can involve modification of the external rep-

resentation to other artifacts like UML diagrams (Schulte et al., 2010). However, this adaptation

has not been explored. Hence, we adapt the Block Model to describe the elements of the mental

model for design diagrams.

The adapted model serves two purposes. First, the adapted model can be used as a lens to

investigate students’ mental models and infer what elements are present and what are absent as

they evaluate the design diagrams against the given requirements (Study 1a and 1b). Second, the

model can inform the design of a pedagogy which focuses on improving student understanding

of specific element(s) of the mental model (Section 5.7).

54



4.1.1 The Block Model

The Block Model for program comprehension is described in Figure 4.1. The model contains

blocks arranged across different levels and dimensions. The model can be considered from

two perspectives. The first perspective, which corresponds to the vertical axis in the diagram,

refers to four levels based on zooming in and out of a program. The lowest level refers to a

single expression or line of code, and moves up to blocks of code, the relation between these

blocks, and finally to the entire program. For example, to comprehend a program, students

need to understand the syntax and semantics of each line of code. They then integrate their

understanding of multiple lines of code to make sense of blocks of code. These blocks can

refer to functions or other logical units such as loops and conditionals. They then infer the

relation between different blocks, and how each block contributes to the purpose of the overall

program. This bottom-up approach is one way of comprehending a given program. A top-down

approach of program comprehension is also possible, whereby students first broadly understand

the overall structure of a given program, and relations between different parts of the program.

They then focus their attention to specific blocks of interest to understand the program.

Figure 4.1: The block model for program comprehension, taken from Schulte et al. (2010)
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The bottom-up and top-down approaches are known as reading strategies (shown in the

vertical axis of Figure 4.1). Reading strategies (or assimilation processes), are used to build

and augment the mental model of a given program. In program comprehension, several reading

strategies like top-down (Soloway and Ehrlich, 1984), bottom-up (Pennington, 1987), or oppor-

tunistic strategies (Letovsky, 1987), are used by programmers to build a mental representation

of the given program.

The second perspective, which corresponds to the horizontal axis of Figure 4.1, contains

three levels - (1) The text surface, which is a static entity (2) The program execution, referring

to the control flow and data flow, which is a dynamic entity and (3) The function and purpose of

the program, which also refers to the main goals of the program. While comprehending a given

program, students can focus purely on the program text, such as the language elements of atoms

and blocks, and the overall structure of the program text. This corresponds to the first level in

the horizontal axis. However, understanding how the static text representation is being executed,

and what changes occur at each of the program levels is also essential. For example, when a line

or block of code is executed, students should understand what changes occur to variables in that

state. Students should also be able to understand the flow of control when different methods are

called. Thus, the second level of the horizontal axis refers to the flow of control and data, and

how it relates to the broad algorithm of the program. The third level corresponds to the purpose

or goal corresponding to atoms, blocks and the whole program in its given context. Students

should be able to map a line, block or the entire program to its purpose in the given context.

For example, in the case of a library management system, students should understand that the

purpose of calling a sorting sub-routine is to display all books in alphabetical order.

In addition to these two perspectives, the knowledge base encompasses the understanding

about the above mentioned elements, as well as the knowledge about programming language

syntax, semantics, and discourse rules (e.g. guidelines for comments, indentation rules etc.).

4.1.2 Adaptation of the Block Model for Design Diagrams

How can this model be adapted when the external representation is design diagrams? Both

perspectives mentioned above, hold to a certain degree in the case of design diagrams as well. In
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the case of design diagrams, the vertical axis corresponds to (1) Atoms (2) Blocks (3) Relations

and (4) Macrostructure present in specific design diagrams. Unlike code, where there exists a

single external representation, the above elements are present in each type of UML diagram, as

we explain below.

1. Atoms - In class diagrams, atoms refer to the data members and member functions in

each class, and their access specifiers. In sequence diagrams, atoms refer to each message

in the sequence diagram.

2. Blocks - In class diagrams, each class can be considered as a block which encompasses

the data members and functions. In sequence diagrams, a group of messages are aggre-

gated to form blocks which can specify a particular operation or function.

3. Relations - In class diagrams, relations refer to associations between classes. In sequence

diagrams, relations refer to links between different logical blocks.

4. Macrostructure - The macrostructure refers to the design as a whole, and the purpose of

each design diagram in the design.

The second perspective (i.e. the vertical axis) also holds for design diagrams. In the case

of design diagrams, the three levels are (1) The diagram surface elements, which is the static

entity (2) The dynamic behaviour, which is the control flow and the data flow, and (3) The main

goals of each diagram. We describe the three levels in detail below:

1. Diagram surface elements - These elements are the basic functions and data members in

structural diagrams, and messages in behavioural diagrams. For example, the data mem-

bers and member functions in the class diagram and specific messages in the sequence

diagram correspond to the surface elements.

2. Dynamic behaviours (control flow and data flow) - Control flow refers to the order

in which operations in the elementary blocks are carried out, such as sequence, loop or

conditional. For design diagrams, it refers to the control structure present in behavioural

diagrams like the sequence, interaction and activity diagrams. Data flow refers to the

transformation that data variables undergo in the course of plan execution (Burkhardt

et al., 2002). Hence for design diagrams, it involves knowledge about how data members
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in the structural diagrams change based on plan execution in the behavioural diagrams.

For example, the sequence diagram for an ATM withdrawal feature would involve up-

dating the “balance” variable (present in the class diagram) after the withdraw function

call.

3. Main goals - Main goals in a program correspond to functions achieved by the program

viewed at a higher level of granularity and do not correspond to single program units.

In design diagrams, main goals refer to the purpose of each diagram and its role in the

design. A sequence diagram for a particular functionality can be composed of a sequence

of sub-goals to realise that functionality. For example, a sequence diagram for an ATM

authentication feature will include sub-goals such as user input and password validation.

In addition to the knowledge about the elements mentioned above, knowledge about de-

sign diagrams and the problem domain are also essential in developing an accurate mental

model. Design diagram knowledge is based on the syntax and semantics of different design

diagrams. For example, students should understand various symbols and representations in

class and sequence diagrams, and what they mean in the context of software design. Problem

domain knowledge refers to the knowledge about the context for which the design has been

developed. For example, in the case of an ATM system design, students should be familiar with

the working and operations of an ATM system.

In the case of design diagrams, what are effective reading strategies? As mentioned in

Section 2.4, experts employ effective reading techniques like horizontal and vertical reading to

comprehend design diagrams. We consider the horizontal and vertical reading techniques as

reading strategies required to build the mental model. These strategies help learners assimilate

and make sense of different UML diagrams. In horizontal reading, students integrate informa-

tion across different diagrams. For example, students read the sequence diagram and check if

the various functions and classes mentioned are present in the class diagram. This ensures that

the diagrams are consistent. Knowledge of different design diagrams are required for horizontal

reading. In vertical reading, students read the requirements and the design diagrams in order

to check for completeness and correctness. Both design diagram knowledge and problem do-

main knowledge are required for vertical reading. As these reading techniques are applied, the

student’s mental model of the design is updated.
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To summarize, our view of the mental model for design diagrams is adapted from the

Block model. This adaptation of the mental model elements for design diagrams is summarised

in Figure 4.2. It has the following components - knowledge about the diagram surface elements,

dynamic behaviours, main goals, design diagram knowledge and problem domain knowledge.

For the sake of simplicity, we have combined the horizontal axis elements (i.e. atoms, blocks,

relations and macrostructure) for each of the mental model elements (i.e the diagram surface

elements, dynamic behaviours and the main goals). Horizontal and vertical reading strategies

are used to build and augment the mental model of a given software design.

Figure 4.2: Mental model elements for design diagrams (Adapted from the block model)

In Study 1a and 1b, we anchor our analysis of students’ evaluation of design diagrams

based on this adapted model. We examine what reading strategies they use, and whether stu-

dents’ mental model of the design contains information about the diagram surface elements, the

control flow and data flow, and the main goals in design diagrams.
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4.2 Study 1a: Categorizing student responses of evaluating

design diagrams

In Study 1a, we analysed student written responses when they were asked to identify defects in

a given design. The goal of this study was to examine categories of responses students provide,

and also how these responses correspond to the mental model elements of design diagrams.

4.2.1 Research Question

The research question guiding this study is -

RQ 1.1: How do students evaluate a software design against the given requirements?

We intend to answer RQ 1.1 by analysing students’ written responses when they are asked

to evaluate a design against the given requirements. We categorize their written responses to

understand the elements of the design they focus on during the evaluation task. Answers to RQ

1.1 provide indicators for how students approach a software design evaluation task. These find-

ings motivate Study 1b, where we delve deeper into their mental model elements and reading

strategies while evaluating a given design.

4.2.2 Description of the evaluation task

The requirements and design of an ATM system was given to students. The requirements pro-

vided to students are as follows:

1. A user with a valid account can register his/her ATM card and set a PIN if he/she has not

set a PIN yet. The PIN should be of length 4 and should contain only numbers.

2. When the user enters the ATM card and inputs the correct PIN, the following options are

shown.

• Withdraw - The user can withdraw money from his/her account. If the balance is
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less than Rs.1000, withdrawal is denied.

• Change PIN - The user can change his/her PIN by entering the previous PIN cor-

rectly.

The provided design consists of a class diagram (Figure 4.3) and three sequence diagrams

- Register (Figure 4.4), Withdraw (Figure 4.5) and Change PIN (Figure 4.6). The ATM sys-

tem example was chosen, as we wanted students to be familiar with the problem domain and

correspond to something they have used in their daily lives.

Figure 4.3: Class diagram of the ATM system

The task given to students was - “Identify defects (if any) in the following design diagrams

based on the requirements. For each defect, provide a logical explanation of why you think it is

a defect.”. The requirements, design diagrams and the task were provided to students on paper.
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Figure 4.4: Sequence diagram for registering the ATM card

Figure 4.5: Sequence diagram for withdrawing amount
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Figure 4.6: Sequence diagram for changing pin

4.2.3 Defects introduced in the design

We have focussed on how students evaluate semantic deficiencies in the design, as mentioned

in Chapter 1. In the given ATM system design, certain semantic deficiencies introduced in the

design are as follows:

• There is no check if user is already registered.

• The pin requirements are not checked during registration and change pin.

• The minimum balance requirement is not checked during withdrawal.

• There is no check if the withdrawal amount is greater than the balance.

• The balance is not updated after withdrawal.

These semantic deficiencies can be uncovered by identifying the main goals in the diagrams,

and simulating the dynamic behaviour (control flow and data flow) of scenarios in the design.
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Hence, the mental model elements for design diagrams (Figure 4.2) provides a basis for

how these semantic deficiencies can be uncovered. To uncover these type of defects, students

need knowledge of the syntax and semantics of the design diagrams, the problem domain (how

an ATM system works), and knowledge about the main goals and dynamic behaviour in a given

design.

For example, consider the defect - “There is no check if the withdrawal amount is greater

than the balance.” To identify this defect, one has to examine the class diagram (Figure 4.3) and

identify relevant data members, such as ‘balance’ and member functions such as ‘checkATM()’,

‘checkPIN()’, and ‘withdraw()’. The main goals for the withdrawal use case is identified by

analysing the withdraw sequence diagram (Figure 4.5). These goals refer to logical parts of the

sequence diagram, such as ‘Checking ATM and display options’, ‘Checking PIN’ and ‘With-

draw’. One then simulates the control flow and data flow for each goal, and realises that there is

no check when amount > balance and when the ‘withdraw’ function returns false. Hence, by

identifying the diagram surface elements, main goals and simulating the control flow and data

flow, semantic deficiencies can be identified.

4.2.4 Study Procedure

We conducted the study with 100 final year (fourth year) computer engineering and information

technology engineering students (61 male and 39 female), in their own institution. The engi-

neering institution is located in a metropolitan city in our country. Participants filled a consent

form prior to the study. Participation in the study was completely voluntary, and participants

could withdraw from the study at any point during the study. All participants had undergone

a Software Engineering course in the previous semester, and hence were familiar with class

diagrams and sequence diagrams.

Each student was provided the task sheet which contained the requirements, the design

diagrams and a question asking them to identify defects. I was available to answer any doubts

during the session, but did not provide any hints or answers to students. External resources like

textbooks, references and use of internet were not provided to students.

We now describe the data analysis and how it answers RQ 1.1. A summary is provided in
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Table 4.1.

Table 4.1: Data source and analysis methods for Study 1a

Research Question Data Source Data Analysis Method

RQ 1.1:How do students evaluate Student response sheets Content analysis of

a software design against the student response to the evaluation

given requirements? question

4.2.5 Data Analysis

I analysed the answers of students using the content analysis method (Baxter, 1991) to come

up with categories for the defects identified (Details about the method can be found in Section

3.5.2). The steps which I followed to analyse the data are as follows.

1. Representation of student answers - The written text which each participant wrote as

a response to the question was typed verbatim to a spreadsheet. I considered a written

sentence or group of sentences which referred to a particular defect, as the unit of analysis.

Each row in the spreadsheet corresponded to a sentence/sentences written by participants.

Out of 100 students, one student’s response was not clear and hence was excluded from

the analysis. Many students listed multiple defects. I identified 168 answers from 99

student response sheets.

2. Descriptive coding - I assigned a descriptive code to each sentence. The objective of

descriptive coding is to avoid any prejudices or preconceptions and stay close to the data.

For example, for the following student response - “In the Register Pin Sequence diagram,

we do not use checkPinlength() before setPin(). By doing so, a user may add length(PIN)

!= 4 breaking the criteria.”, the descriptive code assigned was “checkPinLength() func-

tion is not used before setPin() in register sequence diagram”

3. Generate categories and sub-categories - I inferred categories and sub-categories based

on the patterns, explanations and relationships between the descriptive codes. The cat-

egories reflected the meaning inferred from the descriptive codes and can explain larger
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segments of data. I created memos and notes which described the category definitions

and criteria for assigning descriptive codes to these categories. For example, in the de-

scriptive code provided above, the sub-category inferred is “checkPinLength() function is

not called”, and the category is ”Identify necessary functions which are not used.”

A snippet of the spreadsheet used for the analysis is shown in Figure 4.7. I performed

descriptive coding and came up with the initial set of categories and sub-categories. To establish

reliability of the generated categories, two rounds of coding were done with a rater. In the

first round, I provided the rater with 20 student responses and the list of categories. After

independently assigning categories to the given set of responses, the rater and I discussed the

categories corresponding to each response, refined category names and definitions, and came to

an agreement on conflicting entries. In the second round, the rater and I independently assigned

categories to another 10 responses and reached near agreement (90%). Based on the refined

categories and definitions, I independently assigned categories to the remaining responses.

Figure 4.7: Snapshot of the spreadsheet used for analysing student responses
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4.2.6 Findings: Categories of student responses

In this section, we describe the responses which students provided when asked to identify de-

fects in the design diagrams based on the requirements. The categories, number of student

responses, and percentage of responses in each category is shown in Table 4.2. Definitions and

examples of categories and sub-categories are summarized in Table 4.3.

Table 4.2: Number of student responses in each category for Study 1a

Category of student response Number of student responses Percentage

Identify scenarios which do not satisfy requirements 41 24.4%

Identify necessary functions which are not used 24 14.3%

Change existing functionalities and requirements 37 22%

Add new functionality 18 10.7%

Change data types, functions of class diagram 21 12.5%

No defects 4 2.4%

Blank 23 13.7%

Total 168 100%

Category 1: Identify scenarios which do not satisfy the requirements (24.4%)

All responses in which students explicitly mentioned scenarios where the design is not satisfy-

ing the requirements were placed into this category. The scenarios which students were able to

identify (which were not satisfying the requirements) were - (1) The balance not being checked

during withdrawal, (2) An already registered user registering again (3) When withdrawal is

greater than balance and (4) PIN requirements not being checked.

None of the students could identify all the above mentioned scenarios. 23 students identi-

fied exactly one scenario. Only 7 students identified exactly two scenarios.
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Table 4.3: Categories of defects based on analysis of student responses for Study 1a

Defect Category Definition Sub-categories Example

Identify scenarios which Students identified a scenario 1. Identify scenario “In withdraw sequence diagram,

do not satisfy the and it is used to check if where balance is not checked after subtracting the withdrawal amount

requirement requirements are satisfied if balance is less than 1000

then withdrawal should be unsuccessful”

2. Identify scenario where user is “During PIN registration,

is already registered there is no option to check if

user has already registered.

This might lead to double registrations”

3. Identify scenario where “It should also check if withdrawal

withdrawal is greater amount is less than available amount”

than balance

4.Identify scenario where PIN “For register PIN sequence diagram,

requirements are not checked length or datatype of PIN not checked”

Identify necessary Students explicitly mentioned 1. checkMinimumBalance() “Withdraw: - checkMinimumBalance()

functions which that a particular not used and updateBalance() are not called”

are not used function is not used 2. updateBalance() not used “check Pin length() needs to be used

3. checkPinLength() not used both while registering and

changing PIN”

Change existing Students change an already 1. Change in functionality “In the withdrawal system,

functionalities and existing functionality by provided to user PIN should be entered after

requirements adding a sub-task amount is entered.”

2. Change in information The minimum amount to be present

provided to user in the account must be displayed

for user’s information

Add new functionalities Students add a completely - “There should also be a way to handle

new functionality, which is things if a user forgets his/her PIN”

unrelated to any of the “First time register PIN doesn’t

requirements provided have any 2-step authentication”

“Defect in provided scenario is that

there is no such option of

language preferences.”

Changes in data types, Students suggested changes 1. Change in data type “Datatype of Card no / Account no /

functions and structure in datatypes, and of variable PIN should be int and not string”

of the class diagram structure of class diagram

2. Variables missing “Users, accounts and ATMs

in class diagram are missing an ID variable”

Blank/No defects Students left the sheet blank - -

or explicitly stated there were

no defects.
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Category 2: Identify necessary functions which are not used (14.3%)

Students explicitly mentioned that essential functions present in the class diagrams are not be-

ing used in the sequence diagram, and hence not satisfying a particular requirement. Only

responses where students have explicitly mentioned the function name has been included in this

category. Students mentioned three functions which were missing: 1. checkMinimumBalance()

2. checkPinLength() 3. updateBalance(). 12 students identified that at least one function was

missing, out of which 5 could identify all three missing functions.

In the above two categories, students are evaluating the design diagrams against the re-

quirements by identifying alternate scenarios and simulating function execution.

Category 3: Change existing functionalities and requirements (22%)

29 students suggested improvements to existing functionalities as well as change of require-

ments. All responses where students change the requirement, or add a sub-function to an ex-

isting functionality have been assigned to this category. For example, students suggested that

(1) the PIN should be entered after entering withdrawal amount, rather than before (2) Users

should be asked to re-enter PIN in case of invalid PIN (3) Bank should provide PIN along

with the ATM card. One student even suggested that the requirement of minimum balance

amount of Rs. 1000 should not be present, hence suggesting a change in requirement. An-

other sub-category of student response was to provide appropriate responses to the user. For

example, students suggested that users should be provided with (1) Balance display before/after

withdrawal (2) Appropriate error messages for withdrawal rejection (3) Information about the

minimum balance requirement.

Category 4: Add new functionalities in the design (10.7%)

Students also introduced new functionalities to the design, rather than identifying defects based

on the requirements. We categorized all responses into this category if students are adding a

completely new functionality, which is unrelated to any of the requirements provided.

We found that 16 students added new functionalities when asked to verify designs. These

included varied functionalities like - One-Time-Password (OTP) authentication, Forgot PIN
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functionality, using email and mobile number for registration, language preferences, deposit

functionality, view current balance functionality, viewing the mini-statement and many others.

Students adding, modifying and changing functionalities and requirements are not wrong

in itself; in fact many are essential for an ATM system. However, students added functionalities

which were unrelated to the given requirements, rather than evaluating the design against the

requirements.

Category 5: Change data types, functions and structure of the class diagram (12.5%)

Another category of student responses were based on changes in the class diagram and change

in data type of variables. For example, students incorrectly stated that datatype of card number,

account number, balance and PIN should be ‘int’ rather than ‘string’. Students stated that some

variables are missing in the class diagram and also suggested structural changes in the class

diagram. For example, one student suggested that there should be an aggregation sign instead

of a composition symbol in the class diagram. Another commented on the absence of one-to-

one, many-to-many relationships between classes.

Category 6 and 7: No Defects (2.4%) and Blank responses (13.7%)

23 students did not provide any responses. 4 students explicitly mentioned that there were no

defects. None of them mentioned any reasons for why they did not find any defects. Students

leaving no responses may indicate that they did not understand the evaluation task. Students

specifically mentioning that there are no defects can indicate that they examined the diagrams

and could not identify any defects.

4.2.7 Inferring students’ mental model elements of the design based on

identified categories

The categories of student written responses identified can also be grouped based on the mental

model elements of design diagrams. Figure 4.8 summarizes the mapping between the response

categories and the mental model elements for design diagrams. We see that students’ responses
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map to the diagram surface elements, dynamic behaviours in the design, as well as on new

requirements and functionalities. Figure 4.9 depicts this grouping in the form of a Venn dia-

gram. (For example: 5 students focused exclusively on the diagram surface elements. 2 students

focused on all three types) We describe the response categories below.

Figure 4.8: Mapping categories of student responses to design diagram mental model elements

Focus on diagram surface elements in the design

13 students identified defects based on the syntactic elements in the design diagrams (Category

5). These included changes in data type of variables, and structural changes in the class dia-

gram. Out of the 13, 5 students exclusively focused on syntactic defects, and did not identify

other types of defects. This category of responses give indicators that students’ mental models

primarily contain knowledge regarding ‘diagram surface elements’. By specifying these type of

defects, students restricted their focus to a surface-level comprehension of the design diagrams,

without simulating dynamic behaviours in the design. Hence, we can infer that students who

focussed only on the diagram surface elements need more scaffolds to map the requirements

and the main goals and simulate dynamic behaviours in the design
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Focus on dynamic behaviours and main goals in the design

Our findings show that 41 students (out of 99) identified scenarios where the design is not ad-

hering to the requirements and identified necessary functions which were not used (Category 1

and 2). Out of the 41, 20 students exclusively focused on these type of defects. They mapped

the requirements to the main goals of the design diagrams. They made interconnections be-

tween different diagrams by identifying data variables and functions in the class diagram and

checked which functions were missing or not needed in the sequence diagram. This can indi-

cate that they simulated the control flow and data flow of various scenarios pertaining to the

given requirements and identified semantic defects in the design. These response categories

give indicators that students’ mental models contain knowledge of the main goals as well as the

control and data flow across different design diagrams based on the requirement.

Focus on new elements which are absent in the design

43 students either mentioned adding new functionalities to the design or changed the existing

functionalities and requirements (Category 3 and 4). Out of the 43, 24 students exclusively

focused on adding or changing functionalities and did not identify other types of defects.

We hypothesize that this behaviour of adding functionalities is due to students’ prior

knowledge of the problem domain (the ATM system). Students encounter several features of

the ATM like One-Time-Password (OTP), Two-factor authentication etc. in their daily lives.

When students are presented with the current design, their problem domain knowledge forms

a prominent part of their mental model. Students compare the design with their own model,

simulate alternate scenarios and generate hypotheses of how they envision the ATM system to

function. When there is a mismatch between their hypothesis and the actual design, students

flag these as defects. These categories give indicators that students’ problem domain knowledge

influences their mental model and causes them to add new elements into the design. Extraneous

knowledge about the problem domain interferes with identifying the main goals and simulating

scenarios in the design which do not satisfy the requirements. Hence, we can infer that stu-

dents need scaffolds to help them remain focussed on identifying relevant scenarios which do

not satisfy the requirements, as opposed to adding new functionalities and requirements to the

design.
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Figure 4.9: Venn diagram depicting which aspects of the design diagrams students focus on

It is to be noted that adding and modifying existing functionalities in itself is not an un-

desirable behaviour. When experts are asked to create designs from requirements, they expand

both the problem and the solution space. Experts expand the problem space by simulating al-

ternate scenarios and hence derive new requirements and constraints which are not stated in

the problem (Adelson and Soloway, 1985). The solution space can be expanded by generating

alternative solutions using various techniques like brainstorming, analogous thinking, attribute

listing, etc. (Liu and Schonwetter, 2004). They then evaluate several alternatives and come up

with a suitable design based on identified constraints. However, the task presented to students

was different from a design creation task. For this task, the objective was to identify defects

based on the requirement, and hence adding or changing functionalities was not the goal.

4.2.8 Reflections

Study 1a helped us identify a range of response categories students provided when asked to

evaluate a given design against the requirements. We also showed how each of these categories

can be mapped to the mental model elements for design diagrams. Apart from focusing on the

diagram structure and the dynamic behaviour (control flow and data flow) of the design, students

also brought in extraneous knowledge from the problem domain into their mental model.

These insights provide the basis for Study 1b, where we use qualitative methods to delve

deeper into understanding students’ strategies and mental models as they evaluate the design

against the given requirements.
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4.3 Study 1b: Characterizing students’ mental models while

evaluating design diagrams

In Study 1b, we provided a similar evaluation task as Study 1a to students, whereby they were

asked to provide a logical explanation of how the design satisfies/does not satisfy a given re-

quirement. Students’ written responses give us answers to what defects they are able to identify

in the given evaluation task. We also investigated what reading strategies students’ used and

what students’ mental models contained during the evaluation task. We did this by analysing

data from sources such as participant video recordings and interviews.

In Study 1b, we focussed on students’ reading strategies and mental models, as we wanted

to uncover how students’ ability to identify defects depend on their reading strategies (e.g.

horizontal and vertical reading) and their mental model elements. Based on the answers to

these research questions, we identified difficulties which they faced in the evaluation task which

informed the design of our intervention.

4.3.1 Research Questions

The research questions guiding Study 1b are:

• RQ 1.2 - What defects are students able to identify in the design evaluation task?

• RQ 1.3 - What reading strategies do students use to evaluate software design diagrams

against the given requirements?

• RQ 1.4 - What are the elements in their mental model?
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4.3.2 Participants

We conducted the study with 6 computer science undergraduate students of which 3 were in

their third year and 3 were in their fourth year of their bachelors in technology (BTech CS)

programme. Participants were recruited from engineering colleges in our city. Among the

participants, 3 were male and 3 were female. All the participants had undergone a software

design course in the third year of their undergraduate studies and hence all of them were familiar

with UML diagrams.

4.3.3 Description of the Task

The participant was provided with a set of requirements and the design of an automated door

locking system, specified as a set of UML diagrams. The design was seeded with some defects.

The task assigned to the participant was as follows - “For each requirement, your task is to

provide a logical explanation for how the design satisfies/does not satisfy the requirement. You

are free to use any notation/diagrams to support your explanation.” (Appendix B contains

details of the task, UML diagrams and other information provided to participants)

The requirements provided to the participant were as follows:

• R1. If the passcode hasn’t been set yet, the user can register and enter a required pass-

code.

• R2. When the user chooses the lock option, and enters the correct passcode, the door

should lock. If the passcode is incorrect, the door remains unlocked.

• R3. When the user chooses the unlock option, and enters the correct passcode, the door

should unlock. If the passcode is incorrect, the door remains locked.

• R4. The door should lock/unlock only if it is closed.

The UML diagrams provided to the participant are as follows -

• Use case diagram of the door locking system (Figure B.1)
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• Class Diagram of the door locking system (Figure B.2)

• Sequence diagram of the register use case (Figure B.3)

• Sequence diagram of the lock use case (Figure B.4)

• Sequence diagram of the unlock use case (Figure B.5)

Table 4.4 shows the defects corresponding to each requirement and an explanation of how

they can be uncovered. 7 defects were introduced in the design diagrams corresponding to the

requirements. Uncovering these defects require knowledge of the mental model elements for

design diagrams (Figure 4.2). Students need knowledge about the design diagrams and problem

domain, should identify the main goals in the design, and be able to simulate the control flow

and data flow in the given design. Defect D1 arises due to the absence of a check in the register

sequence diagram if a user is already registered. Defects D2 and D4 are due to an incorrect

behaviour when the incorrect passcode is entered (the value of door changes state, rather than

remaining in the same state). Defects D3 and D5 are due to the absence of a check in the initial

state of the door variable. In the design diagrams, there is no condition to check if the door is

closed, which results in defects D6 and D7.

4.3.4 Study Procedure

A summary of the study procedure is shown in Figure 4.10. The study was conducted with a

single participant at a time. At the start, each participant signed a consent form (The consent

form format is shown in Appendix A). The participant was provided with the task sheet con-

taining the requirements and the task as outlined in Section 4.3.3. The solution for the task was

to be written on the same sheet. Additional sheets were also provided. The UML diagrams

of the automated door locking system was provided in Umbrello 1, a popular UML modelling

software (see Figure 4.11 for a screenshot of the Umbrello interface). The participant was also

provided with an information sheet which contained an overview of UML diagrams, use-case

diagram, class diagram and sequence diagram. They were allowed to refer to this sheet at any

point during the task. (The task and information sheet is shown in Appendix B).

1https://umbrello.kde.org/
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Table 4.4: Description of the defects introduced in the design diagrams

Requirement Defect Explanation of how the defect can be uncovered

R1
D1 - Register Sequence Diagram -

There is no check if the passcode has already

been set

Read the requirements and the register sequence diagram.

Simulate the scenario where the user is already registered

R2

D2 - Lock Sequence Diagram -

When incorrect passcode is entered, the door

should not unlock but remain in the same state

Read the requirements, class diagram and the lock sequence diagram.

Simulate the change of state in the lock variable when unlock() function

is called in the else part

D3 - Lock Sequence Diagram -

Initial state of door is not specified

(i.e. the door should be in the unlocked state)

Read the requirements and the lock sequence diagram.

Simulate the initial state of the door

R3

D4 - Unlock Sequence Diagram -

When incorrect passcode is entered, the door

should not lock but remain in the same state

Read the requirements, class diagram and the unlock sequence diagram.

Simulate the change of state in the lock variable when lock() function

is called in the else part

D5 - Unlock Sequence Diagram -

Initial state of door is not specified

(i.e. the door should be in the locked state)

Read the requirements and the unlock sequence diagram.

Simulate the initial state of the door

R4

D6 - Lock Sequence Diagram -

There is no condition to check if the door

is closed

Read the requirements, the class diagram and the lock

sequence diagram.

Variable ‘close’ or any of its member functions have not been

specified in the class diagram or in the lock sequence diagram

D7 - Unlock Sequence Diagram -

There is no condition to check if the door

is closed

Read the requirements, the class diagram and the unlock

sequence diagram.

Variable ‘close’ or any of its member functions have not been

specified in the class diagram or in the unlock sequence diagram

77



Figure 4.10: Summary of Study1b procedure

At the start of the study, I provided the task sheet to the participant and explained the

task objective (i.e. the goal of this task is to evaluate if the design satisfies each intended

requirement). I gave a brief description of the Umbrello interface and provided the participant

with the UML diagrams of the door locking system. From this point on, the participant was

free to explore the UML diagrams and verify the requirements in any order. The participant

was free to speak out loud or to work silently. Even though these options were given, each

participant worked silently and only spoke when they had to clarify something. I was present

in the same room as the participant was solving the task, making periodic observations of what

the participant did as he/she performed the task.

After the participant finished the task, I conducted a semi-structured interview asking the

participant to describe what they did during the task. I started by asking him/her broad questions

like - “ What did you understand about the task?”, “How did you go about doing the task?”.

Based on their response, I probed them deeper and asked specific questions about how they

went about solving for each requirement. (e.g.: “Which diagram were you referring to while

solving for this requirement?” and “Which part of the class diagram did you observe for a

particular requirement?”). The objective of this interview was to encourage the participant to

elaborate and discuss their thinking of how they went about solving the task.
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Figure 4.11: Screenshot of the Umbrello interface

4.3.5 Data Sources

To answer the research questions, multiple data sources were used. Table 4.5 provides the

mapping of the research questions, and the corresponding data sources and analyses.

Table 4.5: Data source and analysis methods for Study 1b

Research Question Data Source Data Analysis Method

RQ 1.2: Defects students Participant writing 1. Evaluating identified

identify defects

RQ 1.3: Reading strategies Video of students’ performing 2. Video data analysis

the task and screen capture

RQ 1.4: Mental model 1. Participant writing 1. Evaluating identified

elements 2. Post-task interview defects

2. Thematic analysis of

audio transcripts

Participants’ writing on the task sheets were used to identify their performance in the

evaluation task (RQ 1.2). Analysis of the task sheet answers enabled us to identify whether they
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were able to uncover the semantic deficiencies in the design based on the requirements. The

entire study session and the post-task interview was recorded on a video camera. The video

data served as the primary source to infer students’ reading strategies (RQ 1.3). The participant

writing and post-task interview served as the data sources to identify student’s mental models

as they were solving the evaluation task (RQ 1.4).

As participants were solving the task, they performed various actions. For example, they

looked at the screen, clicked on various elements of the UML diagrams, switched between UML

diagrams, looked at the task sheet, wrote on the task sheet etc. In order to capture all these rich

interactions, we chose video and screen capture as our data sources. The camera was placed in

an angle which captured the participant’s screen, the task sheet and the actions performed by the

participant. A recording of the screen was also done during the entire session in order to capture

important information like mouse clicks, mouse movements, transition from one diagram to the

other. Data from the screen capture was primarily used in cases where the video data could not

clearly capture certain elements on the screen. Hence screen capture was not directly used in

the data analysis, but only to augment the video data information in certain cases.

To identify students’ mental models while solving the evaluation task, I used data from

participant writing and from the audio transcripts of the post-task interview. Participants’ writ-

ten responses were analysed in a manner similar to Study 1a, to infer categories of mental model

elements. In the post-task interview, questions were based on the observations which I made

while the participant was solving the task. These observations served as anchor points for the

interview later on. For example, actions like multiple switching between different diagrams,

and spending a lot of time on a particular diagram were anchor points which I used to elicit

what participants were thinking during that time. The questions were also based on answers to

each requirement, which the participant wrote on the given task sheet. Observations of these

writings on the task sheet and their interactions with the UML diagrams at a particular time,

served as mechanisms to uncover what participants were thinking.
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4.3.6 Data Analysis

I analysed participant writing to identify what defects they were able to identify (RQ 1.2). I

used video data analysis to infer reading strategies (RQ 1.3), and a thematic analysis approach

on participants’ writing and post-task interview transcripts to infer their mental model elements

(RQ 1.4). A summary of the steps in the analysis for RQ 1.3 and 1.4 is shown in Figure 4.12.

Figure 4.12: Summary of the analysis steps for RQ 1.3 and 1.4

Analysis method to infer defects identified by students (RQ 1.2)

I analysed participant response sheets in order to understand the defects they were able to iden-

tify/not identify. For each participant, I analysed the explanation they wrote for each require-

ment, and checked if it corresponds to the semantic defects which were seeded in the design

diagrams.
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Analysis method to infer reading strategies (RQ 1.3)

To answer RQ 1.3, I analysed the video data for identifying reading strategies. I adapted the

video analysis data method outlined by Derry et al. (Derry et al., 2010) and used thematic

analysis (Braun and Clarke, 2012) with the goal of identifying common themes. These themes

correspond to different reading strategies which students used. (These methods are described in

Section 3.5).

The steps I followed to analyse the video data were as follows:

1. Chunking and descriptive coding of video data into segments - I chunked each partici-

pant’s video data of the task based on participant’s direction of attention and action. I then

assigned a code for each segment, which was adapted from Hungerford et al. (Hungerford

et al., 2004). The codes are as follows:

• INF - Information Sheet

• SP - Statement of Problem

• UCD - Use Case Diagram

• CD - Class Diagram

• RegisterSD - Register Sequence Diagram

• LockSD - Lock Sequence Diagram

• UnlockSD - Unlock Sequence Diagram

• Write - Write on the task sheet

• Read-Write - Read what the participant wrote

• NC - not classifiable into any of these categories

This was the first level of coding done and is directly obtained from observation of the

video data. Each segment contained the start time, end time, duration of the action and

the corresponding action code as shown in Table 4.6. The Umbrello interface places

each design diagram in a separate tab, enabling me to observe from the video and screen

recording, which diagram a participant’s direction of attention was at a particular time

(see Figure 4.11). Inferring when the participant is reading and writing was also possible

by observing the video data.
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2. Combining segments to form an episode - I then combined the identified segments to

form episodes. Based on segment patterns, there were several instances of switching

between two diagrams. I combined these segment patterns and considered them as a

single episode. For example - The pattern 〈UnlockSD,CD,UnlockSD,CD,UnlockSD〉

was considered as a single episode.

3. Creating inferential codes for each episode - I did a second level of inferential cod-

ing for each episode based on the pattern of the episode. For example - The pattern

〈UnlockSD,CD,UnlockSD,CD,UnlockSD〉 was assigned the code “Vertical reading -

between requirements and class diagrams”

4. Thematic analysis of inferential codes - The inferential codes were examined, catego-

rized and combined with other codes in order to generate themes. These themes corre-

spond to the reading strategies which students used to evaluate the given software design

diagrams.

Reliability of the video data analysis was done during two stages of the analysis - during

descriptive coding into segments (step 1) and inferential coding of episodes (step 3). To es-

tablish reliability of the descriptive coding of the video data, I provided three clips (totalling 7

minutes) of a particular participant to another rater. I briefed the rater about the research ques-

tions of the study, the analysis framework and the descriptive codes which had to be assigned.

After this brief, the rater and I independently coded both the clips. After this, I synchronized the

rater’s and my time and looked for agreement among the assigned descriptive codes. Cohen’s

Kappa (Cohen, 1960) was calculated to establish inter-rater reliability. The kappa coefficient

came to 0.85, which indicated a substantial agreement.

Secondly, reliability of inferential codes and themes of the video data and participant

writing was established. Three rounds of discussion between me and the rater was done to

come up with the final set of themes and sub-themes. In each round, I gave a set of episodes

to the rater. After coding the given set of episodes, the rater and I discussed the resulting codes

and themes emerging and came to an agreement. We followed this process for two more rounds

till no more themes or sub-themes could be added.
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Table 4.6: A snapshot of the descriptive coding of a participant’s video data

Time Duration
Start

Time

End

Time
Action

Direction

of Attention

5:35 - 7:37 122 0 122 Reads the task sheet SP

7:37 - 7:45 8 122 130 Reads info sheet page 1 INF

7:45 - 7:50 5 130 135 Reads info sheet page 2 INF

7:58 - 8:05 7 135 142 Reads the task sheet SP

10:10 - 10:34 24 142 166
Double clicks on Door class and

goes through different properties
CD

10:34 - 10:38 4 166 170 Reads the Door class in the class diagram CD

10:38 - 10:53 17 170 187
Goes through the Controller class data

attributes and functions
CD

10:53 - 10:57 4 187 191 Reads the task sheet SP

11:00 - 11:13 13 191 204 Reads the Passcode class in the class diagram CD

11:13 - 11:27 14 204 218
Reads the unlock door sequence diagram -

messages 1,2 and if
UnlockSD

.. .. .. .. .. ..

.. .. .. .. .. ..

.. .. .. .. .. ..

17:00 - 17:05 5 517 522 Reads the class diagram CD

17:05 - 17:33 28 522 550 Reads the class diagram CD

17:36 - 17:40 4 550 554 Reads the task sheet SP

17:43 - 18:03 20 554 574 Reads the register sequence diagram RegisterSD

18:03 - 18:55 52 574 626 Writes - Req 1 Write

18:55 - 19:01 6 626 632 Reads what he wrote Read-Write

19:01 - 20:00 9 632 641 Writes - Req 1 Write

20:00 - 20:43 43 641 684 Reads what he wrote Read-Write

20:43 - 20:54 11 684 695 Reads the lock door sequence diagram LockSD

21:00 - 21:18 18 695 713 Writes - Req 2 Write

21:18 - 21:28 10 713 723 Reads the lock door sequence diagram LockSD

21:28 - 21:37 9 723 732 Reads requirement 2 SP

21:37 - 22:33 56 732 788 Writes - Req 2 Write
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Analysis method to infer elements of the mental model (RQ 1.4)

In order to infer the elements of the mental model (RQ 1.4), I coded the transcripts of partic-

ipants’ writing on the task sheet and post-task interview in order to generate themes. I first

explain the steps which I followed to analyse the audio transcripts (see Figure 4.12 for a sum-

mary)

1. Transcribing and segmenting the audio data - I transcribed the entire post-task inter-

view for each participant. The transcription was divided into segments. I chose the unit of

analysis as a sentence, and hence each sentence uttered by the participant corresponded

to a segment.

2. Descriptive coding of each segment - In this stage, I assigned descriptive codes to each

segment. The objective of descriptive coding is to avoid any prejudices or preconceptions

and stay close to the data. Each segment was assigned a descriptive code which described

the participant’s articulation of how they solved the task. For example, the open code for

“Now when it’s true, what will happen and when its false what will happen.” is “What

will happen when the condition is true and false”.

3. Inferential coding - Based on the descriptive codes, I inferred codes which could explain

larger segments of data. The most significant or most frequent codes were used to go

through larger amounts of data. In this stage, I also checked if the inferred codes align

with the elements of the mental model for design diagrams. For example, the focused

code for “What will happen when the condition is true and false”, is “Simulate control

flow when the condition is true and false”

4. Generating themes - In this stage, I looked for patterns, explanations and relationships

among the inferential codes and generated themes. For example, several codes such as

“control flow of true and false condition”, “control flow of the entire sequence diagram”

were grouped together under the “Control flow” theme.

The process I followed to analyse the student writings on the task sheet was similar to the

analysis of the audio transcripts. I transcribed the written responses, and divided the transcript

into sentence-level segments. I followed a similar process of descriptive and inferential coding,
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and generated themes. Hence, the themes which emerged based on the analysis of participants’

writing and post-task interview was used to infer students’ mental model elements.

To establish reliability of the codes and themes, I followed an approach similar to the

inferential coding of the video data. I explained the analysis framework to another rater and

presented a set of sentences from participant transcripts. The rater then independently coded

these sentences and came up with descriptive and inferential codes. After this, both the rater

and I discussed, reviewed and refined the themes. After two rounds of discussion, we came to a

consensus on the final themes.

4.3.7 Findings

We answer RQ 1.2 by examining students’ response sheets in order to examine which defects

they were able to identify. We answer RQ 1.3 by describing the strategies students used (inferred

from the video data) and RQ 1.4 by describing the characteristics of their mental model (inferred

from written responses and post-task interview) for the evaluation task.

RQ 1.2 - Defects identified by students in the evaluation task

We identified the defects which students uncovered by analysing their task sheets. Table 4.7

provides a summary of the defects found by participants. As seen from the table, all partici-

pants were able to detect defect D6 and D7 (both involved checking for the ‘closed’ condition).

However, only P4 was able to defect D3 and D5 (checking for the initial state of the ‘door’ vari-

able). None of the participants were able to uncover defects D2 and D4 (incorrect behaviour

when wrong passcode is entered). P4 uncovered 4 defects, P2 and P3 - 3 defects, P1, P5 and P6

- 2 defects.

Based on the analysis, certain patterns emerged. All participants were able to uncover

defects D6 and D7. Both defects involved the omission of the ‘closed’ construct. This required

participants to search the different design diagrams, and check if the “closed” construct was

available. Hence, we can infer that all participants were able to uncover defects involving

omission of missing constructs.
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Participants P2 and P3 were able to uncover defect D1. Defect D1 can be uncovered by

imagining a scenario where the user is already registered. Only P4 was able to uncover defects

D3 and D5. In order uncover D3 and D5, participants had to simulate the initial state of the

“lock” variable.

We also see that none of the participants were able to uncover defects D2 and D4. In

the lock (Figure B.4) and unlock (Figure B.5) sequence diagrams, no function should be called

when an incorrect passcode is entered (corresponding to the else part) i.e. the door should

remain in the same state. However, calling the unlock function (in the ‘else’ part of the lock

sequence diagram) and the lock function (in the ‘else’ part of the unlock sequence diagram)

causes a change in state and thus does not satisfy the requirements. In both these defects,

participants were required to simulate the change of state in the lock variable when the lock()

or unlock() function is called. This data flow simulation might have led them to uncover these

defects. Hence, we can infer that students had difficulty in uncovering defects which involve

simulation of control and data flow in the design.

RQ 1.3 - Student Strategies for Evaluating Design Diagrams

For each participant, we aggregated the time spent for each code corresponding to their direc-

tion of attention. Figure 4.13a denotes percentage of time spent for each direction of attention

for each participant based on video data. In Figure 4.13b, we group the codes into 3 categories

- Problem space (SP and INF), Design diagram space (CD, UCD, RegisterSD, LockSD, Un-

lockSD ) and Writing (Write, Read-Write). From the figures, we see that there were no major

differences in how participants spent their time during the evaluation task. P2, P3, P4 and P6

spent considerable time on the problem statement (INF and SP) compared to P1 and P5. P1

and P2 spent the most time on observing the design diagrams (CD, UCD, RegisterSD, LockSD,

UnlockSD).

In order to infer high-level strategies used by participants, we examined episodes where

they performed round-trips between different ‘direction of attention’ codes.

We found that students primarily used three strategies - (1) Horizontal reading (2) Vertical

reading and (3) Concurrent use of horizontal and vertical reading.
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Table 4.7: Summary of defects detected by participants based on their task sheet writings

Requirement Defect P1 P2 P3 P4 P5 P6

R1
D1 - Register Sequence Diagram -

There is no check if the passcode has already

been set

N Y Y N N N

D2 - Lock Sequence Diagram -

When incorrect passcode is entered, the door

should not unlock but remain in the same state

N N N N N N

R2 D3 - Lock Sequence Diagram -

Initial state of door is not specified

(i.e. the door should be in the unlocked state)

N N N Y N N

D4 - Unlock Sequence Diagram -

When incorrect passcode is entered, the door

should not lock but remain in the same state

N N N N N N

R3 D5 - Unlock Sequence Diagram -

Initial state of door is not specified

(i.e. the door should be in the locked state)

N N N Y N N

D6 - Lock Sequence Diagram -

There is no condition to check if the door

is closed

Y Y Y Y Y Y

R4 D7 - Unlock Sequence Diagram -

There is no condition to check if the door

is closed

Y Y Y Y Y Y
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(a) Time spent for each ‘direction of attention’
(b) Grouping of ‘direction of attention’ into cate-

gories

Figure 4.13: Summary of the video data analysis for each participant

1. Horizontal reading- In horizontal reading, participants read different design diagrams

in order to integrate information from diagrams. All episodes which had one or sev-

eral round-trips between the class diagram and a sequence diagram were included in this

theme. (Example - 〈CD,RegisterSD,CD〉, 〈UnlockSD,CD,UnlockSD,CD〉)

2. Vertical reading - In vertical reading, participants read between design diagrams and

the system requirements. All sub-episodes which had one or several round-trips between

the a specific design diagram and reading the requirements were included in this theme.

(Example - 〈SP,LockSD,SP〉, 〈UnlockSD,SP,UnlockSD,SP〉)

3. Horizontal and vertical reading - In this pattern, students read requirements, class dia-

gram and multiple sequence diagrams in no particular order.

Figure 4.14 shows the strategies which different participants used. Most participants used

vertical reading, whereas P1 and P2 used horizontal reading techniques as well. In spite of using

these reading strategies, students could not identify defects in the design, especially those that

involved data flow simulation. Table 4.8 shows the percentage of the total time each participant

spent in such multiple round-trips. We see that there wasn’t any clear relationship between the

time spent in multiple round-trips and the defects participants were able to uncover. Hence, we

can infer that students’ ability to identify defects did not depend on the reading strategies they

used.
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Figure 4.14: Percentage of time spent for each reading strategy based on video data

Table 4.8: Relationship between time spent and defects identified for each participant

Participant Total Time Spent in Task Time spent in switching Percentage Time Defects Identified

(Minutes) (Minutes) spent in switching

P1 31.95 6.35 19.87 2

P2 16.53 4.97 30.04 3

P3 21.73 4.5 20.71 3

P4 14.23 5.05 35.48 4

P5 16.12 5.92 36.71 2

P6 11.02 3.42 31.01 2

Although we did not see differences in reading strategies among participants, we observed

certain differences in their explanation of how they went about the evaluation task. We explain

these differences in students’ mental model below.

RQ 1.4 - Students’ Mental Model

We inferred students’ mental model elements for design diagrams based on the themes which

emerged from the inferential coding of the participants’ writing and post-task interview data.

A summary of the themes and sub-themes from the post-task interview are described in Figure

4.15, and from the written responses in Figure 4.16. We combined themes from both these

analyses and present the mental model elements below.
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Figure 4.15: Mental model elements themes emerging from participants’ post-task interview

Figure 4.16: Mental model elements themes emerging from participants’ written responses
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1. Diagram surface elements - These elements form the basic messages/functions in the

sequence diagram and class diagram. They are the basic building blocks of the dia-

grams. Participants said that they observed data types, access specifiers and methods of

the class diagram. They also checked the appropriateness of particular data types. They

also checked the appropriateness of the return type of functions in the class and sequence

diagrams. (e.g.: “So when this function is passed over here, it will check that passcode

and return a boolean value whether the passcode is correct or not. If it is correct or if it

is not, it will return it over here. So, it will return true or false.”)

2. Control flow - We defined control flow as the control structure linking individual mes-

sages in the sequence diagram. We identified control flow codes in their writing and

speaking when they explicitly simulated function calls or specified the flow of messages

in the sequence diagram. We observed that participants (a) Simulated function calls by

articulating about functions not used or not needed (e.g. “Register() not needed. SetOp-

tion() works fine without it”) (b) articulated the flow of messages in different sequence

diagrams. They also (c) specified the control flow of conditionals (e.g.: “If length is 4,

it will call setpasscode upon itself and then, it will return”). They were also (d) able to

simulate the control flow of true and false conditions in the conditional.

3. Data flow - We identified codes corresponding to data flow when participants explicitly

mentioned simulating the flow of data across the sequence diagram. (e.g.: “The passcode

gets the bool value, and returns the bool. ”). We found no instances of data flow simu-

lation in their written responses, and very few instances of participants (only P2 and P4)

describing the data flow when asked how they performed the evaluation task.

4. Main goals - Main goals refer to the plans in the design at a higher level of granularity.

We identified codes corresponding to main goals when participants abstracted the func-

tionality of the design diagrams and did not write/speak in terms of flow of messages and

change in values. We observed at all participants were able to identify the main goals of

the design diagrams.

• Participants considered the main goals of the design when they first encountered

the problem (Example: “This is basically a door locking and unlocking system. So

the user is registering first, then he is setting the passcode and then he is directly

jumping to locking or unlocking.”).
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• Having understood the main goals of the design diagrams, they identified the main

goals of each sequence diagram (Example: “So the first thing that a person does is,

he has to select an option.”). Participants identified goals present in the requirement

and mapped it to goals in the sequence diagram. (e.g.: “So this (requirement) has

three steps, lock, password and the final function calling. So even this (register

sequence diagram) can be divided into that.”).

• They then identify the goal of each part of the sequence diagram (e.g: “Selecting to

lock, so this part does that. Till here it is checking whether I have selected to lock or

not.”) and checked with the corresponding goal of the requirement.

5. Requirements - Participants were introduced to the requirements as well as the design

diagrams. Hence, reading the requirements triggered them to form a mental model of the

situation based on the requirements. In participant writings, they specified whether the re-

quirement satisfied the design or not, and even restated the requirement (see Figure 4.16).

In interviews, we saw that participants questioned the necessity of a requirement (Exam-

ple: “ I was not very sure why I need to enter the passcode for locking the door again

and again”) as well as justified the necessity of a requirement. (e.g.: “For unlocking the

door, yes uh. password is required”). Participants also simulated scenarios in order to

check whether a requirement is satisfied or not (e.g.: “If the door does not unlock, user

will understand that it is a wrong passcode. So the third condition is satisfied”)

6. Additional Functionalities - While analysing the requirements and the design diagrams,

participants also thought of additional functionalities which were lacking in the design

and also justified its necessity in the design (e.g.: “ But in this whole thing, there is no

validation involved. For example, a passcode needs to be four digits or four numbers,”).

We observed that the mental model of the design created by students while evaluating

design diagrams, led them to identify defects in the design, especially those that involved data

flow simulation. For example, P4 was the only participant who uncovered defects D3 and

D5 (checking for the initial state of ‘door’). P4 showed instances of describing data flow when

asked about how he went about checking the requirements. For requirement 2 and 3, he said that

he checked the initial state of the lock variable while solving for the lock and unlock requirement

(“It will first check the state of the door, whether it is locked or unlocked”). P4 simulated the
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initial state of the “lock” variable and said that he “imagined” the initial state of the door,

which led him to uncover these defects. Other participants did not show instances of data flow

simulation and hence were not able to uncover defects D3 and D5. All participants were able to

identify the main goals of the design and the sequence diagrams.

Most students mentioned that they visualized scenarios in the design. However, some

students visualized completely new scenarios which were absent in the requirements and design

diagrams (For example: adding a voice functionality, checking the length of passcode)

4.3.8 Reflections from Study 1b

As seen from the findings, all participants used reading techniques of switching between multi-

ple diagrams and the requirements. However, there was no relationship between these strategies

and the defects students identified in the design. The findings show that the elements present

in students’ mental model play a significant role when used appropriately with the reading

strategies in their ability to identify defects in the design diagrams

Our findings show that most students restricted their focus to the diagram surface elements,

main goals and superficial control flow of the design diagrams. For example, all students were

able to uncover defects D6 and D7, which involved an omission of the ‘closed’ construct. Stu-

dents were able to do this, as it involved searching the design diagrams to check for the ‘closed’

construct. Hence, we can infer that students are able to uncover defects, which involve a super-

ficial search over the design diagrams.

We also see that none of the participants were able to uncover defects D2 and D4, which

involved a simulation of the control flow and the data flow for the lock and unlock sequence

diagrams. We see a similar pattern for defects D3 and D5 (only P4 could uncover these defects),

which involved simulating the initial state of the variable “lock”. Hence, we can infer that

participants have difficulty in uncovering defects involving simulation of data flow.

These findings are consistent with results from program comprehension literature as well.

Pennington makes a distinction between “surface knowledge” and “deep knowledge” in pro-

gram comprehension - “program knowledge concerning operations and control structures re-

flect surface knowledge, i.e. knowledge that is readily available by looking at a program. In
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contrast, knowledge concerning data flow and function of the program reflect deep knowledge

which is an indication of a better understanding of the code” (Pennington, 1987). Students had

sufficient surface knowledge about the structure of the class and sequence diagrams to help

them identify missing constructs such as “closed”, but they could not identify defects which

involved simulating the data flow of variables across function calls in the sequence diagram.

Some participants focused on simulating completely new scenarios (voice assistance etc.),

and introduced new functionalities in the design, as opposed to verifying the design against the

given requirements. This also confirms findings from Study 1a and also gives us insights as

to why they would have exhibited such a behaviour. Based on their existing problem domain

knowledge (of an automated door locking system), students internalised these requirements and

tried to reason and justify the need of these requirements. They also mapped these requirements

to the design diagrams using their design diagram knowledge. If something is missing or incor-

rect in the design diagrams, student flagged these as defects and explicitly mentioned that these

additional functionalities are required.

Students adding new functionalities also confirms certain characteristics of mental models,

that models of novices lack firm boundaries, and they may be unclear about what aspects or parts

of the system their model is supposed to cover (Norman, 2014). In this study, students visualised

scenarios outside the model boundary of the design diagram and requirements, which led them

to include additional functionalities into their mental model of the design.

To summarize, the above findings indicate what elements are present or inadequate in

students’ mental models as they evaluate design diagrams. This is summarized in Figure 4.17.

In addition to the diagram surface elements, dynamic behaviours, and main goals which we

adapted from the Block model (Figure 4.2), we see that students also develop a mental model of

the problem domain, by thinking about the requirements, and their problem domain knowledge

leads them to incorrectly add new functionalities as well.
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Figure 4.17: Mental model elements for design diagrams based on findings from Study 1b

4.4 Summary of Insights from Novice Studies

Study 1a and 1b provides insights on how students approach a given evaluation task. These

studies also show that the adapted mental model for design diagrams is appropriate for specify-

ing the elements of a mental model for doing design evaluation.

These studies revealed categories of student responses for an evaluation task, and how

these categories relate to their mental models. We found that students focus their attention on

superficial aspects of the design and have difficulty in simulating the control and data flow in

designs. Some students add new functionalities and requirements into the design, rather than

evaluating the design against the given requirements.

These insights inform the design of our pedagogy for enabling students to effectively

perform software design evaluation. The pedagogy needs to scaffold students to

• Build appropriate mental models of the problem domain and the design.

• Simulate the control flow and data flow in order to verify if the design satisfies the re-

quirements.

• Understand the purpose of design evaluation i.e., they are required to evaluate the design

against the given requirements rather than add new functionalities into the design.
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In the next chapter, we describe how we have incorporated these insights into the design

of the pedagogy for software design evaluation.

97





Chapter 5

Design of the VeriSIM Learning

Environment

5.1 Summary of findings from literature and novice studies

Our findings based on the analysis of literature and results from novice studies show that:

• Experts spend a significant time evaluating their designs. They create a rich mental model

of the design and perform mental simulations on these models.

• Experts simulate the control flow and data flow of various scenarios in the design in order

to evaluate the design against the given requirements.

• Novices are able to do a superficial search on the design diagrams, but have difficulty in

simulating the control flow and data flow within design diagrams.

• Novices have difficulty in identifying and simulating scenarios where the design does not

satisfy the requirement. They identify scenarios outside the model boundary of the design
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diagram and requirements, which lead them to include additional functionalities into the

design.

Thus, we can infer that effective evaluation of the design diagrams depends on (1) the mental

model which students create based on the requirements and the design and (2) students’ ability

to simulate relevant scenarios in their own mental model of the design. Students develop a

better understanding of the design when their mental models contain information about the

control flow and data flow of various scenarios in the design.

These inferences form the basis of the VeriSIM (Verifying designs by SIMulating scenar-

ios) pedagogy, which we propose for the teaching-learning of software design evaluation. The

key idea of the VeriSIM pedagogy is that - scaffolding students to identify and construct mod-

els of relevant scenarios in the design can lead to effective evaluation of the design diagrams

against the given requirements.

How can we support students to identify and construct models of relevant scenarios? To

answer this, we draw the theoretical basis of VeriSIM from science education and introductory

programming literature, which have emphasised teaching and learning of modelling. We adapt

effective affordances and pedagogical features from these sources to inform the design of the

VeriSIM pedagogy.

5.2 Theoretical Basis of the VeriSIM Pedagogy

Software design involves modelling, where the design represents an abstract model of the soft-

ware system, on which mental simulations are performed to evaluate the design. However,

there is a lack of pedagogical techniques which emphasise on modelling software designs (Bur-

gueño et al., 2018). On the other hand, science education has placed a lot of importance to

modelling, and extensive research has been done on incorporating modelling resources and

teaching-learning strategies in the classroom. Learning of introductory programming has also

stressed on enabling students to build accurate mental models of the program as the primary

way to improve their programming performance (Sorva, 2013).

In this section, we draw insights from science education, and use of mental models in
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introductory programming to inform the basis of our pedagogy. We adapt pedagogical features

and affordances which have been shown to be beneficial, to the context of software design.

5.2.1 Model-based Learning in Science Education

Modelling is a central practice in the discipline of science (Papaevripidou and Zacharia, 2015).

When scientists observe a phenomena, they construct models which try to explain the process at

a sufficient level of abstraction. Schwarz et al. defines models “as a representation that abstracts

and simplifies a system by focusing on key features to explain and predict scientific phenomena”

(Schwarz et al., 2009). The model serves as a portrayal of a scientist’s current understanding of

the phenomena. The model is then tested by observations in the real world and refined based

on these observations (Hestenes, 2010). Examples of models such as Bohr’s model of the atom,

the double helix model of DNA, atmospheric models etc. have helped scientists reason about

various microscopic as well as macroscopic phenomena.

Since the modelling process is an important practice of scientists, it is essential that stu-

dents are explicitly taught this process. Scientists have emphasised the importance of integrating

the modelling process in the teaching-learning of science (Hestenes, 1987, 1992). An important

goal of science education is to enable students to develop powerful models for making sense

of their daily experiences of biological, physical and chemical phenomena (Clement, 2000). A

prominent paradigm towards this goal is model-based learning. Simply put, model-based learn-

ing involves using modelling for learning purposes. It is defined as “a dynamic, recursive pro-

cess of learning by constructing mental models of the phenomenon under study. It involves the

formation, testing, and subsequent reinforcement, revision, or rejection of those mental models”

(Buckley et al., 2010). Model-based learning provides students opportunities to interact with

physical, representational or computer models which describes the working of a scientific phe-

nomenon. As students engage in constructing scientific models, they mimic modelling practices

of scientists and also develop conceptual knowledge of the phenomena.
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Knowledge and Practices in Model-based Learning

Modelling a phenomenon requires knowledge of specific modelling practices (Papaevripidou

and Zacharia, 2015). According to Louca et al., constructing a model of a phenomenon/system,

requires students to identify components that comprise that phenomenon or system, namely its

objects (e.g. a ball, a molecule), processes (e.g., movement of objects), entities (e.g. velocity)

and interactions (e.g. how entities interact with objects or processes) (Louca and Zacharia,

2015).

In addition to construction of models, model-based learning also entails refining, revis-

ing, evaluating and validating scientific models. Learning to model a phenomenon involves

investigating it, collecting evidence, and bringing one’s observations and experiences from the

physical world. These conceptions and domain-specific knowledge result in the construction

of an initial working model (model formulation). The initial model is modified by restructur-

ing and tuning various elements in the model. During model revisions, several intermediate

models are generated. Students go back and forth between the intermediate models, and com-

pare it with the phenomenon or system (model comparison). These comparisons are done by

doing mental simulation of these models and validating whether it predicts the corresponding

phenomenon accurately (model evaluation). This step-wise enrichment of mental models is

referred to as the “fleshing out” of mental models (Johnson-Laird, 1983). Hence, model formu-

lation, model comparison, and model evaluation are essential practices required during model-

based learning (Papaevripidou and Zacharia, 2015). In addition to knowledge about modelling

practices, metacognitive knowledge and epistemic knowledge about modelling is also essential.

Metacognitive knowledge refers to knowledge about the steps of the scientific modelling pro-

cess (Papaevripidou and Zacharia, 2015). Epistemic knowledge corresponds to understanding

the nature, purpose and utility of scientific models (Schwarz and White, 2005).

To summarize, model-based learning entails knowledge of the components that comprise

a system, essential modelling practices which involve constructing, revising, and evaluating

intermediate models, and metacognitive and epistemic knowledge. These elements have been

summarised in Figure 5.1.
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Figure 5.1: Knowledge and practices in model-based learning (adapted from Buckley et al.

(2010))

Scaffolds and Technology Support for Model-based Learning

Research has shown the benefits of scaffolding in supporting students’ modelling processes

(Fretz et al., 2002). Students provided with scaffolds as they interact with models have shown to

perform better than those who were not provided any scaffolds (Seel and Dinter, 1995; Sandoval

and Reiser, 2004; Azevedo et al., 2011; Buckley et al., 2010). Scaffolds have been implemented

as prompts, questions, hints, conceptual models and visualizations, in order to assist students

as they progress through modelling tasks (Seel, 2017). Among these scaffolds, there has been

a significant emphasis on the advantages of presenting students with visualizations (diagrams,

animations, simulations) during modelling tasks. It has been shown that by using visualiza-

tions, students are more likely to construct mental models with which they can reason about

various scientific issues (Rapp, 2005). There are also empirical studies which demonstrate the

effectiveness of visualizations on model-based learning (e.g.: (Davies et al., 2005; Sharp et al.,

1995)).

Computer simulations have also been widely used to help students develop mental models
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of a given phenomena. Simulations provide students with affordances to imitate the processes of

complex systems, and provide opportunities to visualize these processes. Simulations facilitate

model-based learning by allowing students to manipulate models by altering values of variables

and observing their effects (Sokolowski, 2009; Milrad et al., 2003). However, an analysis of

literature shows that there needs to be a proper balance between providing necessary guidance

and scaffolds, and allowing students to use computer simulations or create simulation programs

(Seel, 2017). Students can get overwhelmed by the complexities of the modelling task and fail

to develop adequate mental models of the phenomena (Adams et al., 2008).

To scaffold students in modelling, model progression has shown to be beneficial (Mulder

et al., 2011). In model progression, students are provided models which vary in dimensions

such as their perspective, degree of elaboration and their order (White and Frederiksen, 1990).

When students are provided opportunities for successive refinements of their model, it helps

them progressively understand and develop models of the given phenomenon. Various strate-

gies support this idea of model progression. These include strategies such as prior exploration

(Kopainsky et al., 2015; Kopainsky and Alessi, 2015), partially worked-out models (Mulder

et al., 2016) and learning from erroneous models (Wijnen et al., 2015). In the prior exploration

strategy, Kopainsky and Alessi (2015) allowed learners to interact with a simulation model (by

changing values of relevant variables) and see the results in practice mode. Students observed

the structure and behaviour of the simulation as a result of these interactions. Students modelled

the phenomenon in different phases. They started with manipulating a single variable, followed

by manipulating an additional variable, and continued till they modelled the entire phenomenon.

Findings from this study showed that the prior exploration strategy led to an improved under-

standing of the underlying model. In ‘partially worked-out models’, learners received support

in the form of a partial model which outlined the basic structure of a system (Mulder et al.,

2016). Findings from this study showed that the quality of these learners’ models were better

than those who did not receive support at all. In the ‘learning from erroneous models’ strategy,

learners worked with a model which contained errors (Wijnen et al., 2015). Learners had to

correct the model for the simulation to generate correct outcomes. The findings show that the

erroneous models enhanced the acquisition of domain-specific knowledge.

To summarize, model-based learning has been widely adopted as a paradigm for teaching-

learning of modelling. It entails learning about the knowledge of the components that comprise
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a system, and essential modelling practices such as constructing, revising, and evaluating inter-

mediate models. Learners also need metacognitive and epistemic knowledge to abstract what

they learnt and apply it to new contexts. We also described various types of scaffolds and strate-

gies which have been used to build modelling competence in students. In the next sub-section,

we argue for the analogous nature between the modelling activities in science and software de-

sign, and show that the model-based learning paradigm can be adapted for teaching-learning of

software design as well.

5.2.2 Adaptation of the model based learning paradigm to software de-

sign

The term ‘model’ has been used in science education to refer to physical or biological sys-

tems. We have seen that learning of scientific modelling requires students to have knowledge

of components (objects, processes and entities) of the system and interactions between these

components. Analogously, software design models also comprises components, such as ob-

jects, variables and methods. These components interact with each other to describe the system

behaviour. For example, an object’s member function can call a function of another object,

resulting in changes in variable values in the system. Students require knowledge of these

components and how they interact with each other to understand the functioning of a software

system. As students develop their understanding of the components and their interactions, they

are able to effectively model a software system.

The practices involved in modelling scientific phenomenon can be adapted to software

design as well. A common characteristic of modelling activities is that these models are con-

structed, refined and evaluated to describe the phenomenon under observation. The central tenet

of model-based learning is that the process of constructing and manipulating these mental mod-

els causes a deeper and integrated understanding of scientific concepts required to understand

the phenomenon. Our analysis of literature regarding expert strategies and cognitive processes

in software design (Section 2.3), has shown that similar mental modelling processes occur while

modelling software designs as well. Experts create a mental model of the system to be designed

(model formulation), refine the model by comparing it with their previous models or other in-
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formation (model comparison and evaluation), and validate their models either by performing

mental simulations on them or by prototyping a solution (model validation).

These reasons give us indicators that the model-based learning paradigm can serve as

the basis for teaching-learning of evaluating a given software design. Thus, the scaffolds and

strategies used in model-based learning, such as model progression can be adapted to the soft-

ware design context as well. We explain these adaptations in detail in Section 5.3. Having

shown the applicability of the model-based learning paradigm as the broad theoretical basis of

the pedagogy, we describe the actual strategy which can facilitate students to construct mental

models of the design. To address this, we adapt the program tracing strategy from introductory

programming literature, and show its applicability in the context of software design evaluation.

5.2.3 Mental models and use of tracing in introductory programming

While programming, programmers simulate the execution of the mental model they have cre-

ated. These simulations of program execution are often referred to as tracing. Program tracing

is the process of emulating how a computer executes a program (Fitzgerald et al., 2005). It

involves writing the state change of variables after each line of code. For example, consider the

following program shown in Figure 5.2. To trace the following program, one starts from the first

lines of the program and identifies the variables in the program and their initial values(sum = 0

and num = 1). One then mentally simulates the execution of the while loop, and the change

in the values of variables corresponding to its execution. For example, in the first iteration, the

while condition is satisfied and control moves inside the while loop. The values of sum and num

are updated based on a mental simulation of the lines inside the while loop. One then continues

these updates to num and sum, till the condition of the while loop is not satisfied, resulting in

the end of program execution.

Tracing a given program enables us to simulate the behaviour of the program, and also

understand its purpose. For example, from Figure 5.2, we see from the trace that the num

variable takes odd number values, and the sum variable calculates the sum of these odd numbers.

Hence, we can infer that the purpose of this program is to compute the sum of the first five odd

numbers.
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Figure 5.2: A program tracing example

Evidence from literature shows that tracing is a necessary pre-cursor skill to write, main-

tain and debug code. Previous research has shown that students who use tracing are able to better

comprehend a given program (Xie et al., 2018; Cunningham et al., 2017; Lister et al., 2004).

Cunningham et al. explored the relation between what students sketched and their ability to

comprehend simple python programs. They found that students who used tracing performed

better than students who did not trace at all (Cunningham et al., 2017). Xie et al. explicitly

taught this tracing strategy to learners and found that program comprehension improved (Xie

et al., 2018).

Tracing a program has several advantages. The state change of variables are written down

in the form of memory tables or some other external representation. These representations

help students manage the cognitive load of remembering values of variables during execution,

especially if the program is large or complex. The external representation also serves as an

artifact which exhibits students’ understanding of the program. As students trace, they take

an active role in describing the ‘run’ of the program, as opposed to reading through the code

(Cunningham et al., 2017). Tracing also forces students to think what happens next in the

program.

Developers use tracing while comprehending large programs as well. While tracing large
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programs, they focus their attention on areas of interest in the program, based on the context.

For example, if a particular functionality has to be changed, developers read and locate the code

where the change has to be performed (Roehm et al., 2012). As they trace specific parts of

the program, they reason about the control flow (which components call which functions, how a

function is reached, etc.) and data flow (how data flows through a program, what modifies a data

structure etc.). As they trace the control flow and data flow of different parts of the program,

they gradually develop a mental model of the given program (Détienne, 2001).

To summarize, tracing has shown to be an effective strategy to comprehend programs.

Developers trace the control flow and data flow of relevant parts of the program, based on the

task and context, to develop a mental model of the given program. In the next sub-section,

we adapt the program tracing idea to the context of software design, and show how a similar

tracing strategy can be used to simulate the control flow and data flow of various scenarios in

the design.

5.2.4 Adapting the tracing strategy for software designs

In studies with novices (Chapter 4), we observed that students have difficulties in simulating

alternate scenarios and detailed control and data flow of various scenarios in the design. Since

tracing has been used as an effective strategy to understand the control and data flow of a given

program, we believe that the idea of tracing can be extended to design diagrams as well. In this

sub-section, we introduce the “design tracing strategy”, and explain how the strategy can be

applied to scaffold students in simulating various scenarios in the design.

In design tracing, students trace the control flow and data flow across different diagrams

for a given scenario of system execution. A scenario is a specific behaviour in the design which

fulfils the given requirements. For example, consider the design of an automated door locking

system which was described as part of Study 1b (Section 4.3.3). In the design, Requirement

R3 states that “When the user chooses the unlock option, and enters the correct passcode,

the door should unlock. If the passcode is incorrect, the door remains locked.”. Based on

this requirement, various scenarios can be generated, based on the initial state of the door and

values of the passcode chosen. For example, a probable scenario can be - “When the door
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is initially locked and the user selects the unlock option and enters the correct passcode, the

door unlocks”. In design tracing, for each scenario, students are scaffolded to trace the control

flow and data flow by constructing a state diagram. The state diagram encompasses the flow of

messages across different objects described in the sequence diagram (control flow) and change

of variables as a result of the execution of these messages (data flow). Thus, the state diagram

serves as the representational model of the scenario.

We now describe the design tracing strategy to trace the scenario - “When the door is

initially locked and the user selects the unlock option and enters the correct passcode, the door

unlocks”. The state diagram for this scenario is shown in Figure 5.3.

• Based on the scenario, students identify relevant data variables from the class diagram

(Figure B.2). These are variables which undergo changes based on execution of the sce-

nario. For example, ‘optionSelected’, ‘userInputPasscode’, ‘systemPasscode’ and ‘lock’

are relevant variables from the class diagram, which are included in all the states (S1 -

S4), as shown in Figure 5.3.

• Students then identify the sequence diagram which realises this scenario. In this case,

since the scenario describes a user choosing the unlock option, students focus their atten-

tion on the ‘Unlock Sequence Diagram’ (Figure B.5).

• Students then break the scenario into parts. For each part of the scenario, the relevant

part of the sequence diagram is identified. For example, the sub-parts of the scenario are

“E1: Set option to unlock”, “E2: Enter correct passcode” and “E3: Door unlocks”. Each

of these sub-parts are then mapped to parts in the sequence diagram. For example E1

corresponds to Messages 1-2, E2 to Messages 3-7, and E3 to Message 8-10 in the Unlock

sequence diagram (Figure B.5). These messages correspond to the events in the scenario,

which are shown as arrows in Figure 5.3.

• Once the relevant data variables and events are identified, students are scaffolded to con-

struct the state diagram which realises this scenario.
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Figure 5.3: Design tracing example for a scenario in an automated door locking system design

The process of constructing the state diagram (Figure 5.3) is as follows:

• Students start with an initial state (S1), whereby initial values of relevant variables are

chosen. In Figure 5.3, we see that the values of relevant variables are initialized, and

the lock variable value is set to true since the scenario specifies that the door is initially

locked.

• Based on E1, students simulate the execution of Messages 1-2 in the unlock sequence

diagram (Figure B.5). They then construct the second state, and list down the data vari-

ables and their values as a result of this transition. This state corresponds to the state S2

in Figure 5.3. In S2, we see that the value of optionSelected changes from null to unlock

as a result of the transition E1.

• Students proceed to construct the next state (S3) by simulating the execution of E2

(Enter correct passcode). We see that as the correct passcode is entered, the value of

userInputPasscode changes to 1234, and thus matches the systemPasscode.

• Based on the execution of event E3 (Door unlocks), the value of lock changes from true

to f alse in State S4.

The example above describes the process of the state diagram model construction for a

single scenario for a given requirement. As students identify other scenarios and model them

using design tracing, they can uncover defects in the design. For example, consider the follow-

ing scenario for requirement R2 - “When the door is initially unlocked and the user selects the

unlock option and enters the incorrect passcode, the door remains unlocked”. This scenario

is plausible as there can be a case when the user chooses to unlock option even though it is
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unlocked. The state diagram for the given scenario is shown in Figure 5.4. From this figure, we

see that in state S4, although the value of lock should remain f alse, it changes to true due to the

invocation of lock() (Message 11) in the Unlock sequence diagram (Figure B.5). Hence, there

is an error in the Unlock sequence diagram, when the user enters an incorrect passcode. We see

that the process of tracing the control flow and data flow resulted in identification of this defect.

Figure 5.4: Design tracing example for a scenario which does not satisfy the requirement

From the above examples, we hypothesize that as students identify scenarios and model

them using design tracing, they will be able to evaluate the given software design better. Firstly,

by identifying different scenarios for each requirement, students broadly explore the design

solution space. Secondly, by tracing each of these scenarios, they are forced to think deeply

about the flow of data and events for each scenario. Hence, both the broad exploration of the

design by identifying scenarios, and simulating the data and event flow for each scenario can

help in an improved understanding of the design and effectively evaluate the design against the

given requirements.

5.2.5 Summary: Theoretical basis of the VeriSIM pedagogy

To summarize, the theoretical basis of the VeriSIM pedagogy is drawn from model-based learn-

ing, model progression, and program tracing. The model-based learning paradigm has shown

that constructing, manipulating and evaluating mental models improves understanding of sci-

entific concepts. Therefore, we infer that providing affordances to construct, manipulate, and

evaluate models of scenarios in the design can lead to better mental models of the design,

leading to better evaluation. Program tracing has been shown to be an effective strategy to

understand a given program. We extend the program tracing idea to tracing scenarios in a

given design. Model progression can provide a structure to activities in the pedagogy. Thus,
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progressively enabling students to explore a model, correct an incorrect model, and complete

an incomplete model can enable them to effectively create a mental model of a given scenario.

In the next sections, we describe the VeriSIM pedagogy and how it has been opera-

tionalised as a technology-enhanced learning environment to scaffold students in software de-

sign evaluation.

5.3 The VeriSIM pedagogy for teaching-learning of software

design evaluation

The key idea of the VeriSIM pedagogy is that - “scaffolding students to identify and construct

models of relevant scenarios in the design can lead to effective evaluation of the design dia-

grams against the given requirements.” The VeriSIM pedagogy scaffolds students to construct

models for a given scenario using the design tracing strategy. Using design tracing, they trace

the control flow and data flow for a given scenario by constructing a state diagram. The ped-

agogy aids students to progressively construct models of various scenarios in the design by

taking them through four activities -

1. Explore the model - In this activity, students observe an already created state diagram for

a given scenario. This activity enables them to understand the different parts of the state

diagram model, and how the state diagram corresponds to the control and data flow of the

given scenario.

2. Correct the model - In this activity, students are required to correct an incorrect model.

The model contains variable-value pairs that need to be corrected, in order to model the

given scenario.

3. Complete the model - In this activity, the model contains relevant events, but the data

variables and their values are missing. Students are required to add relevant data variables

and specify their values in each state.

4. Construct the model - Finally, they construct the entire state diagram for a given scenario.

We hypothesize that this model progression of first exploring the model, then correcting an
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incorrect model, completing an incomplete model, and finally constructing the model enables

students to model various scenarios in the design, thereby enabling them to effectively evaluate

the design against the given requirements.

5.4 The VeriSIM Learning Environment

We have incorporated the VeriSIM pedagogy into the VeriSIM learning environment. VeriSIM

is a web-based self-learning technology-enhanced learning environment (TELE) which trains

learners to apply the design tracing strategy. VeriSIM is available online to use on the following

link https://verisim.tech. An introduction and videos of various stages in VeriSIM is available

at this link - http://et.iitb.ac.in/ prajish/verisim.html

In VeriSIM, learners are first introduced to the requirements and design diagrams for an

“Automated Door Locking System”. They then trace scenarios in the design using the design

tracing pedagogy. Finally, they reflect on their overall learning and how design tracing will be

useful for them in the future.

After interacting with VeriSIM, learners should be able to:

1. Understand the purpose of the design tracing technique to trace a given scenario

2. Identify parts of the scenario and how these parts correspond to the control flow and the

data flow from the design diagrams

3. Apply the design tracing technique to trace a given scenario by constructing a state dia-

gram. As they trace a given scenario, they should be able to:

(a) Identify relevant data variables from the class diagram for the given scenario

(b) Identify relevant events from relevant sequence diagrams for the given scenario

(c) Visualize control flow and data flow to trace the given scenario

Activities in VeriSIM are presented as various challenges to learners. VeriSIM takes learn-

ers through different stages that contain challenges. As learners attempt these challenges, they

gain points and acquire skills. We give an overview of the stages and challenges in the next

subsection.
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5.4.1 Stages and Challenges in VeriSIM

An overview of the stages and challenges in VeriSIM is given in Figure 5.5. The three stages

are - Problem Understanding Stage, Design Tracing Stage and Reflection Stage. Each stage

comprises challenges, which are followed by evaluation and/or reflection activities (Ge and

Land, 2004). The reflection activities make students reflect on what they have done and learnt

in a challenge. The evaluation activities test them on what they learnt in the challenge. In

VeriSIM, a pedagogical agent serves as a guide to the learner and helps understand the different

features in the TELE. The agent also provides the goal of each challenge to the learner, and

provides appropriate feedback when they encounter certain errors in the challenges.

Figure 5.5: Overview of learning activities in VeriSIM

We now give an overview of the three stages and the challenges in each stage.

114



Problem Understanding Stage

In the Problem Understanding Stage, learners are introduced to the requirements and the soft-

ware design of an “Automated Door Locking System”. This stage comprises three challenges.

1. Challenge 1 - Understand the client and requirements - The learner is presented with

the requirements of the automated door locking system. They then perform an evaluation

activity which tests their understanding of the given requirements.

2. Challenge 2 - Understand the software design diagrams - The learner is then presented

with the class diagram and 3 sequence diagrams of the door locking system. The TELE

gives an overview of the class diagram and sequence diagrams. After the learner goes

through these diagram, they attempt the reflection activity, wherein the learner is asked

to identify defects (if any) in the diagrams. They then go through an evaluation activity,

which tests their understanding of the design diagrams. These reflection and formative

evaluation questions enable learners to reflect on and closely analyse the given diagrams.

3. Challenge 3 - Understand scenarios - In this challenge, the TELE explains what is

meant by a scenario and displays a scenario based on the design. After this, they attempt

a reflection activity asking them to identify other scenarios in the design, followed by an

evaluation activity which tests their understanding of other scenarios in the design.

Design Tracing Stage

In the Design Tracing Stage, learners are introduced to the design tracing strategy. This stage

comprises four challenges in increasing order of complexity. In each challenge, a different

scenario of the same design is provided. Learners are free to attempt the challenges in any

order.

In all the challenges in the design tracing stage, the objective of the learner is to trace

the scenario using the state diagram. The state diagram has to match the expert model for the

learner to successfully complete the challenge. Each state in the state diagram is compared with

the corresponding state in the expert model and appropriate feedback is provided by the system.

The challenges in the design tracing stage are as follows:
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1. Challenge 1 - Explore the model - In this challenge, learners are introduced to the state

diagram for a scenario. The agent explains the different parts of the state diagram and

how the scenario is being traced.

2. Challenge 2 - Correct the model - In this challenge, learners are presented with the state

diagram for another scenario, but the state diagram contains certain errors. The objective

of this challenge is to fix certain errors in the state diagram and thereby correctly trace

the given scenario. A screenshot of the model of Challenge 2 is shown in Figure 5.6.

Figure 5.6: An incorrect state diagram shown in Challenge 2

3. Challenge 3 - Complete the model - In this challenge, the state diagram is given with

relevant events, but the data variables and their values are missing. Learners have to add

relevant data variables and specify the values of these variables for each state in the state

diagram. A screenshot of the model of Challenge 3 is shown in Figure 5.7.

Figure 5.7: Incomplete model provided in Challenge 3
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4. Challenge 4 - Construct the model - In this challenge, only the scenario is provided to

the learner, and they have to construct the entire state diagram from scratch. A screenshot

of the model of Challenge 4 is shown in Figure 5.8.

Figure 5.8: Construct the entire model in Challenge 4

Reflection Stage

In the Reflection Stage, the system provides learners with a reflection activity which helps them

summarize what they learnt in the previous two stages and their perceptions of the usefulness

of the design tracing pedagogy.

5.4.2 Pedagogical Features in VeriSIM

The main goal of VeriSIM is to enable students to effectively identify and construct models of

various scenarios in the design, which is based on the model-based learning paradigm. The

pedagogical features and activities in the VeriSIM TELE provide students affordances to con-

struct and refine models of scenarios in the design, and visualize the execution of these models.

VeriSIM provides scaffolds and feedback to assist learners in the model construction process,

and also opportunities for learners to reflect on their learning while interacting with VeriSIM.

We explain these pedagogical features in VeriSIM in detail below.
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Affordances to construct and revise models of various scenarios in the design

In the ‘Design Tracing Stage’ challenges, learners go through four challenges which progres-

sively scaffold them to trace a given scenario by constructing a state diagram. The interface

in VeriSIM for the ‘Design Tracing Stage’ has certain prominent spaces which assist learners

to construct, refine, and validate the model of a scenario. Figure 5.9 shows the interface for

VeriSIM for Challenge 3 in the Design Tracing Stage. (The interface is similar for all four chal-

lenges in the Design Tracing Stage). The space on the top is the design diagram space which

displays the design diagrams. The class diagram is shown on the left, the sequence diagrams

are shown on the right. Based on the provided scenario, learners have to correct the incorrect

model in Challenge 2, complete the incomplete model in Challenge 3, and construct the entire

model in Challenge 4. The learners interact with the model (i.e. the state diagram) in the model

construction space, as shown in the figure. Learners can construct and revise the model by

clicking the ‘Edit’ button on the interface. On clicking the ‘Edit’ button, learners are provided

with the model attribute space, as shown in Figure 5.10. As seen in this figure, learners can

add, edit and delete data variables, events or states. These actions are reflected in the model

state diagram. For example, when a new data variable is added with an initial value, the data

variable and value gets added in all the states in the state diagram. Learners can then modify

the values in each state of the state diagram by editing the respective states. Learners can ‘exe-

cute’ their model at any time by clicking on the ‘run’ button as shown in Figure 5.9. Based on

the feedback provided by the model execution visualisation (which we explain in detail below),

they can refine their model. In this manner, learners can construct and modify models of various

scenarios in the design.
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Figure 5.9: Various spaces in the design tracing challenges

Figure 5.10: The model attribute space
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Affordances to visualize execution of the model

VeriSIM provides the affordance to visualise the state-wise execution of the model, by clicking

on the ‘run’ button in the interface. Each click of the ‘run’ button results in the system checking

the correctness of a particular state in a linear order. When the learner clicks on ‘run’ after

constructing the state diagram, the system matches the first state with the expert model. If

correct, the state is highlighted in green and the system proceeds in checking the next state. If a

state contains an error, the execution stops, the state is highlighted in red and the agent provides

a feedback message indicating an error. Whenever a learner clicks on ‘run’ the next time, the

execution starts from the first state.

Based on each click of the “Run” button, appropriate highlights are made in the class and

sequence diagram as shown in Figure 5.11. With the help of these highlights, learners are able

to visualise the relevant changes in the class and sequence diagrams in a particular state. A

transition to a new state triggers a set of events in the sequence diagram. The visualization

shows the corresponding changes in the class diagram (change of values of variables) for each

event/message in the sequence diagram. The learner can replay this execution step, review

previous execution steps and move forward. As the learner observes these visualizations and

corresponding changes in the design diagrams, they are able to visualize the state change of

different variables at a given state and also understand the relationship between the class and

sequence diagram. Thus, the ‘run’ feature enables students to validate their model, and refine

the model based on the feedback provided.

The ‘run’ feature is based on existing work in program visualization literature. Pro-

gram visualization systems (PV) are used to display program executions automatically or semi-

automatically. These systems allow teachers to demonstrate and students to explore the runtime

behaviour of programs (Sorva et al., 2013). In our case, we have extended the program vi-

sualization idea to software design diagrams. In VeriSIM, although the execution is entirely

simulated, and not automatic, we believe the simulation can help in students’ understanding of

the execution of the scenario and also provide opportunities to validate and refine their models.
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Figure 5.11: Affordance of the run feature

Scaffolding and feedback provided by the pedagogical agent

Pedagogical agents are lifelike characters designed to facilitate learning in computer-based en-

vironments.The role of an agent is to promote student learning, such as guiding students’ atten-

tion in interactive multimedia environments (Moreno, 2004), providing students with feedback,

modeling, and guidance (Moreno et al., 2001). It can make the environment more human like,

engaging and motivating (Moreno and Flowerday, 2006).

A summary of various types of scaffolds provided by the agent is summarized in Table

5.1. In VeriSIM, the agent serves as a guide to the learner and can help in easing the cognitive

load of encountering a new learning environment. When learners encounter a new interface in

VeriSIM, (for example: Challenge 1 in the Design Tracing stage), the agent provides a tour and

explains various parts of the interface. The agent also provides the goal of each challenge to

the learner. Key concepts in VeriSIM, like the design tracing pedagogy, is also explained by

focusing the attention of the learner on various parts of the interface.

Another important function of the agent is to provide appropriate feedback to the learner in

the challenges. As the learner uses the ‘run’ feature to validate their model, the agent provides

appropriate feedback regarding the correctness of each state in the state diagram. The feedback

messages do not directly tell learners what to do, but directs their attention to what can be done

to resolve the error.
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Message Type Example

Explaining parts of the interface

There are three stages comprising of different challenges.

Complete each stage to unlock challenges in the next stage.

Earn upto 2000 points as you attempt these challenges.

You also gain skills in design tracing as you successfully complete these challenges

Explaining concepts
In design tracing, we trace the sequence of data and function changes

across different diagrams for a given scenario of system execution.

Introducing goals of a challenge
In this challenge, your goal is to construct the state diagram.

You can use the data, events and state tab to construct the state diagram

Providing Feedback
It looks like there is an error in the highlighted state.

Trace the state change of variables and try to identify the error

Table 5.1: Pedagogical agent message types in VeriSIM

Scaffolds for articulation and reflection

After every challenge, there are reflection activities which enable learners to articulate what they

learnt in the challenge. These reflection activities are termed as reflection-on-action activities

(Schön, 1987), where students evaluate their study process after completing the whole inquiry

cycle. These are similar to elaboration prompts (Ge and Land, 2004), which are designed to

prompt learners to articulate their thoughts and explicit explanations. Such elaboration prompts

have been shown to be effective in facilitating knowledge building of learners (Lin and Lehman,

1999). These scaffolds also serve as reminders to plan their future activities and monitor their

progress (Quintana et al., 2004). In VeriSIM, the reflection activities allow learners to articulate

what they learnt and apply these learnings in future challenges.

5.5 A Walk-through of how Learners Interact with VeriSIM

In this section, we present how learners go through the various stages and challenges in VeriSIM.
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Introduction to VeriSIM

After learners log in to the system, they are presented with the learning objectives of VeriSIM.

They then view an introductory video. In the video, learners are presented with a situation

where they have graduated and entered a software startup company as a software developer.

They are introduced to their team and project manager. The project manager then explains

the importance of design evaluation and why it is essential. The objective of this introduction

is to set the context and situate the learner in a software team setting. A screenshot of the

Introduction phase as shown in Figure 5.12.

Figure 5.12: Introduction screen of VeriSIM

After watching the video, learners are directed to the VeriSIM dashboard as shown in

Figure 5.13. The dashboard contains the three stages and corresponding challenges in each

stage. When learners view the dashboard for the first time, they are provided with a tour (the

purple box in Figure 5.13), which explains the broad objectives of various stages and challenges

in VeriSIM. They can choose to take or skip the tour. Learners now proceed with the challenges

in the first stage i.e. the ‘Problem Understanding Stage’.

Problem Understanding Stage

The first challenge in the Problem Understanding Stage is the ‘Understand the Client and

their Requirements’ challenge. In this challenge, learners are introduced to the requirements

of an automated door locking system, as shown in Figure 5.14.
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Figure 5.13: The VeriSIM dashboard

Figure 5.14: The requirements from ‘Understand the Client and their Requirements’ challenge

After that, they go through an evaluation activity as shown in Figure 5.15. This evaluation

activity contains questions which test their understanding of the requirements, and provides

feedback on their answers to the questions.

After attempting the evaluation activity, learners proceed to the second challenge in the

Problem Understanding Stage i.e. the ‘Understand the Software Design Diagrams’ chal-

lenge. In this challenge, they are provided with the class diagram and sequence diagrams of the

automated door locking system, as shown in Figure 5.16. The agent provides a brief explana-

tion of the class diagram and sequence diagrams, and asks learners to go through these design

124



diagrams, before attempting the reflection and evaluation activities. After analysing the design

diagrams, learners click on the ‘next’ button and attempt a reflection activity.

Figure 5.15: The evaluation activity from ‘Understand the Client and their Requirements’ chal-

lenge

Figure 5.16: The ‘Understand the Software Design Diagrams’ challenge

In the reflection activity, learners are asked to identify defects in the design based on

the requirements, as shown in Figure 5.17. After this reflection, they attempt an evaluation

activity which tests their understanding of the design diagrams. The evaluation activity contains
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multiple choice questions (e.g. ‘What does the inputPasscode() function return?’, ‘Which is

the function used for creating a passcode during first-time registration?’), which students can

answer by analysing the class and sequence diagrams of the automated door locking system.

For the evaluation and reflection activities, they can view the requirements and design diagrams

at any time, by clicking on the ‘Diagrams’ and ‘Requirements’ button at the top right of the

screen (Figure 5.17).

Figure 5.17: Reflection activity in ‘Understand the Software Design Diagrams’ challenge

They then move on to the third challenge in the Problem Understanding Stage i.e. the

‘Understanding Scenarios’ challenge. In this challenge, the agent provides a description and

example of a scenario to learners, as shown in Figure 5.18. They then proceed to a reflection

activity, which asks them to list other scenarios in the design (“What are other scenarios in the

design? List at least three. You can use the requirements tab and the design diagrams tab to

help you answer this question”). After listing down the scenarios, they then go through an eval-

uation activity, which tests their understanding of different scenarios in the design. Examples

of questions asked in the evaluation activity are shown in Figure 5.19.

After successfully attempting the reflection and evaluation activities in the ‘Understand-

ing Scenarios’ challenge, learners have now unlocked the next stage, i.e. the Design Tracing

Stage. They are directed towards the dashboard, and can attempt any of the challenges in the

Design Tracing Stage.
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Figure 5.18: The ‘Understanding Scenarios’ challenge

Figure 5.19: Evaluation activity in ‘Understanding Scenarios’ challenge

Design Tracing Stage

The Design Tracing Stage has four challenges - ‘Challenge 1 - Explore the model’, Challenge

2 - Correct the model’, ‘Challenge 3 - Complete the model’, and ‘Challenge 4 - Construct
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the model’. This is the prescribed order, although learners can go through them in any order.

Challenge 1 - Explore the Model

In this challenge, learners are introduced to the state diagram for the first time. In this challenge,

the learner is presented with the correct state diagram which describes the given scenario. The

agent describes the design tracing strategy and the model i.e. state diagram, and its different

parts, such as the states and the transitions. The agent then suggests the learner to click the ‘Run’

button to view the execution of the model. For each click of the ‘Run’, the appropriate state is

highlighted in green, and appropriate messages are provided by the agent. The agent describes

the changes in the design diagrams when control transfers to a particular state, as shown in

Figure 5.20. After the execution reaches the final state, the learner can proceed to an evaluation

activity. The evaluation activity contains questions which test learners’ understanding of the

state diagram (e.g. The state diagram contains relevant data variables from the ____ diagram).

After completing the evaluation activity, learners can proceed to Challenge 2.

Figure 5.20: The agent explaining the state diagram execution for Challenge 1
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Challenge 2 - Correct the Model

In this challenge, learners are presented with another scenario and an incorrect state diagram

which models this scenario. The agent explains the objective of this challenge, i.e. learners are

expected to fix errors in the given state diagram. They can click the ‘Run’ button at any time to

validate the model. If a state contains an error, and learners click on ‘Run’, the agent indicates

an error in the state by highlighting that state in red, and asks learners to trace the state change

of variables in the highlighted state to identify the error. To modify the state, learners can click

on the ‘Edit’ button, which opens the model attribute space, where they can edit the appropriate

state by changing the appropriate values (see Figure 5.21). For example, for the first state in

Challenge 2, the learner is required to change the value of ‘lock’ from ‘false’ to ‘true’, since the

door is initially at the locked state. Learners are free to edit states and check the execution of

the model at any time during the challenge.

Figure 5.21: In Challenge 2, learners can change values of variables in appropriate states

After learners correct all the states in the state diagram, they can click on ‘run’ to validate

their model. They then move onto a reflection activity, which asks them to summarize what they

learnt and what they found difficult in Challenge 2. After answering the reflection question,

they then attempt an evaluation activity. In the evaluation activity, they are provided with an

incorrect state diagram. They attempt multiple-choice questions which ask them to identify
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incorrect states and also choose the appropriate correct states. After attempting this evaluation

activity, learners move on to Challenge 3.

Challenge 3 - Complete the Model

In Challenge 3, learners are provided with the state diagram containing relevant events, but

the data variables and their values are missing. Learners can use the ‘edit’ feature to add data

variables in the data tab (see Figure 5.22), and edit appropriate states to reflect the change

in values of variables in these states. Similar to previous challenges, they can execute the

state diagram at any time to get feedback on their model. After completing the state diagram

with appropriate data variables and values, they move on to reflection and evaluation activities,

similar to the ones after Challenge 2.

Figure 5.22: In Challenge 3, learners add relevant data variables to the state diagram

Challenge 4 - Construct the Model

When learners start challenge 4, they are provided with an empty model. They have to add

relevant data variables, events and states to model the given scenario (see Figure 5.23). After

successfully completing this challenge, learners advance to the third stage in VeriSIM i.e. the

‘Reflection Stage’
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Figure 5.23: In Challenge 4, learners construct the entire state diagram from scratch

Reflection Stage

In the reflection stage, learners go through reflection activities which asks them to identify

relevant steps in tracing a scenario, and how the design tracing strategy will be useful for them in

the future. Learners are also presented with the answer they provided to the reflection activity in

the ‘Problem Understanding Stage’ i.e. of identifying defects in the design diagrams (see Figure

5.17). They are then asked whether they would like to change their answer to this question. The

reflection activity is meant for them to apply the design tracing technique to come up with

scenarios which do not satisfy the requirements. Questions in the ‘Reflection Stage’ are shown

in Figure 5.24.
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Figure 5.24: Questions asked to learners in the ‘Reflection Stage’

In the next section, we describe the pedagogical basis of the challenges and stages in

VeriSIM and they implement the VeriSIM pedagogy.

5.6 Connecting the Pedagogical Basis to Challenges and Fea-

tures in VeriSIM

In this section, we discuss how the pedagogical basis connects to various activities in VeriSIM.

We describe how the TELE features implement the VeriSIM pedagogy of helping students iden-

tify and construct models of various scenarios in the design. A summary of challenges in

VeriSIM, and the corresponding features and its pedagogical basis is described in Figure 5.25.
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Figure 5.25: A summary of the pedagogical basis of various features in VeriSIM

The pedagogical basis of challenges in the Problem Understanding Stage is to help learn-

ers build an adequate understanding of the requirements and the design diagrams. This un-
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derstanding is a pre-requisite to trace scenarios in the ‘Design Tracing’ stage. Literature also

emphasises that development of an adequate problem representation is essential for high per-

formance in software design (Sonnentag, 1998). These challenges and the evaluation activities

ensure that learners have a detailed understanding of the problem (requirements) and solution

(design diagram) space. Literature also identifies two categories of understanding the problem

space - Problem comprehension by analysing requirements and problem comprehension by sce-

narios (Sonnentag, 1998). In the ‘Understand Scenarios’ challenge, learners are presented with

a scenario, and are also triggered to think of different scenarios as they attempt the reflection

and evaluation activities. Hence, the challenges in this stage ensure that learners have analysed

the requirements and the design, and have examined various scenarios in the design.

In the ‘Design Tracing Stage’, learners are scaffolded to progressively construct models

of scenarios in the design. The challenges in this stage incorporate various pedagogical features

of the model-based learning paradigm. First, the VeriSIM interface provides learners with the

‘Edit’ feature, which enables them to manipulate the state diagram by adding/editing/deleting

data, events and states. Second, the ‘Run’ feature provides learners with appropriate feedback

on their models. Hence, these pedagogical features promote the model formulation, refinement,

and evaluation practices posited by the model-based learning paradigm.

In the ‘Design Tracing Stage’, learners progressively learn to construct the state diagram.

The underlying theoretical basis of the order of challenges is based on the model progression

of activities which we described in Section 5.2.1. In the first challenge of the ‘Design Tracing

Stage’, learners observe the run of the state diagram i.e. the execution of trace of the scenario.

In the second challenge, there is an error in the data flow, which the learner has to correct. In

the third challenge, the entire data flow has to be traced by the learner. In the fourth challenge,

control flow and data flow has to be traced. Each of these modelling activities, such as prior

exploration, learning from partial and erroneous models have been shown to be beneficial to

students in the context of modelling in science. We have appropriately adapted it to the context

of modelling scenarios in a given design.

In the ‘Reflection Stage’, as well as after each challenge in other stages, students are

provided with adequate scaffolds for articulation and reflection. These scaffolds enable them

to abstract their learnings from each challenge, and think of how they can apply it for new

problems and contexts.
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In the next section, we discuss how the activities in VeriSIM are enabling students to

develop effective mental models of the design.

5.7 Role of VeriSIM Activities in Developing Effective Men-

tal Models of the Design

As mentioned in Section 4.1, the block model not only characterizes the elements of the soft-

ware design mental model, but can also inform the pedagogy of activities targetted at developing

specific mental model elements of the design. Hence, we have used the mental model elements

for design diagrams (which we adapted from the Block model in Section 4.1.2), to inform the

design of the stages and activities in VeriSIM. This is summarised in Figure 5.26.

Figure 5.26: Elements of students’ mental model being developed by activities in VeriSIM

The challenges in the ‘Problem Understanding Stage’ helps students build on their prior

design diagram knowledge and problem domain knowledge, as seen in Figure 5.26. In Chal-

lenge 1 (Understand the client and requirements), as learners go through the requirements and

answer the evaluation questions, they develop an understanding of the problem domain and what

is required to be designed. This helps them visualize the door locking system, and simulate how

a user will use the system based on the requirements. In Challenge 2 (Understand the software

design diagrams), learners are provided with an overview of class and sequence diagrams, which
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along with the reflection and evaluation activities activates their prior knowledge of the design

diagrams and enhances their understanding of the purpose of specific design diagrams in the

design. In Challenge 3 (Understand scenarios), learners are introduced to scenarios, and they

identify other scenarios in the reflection and evaluation activities. These activities help them

develop a deeper understanding of the problem domain, since the scenarios describe various

behaviours in the design. As seen in Figure 5.26, the activities in the ‘Problem Understanding

Stage’ fosters development of the mental model of the problem domain, and also triggers their

prior knowledge about the problem domain and design diagrams.

Once learners develop an understanding of the problem domain, the challenges in the

‘Design Tracing Stage’ follow a scenario-centric approach and help students develop a rich

mental model of the design. The main goal of each challenge is to construct a state diagram

which correctly models the given scenario. Each state in the state diagram contains the current

values of variables. Each transition denotes an event and causes a change to the next state. The

values in each state can be determined by analysing the class diagram, and transitions can be

determined by analysing the sequence diagram. This ensures that learners are developing an

understanding of the diagram structural elements.

As learners trace a given scenario, they also map a part of the scenario with a given state.

This ensures that they identify the main goals and sub-goals in the design. Learners tracing

the scenario using the state diagram ensures that they are able to simulate the control flow

while making the transitions, and are able to simulate the data flow by explicitly mentioning

the values of variables in each state.

Thus, as learners progressively construct the model for the given scenarios, they develop

a deeper understanding of the diagram structural elements, such as the data members and func-

tions in the class diagram, the goals and sub-goals in the sequence diagram, and simulate the

control flow and data flow across the class and sequence diagram for the given scenarios.

We believe these activities and pedagogical features in VeriSIM foster development of the

elements of students’ mental models, thereby enabling them to effectively evaluate a software

design against the given requirements.
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5.8 Summary

In this chapter, we summarized findings from the analysis of literature and our studies with

novices. Based on these findings, we proposed the VeriSIM pedagogy, which can scaffold stu-

dents to effectively perform software design evaluation. The key idea of the VeriSIM pedagogy

is to scaffold learners to identify and construct models of scenarios in the design. The under-

lying theoretical basis of the pedagogy is adapted from the model-based learning paradigm.

We provided arguments for how model-based learning practices and scaffolds can be adapted

for software design evaluation. We operationalised the pedagogy into the VeriSIM learning

environment, which incorporated features of model construction, revision, visualization, and

evaluation. We also described the pedagogical basis of various features in VeriSIM and how

they contribute in developing effective mental models of the design in students.

In the next chapter, we investigate the effectiveness of VeriSIM, and how it helps students

to perform software design evaluation.
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Chapter 6

Evaluation of the VeriSIM Learning

Environment

In this chapter, we describe Study 2, which we conducted to examine the effectiveness and

usefulness of the VeriSIM learning environment.

6.1 Research Questions

The activities and features in the VeriSIM learning environment enable learners to simulate

dynamic behaviours (control flow and data flow) in the design by tracing a given scenario.

Tracing scenarios can help learners identify defects in the design by identifying scenarios which

do not satisfy the requirements. Through this study, we investigate the effects of VeriSIM in

students’ ability to simulate dynamic behaviours, and in their ability to identify defects in the

design diagrams. The research questions guiding this study are as follows:

• RQ 2.1: What are the effects of VeriSIM in students’ ability to simulate dynamic be-

haviours in the design?
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• RQ 2.2: What are the effects of VeriSIM in students’ ability to identify defects in the

design?

6.2 Study Procedure

Study 2 was conducted with 86 final year (fourth year) computer engineering and information

technology engineering students (48 male and 38 female), in their own institution. The medium

of instruction in their institution is English, hence all participants were comfortable in reading,

writing and speaking in English. Their average age was 21 years. The engineering institution

is located in a metropolitan city in our country. A few days prior to the study, participants had

to fill a registration form with their basic information like name, branch, overall percentage in

the last semester, and rate their confidence in understanding of object-oriented design, class and

sequence diagrams. The registration form also contained the consent form. Participation in the

study was completely voluntary, and participants could withdraw from the study at any point

during the study. (The registration form along with the consent form is given in Appendix C).

All participants had undergone a Software Engineering course in the previous semester,

and hence were familiar with class diagrams and sequence diagrams. All participants were

comfortable working on a computer. Due to space constraints, all the participants could not be

accommodated in a single room at once. Hence, the study was divided into 2 sessions - one in

the morning and the other in the afternoon. 60 students (30 male and 30 female) participated in

the morning session. 26 students (18 male and 8 female) participated in the afternoon session.

A summary of the study procedure is shown in Figure 6.1. The study took place in a

computer lab. I, along with two research interns were present during the study. I initially

explained the main goals of the workshop and the activities participants will perform during

the workshop. After this introduction, participants solved a pre-test. After solving the pre-

test, they interacted with VeriSIM. Participants worked individually with VeriSIM at their own

pace. I did not interfere while they interacted with VeriSIM, but I was available to answer

any doubts which arose during their interaction. After participants finished interacting with

VeriSIM, they solved a post-test. They then filled a feedback form, which contained usability

and other feedback questions. After the study, I and one of the research interns conducted a
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semi-structured focus group interview in each session (8 participants (5 male and 3 female) in

the morning session and 5 participants (2 male and 3 female) in the afternoon session). Based

on the academic details filled by participants in the registration form, students who had varied

prior academic performance were chosen as the participants of our focus group interview. On

an average, participants took 1.5 hours to interact with VeriSIM. Each study session (pre-test,

VeriSIM, post-test, feedback and focus-group interview) took around 3 hours.

Figure 6.1: Summary of the procedure for Study 2

6.3 Data Sources

The data sources for the study are as follows:

1. Pre-test - In the pre-test, participants were provided with the requirements and design of

an ATM system (1 class diagram and 3 sequence diagrams). They had to attempt 2 ques-

tions. In the first question, they were provided with the following incomplete scenario -

“The user has a balance of Rs.5000 in his account, enters the correct PIN and withdraws

Rs.500”. The participant had to explain the sequence of steps and changes that occur in

the system from the beginning to the end on execution of this scenario. In the second

question, they had to identify defects in the given diagrams. The question statement is as

follows - “Identify defects (if any) in the following design diagrams based on the require-

ments. For each defect, provide a logical explanation of why you think it is a defect.”.

(The pre-test for Study 2 can be found in Appendix D.1)

2. Post-test - In the post-test, participants were provided with the requirements and design of

an online library system (1 class diagram and 3 sequence diagrams). The questions were

similar to the pre-test. In the first question, they had to trace the following scenario using

the design tracing technique - “When a new user selects the register option, and enters
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the username and password, the user registers successfully.”. While tracing, students had

to identify relevant data variables, events, and change of state as a result of the execution

of the above scenario. In the second question, they had to identify defects in the given

diagrams.

We refer to the first question as the ‘tracing question’, and the second as the ‘evalua-

tion question’. Questions in the pre-test and post-test tested students’ ability to identify

relevant data variables, events and changes in state of these variables on execution of the

scenario (RQ 2.1) and their ability to identify defects in the design diagrams (RQ 2.2).

(The post-test for Study 2 can be found in Appendix D.2)

3. Semi-structured focus group interview - A semi-structured focus-group interview was

conducted with students in order to gather their perceptions about the VeriSIM peda-

gogy, and what they learnt after interacting with VeriSIM. The list of questions asked are

provided in Table 6.1. By answering these questions, we wanted students to elicit how

VeriSIM helped them simulate the control flow and data flow of scenarios, and how this

helped them evaluate the software design.

4. Feedback form - The feedback form asked participants to rate their confidence in class

and sequence diagram understanding after interacting with VeriSIM. There were also

open-ended questions asking them what they learnt in the workshop and also the features

of VeriSIM which they found useful. (The feedback form for Study 2 can be found in

Appendix D.3)

Table 6.1: Focus Group Interview Questions for Study 2

Focus Group Interview Questions

1. What are the main things you learnt from the workshop?

2. What according to you is design tracing?

3. What is the usefulness of constructing the state diagram?

Is there value to it?

4. How do you think what you learnt in this workshop is

useful for you in the future?
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6.4 Data Analysis

We combined insights from students’ responses to the tracing and evaluation questions, as well

as their perceptions captured in the semi-structured interviews and feedback forms, to answer

research questions RQ 2.1 (Students’ ability to simulate dynamic behaviours) and RQ 2.2 (Stu-

dents’ ability to identify defects in the design). A summary of the data sources and analysis

used to answer the RQs is shown in Table 6.2.

Table 6.2: Data source and analysis methods for Study 2

Research Question Data Source Data Analysis Method

RQ 2.1: Effects of VeriSIM in Tracing question in 1. Analysis using rubric

students’ ability to simulate pre-test and post-test 2. Thematic analysis of interview

dynamic behaviours in the design transcripts & feedback forms

RQ 2.2: Effects of VeriSIM in Evaluation question in 1. Content analysis

students’ ability to identify pre-test and post-test 2. Thematic analysis of interview

defects in the design transcripts & feedback forms

6.4.1 Analysis of tracing questions

I analysed the tracing question in the pre-test and post-test in order to examine how students

are simulating the dynamic behaviour of a given scenario (RQ 2.1). Out of 86 participants,

11 did not stay till the end of the study and did not attempt the post-test. Hence I analysed

only the remaining 75 responses in the pre-test and post-test. I designed a rubric in order to

evaluate student responses in the pre-test and post-test (Table 6.3). The rubric contains three

criteria which are needed to trace a given scenario: (1) identifying relevant data variables, (2)

identifying events and (3) simulating change of state. Three levels (Missing, Almost and Target)

have been chosen based on how many relevant data variables, events and state changes students

are able to identify for a given scenario. For data variables, students are required to identify
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all relevant and correct variables from the class diagram. For events, students are required to

identify all relevant events from the scenario and sequence diagrams, with explicit distinction

between events specified. For states, students are required to simulate change of state with

relevant variable value pairs. In the pre-test, participants were not aware of the design tracing

strategy. Hence most of the answers were written in the form of sentences. In the post-test, most

participants drew state diagrams to describe the execution of the scenario. Both these types of

representations can be evaluated using the rubric.

Table 6.3: Rubric for evaluating tracing questions in the pre-test and post-test

Missing (0) Almost (1) Target (2)

Identifying data variables Missing all relevant data variables Identifies some relevant variables Identifies all relevant data variables

from the class diagram Adds irrelevant data variables No irrelevant data variables added

Identifying relevant events Missing all relevant events Identifies some relevant events Identifies all relevant events

Separation of events is not seen Identifies some irrelevant events No irrelevant events included

Separation of events is unclear Separation of events is clear

Simulating state change No mention of state change State change of some variables State change of all variables

of variables are mentioned with variable- are clearly mentioned with

value pairs correct variable-value pairs

In order to establish content validity of the rubric, I discussed the criteria and levels of the

rubric with another researcher who was not involved in the research study. Three answer sheets

were used to refine wordings of certain criteria. In order to establish reliability of the grading

using the rubric, another rater graded a subset of the questions. The rater and I independently

graded 2-3 questions. We then discussed how our scoring was done, and differences in scoring

was resolved. We then independently graded 10 questions. Inter-rater reliability of the rubric

was established by calculating Cohen’s Kappa (Cohen, 1960) for each criteria. I then graded

the remaining students’ questions based on the rubric. This procedure was done for both the

pre-test and the post-test.

The Cohen’s kappa for each criteria in the pre-test is as follows: KappaData = 1,KappaEvent =

0.83,KappaState = 0.81. The Cohen’s kappa for each criteria in the post-test is as follows:

KappaData = 0.85,KappaEvent = 0.85,KappaState = 0.85. (The range from 0.81˘1.00 can be

interpreted as almost perfect agreement).
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6.4.2 Analysis of evaluation questions

I analysed the ‘evaluation’ question in the pre-test and post-test to examine how students are

identifying defects in the design (RQ 2.2). We used the content analysis method (Baxter, 1991)

(described in Section 3.5.2) to come up with categories for the defects identified. This analysis

is similar to what was done in Study 1a. The steps which we followed to analyse the data are as

follows:

1. Representation of student answers - The written text which each participant wrote as

a response to the question was typed verbatim to a spreadsheet. I considered a written

sentence or group of sentences which referred to a particular defect, as the unit of analysis.

Each row in the spreadsheet corresponds to a sentence/sentences written by participants.

Many students listed multiple defects. I identified 168 answers from the pre-test and 71

answers from the post-test.

2. Descriptive coding - I assigned a descriptive code to each sentence. The objective of

descriptive coding is to avoid any prejudices or preconceptions and stay close to the data.

For example, for the following student answer - “After a user returns a book, in the return

function, the no. of books attribute issued by the user must be updated and the issueStatus

and the issuedBy attributes of the book must be reset”, the descriptive code assigned is

‘When user returns a book, a. noOfBooks attribute should be updated and b. issueStatus

and issuedBy attributes should be reset”

3. Generating categories - I then inferred categories based on the patterns, explanations

and relationships between the descriptive codes. The categories reflected the meaning

inferred from the descriptive codes and can explain larger segments of data. For example,

the descriptive code mentioned above refers to scenarios which are not present in the

design diagrams, and hence do not satisfy the requirements. Hence the category assigned

to the above descriptive code is - “Identify scenarios which do not satisfy requirements”

We then compared categories of student responses in the pre-test and post-test to examine

differences in the types of defects students identified.
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6.4.3 Analysis of interview transcripts and feedback form responses

We analysed the focus group interview transcripts and the feedback form responses using a the-

matic analysis approach (Braun and Clarke, 2012) (described in Section 3.5.3). I transcribed the

focus group interviews. Another researcher and I independently coded the transcript, and came

up with initial codes. We then individually checked for emerging patterns and categorised the

codes into themes. After independently coming up with themes, the researcher and I discussed,

reviewed and defined the themes and came to an agreement on the final themes.

I followed a similar thematic analysis procedure for responses in the feedback form. The

question asked in the feedback form was - “What are the main things you learned from the

workshop?”. We received 75 participant responses from the feedback form.

The themes which emerged from the focus group interviews and feedback form responses

provided student perceptions of how the VeriSIM pedagogy helped them in simulating dynamic

behaviour of scenarios, such as control flow and data flow (RQ 2.1), and how it helped them

identify defects in the design (RQ 2.2).

6.5 Findings

6.5.1 RQ 2.1: Students’ ability to simulate dynamic behaviours

Findings from analysis of tracing question

We answer our first research question by analysing the pre-test and post-test answers. A

summary of the results is shown in Table 6.4. In the pre-test, the mean scores for the data,

event and state criteria are 0.47(SD = 0.7),1.16(SD = 0.62) and 0.44(SD = 0.68) respec-

tively. In the post-test, the mean scores for the data, event and state criteria are 0.95(SD =

0.87),1.28(SD = 0.88) and 0.84(SD = 0.84) respectively. We performed a paired t-test be-

tween the pre-test and the post-test scores. The results show a significant increase in the

post-test score (M = 3.07,SD = 2.09), compared to the pre-test score (M = 2.07,SD = 1.7),
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t(74) =−4.03, p < 0.001

We also performed a paired t-test between the pre-test and post-test scores for each criteria.

There is a significant increase in the post-test score for the data criteria ( t(74) = −4.38, p <

0.001) and state criteria ( t(74) = −3.91, p < 0.001), but not for the event criteria ( t(74) =

−1.05, p = 0.17). We hypothesize that participants were able to identify events better than data

or state, because identifying events can be done by observing the scenario itself as well as a

superficial reading of the relevant sequence diagram. Identifying data variables and constructing

the state diagram requires a more detailed analysis of the class diagram as well as the sequence

diagram.

Table 6.4: Participants’ scores for ‘tracing question’ in pre-test and post-test

Criteria for tracing scenarios Pre-test Post-test Paired t-test

Mean(SD) Mean(SD) (p value)

Identifying relevant data variables 0.47(0.70) 0.95(0.87) 0.00

Identifying relevant events 1.16(0.62) 1.28(0.88) 0.17

Simulating state change 0.44(0.68) 0.84(0.84) 0.00

Total Score (out of 6)

2.07(1.70) 3.07(2.09) 0.00

Figure 6.2 shows the bar graph of participants score in the data, event and state change

criteria for pre-test and post-test. In the post-test, around 60% of the participants were able

to identify almost/all the relevant variables (45/75) and state changes for the given scenario

(42/75), as opposed to only around 35% in the pre-test (data - 26/75, state change - 25/75).

However, more students were able to identify almost/all events in the pre-test (66/75), as op-

posed to the post-test (54/75).

147



Figure 6.2: Bar graph of pre-test and post-test scores for the ‘tracing question’

Themes from interviews and feedback forms

Themes emerging from the interview transcripts and feedback forms indicate that the VeriSIM

pedagogy helped students simulate the control flow and data flow of scenarios in the design.

For example, consider the following instance where a participant is describing the execution of a

scenario - “We would have to first understand the sequence diagram system, to put forth values

to put if its false, or if it is true, and there was one where the default values were given... Let’s

say that at the first stage, .. what will be the default value of that locked function, it will always

be false, we need to put that, so just understanding how all of these connect..” In this example,

we see that the participant is simulating possible values that the locked function returns, and

also how the function is related to the sequence diagram.

Students also reported that design tracing helped them understand the logical flow of the

design, and that the state diagram helped them understand how the sequence of execution goes

logically from one state to another. For example - “What design tracing helped was how to

think in a flow, like a sequence. Given a scenario, ... it’s basically a set of steps,I do certain

things, after that I proceed to this thing, after that I proceed to this thing.”

Design tracing helped them understand the relationship between different design di-

agrams. For example, a participant said - “I realised how they are all correlated, and how I

need to traverse through that state diagram, I need to know the sequence diagram very well, or

the class diagram very well. So it was useful to learn how it goes step by step.” This shows

that students had to understand the class and sequence diagram in order to complete the state

diagram.
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6.5.2 RQ 2.2: Students’ ability to identify defects

Findings from analysis of the evaluation questions

Based on the content analysis of the answers for the evaluation questions in the pre-test and

post-test, we identified categories similar to the categories in Study 1a (Section 4.2.6). The

categories were - ‘Identify scenarios which do not satisfy the requirements’, ‘Change existing

functionalities and requirements’, ‘Add new functionalities in the design’, ‘Change data types,

functions and structure of the class diagram’ and ‘Blank responses’ and ‘No defects’.

We categorized each student response based on the above categories. Differences in the

category responses of students in the pre-test and post-test are shown in Figure 6.3. The number

of responses in the post-test was lesser compared to the pre-test (Pre-test: 145 responses vs

Post-test: 71 responses).

Figure 6.3: Bar graph of pre-test and post-test category responses for ‘evaluation’ question

Since there is a large difference between the number of responses in the pre-test and post-

test, we calculated the percentage of responses in each category (Figure 6.4). This enabled

us to compare the responses in each category for the pre-test and post-test. As seen in Figure

6.4, the percentage of student responses indicating identifying relevant scenarios which do not

satisfy the requirement are similar in the pre-test (24.4%) and post-test (24.7%). The percentage

of student answers indicating adding new functionalities reduced in the post-test (10.7%) as

compared to the pre-test (4.3%). The same was true for the ‘Changing existing functionalities
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and requirements’ category (Post-test - 22% vs Pre-test - 1.1%). However, the percentage of

students who explicitly specified that there were no defects increased in the post-test (23.7%) as

compared to the pre-test (2.4%). The same holds true for students who left their answer sheet

blank (Post-test - 22% vs Pre-test - 1.1%). In the next section, we discuss the probable reasons

behind the reduced number of responses, as well as the percentage increase in number of blank

and no defect categories.

Figure 6.4: Bar graph of pre-test and post-test percentage responses for ‘evaluation’ question

Themes from interviews and feedback forms

Students perceived that VeriSIM helped them identify scenarios and detect defects in the sys-

tem. Modeling different scenarios using the state diagram helped them detect errors in the

sequence diagram and identify user requirements not considered in the sequence diagram.

For example, one participant said that he considered scenarios similar to test cases. When asked

about the importance of scenarios, a participant said - “how do we validate the machine? Sup-

pose we have to enter an age, and we have to identify, suppose the person enters like minus,

negative numbers. So that .. those cases are not there only.”. In this example, we see that the

student is able to explain how scenarios can help in identifying missed conditions and checks.

He also gave another example from the question in the post-test - “.. in the post-test, there was

a case where the sequence diagram missed whether a book was already issued or not. So that

was like a user requirement, which was not considered in the sequence diagram.”
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6.6 Discussion and Reflections

6.6.1 Improvements in simulating dynamic behaviours in the design

Findings of RQ 2.1 show that explicitly teaching students to trace scenarios leads to an improve-

ment in their ability to simulate dynamic behaviours in the design. A statistically significant

result in the tracing question indicates improvements in students’ tracing ability. This finding

also corresponded to their perceptions, that the VeriSIM pedagogy helped them simulate control

flow and data flow of scenarios, understand the logical flow in the diagrams, and also understand

the relationship between different diagrams.

6.6.2 Change in attitude towards software design

An insight which came out quite often in the focus group interviews, was the change in students’

attitude towards creating software designs after interacting with VeriSIM. Although students

were aware of how to create software designs, they did not use it explicitly while designing sys-

tems for their projects, and did not give it a lot of importance. Interactions with VeriSIM helped

them understand the importance of creating design diagrams at the start, before coding (Ex-

ample: “I was the kind of student I used to make the project and then design the (system).. For

this I got to know actually, I got to know the advantages of designing a class diagram before

actually starting with the project.”). Students also realised that creating designs also helps them

manage time, as well as facilitate knowledge transfer among team members (Example:

“But I get why it’s so necessary in bigger teams, ... if one person leaves and another person

needs to come, he needs to be in touch with what’s happening, so show him these diagrams, he

will figure it out”).

We also see that students showed an increased confidence in their understanding of the

purpose of class diagrams and sequence diagrams after interactions with VeriSIM. In the regis-

tration and feedback form, there were two Likert scale questions (ranging 0-5) asking students

to rate their confidence in understanding the purpose of class diagrams and sequence diagrams
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in design (see Appendix D.3 for the feedback form). A Wilcoxon signed-rank test showed that

there was a statistically significant improvement in students’ perception of their confidence in

understanding the purpose of class diagrams (Z = -4.26, p <0.001) and sequence diagrams (Z =

-4.42, p <0.001).

Based on these findings, we believe that interactions with VeriSIM can help students over-

come common reported difficulties of understanding the purpose and relationship of different

diagrams as discussed in the Chapter 2 (Section 2.2).

6.6.3 Students have difficulty in identifying alternate scenarios

Students also reported that design tracing helped them identify missing features and errors in the

design. However, this does not correspond to their performance in the evaluation question in the

post-test. Firstly, there was a reduction in the number of responses in the post-test as compared

to the pre-test (168 vs 71). A plausible explanation for this performance is due to fatigue in

participants. The study lasted for around 3 hours, and the ‘identifying defects’ question was the

last question in the post-test. Based on this finding, we decided to make students interact with

VeriSIM and solve the post-test over multiple days, in order to avoid fatigue.

Secondly, we did not see an increase in the number of responses which identified scenarios

not satisfying the requirements. Although VeriSIM improved students’ ability to trace the given

scenarios (RQ 2.1) and students perceived its usefulness in evaluating designs, they could not

identify scenarios in the design which do not satisfy the requirements. Our hypothesis was that

activities in VeriSIM would help them identify alternate scenarios. For example, in the ‘Prob-

lem Understanding Stage’ of VeriSIM, students were introduced to what scenarios are, and had

also attempted a question asking them to identify scenarios in the design. The analysis of stu-

dents’ answers to this question also show that they identified relevant scenarios in the design.

In the ‘Design Tracing Stage’, students had to trace scenarios which were already provided to

them. Our assumption was that identifying scenarios in the ‘Problem Understanding Stage’,

and tracing the given scenarios in the ‘Design Tracing Stage’ would trigger students to identify

and trace alternate scenarios in the design to determine which scenarios do not satisfy the re-

quirements. However, based on students’ responses in the ‘Reflection Stage’ in VeriSIM and
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pre-post differences in the evaluation question, this assumption does not hold. In the ‘Reflection

Stage’ of VeriSIM (Figure 5.24), learners were given the opportunity to change their answer to

the question of identifying defects in the design, now that they had learnt about identifying and

tracing scenarios. However, we found that most learners did not change their answer and did

not identify and trace alternate scenarios. The post-test answer-sheets also did not show appli-

cations of design tracing in the evaluation question. We believe that students have difficulty in

understanding how to apply the design tracing strategy for evaluating design diagrams. This

gives us indicators that students need explicit help to generate and identify scenarios which do

not satisfy the requirements.

These findings can also help us identify what elements in students’ mental models need

to be improved, based on the mental model elements for design diagrams. This has been sum-

marised in Figure 6.5. Activities in VeriSIM enabled students to build effective mental models

of the design. By going through the model progression activities in the ‘Design Tracing Stage’,

students were able to identify the main goals of a given scenario, identify appropriate diagram

structural elements (such as data variables and events), and simulate the control and data flow

of the given scenario. Findings from the post-test also show that students were able to model

an already given scenario. However, they face difficulties in generating scenarios which do not

satisfy the requirements. Hence, the pedagogy needs to be revised, to include explicit scaffolds

to help students identify scenarios which do not satisfy the requirements. They can then model

these identified scenarios by tracing the control flow and data flow of the scenario’s execution

using the design tracing strategy.

Figure 6.5: Connecting findings of Study 2 to the mental model for design diagrams
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6.7 Summary

In this chapter, we investigated the effectiveness of VeriSIM in helping students in the software

design evaluation process. Our findings show that students show improvements in simulating

dynamic behaviours in the design, but face difficulties in identifying alternate scenarios which

do not satisfy the requirements. These findings and reflections feed into the research directions

we explored in the next DBR Cycle (Table 6.5).

Table 6.5: Research directions for the next cycle

Findings and inferences from Study 2 Research directions for next cycle

Students show improvements in simulating

dynamic behaviours in the design

Delve deeper into what features in VeriSIM

are leading to improvements in learning

Students have difficulty in identifying

alternate scenarios which do not satisfy

the requirements

Refine the VeriSIM pedagogy and provide

explicit scaffolds for identifying scenarios

in the design

In Chapter 8, we investigate what features in VeriSIM are contributing towards learning of

software design evaluation. In the next chapter, we refine our pedagogy by providing explicit

scaffolds to help students identify relevant scenarios violating the given requirements.
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Chapter 7

Redesign and Evaluation of VeriSIM

In this chapter, we build on the reflections from the findings of the previous DBR Cycle.

To recap, the previous chapters (Chapter 4 - Chapter 6), corresponds to the work done in DBR

Cycle 1. As seen in Figure 7.1, in the first DBR Cycle, we reviewed literature and conducted

studies with students to identify difficulties they faced during software design evaluation (Prob-

lem Analysis and Exploration). These insights led to the design of the VeriSIM pedagogy and

its operationalisation into the VeriSIM TELE (Solution Design and Development). We investi-

gated the effectiveness of the TELE for evaluating software design diagrams against the given

requirements. Although we observed a significant difference in students’ ability to trace an al-

ready given scenario, they had difficulties in identifying alternate scenarios which violated the

given requirements. (Evaluation and Reflection).

These reflections from DBR Cycle 1 feed into the next cycle. In DBR Cycle 2, we analyse

the problem, and revise the pedagogy in order to address these difficulties in students. We then

conduct studies based on the revised pedagogy and measure its effectiveness.
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Figure 7.1: A recap of the DBR Cycles in this thesis
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7.1 Theoretical basis of VeriSIM redesign

In this cycle, our main goal is to provide explicit guidance to students in identifying scenarios

in the design. We can look at this goal from the perspective of model-based learning. In order

to model scenarios in the design, students need to understand “what” to model, which in this

case, is identifying different scenarios in the design. Once they identify different scenarios in

the design, the design tracing strategy described in Chapter 5, can address the question of “how”

to model the identified scenarios.

What should students do to identify relevant scenarios? They should be able to analyse

the given requirements in an effective manner. An understanding of the requirements can help

them (1) Generate scenarios from the requirements and (2) Compare the generated scenarios

with scenarios in the design.

Analysing requirements is an essential practice of software designers as well. During

the initial phases of software design, designers identify and simulate different scenarios which

helps them understand and also infer new requirements (Guindon, 1990). Hence, techniques

and strategies which software designers use in understanding and analysing requirements can

be used to train students as well. We draw the theoretical basis of our proposed strategy from

software engineering literature, specifically from cognitive mapping techniques in requirement

analysis.

7.1.1 Cognitive mapping techniques in requirement analysis

In the initial phases of software design, designers represent and validate requirements which

they have received from various stakeholders. They represent the requirements using concep-

tual models (Siau and Tan, 2005a), and validate these requirements in order to ensure that it is

correctly specified. Most often, requirements analysis is a highly complex task, owing to the

ill-structured nature of the initial design phase. There are various tools and strategies which

have been used to analyse requirements (Siau and Tan, 2008). Cognitive mapping is a strategy

which has been used widely in requirements analysis (Montazemi and Conrath, 1986; Sheetz
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and Tegarden, 1998). It is primarily used to overcome cognitive problems and facilitate under-

standing among stakeholders in the development of information systems (Siau and Tan, 2005b).

Cognitive mapping is a technique used to identify subjective beliefs and to portray these

beliefs externally (Siau and Tan, 2005a). In cognitive mapping, meaningful concepts from the

given domain are extracted. The relationships between these concepts are also specified which

are represented in some kind of visuospatial layout (Siau and Tan, 2005b). For example, Figure

7.2 represents the cognitive map which describes the requirements for a learning management

system. The map shows the various actors (such as student and instructor), and describes fea-

tures which are required in the system. In the process of creating the cognitive map, a designer

is also able to relate different concepts in the requirements, such as the ‘Grade’ and ‘Course’

concepts. Thus, as a designer creates and refines this visual representation, they are able to

develop a better understanding of the requirements, and also establish relationships between

them.

Figure 7.2: An example of a cognitive map

There are primarily three types of cognitive maps - (1) Causal maps - which focus on the

cause-effect structure of concepts, (2) Semantic maps - which organize a number of sub-ideas

around a main idea and (3) Concept maps - which create semantic-rich links among various
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concepts. Cognitive mapping has shown to have several advantages. These mapping strategies

can focus attention, highlight priorities, supply missing information and reveal gaps in reasoning

(Siau and Tan, 2005b). It can be used as a modelling language to conceptually model the given

requirements, and also verify that the requirements have been accurately represented (Siau and

Tan, 2006).

7.1.2 Adapting cognitive mapping to software design diagram evaluation

While cognitive mapping has been used to analyse requirements, we adapt this strategy as a

means to train students in identifying scenarios. In the case of evaluating design diagrams, the

requirements are already provided. In the proposed strategy, for each requirement, students

construct a tree-like visual representation. They identify sub-goals for each requirement, and

identify different possibilities for each sub-goal. This representation which they construct can

aid them in identifying relevant scenarios which are not satisfying the given requirements. We

explain this strategy in detail in the next section.

7.2 Solution: Scenario Branching Strategy

In this section, we describe the scenario branching strategy, which is an adaptation of cognitive

mapping techniques used in requirement analysis. The scenario branching strategy helps stu-

dents identify scenarios for each requirement in the design, thereby enabling them to identify

relevant scenarios which do not satisfy the requirements. We explain the scenario branching

strategy with an example, based on the requirements and design of the ATM system (Section

4.2.2). One of the requirements in the ATM system is: “A user with a valid account can register

his/her ATM and set a PIN if he/she has not set a PIN yet. The PIN should be of length 4 and

should contain only numbers.” For each requirement, learners go through four key steps.

1. Identify subgoals in the requirement - A subgoal is a part of the requirement which

corresponds to the execution in the system. Identifying subgoals require learners to divide

the requirement into logical parts and examine each part with the given design diagrams.
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For example, the subgoals for the given example requirement are (1) User with valid

account (2) Sets a PIN if a PIN hasn’t been set yet and (3) PIN should be of length 4 and

should contain only numbers.

2. Identify relevant variables and different possibilities of these variables - For each

subgoal, learners identify relevant data variables and simulate different values for each of

these variables. They construct a scenario tree which captures these subgoals and differ-

ent values for each of these variables. The data variables and their values are specified

inside the nodes, and the links correspond to different possibilities of each sub-goal. The

example of the scenario tree is shown in Figure 7.3. For example, for the sub-goal - “User

with valid account”, the account can be either valid or invalid. Each of these possibilities

correspond to a branch in the root node as shown in the top part of the figure.

3. Identify relevant scenarios based on the requirement - Once learners construct the

scenario tree, they can then identify relevant scenarios. Using the scenario tree, learners

start from the root node and traverse each possible path till a leaf is reached. Each path

corresponds to a scenario in the design based on the given requirement. For example, the

scenarios which can be specified based on traversing the scenario tree in Figure 7.3 are -

Scenario 1: User with a valid account has already set a PIN

Scenario 2: User with a valid account has not set a Pin and sets a valid Pin

Scenario 3: User with a valid account has not set a Pin and sets an invalid Pin

Scenario 4: User has an invalid account.

4. Identify scenarios which are not satisfying the requirement - Now that learners have

identified possible scenarios based on the given requirement, they then try to map each

scenario to the design. They simulate the execution of each scenario in the given design,

and examine if any of the scenarios are absent in the design, or if certain conditions are vi-

olated. Such scenarios which do not satisfy the requirement are identified. For example,

the Register sequence diagram (Figure 4.4) corresponds to the given example require-

ment. When learners map the scenarios to the register sequence diagram they realise

that Scenario 1, Scenario 3, and Scenario 4 (the paths corresponding to the leaf nodes

highlighted in yellow, in Figure 7.3) have not been specified in the sequence diagram.
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Figure 7.3: The scenario branching tree for a given requirement

To facilitate construction of the scenario branching tree, students use the Cmap 1 concept

mapping tool. The Cmap tool enables users to create and share knowledge models represented

as concept maps. The tool has affordances for adding nodes, and establishing links between

nodes. In the context of scenario branching, each node denotes a set of values of the identified

variables. The links denote different possible scenarios for the sub-goals. Using the Cmap tool,

students can add, modify and delete nodes and links. Hence, the Cmap tool helps students

incrementally construct the scenario tree for a given requirement. It also provides a means for

learners to explore the design space by thinking of different possible scenarios in the design

based on the requirements.

The scenario branching strategy and affordances of the Cmap tool also support the model-

based learning practices outlined in Section 5.2.1. Learners construct a model of the given

requirements by constructing a scenario branching tree. Students can edit the nodes and links

of the tree, thereby facilitating model revision. Students perform model comparison and eval-

uation when the identified scenarios are compared and evaluated with the appropriate design

diagrams, and missing scenarios in the design are identified. Hence, constructing the scenario

branching tree using the Cmap tool assists learners in constructing an accurate mental model of

the requirements, and enables them to map these requirements to the given design.

1https://cmap.ihmc.us/cmaptools/
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Advantages of the scenario branching strategy

We hypothesize that the scenario branching strategy can help students identify relevant scenar-

ios in the design. There are several advantages of using the scenario branching strategy. First,

the visual representation of the scenario tree can help relieve the cognitive load of analysing

the given requirements. The graphical layout can help students reason about each part of the

requirement, and also provide them an approach to analyse the given requirements to come up

with various scenarios.

Second, the scenario branching strategy can promote deeper reflection about the scenarios

in the requirements and the design. Students are made to think about possible branches for each

sub-goal. This helps students focus their attention on a particular part of the requirement, and

think of all possible scenarios for that part. As students incrementally construct the tree for each

part, they are able to identify all possible scenarios for each requirement.

Third, constructing the scenario branching tree minimizes the tendency to add new func-

tionalities and requirements. The starting point for students to construct the scenario branching

tree is the sub-goals of the given requirement. Focusing on the sub-goals enable students to fo-

cus their attention on the given requirements and not on new requirements and functionalities.

7.3 The revised VeriSIM pedagogy

The revised VeriSIM pedagogy trains students to identify scenarios in the design and model

these scenarios in order to effectively evaluate a software design against the given require-

ments. The VeriSIM pedagogy has two key phases. Phase 1 of the revised VeriSIM pedagogy

is identical to the previous DBR cycle. Phase 2 incorporates the scenario branching strategy as

the learning activity. A summary of the revised VeriSIM pedagogy is shown in Figure 7.4.

1. Phase 1: Modelling scenarios - In this phase, learners are presented with scenarios, and

construct models of these scenarios. They are scaffolded to use the design tracing strategy

to trace the control flow and data flow of the scenario execution. They progressively

trace these scenarios by exploring a model, correcting an incorrect model, completing an
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incomplete model, and then constructing the model.

2. Phase 2: Identifying scenarios - Having learnt how to construct models of the given

scenario, students identify various scenarios for the given requirements and design. Ac-

tivities in this phase progressively scaffold them to apply the scenario branching strategy

for each requirement in the design and generate scenarios. Students are provided with

a step-by-step example of how to construct the scenario tree for a requirement in the

given design. They are then required to apply scenario branching for the remaining re-

quirements. For each requirement, they simulate scenario execution to identify scenarios

which do not satisfy the requirements.

Figure 7.4: The revised VeriSIM pedagogy

In the revised pedagogy, students are first scaffolded to model scenarios, and then provided

explicit guidance on identifying scenarios. The rationale for this order is that we first want

students to think deeply about the design by simulating the control and data flow for already

given scenarios. Once they are trained to do this, they are then guided to identify scenarios. As

they identify scenarios, they are also able to simulate the execution of these scenarios, which is

similar to the design tracing strategy they learnt in Phase 1. Thus, activities in both phases help

students identify and model scenarios in order to effectively evaluate a software design against

the given requirements.
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The revised pedagogy has been operationalised into the second version of the VeriSIM

learning environment - VeriSIM 2.0, which we explain in the next section.

7.4 The VeriSIM 2.0 Learning Environment

VeriSIM 2.0 contains two modules. Module 1 and Module 2 correspond to Phase 1 and Phase

2 of the revised VeriSIM pedagogy respectively. In Module 1, learners go through the VeriSIM

TELE, where they understand and apply the design tracing strategy to model the given scenarios

in the design. This module is identical to the intervention provided in the previous cycle (Section

5.4). Learners interact with the VeriSIM TELE, and go through the ‘Problem Understanding

Stage’, ‘Design Tracing Stage’, and the ‘Reflection Stage’. These interactions enable them to

effectively trace given scenarios in a software design.

Module 2 has been added outside the TELE to incorporate the scenario branching strategy.

Module 2 is facilitated by an instructor. Learners are provided with the requirements and design

diagrams (class diagram and three sequence diagrams) of an ATM system (described in Section

4.2.2) in a paper worksheet. The worksheet is divided into two parts. Part 1 of the worksheet

describes the 4 steps outlined in Section 7.2. In the first step, the worksheet describes the

relevant sub-goals for the first requirement, as shown in Figure 7.5a. In the next step, the

worksheet describes how to progressively construct the scenario branching tree. The worksheet

describes how to construct the intermediate scenario tree for the first sub-goal (User with a valid

account). The intermediate scenario tree has two branches as shown in Figure 7.5b. For the next

sub-goal (Sets a PIN if a PIN hasn’t been set yet), two more branches are added to the scenario

tree, as shown in Figure 7.5c. For the last sub-goal (PIN should be of length 4 and should

contain only numbers), two more branches are added, as shown in Figure 7.5d. Students follow

these steps and construct the scenario branching tree using the Cmap tool. The worksheet then

explains how to identify scenarios from the scenario tree, and lists down all the scenarios. It then

describes which scenarios have not been described in the design diagrams. The steps outlined in

Part 1 are explained by the instructor. In Part 2, learners need to construct the scenario tree for

the remaining three requirements, and identify scenarios which do not satisfy the requirements.

(The scenario branching worksheet is provided in Appendix E).
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(a) Scenario branching worksheet: Identifying sub-

goals in the requirement (b) Scenario branching worksheet: Identifying pos-

sibilities for the first sub-goal

(c) Scenario branching worksheet: Identifying pos-

sibilities for the second sub-goal
(d) Scenario branching worksheet: Identifying sce-

narios from the scenario tree

Figure 7.5: Steps outlined in the scenario branching worksheet

Hence, the VeriSIM 2.0 learning environment operationalises the revised VeriSIM peda-

gogy, enabling students to identify and model scenarios in the given design. We believe this

enables them to build an effective mental model of the requirements and the design. In the next

section, we position the activities in VeriSIM 2.0 based on the mental model elements for design

diagrams, and the discuss how these activities are developing specific elements in their mental

models.
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7.5 Role of VeriSIM 2.0 in Developing Effective Mental Mod-

els of the Design

VeriSIM 2.0 enables students to identify and model scenarios in the design, thereby fostering

effective evaluation of software design diagrams. Figure 7.6 situates the strategies in the revised

pedagogy in the mental model for design diagrams. The scenario branching strategy enables

students to build an effective mental model of the problem domain. Using the scenario branch-

ing strategy, they are scaffolded to identify different scenarios based on the requirements. This

allows them to broadly explore the mapping between the problem domain and the design so-

lution space. The design tracing strategy enables students to closely examine each of these

scenarios by analysing the elements in the design. Design tracing scaffolds students to iden-

tify the diagram structural elements and the main goals, and simulate the dynamic behaviours

corresponding to each of these scenarios.

Hence, both the broad exploration of the design by identifying scenarios, and deeply think-

ing about each scenario by simulating the data and control flow simulation for each scenario can

lead to effective evaluation of the given software design.

Figure 7.6: Situating the revised VeriSIM pedagogy in the mental model for design diagrams
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7.6 Study 3: Effectiveness and Usefulness of the revised VeriSIM

pedagogy

In Study 3, we investigate the effects of VeriSIM 2.0 on students’ ability to effectively evaluate

design diagrams against the given requirements.

7.6.1 Research Questions

In DBR cycle 2, we focussed on providing explicit scaffolds to help students identify scenarios

in the design. Identifying alternate scenarios will enable them to identify scenarios which do

not satisfy the requirements. Hence, the focus of Study 3 is to understand the effects of VeriSIM

2.0 in students’ ability to identify scenarios, and whether this is leading them to identify defects

in the design.

The research questions guiding this study are:

• RQ 3.1: What are the effects of VeriSIM 2.0 in students’ ability to identify scenarios in

the design?

• RQ 3.2: What are the effects of VeriSIM 2.0 in students’ ability to uncover defects in the

design?

7.6.2 Study Procedure

I conducted Study 3 in an urban private engineering institute. The study was spread over two

days. 22 students (m=16, f=6) in the second year of their undergraduate degree in CS and IT,

were part of the study. Prior to the study, they attended a workshop where they were taught basic

UML diagrams like use case, class and sequence diagrams. Hence all students were familiar

with UML diagrams prior to the study. The participants signed a consent form prior to the study,

and were free to withdraw from the study at any point in time.
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A summary of the study procedure is shown in Figure 7.7. I initially explained the main

goals of the study, and what students will learn as they interact with VeriSIM 2.0. After pro-

viding this information, students solved a pre-test. In the pre-test, students were given the

requirements and design diagrams of an ATM system, and were asked to identify defects in

the design diagrams based on the requirements. After solving the pre-test, students interacted

with the Module 1 of VeriSIM 2.0. I was available to answer any doubts which students had

while interacting with Module 1. After a break of one hour, students were introduced to Mod-

ule 2. I facilitated this session by explaining how to construct a scenario branching tree for

the first requirement. Students interacted with the mapping tool and constructed scenario trees

for the remaining requirements. The next day, students solved a post-test. The format of the

post-test was similar to the pre-test. The requirements and design diagrams were for a video

streaming website. (The design problem context was different from the library system in Study

2, as students were already exposed to the design of the library system in the workshop.) The

complexity of the design problem in the pre-test and post-test was similar, as both problems

contained the same number and types of requirements, sequence diagrams, and classes in the

class diagram (The design problem and the questions for pre-test and post-test can be found in

Appendix F). We conducted focus-group interviews with students in between Module 1 and 2,

and at the end, in order to elicit their perceptions of the revised VeriSIM pedagogy.

Figure 7.7: Summary of Study 3 procedure

7.6.3 Data Sources and Analysis

The data sources and analysis are similar to Study 2. A summary is provided in Table 7.1. To

answer RQ 3.1, we analysed student responses to the following ‘identify scenarios’ question

in the pre-test and post-test - “ For each requirement, list all possible scenarios based on the
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design.” In order to answer RQ 3.2, we analysed student responses to the following ‘identify

defects’ question in the pre-test and post-test - “Identify defects (if any) in the following design

diagrams based on the requirements. For each defect, provide a logical explanation of why you

think it is a defect.”.

We used the content analysis method (Baxter, 1991) to answer both RQ 3.1 and RQ 3.2.

Details of the analysis procedure is similar to what has been described in Study 2 (Section

6.4.2), where we followed descriptive coding, and generated categories and sub-categories to

infer what types of scenarios (RQ 3.1), and types of defects (RQ 3.2) students identified in

the pre-test and post-test. We also analysed the transcripts of the focus group interviews to

infer themes about the effects of the scenario branching strategy in students’ ability to identify

scenarios and defects in the given design diagrams.

Table 7.1: Data source and analysis methods for Study 3

Research Question Data Source Data Analysis Method

RQ 3.1: Ability to identify scenarios Responses to ‘identify scenarios’ Content analysis

question in the pre-test and

post-test

RQ 3.2: Ability to identify defects Responses to ‘identify defects’ Content analysis

question in the pre-test and

post-test

7.6.4 Findings

RQ 3.1 - Students’ ability to identify scenarios

The categories of student responses we identified are as follows:

• Scenarios based on the requirements - In this category, students correctly identified

relevant scenarios which satisfy/do not satisfy the requirement. They also identified sce-

narios based on an error condition or alternate condition of the provided requirement.

Example: “There is a defect in withdraw sequence diagram where the condition whether

the balance is less than 1000 is not mentioned. The check balance condition is not present

here”
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• Scenarios based on new functionality or change in requirement - In this category

of responses, students thought of scenarios not related to the requirements, but on new

functionalities or change in requirements. Example: “After payment for premium pack,

after some months the user wishes to cancel its subscription”

• Restating the requirement - Students merely restated the requirement, but did not pro-

vide a scenario. Example: “The user wants to change the PIN number.”

• Incomplete/Incorrect Scenario - Students provided an incomplete or incorrect scenario.

Differences in the category responses of students in the pre-test and post-test is shown in

Figure 7.8. In both pre-test and post-test, students identified majority of the scenarios based

on the requirements. Hence, we saw no major differences between the pre-test and post-test

responses.

Figure 7.8: Pre-test and post-test differences in student responses to identifying scenarios

RQ 3.2 - Students’ ability to identify defects

The categories of student responses we identified were similar to that of Study 1a and 2. The

categories are - “Identify scenarios which do not satisfy the requirements”, “Change existing

functionalities and requirements”, “Add new functionalities in the design”, ’‘Change data types,

functions and structure of the class diagram”, and “Blank responses and no defects”. Details

of each of these categories have been explained in Section 4.2.6. We categorized each student
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response based on the above categories. Differences in the category responses of students in the

pre-test and post-test is shown in Figure 7.9.

Figure 7.9: Pre-test and post-test differences in student responses to identifying defects

As seen in Figure 7.9, in the pre-test, students focused on changing the functionalities or

requirements (31.1%), adding a new functionality (24.4%), and change in data types or func-

tions (13.3%). 26.7% of the student responses involved identifying relevant scenarios which do

not satisfy the requirements. In these responses, students are evaluating the design diagrams

against the requirements by identifying alternate scenarios and simulating function execution.

In the post-test, we see that a majority of student responses involved identifying relevant

scenarios which do not satisfy the requirement (76%). The number of student responses indi-

cating change in functionality/requirement reduced to 16%, and only 2% of student responses

involved adding a new functionality. Hence, students were able to identify more defects by iden-

tifying scenarios which do not satisfy the requirement in the post-test. Hence students’ adding

new functionalities and referring to them as defects have reduced in the post-test. These results

indicate that students have improved in evaluating the design against the given requirements.
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7.6.5 Reflections

VeriSIM 2.0 enabled students to relate the identified scenarios with defects based on the

requirements

Based on the findings of RQ 3.1, we see that in both pre-test and post-test, students identified

majority of the scenarios based on the requirements. However, findings of RQ 3.2 show that

in the pre-test, they did not identify defects based on these scenarios. We see a shift in the

post-test, as students identified more defects based on the requirements. We see that students

were able to associate the identified scenarios with defects based on the requirements, which

they were unable to do in the pre-test. We believe that this change was brought about by the

intervention.

This finding is also corroborated by students’ perceptions of the scenario branching strat-

egy, which we elicited from the focus group interviews. Students perceived that scenario

branching helped them think of possible alternate scenarios, which in turn helped them iden-

tify defects in the design diagrams. Working with the Cmap tool helped them externalize their

thinking, by making them explicitly mention all possible scenarios based on the requirements.

They reflected on how the scenario branching notation was missing in traditional UML dia-

grams, and helped them visualize different scenarios. (E.g. “UML diagrams just give us the

attributes, functions and sequence of a particular scenario. But it does not tell us about all the

possible scenarios involved”).

VeriSIM 2.0 brought about a change in students’ approach towards software design

Similar to the findings of Study 2 (Section 6.6.2), students perceived that interactions with

VeriSIM 2.0 brought about a change in their approach towards the software design process. In

the focus-group interviews, students were asked if there were any differences in their approach

in evaluating designs in the pre-test and post-test. Students mentioned that VeriSIM 2.0 enabled

them to think of a structured way to solve the problem. (e.g. “We didn’t know which way to go

to solve the problem. Now we know a structured way to follow up problems, now I could directly

go for another problem.”) The emphasis on identifying and modelling scenarios enabled them
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to perform the design evaluation task. (e.g. “I was able to think about more scenarios. In the

ATM problem, in that problem I was not able to think what can be done new, but after learning

this new session, I was able to elaborate more about what those scenarios can be.”).

Students were also asked to reflect on what they learnt and how it will be useful for them

in the future. Students reflected on how interactions with VeriSIM 2.0 brought about a change

in their perception about the importance of creating a software design before jumping into

writing code. (e.g. “For me I thought firstly before this workshop, I thought like, programming

was the main thing behind all the project. But right now, I’ve learnt that how a blueprint is

made for a project, and what software designing is. That was quite useful, it was something

new.”). It broadened their perspective of thinking of the system as a whole, before jumping into

specifics. For example, consider the following excerpt from an interview -

“If you ask me, 5 days before, like how will you solve this problem, I’m pretty sure, I’ll jump

directly onto the coding part, then I’ll get stuck, and then I’ll scratch my brain for like, days,

and still, I’m not sure whether I’ll be able to get the solution correct or not.

But now, after learning all these processes, I can design the entire problem, I can have the

entire picture in front of me, and I know like, it is so close to the code, that I know how the code

will like, what has to be the flow, and that’s like I know and in this node, like if the variable’s

changing, I know that here some condition exists, so I know that I’ll have to use the control flow

logic, or the if-else statements here. So basically, designing, it makes it very very clear, like

coding is then, just, you just have to learn the syntax, nothing else.”

This excerpt shows how activities in VeriSIM 2.0 encouraged the student to focus on the overall

design of the system, and specify relevant parts like the control flow and data flow in the design.

The student was also able to reflect on the benefit of designing first, which would lead to a better

and accurate translation to code.

To summarize, we see that VeriSIM 2.0 enabled students to identify and model scenarios in

the design, thereby enabling them to effectively perform software design evaluation. This gives

us certain indicators that the features and affordances of VeriSIM 2.0 are beneficial and are

supporting students in their design evaluation process. In the next chapter, we delve deeper into

how VeriSIM 2.0 features are contributing towards student learning, and propose an account of

how learning occurs while students interact with VeriSIM 2.0.
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Chapter 8

Local Learning Theory based on the

VeriSIM Pedagogy

In previous chapters, we described the VeriSIM pedagogy (the initial and revised peda-

gogy) and how it has been operationalized into two modules of VeriSIM. Module 1 corresponds

to the web-based VeriSIM learning environment, where learners are scaffolded to apply the de-

sign tracing strategy. Module 2 corresponds to the worksheet and mapping tool which supports

students in applying the scenario branching strategy.

Studies with students interacting with VeriSIM (Study 2 and 3), give indicators for im-

provement in students’ ability to trace as well as identify scenarios which do not satisfy the

given requirements. These improvements would have likely been due to the role of various

features in VeriSIM. The mediating role of these features and how they contributed to learning

is an important aspect to consider, especially in the design-based research paradigm. An impor-

tant aim of the design based research methodology is to identify underlying design principles

which can be extended and used in other similar contexts and settings (Barab and Squire, 2004).

These principles can contribute to a “local learning theory” i.e. an account of how learning is

happening in the local context of the given intervention. In this chapter, we delve deeper into
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how learners are interacting with VeriSIM, and in what ways it is leading to effective student

learning. Findings from this chapter are used to answer RQ 4 in DBR Cycle 2 (see Section 3.4):

RQ 4: How are features in the VeriSIM learning environment contributing towards stu-

dent learning?

8.1 Data Sources and Analysis Method

In order to develop the local learning theory based on students’ interactions with VeriSIM,

we further analysed the data collected from Study 2 and Study 3. We primarily draw inferences

from the analysis of two data sources - (1) Interaction log data captured by the VeriSIM learning

environment, and (2) Focus-group interviews with students after their interaction with VeriSIM.

From the analysis of these data sources, we inferred how features in VeriSIM contributed to

student learning. We describe these inferences in detail in subsequent sections.

Analysis of Interaction Logs

Since students interacted with VeriSIM Module 1 in both Study 2 and Study 3, we analysed

the interaction logs from both studies in order to build upon the local learning theory. In both

Study 2 and Study 3, I specifically asked students for consent to use their interaction logs in the

consent form. A total of 48 students gave consent to use their interaction logs.

As students interacted with VeriSIM Module 1, specific user interactions were logged,

such as which challenge the user was at a particular time, and how they interacted with the state

diagram model. Interactions with the state diagram included action sequences while construct-

ing, editing, and executing the state diagram model in different challenges, and what feedback

was provided by the agent as a result of these actions. The logs also captured their answers to the

evaluation and reflection questions. The process which we followed to extract these interaction

logs is explained below.

After conducting Study 2 and Study 3, I downloaded all user interaction logs from the
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server. These interactions of all users were stored in a single CSV file on the server, ordered

by timestamp. I used the pandas library 1 in Python for the pre-processing and analysis. From

the single CSV file, I extracted all interaction logs for each user, ordered by timestamp. Hence,

I now had a separate file which contained the interaction logs of each user. I added additional

columns like ‘display_name’, and ‘duration’ for each user file. I then combined all user files

and generated a new CSV file. A snapshot of this CSV file is shown in Table 8.1. The fields of

this CSV file are:

• id- Each row in the file has a unique id which distinguishes it from other entries in the

file.

• timestamp- The timestamp corresponds to the time in which a particular event was

logged by the system.

• duration- The duration of an event is the difference between the timestamps of this event

and the previous event. This field was added mainly to aid readability and analysis of the

logs (I found it easier to compare integers rather than timestamps)

• screen- This field denotes the particular screen that the user was in when the event was

logged. For example, Table 8.1 is a snapshot which captures the interactions of a user

while they attempted the following activities: Challenge 1, Evaluation questions of Chal-

lenge 1 and Challenge 2, in this order.

• user_id - Each user of the system is assigned a unique id.

• display_name - This field denotes the first name and last name of the registered user.

• action_name - This field denotes the type of action logged by the system, based on the

activity the user is performing in the system. The following action types are possible -

– run - When the user clicks on the ‘run’ button in the challenges, the action_name is

set to ‘run’

– system_action - A row has the ‘system_action’ action_name associated with it

when the pedagogical agent provides feedback to the user on clicking the ‘run’ but-

ton in the challenges.

1https://pandas.pydata.org/
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– data - When a user adds/edits/deletes a data variable in the challenges, the ac-

tion_name is set to ‘data’

– event - When a user adds/edits/deletes an event in the challenges, the action_name

is set to ‘event’

– state - When a user adds/edits/deletes a state in the challenges, the action_name is

set to ‘state’

– question - When a user attempts a reflection or evaluation activity, the action_name

is set to ‘question’

Table 8.1: A snapshot of VeriSIM pre-processed interaction logs

id timestamp duration screen user_id display_name action_name data_score event_score state_score

1 5d884dea18919072731c05d5 2019-09-23 04:39:27.385000+00:00 22 Challenge 1 5d88493618919072731c014f XXX system_action 0 0 0

2 5d884e4e18919072731c06dd 2019-09-23 04:41:05.264000+00:00 97 Challenge 1 5d88493618919072731c014f XXX run 4 3 19

3 5d884e4e18919072731c06de 2019-09-23 04:41:05.266000+00:00 0 Challenge 1 5d88493618919072731c014f XXX system_action 4 3 19

4 5d884e5d18919072731c0716 2019-09-23 04:41:18.361000+00:00 13 Challenge 1 5d88493618919072731c014f XXX run 4 3 19

5 5d884e5d18919072731c0717 2019-09-23 04:41:18.363000+00:00 0 Challenge 1 5d88493618919072731c014f XXX system_action 4 3 19

6 5d884e5d18919072731c0718 2019-09-23 04:41:20.335000+00:00 1 Challenge 1 5d88493618919072731c014f XXX run 4 3 19

7 5d884e5d18919072731c0719 2019-09-23 04:41:20.337000+00:00 0 Challenge 1 5d88493618919072731c014f XXX system_action 4 3 19

8 5d885074cabef674ecdbe8a5 2019-09-23 04:50:16.570000+00:00 0 Challenge 1 5d88493618919072731c014f XXX run 4 3 19

9 5d885074cabef674ecdbe8a6 2019-09-23 04:50:16.571000+00:00 0 Challenge 1 5d88493618919072731c014f XXX system_action 4 3 19

10 5d885083cabef674ecdbe8fb 2019-09-23 04:50:30.352000+00:00 13 Challenge 1 5d88493618919072731c014f XXX system_action 4 3 19

11 5d885132cabef674ecdbec51 2019-09-23 04:53:27.196000+00:00 176 Q - Challenge 1 5d88493618919072731c014f XXX question 0 0 0

12 5d885132cabef674ecdbec52 2019-09-23 04:53:27.196000+00:00 0 Q - Challenge 1 5d88493618919072731c014f XXX question 0 0 0

13 5d885132cabef674ecdbec53 2019-09-23 04:53:27.196000+00:00 0 Q - Challenge 1 5d88493618919072731c014f XXX question 0 0 0

14 5d885132cabef674ecdbec54 2019-09-23 04:53:27.197000+00:00 0 Q - Challenge 1 5d88493618919072731c014f XXX question 0 0 0

15 5d885132cabef674ecdbec55 2019-09-23 04:53:27.197000+00:00 0 Q - Challenge 1 5d88493618919072731c014f XXX question 0 0 0

16 5d88516ecabef674ecdbed2f 2019-09-23 04:54:24.089000+00:00 56 Challenge 2 5d88493618919072731c014f XXX run 4 3 14

17 5d88516ecabef674ecdbed30 2019-09-23 04:54:24.092000+00:00 0 Challenge 2 5d88493618919072731c014f XXX system_action 4 3 14

18 5d885173cabef674ecdbed4d 2019-09-23 04:54:31.040000+00:00 6 Challenge 2 5d88493618919072731c014f XXX run 4 3 14

19 5d885173cabef674ecdbed4e 2019-09-23 04:54:31.043000+00:00 0 Challenge 2 5d88493618919072731c014f XXX system_action 4 3 14

20 5d885173cabef674ecdbed4f 2019-09-23 04:54:32.248000+00:00 1 Challenge 2 5d88493618919072731c014f XXX run 4 3 14

21 5d885173cabef674ecdbed50 2019-09-23 04:54:32.249000+00:00 0 Challenge 2 5d88493618919072731c014f XXX system_action 4 3 14

22 5d885173cabef674ecdbed51 2019-09-23 04:54:33.056000+00:00 0 Challenge 2 5d88493618919072731c014f XXX run 4 3 14

23 5d885173cabef674ecdbed52 2019-09-23 04:54:33.057000+00:00 0 Challenge 2 5d88493618919072731c014f XXX system_action 4 3 14

24 5d8851b4cabef674ecdbeee0 2019-09-23 04:55:34.713000+00:00 61 Challenge 2 5d88493618919072731c014f XXX state 4 3 15

25 5d8851b9cabef674ecdbeef8 2019-09-23 04:55:40.759000+00:00 6 Challenge 2 5d88493618919072731c014f XXX run 4 3 15

26 5d8851b9cabef674ecdbeef9 2019-09-23 04:55:43.155000+00:00 2 Challenge 2 5d88493618919072731c014f XXX run 4 3 15

27 5d8851b9cabef674ecdbeefa 2019-09-23 04:55:43.157000+00:00 0 Challenge 2 5d88493618919072731c014f XXX system_action 4 3 15

28 5d885223cabef674ecdbf087 2019-09-23 04:57:27.068000+00:00 103 Challenge 2 5d88493618919072731c014f XXX run 4 3 15

29 5d885223cabef674ecdbf088 2019-09-23 04:57:27.876000+00:00 0 Challenge 2 5d88493618919072731c014f XXX run 4 3 15

30 5d885223cabef674ecdbf089 2019-09-23 04:57:27.876000+00:00 0 Challenge 2 5d88493618919072731c014f XXX system_action 4 3 15

31 5d885254cabef674ecdbf13e 2019-09-23 04:58:14.444000+00:00 46 Challenge 2 5d88493618919072731c014f XXX state 4 3 14

32 5d885254cabef674ecdbf13f 2019-09-23 04:58:17.620000+00:00 3 Challenge 2 5d88493618919072731c014f XXX run 4 3 14

33 5d885259cabef674ecdbf150 2019-09-23 04:58:18.883000+00:00 1 Challenge 2 5d88493618919072731c014f XXX run 4 3 14

34 5d885259cabef674ecdbf151 2019-09-23 04:58:18.884000+00:00 0 Challenge 2 5d88493618919072731c014f XXX system_action 4 3 14

35 5d885259cabef674ecdbf152 2019-09-23 04:58:19.123000+00:00 0 Challenge 2 5d88493618919072731c014f XXX run 4 3 14

36 5d88529acabef674ecdbf216 2019-09-23 04:59:26.171000+00:00 67 Challenge 2 5d88493618919072731c014f XXX state 4 3 14

37 5d88529fcabef674ecdbf21c 2019-09-23 04:59:30.173000+00:00 4 Challenge 2 5d88493618919072731c014f XXX run 4 3 14

38 5d88529fcabef674ecdbf21d 2019-09-23 04:59:30.175000+00:00 0 Challenge 2 5d88493618919072731c014f XXX system_action 4 3 14

39 5d8852b8cabef674ecdbf24f 2019-09-23 04:59:57.674000+00:00 27 Challenge 2 5d88493618919072731c014f XXX state 4 3 16

40 5d8852bdcabef674ecdbf25d 2019-09-23 05:00:00.325000+00:00 2 Challenge 2 5d88493618919072731c014f XXX run 4 3 16

41 5d8852bdcabef674ecdbf25e 2019-09-23 05:00:01.699000+00:00 1 Challenge 2 5d88493618919072731c014f XXX run 4 3 16

42 5d8852bdcabef674ecdbf25f 2019-09-23 05:00:01.956000+00:00 0 Challenge 2 5d88493618919072731c014f XXX run 4 3 16

43 5d8852bdcabef674ecdbf260 2019-09-23 05:00:01.957000+00:00 0 Challenge 2 5d88493618919072731c014f XXX system_action 4 3 16

44 5d885331cabef674ecdbf3a8 2019-09-23 05:01:56.800000+00:00 114 Challenge 2 5d88493618919072731c014f XXX state 4 3 16

In VeriSIM, a score is associated for each constructed state diagram. This score is stored

in the logs and is not visible to learners. The purpose of this score for the state diagram is to
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progressively see how learners are building the state diagram model. For each design tracing

challenge, there are three types of scores which are logged (as shown in Table 8.1) - data_score,

event_score and state_score.

• data_score - When the learner adds a correct variable, the data_score is incremented by

1. When the learner adds an irrelevant variable, the score is decremented by 1.

• event_score - When the learner adds a correct event, event_score is incremented by 1.

When the learner adds an incorrect event, the score is decremented by 1.

• state_score - Each state (except the initial state) has an incoming event. The state_score

is incremented by 1 if the incoming event is correctly chosen. Each state contains a list

of variables and its corresponding values. For each correct variable, value pair, the score

is incremented by 1.

Based on each add, edit or delete action on the state diagram, the score gets updated in the

corresponding field. Hence, the progression of the score for a particular challenge is an indicator

of how a learner is constructing the state diagram. For example, based on the interaction log

of XXX shown in Table 8.1, XXX starts Challenge 2 by clicking on ‘run’ multiple times and

observes the feedback from the agent (Rows 16-23). After this, he/she edits a state, as shown

in row 24. This results in the state score changing from 14 to 15, which shows that the learner

modified a state and corrected the value of an incorrect variable. XXX then clicks on ‘run’

again and observes the feedback (Rows 25-30). However, we see in row 31 that he incorrectly

changes the value of a variable in a state, resulting in the state score changing from 15 to 14.

In row 39, we see that the state score increases to 16, which indicates that the learner corrected

the variables based on the feedback. In this manner, the internal data, event and state scores

coupled with the ‘action_names’, ‘duration’, and ‘screen’ fields, give indicators of the sequence

of actions a user performed in VeriSIM Module 1.

Analysis of Student Interviews

In Study 2 and 3, I had conducted focus-group interviews with students, where I asked questions

related to the usefulness of the design tracing and scenario branching strategy. In addition
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to these questions, I had also asked questions regarding how students went about interacting

with VeriSIM. I followed the same thematic analysis procedure as Study 2 and 3, to analyse

their responses to these questions (Details can be found in Section 6.4.3). The focus of these

questions was to delve deeper into how students were interacting with VeriSIM, and to gather

their perceptions about the features in VeriSIM.

In the next sections, we examine how each of the features in VeriSIM contributed to stu-

dent learning.

8.2 VeriSIM helps students progressively trace scenarios in

the design

The ‘Design Tracing Stage’ activities in VeriSIM help students progressively trace scenarios

in the design. In Chapter 5, we described the challenges in the ‘Design Tracing Stage’ of

VeriSIM. The challenges were ordered in increasing order of complexity, where students first

explored the model, then corrected an incorrect model, completed an incomplete model, and

finally constructed the model from scratch. We derived this order of modelling activities from

literature (Mulder et al., 2011), and it has shown to be beneficial to learners. Although this is

the recommended ordering, it was not imposed strictly, and students were free to attempt the

activities in any order.

What are certain indicators that students found the progression beneficial? We examined

the following attributes from the interaction log data and interviews to answer this question.

• The order students followed - Using the interaction logs, we determined the order in

which students interacted with different activities. We looked at what are possible paths

learners took as they interacted with the VeriSIM learning environment.

• Time spent in each challenge - The interaction logs captured the timestamp of the start

and end of each activity. Thus, the time spent in each challenge can serve as a proxy for

the difficulty for that challenge.

• Students perceptions - During the focus group interviews, we asked students their per-
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ception of the order of activities. These responses complemented the results from the log

data, and helped us gauge the effectiveness of the order of activities.

8.2.1 Findings from interaction logs

From the interaction logs, we observed that all 48 students followed the prescribed order of

challenges. We also looked at the average time spent by students in each task. We chose the

metric of average time spent, as the time spent on a task can be considered as a reasonable

estimate of the difficulty of that task. Table 8.2 and Figure 8.1 shows the average time spent

in each challenge by students. We observe that students spent the least time on Challenge 1.

This is obvious, as learners had to only explore the state diagram and observe its execution in

Challenge 1.

However, we observed that students spent the most time in Challenge 3. Based on the

model progression of activities, Challenge 4 was the most difficult one among the challenges,

since students had to construct the entire state diagram from scratch. Hence, it is reasonable

to assume that students will spend the most time in Challenge 4. However, we observed that

students spent more time in Challenge 3 rather than Challenge 4. Students spending lesser time

in Challenge 4 than Challenge 3, gives an indication that the model progression helped students

construct the model of a scenario. By the time students reached Challenge 4, they had already

observed a correct trace, corrected an incorrect trace, and completed an incomplete scenario

trace. Hence, they required lesser time to construct the model of a scenario from scratch in

Challenge 4.

Table 8.2: Average time spent by students in the design tracing activity in VeriSIM

Challenge 1 Q - Challenge 1 Challenge 2 Q - Challenge 2 Challenge 3 Q - Challenge 3 Challenge 4 Q - Reflection

3.36 2.40 8.43 5.03 11.32 5.63 8.80 5.62
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Figure 8.1: Average time spent by 48 students in each challenge

8.2.2 Findings from focus group interview

Most of the students in the focus group interview also mentioned that they followed the chal-

lenges in order. The key perception by students was that they found the challenges in in-

creasing order of difficulty. Each challenge added some more complexity than the previous

challenge (“Firstly, the whole diagram was given, then correct the mistake... We were going step

by step”) This enhanced their understanding of the design diagrams (“We were going step by

step - understood how the system really work”) as well as enabled them to construct the state

diagram at the end. (Like we solved it sequentially. So .. And when nothing was given, it was

the last question. So I basically had the idea how to go about solving the last challenge). These

perceptions give us indicators that the model progression of the challenges enabled students to

model the scenarios in the design. A more open-ended approach (introducing Challenge 3 or

Challenge 4 at the start) may not have achieved the desired effect (e.g.:“1. Rather than just

pushing us to create state diagrams, it helped us move step by step. 2. It (solving Challenge 4)

became easier for us by exploring the model in the first state”)
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8.3 VeriSIM helps students visualize execution of scenarios

in the design

The model editing and execution features in VeriSIM help students visualize execution of sce-

narios in the design. The VeriSIM learning environment provides students opportunities to

visualize the execution of the state diagram by clicking on a “Run” button. In Challenge 1,

learners explore an already constructed state diagram. During the run of the state diagram,

learners observe corresponding changes in the class diagram and sequence diagram. In Chal-

lenge 2, students are required to correct an incorrect state diagram. When learners click on the

“Run” button for the given state diagram, the states which are incorrect are highlighted in red.

They are supposed to edit the states by changing the values of the variables in the state. In

Challenge 3, the states are empty, and relevant data variables and their values have to be added.

Finally, in Challenge 4, learners have to construct the state diagram from scratch. Learners can

add, edit, and delete data, events, and states by clicking on the “Edit” button. We examined the

interaction logs and interviews to explore the usefulness of the model execution visualization.

• Patterns of using ‘run’ in each challenge - Actions such as adding/editing/deleting data,

events and states are logged by the system in the interaction logs. We analysed patterns

of such actions in each user. We excluded Challenge 1, since students did not modify the

state diagram in this challenge. For each challenge, a user’s actions were plotted onto

a graph, with the x-axis corresponding to the time, and the y-axis corresponding to the

actions in that challenge (examples in Figure 8.2 and 8.3). From the 48 students who

gave consent for use of their interaction logs, 39 students completed all 4 challenges in

the design tracing stage. Hence we manually examined the 117 graphs (39 x 3) in order

to identify different strategies which students used.

• Student perceptions - From the focus group interviews, we examined what were stu-

dents’ perceptions about the model execution visualization and how it helped them in the

challenges.
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Figure 8.2: Example graphs of the Single Run strategy

Figure 8.3: Example graph of the Multiple Runs strategy
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8.3.1 Patterns of using the run visualization in challenges

Manual examination of the graphs led to identification of three distinct strategies across the

three challenges.

Single Run Strategy: All modifications followed by single run at the end: In this strat-

egy, students worked on the state diagram by modifying (adding/editing/deleting) data vari-

ables, and modifying (adding/editing/deleting) states, and clicked on ‘run’ only at the end to

verify their correctly constructed state diagram (an incorrect state diagram would have led to

further edits and runs). An example graph of this strategy is shown in Figure 8.2. We saw 37

instances (out of 117) across the three challenges of students using the Single Run strategy.

Few Runs Strategy: Between one to three cycles of modification and run: In this strat-

egy, students modified data variables and states, clicked on ‘run’, and modified the data/states

again. Students who followed upto three cycles of this behaviour were classified to this strategy.

We saw 28 instances (out of 117) across the three challenges of students using this strategy.

Multiple Runs Strategy: Multiple cycles of modification and run: In this strategy,

students performed multiple cycles of modifying data variables and states, and clicking on run,

as shown in Figure 8.3. We saw 52 instances (out of 117) across the three challenges of students

using this strategy.

We analysed the predominant strategies used in each challenge, and how transitions of

strategies are happening in different challenges. The transitions corresponding to the interaction

logs for the 39 students is shown in Figure 8.4. From the figure, we see that 54% of students

(21 out of 39) attempted Challenge 2 by employing multiple cycles of modification and run

(Multiple runs strategy). But by the time they reached Challenge 4, 56% (22 out of 39) shifted

to using the ‘run’ only at the end (Single run strategy), and only 21% (8 out of 39) still used the

multiple runs strategy.

What can this shift from ‘Multiple Runs’ to ‘Single Run’ indicate? Students execute the

state diagram to get feedback on their model. Hence, at the start (Challenge 2), they used

the ‘run’ scaffold to frequently validate their model. Based on this feedback, they refined their

model. By the time they reached Challenge 4, the previous challenges had helped them visualize

the execution of the control flow and data flow of a given scenario. Thus, in Challenge 4, they
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did not explicitly use the ‘run’ scaffold, but could internalise the control flow and data flow for

the given scenario. They constructed their model, and verified it at the end.

Figure 8.4: Transition diagram of the strategies used by students in each challenge

We also examined how students are transitioning to Challenge 4 from other challenges.

Out of the 8 students who used the multiple run strategy in Challenge 4, 7 of them used the

same strategy in Challenge 2 and 3 as well. This shows that students who used the multiple

run strategy stick to it across the challenges. We can infer that these students require the ‘run’

scaffold to repeatedly validate their model.

We also observed that out of the 22 students who used the single run strategy in Challenge

4, 12 of them used ’multiple runs strategy’, 6 of them used ’few runs’, and 4 of them used

‘single run’ in Challenge 3. Hence, most number of transitions have happened from multiple

runs to single runs between Challenge 3 and 4. This finding also supports our earlier inference

that students were able to simulate the control and data flow in their mind, and did not require

the ‘run’ scaffold by the time they reached Challenge 4.

8.3.2 Findings from focus group interview

Students perceived that the model execution feature in VeriSIM was useful. First, the state

diagram execution helped students map a particular state to the corresponding part of
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the scenario (“ if we pressed the run button, it showed what part of the scenario covers which

state... Basically, it linked the scenario with the state.”). Students also found that the highlight-

ing of the scenario as well as the sequence diagram was useful in understanding the relation-

ship between the scenario and different diagrams (E.g. “It was mapping the step-by-step

scenario with the sequence diagram”).

Visual feedback helped learners identify which parts had errors. (“ If there was some-

thing wrong, then it would be in a different colour”). Students compared the “run” feature to

debugging in programming, and this helped them build the model and rectify it in case of errors.

Positive feedback also served as an indicator that a sub-part of the model was correctly

modelled, and students could move on to the next part (“.. it (clicking on run) indicates that the

first step is now completed. We can move onto the second step”). Students found the step-wise

run more beneficial as compared to a ‘run’ at the end, because it helped them rectify errors in

their model. (E.g. “Because at the first step, we need to know where we are wrong. After doing

whole execution and getting to know and going back on that same point is more difficult and

tedious and correcting it at that point.”). Thus, the step-wise execution and evaluation of the

model helped students break down the task of modelling the scenario into smaller tasks, thereby

making the task easier.

When students were asked how they executed the model, we found instances of both the

‘Single run strategy’ and ‘Multiple run strategy’ in their responses. (Example of Single run

strategy - “After I completed like whatever I thought was correct, after that I tested.. if there

was a mistake, then it showed me in red color, that something was wrong in this part. I once

again looked at it, and then if I found a mistake, I corrected it.” Example of Multiple run

strategy - “I directly read the question, and I edited the first state, and I pressed the run button.

There was some mistakes, I rectified it, and again I pressed run..”) These responses also serve

as a triangulation of the patterns identified in the interaction logs.

8.4 VeriSIM helps students identify scenarios in the design

The scenario branching strategy helps in identifying scenarios in the design. In VeriSIM Module

2, students interacted with the mapping tool to construct a scenario branching tree for each
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requirement. We analysed their perceptions in order to understand the role of the mapping tool

in identifying scenarios.

Students found the scenario branching strategy useful in identifying scenarios. They com-

mented on how it was useful in structuring the design problem (“We didn’t know which way

to go to solve the problem. Now we know a structured way to follow up problems”). The strat-

egy helped in breaking down the problem into scenarios (“problem can be broken down into

scenarios and can be represented in a single diagram”). The visual representation of the sce-

nario tree enabled them to view all possible scenarios for each requirement (“ CMAP I think,

like in a very broad manner, is a connection of state diagrams. Like it entirely shows the whole

picture”), and hence helped them get a macro-view of the design problem (“It gives a bigger

picture about the task that we are trying to solve.”). The simplicity of the representation aided

them to identify scenarios which were missing in the design diagrams (“In CMAP, we can

include all the scenarios. But in sequence diagrams and all, we sometimes, fail to do that,

sometimes some scenarios get left out, because the diagram is very complex. But in CMAP, it

becomes easy to find out the scenario is remaining, let’s add it there.”)

Hence, the explicit focus on scenarios helped students evaluate the given design, which

they found difficult during the pre-test (“ I was able to think about more scenarios. In the ATM

problem, in that problem I was not able to think what can be done new, but after learning this

new session, I was able to elaborate more about what those scenarios can be.”). It also helped

them identify missing functions in the sequence diagrams (“If one function is missing, by

noting down the scenarios we can add them... I identified one function like, when the user

types the username and password, then there was no function to check whether the username is

already there or not.”)

8.5 VeriSIM facilitates strengthening of concepts learnt

The reflection and evaluation activities in VeriSIM facilitate strengthening of concepts learnt in

each challenge. After each challenge in the design tracing stage, students were asked to reflect

on what they learnt in the previous challenge. The objective of the reflection and evaluation

activities is to make students aware of what they learnt in an activity. We examined the following
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attributes from the interaction log data and interviews to explore the role of these reflection and

evaluation activities.

• Time spent in activities - Similar to the challenges, the interaction logs also captured the

timestamp of the start and end of the reflection and evaluation activities.

• Responses to the reflection and evaluation questions - The reflection and evaluation

questions were mandatory and students could not progress further until they submitted

a response. We examined what responses students provide for these questions. A the-

matic analysis of the responses helped us determine whether students responded to these

questions in a meaningful way.

• Student perceptions - During the focus group interviews, we also asked students about

their perception of the reflection and evaluation activities.

8.5.1 Findings from interaction logs

From Table 8.2 and Figure 8.5, we see that students spent on average of around 5 minutes in the

reflection and evaluation questions for Challenge 2, Challenge 3 and the final reflection stage.

(Students spent around 2.5 minutes in Challenge 1, which had only evaluation questions). We

analysed and grouped the responses to prominent themes, which is shown in Table 8.3. We see

that for the reflection questions, students gave responses summarizing the activity, describing

what they learnt and what was difficult. We also observed that certain students left the answer

blank, or provided non-meaningful responses. However, these type of responses were not many.

We also analysed students’ performance in the evaluation activities of the Problem Un-

derstanding Stage. We specifically focussed on their scores in this stage, as these evaluation

activities were the primary means to determine whether students understood the requirements,

design diagrams and scenarios. We found that average scores of students in the evaluation ac-

tivities of ‘Understand the Client and their Requirements’ was 3.79 out of 4, ‘Understand the

Software Design Diagrams’ was 3.6 out of 4, and in ‘Understand Scenarios’ was 1.79 out of

2. These scores indicate that the evaluation activities enabled them to build an adequate under-

standing of the requirements and the design diagrams.
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Hence, the time students spent in the reflection and evaluation questions, as well as their

responses give indicators that these questions were useful for students in their learning.

Figure 8.5: Average time spent by students in all activities

Table 8.3: Themes emerging from student reflection responses in VeriSIM

Main themes emerging from reflection activity responses Examples

Summary of activity "The main goal was to set the correct input so that it follows a correct sequence and unlock the door."

"the main goal was to create a state diagram in accordance with the variables , classes, an the scenario given."

What I learnt "I learnt how a particular scenario is traced from one state to another."

"I learnt the use of state diagrams which is definitely a crucial part of software development"

What was difficult "The challenging fact was to complete the state diagram with only the data variables."

"The challenging part of the previous challenge was to correct all the errors simultaneously in each part."

Blank/Non-meaningful statements "very nice challenge"

8.5.2 Findings from focus group interview

The key themes emerging from the focus group interviews are that the reflection and evaluation

activities:

• Enabled students to revise, reflect and summarize what they did - Students said that

having the reflection immediately after the challenge helped them “recollect what we they

did” and “reflect back on what they learnt”.

• Enabled students to connect concepts - While solving the challenges, students may miss
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certain key concepts which were required to be learnt. The evaluation questions tested the

knowledge gained in the previous challenge. The feedback from these evaluation ques-

tions helped them identify gaps in their knowledge. (E.g. “ it helped us to identify, map

where all the shortcomings were and what was our knowledge, what was important, what

was not important.”). Answering the reflection questions also triggered the realisation of

a connection between concepts. (E.g. “When I was writing, I realised there is one point,

there is the other point, and this is the connection between them”)

• Reduced cognitive load - Students said that the reflection questions helped them calm

their mind after the strain of doing the challenges, and thus prepared them for the next

challenge (E.g. “It relaxes my mind. I was putting some strain here in the challenge... It

helps me to calm down.”)

• Enabled sustained engagement - Students also said that a score associated with each

reflection and evaluation question kept them engaged and alert, and made them focus on

the questions since they did not want to lose points. (E.g. “they were giving points for the

right answer, and for every wrong answer there was explanation. It was motivating. Ya,

we should get those points.”)
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8.6 Local learning theory: VeriSIM enables students to de-

velop an effective mental model of the design

In previous chapters, we developed the idea of how identifying and modelling scenarios in the

design is essential for building an effective mental model of the design, which in turn enables

students to effectively evaluate design diagrams against the given requirements. In this chapter,

we described how students identified and modelled scenarios using features in VeriSIM. Based

on the findings from the interaction logs and focus group interview, we propose the following

local learning theory of how students are identifying and modelling scenarios in the design.

Figure 8.6 and Table 8.4 summarizes the key aspects of the local learning theory, and how

activities in VeriSIM are helping students perform effective software design evaluation.

Students develop knowledge of the problem domain and design diagrams based on the

activities in ‘Problem Understanding Stage’. In these activities, students analyse the given

requirements and design diagrams, and answer questions which test their knowledge of the

requirements and design diagrams.

Students’ understanding of elements of the mental model, such as the dynamic behaviours

(control flow and data flow), main goals and scenarios are developed when they solve challenges

in the ‘Design Tracing Stage’. In earlier challenges (Challenge 1 and 2), students analyse the

scenario, the given model (state diagram), and the given design diagrams. They map parts of the

scenario to the corresponding state. They identify errors in the model and use the class diagram

and sequence diagrams to rectify the errors. They then move on to the next part of the scenario

and its corresponding state. In later challenges (Challenge 3 and 4), students identify sub-parts

of the scenario, and identify variables and entities which are relevant for this part. They follow a

similar process of construction and refinement of the model. In all challenges, students execute

the model and evaluate its correctness. As students progressively construct the state diagram in

each challenge, they are able to map the scenario to the state diagram and systematically trace

the control flow and data flow of the given scenario. The affordance to manipulate and execute

the model further enhances their understanding of the control and data flow in each scenario,

and also helps in developing the relationship between different design diagrams.

Students’ ability to simulate alternate scenarios are developed by the scenario branching
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strategy. As they construct the scenario tree, they visualize different scenarios for each re-

quirement. The strategy also helps them structure and decompose the given problem, thereby

developing their design diagram and problem domain knowledge as well.

Students are able to describe the purpose of the design tracing and scenario branching

strategy, and also articulate the relation between the two strategies. Consider the following

interview excerpt -

“Design tracing is breaking up the different scenarios in the CMAP into different scenarios. So

we could.. in scenario branching, we are putting all the scenarios in one map, and in design

tracing, we are taking each single scenario and working on that scenario, and how it is getting

executed, and we are seeing the node how it is working.” From this excerpt, we can see that

students are able to relate the scenario branching and the design tracing strategy. They are able

to understand the zoomed out view which scenario branching provides, and the zoomed in view

of each of these scenarios which they are able to do using design tracing.

Students are also able to reflect on how they will use the strategies learnt when they en-

counter a new design problem. Consider the following excerpt from an interview -

“In my case, I will use first make the use case of the system, and the user who will be the actor.

Then I will create all the classes related to the entities present. And after that I will create the

scenario what the user will be doing... So the listing out of scenario will be done by me. And

after that, looking at the links of the scenario, I will be making the sequence part, and sequence

part will be implemented by the state diagrams. So that the proper execution of the program can

be done.” From this excerpt, we see that students are able to appropriate how they will augment

the strategies learnt in their previous understanding of the software design process.

Hence, the VeriSIM pedagogy helps students develop effective mental models of the de-

sign, by identifying and modelling various scenarios in the design. Students are able to develop

a broad understanding of the requirements and the design, by identifying relevant scenarios

based on the requirements. They are also able to simulate the dynamic behaviour of each of

these scenarios using the design tracing strategy. The broad as well as deep exploration of

various scenarios in the design is enabling students evaluate the design against the given re-

quirements.
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Figure 8.6: Key aspects of the local learning theory based on the VeriSIM pedagogy
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Table 8.4: Summary of how activities in VeriSIM help in performing software design evaluation

Activities in VeriSIM What students do How it helps them

Problem Understanding

Stage

•
Analyse software design

diagrams and requirements

•
Attempt reflection and

evaluation activities

Students develop knowledge

of the problem domain and

design diagrams

Design Tracing Stage

(Challenge 2)

•
Analyse scenario and state

diagram model

•

Map corresponding part of

scenario to corresponding

state

• Identify errors in the model

• Modify state to rectify errors

Students are able to build

relationships between main goals,

control flow, data flow, and

diagram surface elements

Design Tracing Stage

(Challenge 3 and 4)

•
Identify sub-parts of the

scenario

•

Identify variables and entities

which are relevant to the

sub-parts

• Construct and revise the model

Students are able to identify

relevant parts of the model i.e. the

data variables, events and states,

and their appropriate values

Reflection Stage •

Reflect on the design tracing

strategy and how it will be useful

for them in the future

Students are able to abstract

the strategy and think of how they

can apply it in different contexts

Scenario branching

strategy

•
Construct a scenario tree for

each requirement

•
Traverse the tree to generate

scenarios

•
Compare each scenario with the

design diagrams

Students are able to generate

scenarios and visualize whether

these scenarios satisfy

the given requirements.
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Chapter 9

Discussion

9.1 Overview of the Research

In this thesis, we reported two design-based research (DBR) cycles of problem analysis, solution

design and development, evaluation and reflection. In the first DBR Cycle, we analysed liter-

ature in computing education research and empirical software engineering in order to identify

cognitive processes and strategies experts use in the context of software design. The key insight

is that experts create rich mental models of the design, and use various reasoning techniques to

simulate scenarios in the design. On the other hand, an analysis of the literature shows that dif-

ficulties which novices face seem to stem from an incorrect and incomplete mental model of the

design. These difficulties have been explored in the context of creating designs, but sufficient

emphasis has not been given on how novices approach evaluating design diagrams against the

given requirements. We followed this line of investigation in Study 1a and Study 1b, where we

characterized student responses as well as their process of evaluating design diagrams. These

studies revealed that students’ mental models did not accommodate the control and data flow

in designs, and mainly focussed on superficial aspects of the design diagrams. They did not
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simulate alternate scenarios while evaluating the design. They also proposed new functionali-

ties and requirements outside the model boundary of the design and the requirements, instead

of evaluating the design diagrams against the given requirements.

These findings from the problem analysis phase of DBR Cycle 1 shows that effective

evaluation of a given design depends on students’ ability to create a rich mental model and

to simulate the control as well as data flow of the design. In order to help students do this,

we proposed VeriSIM - a model-based learning pedagogy which enabled learners to identify

and model various scenarios in the design. We operationalised the pedagogy into the VeriSIM

learning environment, which incorporated features of model construction, revision, visualiza-

tion, and evaluation. We hypothesized that as students created models of various scenarios in

the design, they would be able to evaluate design diagrams better. We examined this hypothe-

sis in Study 2, where we investigated the effectiveness of VeriSIM in students’ ability to trace

scenarios and evaluate the design diagrams against the given requirements. Our findings show

that by scaffolding students to trace given scenarios in the design, there is a significant improve-

ment in their ability to trace scenarios, but not in their ability to identify scenarios which do not

satisfy the given requirements.

In the second DBR Cycle, our reflections from the previous cycle showed that students

require explicit help to generate and identify scenarios which do not satisfy requirements. This

led us to introduce a second module in VeriSIM - the scenario branching strategy, in which

students use a mapping tool to generate alternate scenarios in the design. In Study 3, students

went through both modules of VeriSIM. The findings show that there is an improvement in their

ability to identify alternate scenarios in the design which do not satisfy the given requirements.

Students also perceived that the mapping tool helped them in structuring a given problem, as

well as think of alternate scenarios in the design.

In this cycle, we also investigated how features in VeriSIM are contributing to student

learning. We analysed the interaction logs and student perceptions in order to identify the

usefulness of various features in VeriSIM. Based on these findings, we proposed a local learning

theory of how students were identifying and modelling scenarios in the design, which showed

that the activities in VeriSIM helped students effectively evaluate the given design against the

requirements.

198



9.2 Answering the Research Questions

The studies conducted in the DBR Cycles enabled us to answer the research questions proposed

in the thesis. We present these answers below:

RQ 1: How do students evaluate a design against the given requirements?

We answered RQ 1 by conducted two studies (Study 1a and 1b) with students. Studies with

students showed that they were unable to create rich mental models of the design, and instead

focussed on surface-level parts of the design. They were able to identify the main goals of the

design diagrams, but were unable to explain the control flow and data flow based on the execu-

tion of different scenarios. We also found that they added new functionalities into the design,

instead of adhering to the task of evaluating the design diagrams against the given requirements.

Based on the findings from the novice studies, we claim that to effectively perform software de-

sign evaluation, students need explicit training in creating accurate mental models of the

design. This involves them identifying relevant scenarios, and modelling the control flow

and data flow of these scenarios. These findings informed the design of the VeriSIM peda-

gogy, and its operationalisation into the VeriSIM learning environment.

RQ 2 and 3: What are effects of the VeriSIM pedagogy in students’ ability

to evaluate a design against the given requirements?

In Study 2 and 3 students interacted with VeriSIM learning environment. Analysis of students’

pre-test and post-test responses, as well their responses in the focus group interviews and feed-

back forms show a change in students’ processes while evaluating software designs, as well as

in their attitudes towards modelling and software design.

In Study 2, we observed that there is a significant difference between how students traced

a scenario before and after interaction with VeriSIM. Students’ focus shifted from a superfi-

cial understanding of scenarios, to an understanding which involved identification of relevant
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data variables, events and their change of state on execution of a given scenario. We believe

this change is due to activities in VeriSIM which helped students model different scenarios in

the design. Students also perceived that the VeriSIM pedagogy helped them understand the

inter-relationship between different design diagrams. Based on these findings, we claim that

interaction with VeriSIM helps learners develop a rich mental model of the given design

and requirements.

In Study 3, we observed that there is a change in how students evaluate a given design

against the requirements. Students’ understanding of evaluation evolved from merely adding

new functionalities and requirements, to a process which involved identifying alternate scenar-

ios in the design which violate the given requirements. We believe that the activities in VeriSIM

such as the scenario branching strategy facilitated this change. Hence, we claim that VeriSIM

enables learners to effectively evaluate design diagrams against the given requirements.

We also observed that although students had undergone a software engineering course

prior to interactions with VeriSIM, the activities in VeriSIM prompted a change in their attitude

towards modelling and design. VeriSIM helped them understand the advantages of designing a

class diagram before actually starting with the project. Some students also said that in previous

years, they used to directly start coding without creating a design, which resulted in several

errors in their code. They now realised that creating designs at the start would help them create

correct programs, save time, as well as facilitate discussion among team members.

The above advantages of design are obvious, and the key reason why it is taught. These

advantages were not explicitly mentioned, either in the pedagogy or by the researchers con-

ducting the studies. Hence, we believe interactions with VeriSIM helped students realise these

advantages, and brought about a shift in their attitude towards modelling and software

design.

RQ 4: How are features in the VeriSIM learning environment contributing

towards student learning?

We answered RQ 4 by analysing logs of students interacting with the VeriSIM learning envi-

ronment, and student responses in the focus-group interviews. We found that the activities in
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the design tracing stage enabled students to progressively trace scenarios in the design. These

findings give evidence for the appropriateness of the model progression activities in enabling

learners to construct models of various scenarios in the design. Second, the model execution

and visualisation features in the Design Tracing Stage helped learners simulate the control and

data flow of various scenarios in the design, by helping students map a particular state to the

corresponding part of the scenario. These features scaffolded learners to model various sce-

narios in the design. Third, the scenario branching strategy enabled students to structure the

design problem, and break down the problem into scenarios, thereby enabling them to identify

scenarios which were missing in the design diagrams. We also saw instances of students being

able to abstract the purpose of the design tracing and scenario branching strategies, as well as

reflect on how they will apply these strategies in a new design problem.

9.3 Generalizability

The VeriSIM pedagogy enables students to create a rich mental model of various scenarios

in software design. We believe that the pedagogy can be extended to teaching-learning of

programming as well. There are existing strategies such as program tracing which help students

develop an accurate mental model of program execution (Cunningham et al., 2017; Xie et al.,

2018). The model order progression activities can be used to enable students to effectively trace

a given program. We discuss this in more detail in our future work (Section 10.2.1).

We have restricted our scope to evaluation of class and sequence diagrams. The class and

sequence diagrams are the most commonly used structural and behavioural diagrams (Dobing

and Parsons, 2006). Since the VeriSIM pedagogy helps students identify the control and data

flow elements from the class and sequence diagrams, we conjecture that the underlying principle

of identifying and modelling scenarios can be extended to other design diagrams such as object

diagrams, activity diagrams, collaboration diagrams etc.

We also conjecture that identifying and modelling scenarios in the design can help stu-

dents in creating designs as well. As students create a design based on the given requirements,

they can identify and model various scenarios in their own design. We also saw evidence of

students repurposing the strategies learnt in VeriSIM into the design creation process (Section
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8.6). Hence, we believe that the VeriSIM pedagogy can be used to help students in the design

creation process as well.

The model-based learning paradigm has been the underlying theoretical basis for activities

and features in VeriSIM. We have provided arguments and evidence for the appropriateness of

model-based learning for teaching-learning of software design evaluation. We speculate that

the key ideas of the VeriSIM pedagogy can be used to evaluate designs in other areas as well,

such as electronic circuit design, mechanical design, product design etc. Even in such design

contexts, a set of requirements and specifications are provided along with the design. In order to

effectively evaluate the design, designers require adequate domain knowledge (e.g. laws con-

cerning electrical flow, laws governing mechanical systems) as well as knowledge of various

components of the design (e.g. how a transistor works). They can then identify and simulate

scenarios in the design which do not satisfy the requirements. For example, in the case of

an electronic circuit design, designers can think of scenarios with different signal ranges and

supply voltage ranges for which a circuit faces issues. They build mental models of these sce-

narios by identifying relevant parts of the circuit. They may then use mathematical models or

simulators/emulators to predict the output of the scenario model. Based on the output, design-

ers speculate whether the given scenario satisfies the specifications for these ranges. Hence,

as designers identify different scenarios and model them, they can examine whether specific

scenarios satisfy the given requirements.

We conjecture that various aspects of the VeriSIM pedagogy can foster the above men-

tioned practices in other design contexts as well. Learners can be scaffolded to develop relevant

knowledge about the domain and components of the model. Instructors can use model progres-

sion activities (analogous to that in VeriSIM) to help students develop an accurate mental model

of the given design. Students can also be trained to identify scenarios which do not satisfy the

design, by using external representations like the scenario branching tree. Hence, we hypoth-

esize that the essence of the VeriSIM pedagogy i.e. enabling students to identify and model

scenarios in the design can transfer to teaching-learning of design evaluation in other contexts

as well.
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9.4 Limitations

Limitations related to learner characteristics

The subjects of studies in this thesis were undergraduate engineering students enrolled in bache-

lor programmes in computer science or information technology, who were from urban colleges,

who were proficient in using computers, and whose medium of instruction was English. All of

them were familiar with basic UML diagrams, and the software design process. This is also

confirmed by students’ positive self-perception of their UML design knowledge in a registra-

tion form prior to studies. However, we believe that students have varying prior knowledge

and experiences in working with software designs. We have not investigated the effect these

variations in prior knowledge have on the results of our studies. Students’ prior experience in

working with software designs, would likely have affected their interactions with VeriSIM as

well as how they performed software design evaluation. The effect of varying prior knowledge

can be examined in future studies.

In addition to prior knowledge, various personal, social, emotional and cognitive charac-

teristics also affect learning experiences. We also believe students’ motivation in performing

software design tasks, as well as computing in general could have also affected the results of

our studies. In Studies 1a, 2 and 3, we used convenience sampling based on the availability

of students, and hence could not account for their motivation and interest in software design.

Variations in these affective factors could have also affected the findings. Further studies can be

conducted to tease apart the role of such affective factors in software design evaluation.

Limitations due to scoping the construct and skills involved in ‘evaluation’

In this thesis, we have looked at developing students’ design diagram evaluation skills. We have

restricted our focus to semantic deficiencies, and emphasised on helping students identify and

model relevant scenarios. In our studies, we have taken the perspective that “effective” evalu-

ation was done by students who identified relevant scenarios not adhering to the requirements.
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This scoping of evaluation comes with its limitations.

First, a holistic perspective to evaluation involves (in addition to semantics), other aspects

such as syntactic and pragmatic deficiencies, as well as non-functional requirements such as

modularity, extensibility etc. These perspectives of evaluation go beyond identifying relevant

scenarios and mapping requirements to design diagrams. The effect of these aspects have not

been identified in this thesis.

Second, effective evaluation (much like any other software engineering practice) depends

on individual as well as inter-personal skills. Software engineering expertise is characterised by

internal personality attributes, and attributes regarding engagement with others, in addition to

developing technical expertise (Li, 2016). The software design process involves collaboration

and deliberation with multiple stakeholders, and other team members. Training students to per-

form evaluations in such ecologically valid settings would involve helping students collaborate

with each other, deliberate on the decisions made, and communicate these decisions effectively.

In this thesis, we have focussed on helping students develop rich and accurate mental models

of the design. How these models of the design should be communicated it to a larger team is

also essential in taking the design forward to the next stage. Developing these skills would also

contribute towards effective evaluation, but has not been investigated in this thesis.

Limitations related to characteristics of software design evaluation prob-

lems

Students were provided with different software designs across studies in the thesis, such as the

design of an ATM system, a library management system, an automated door locking system,

and a streaming website. These designs were taken from problem domains familiar to learners.

Our findings are thus limited to examining students’ evaluation processes in familiar problem

domains. These designs were also fairly simplistic, and did not capture the inherent complexity

of the actual real-world system. However, we believe that the key goal of the VeriSIM pedagogy,

of enabling students to build effective mental models of the design by simulating scenarios, will

aid them as they evaluate complex designs as well. This can also be investigated in future

studies, where the VeriSIM learning environment is modified to include fairly complex designs
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as well.

Limitations of the UML formalism

Although Unified Modelling Language (UML) is a general-purpose modelling language, it has

certain limitations. Many software engineers do not use UML due to its lack of context, and

overheads of understanding notation (Petre, 2013). Others retrofit it as a means to document

the development of a software system, or as a creative ‘thought-tool’ at the beginning of the

software design life-cycle (Petre, 2013).

Despite these limitations, Petre notes that UML plays an important role in software engi-

neering education (Petre, 2014). UML provides students a medium for “model-based thinking”,

and equips them with a collection of representations and reasoning tools to engage with soft-

ware design problems. The focus of this thesis has also been to aid students in engaging with

the semantics of the design, by identifying and modelling various scenarios in the design. We

believe that this helps students focus on the correctness and completeness of the design, as

opposed to strict syntactic issues, which may not be relevant for them in the future.

9.5 Implications

This thesis has implications for computer science instructors as well as computing education

researchers.

9.5.1 Implications for Computer Science Instructors

In this thesis, we brought out the gap that evaluation of software design diagrams is not given

sufficient emphasis in the curriculum. Our initial studies to understand how learners approach

the evaluation task show that they are not able to construct a rich and detailed model of the

design. These findings on student difficulties can inform software design instructors in their
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teaching. Based on the findings of studies conducted in this thesis, we provide the following

guidelines for the teaching of software design diagram evaluation.

1. Help students understand the problem domain and requirements - Problem under-

standing is a vital part of the design process. Instructors should ensure that students suf-

ficiently understand the domain and the requirements, before jumping in to verifying the

design diagrams. In the VeriSIM pedagogy, we have shown that the scenario branching

strategy can be used to help students understand the problem space. Teachers can use this

strategy to help students simulate scenarios in the design which map to the requirements

and also check if there are scenarios which are not adhering to the given requirements.

2. Equip students to identify specific scenarios and model them - Once students identify

relevant scenarios, instructors should help them model these scenarios. In the process of

modelling these scenarios, students are forced to closely analyse the design diagrams and

simulate the control and data flow across diagrams. This ensures that they develop a rich

mental model of the design, which is essential for them to evaluate the design against the

given requirements.

3. Provide activities that help students progressively model scenarios in the design - The

VeriSIM pedagogy gives evidence that the model progression of activities helps students

in modelling scenarios. Instructors can provide activities of observing, correcting and

completing a model, before students model scenarios.

4. Provide opportunities for reflection and metacognition - Throughout the evaluation

process, instructors should present students with opportunities to reflect on their thinking,

why they performed certain actions, and what they must do to solve the evaluation task.

5. Use the evaluation tasks as a natural extension to creation tasks - Providing students

with evaluation tasks before creation has several benefits. First, it provides students exam-

ples of how designs have been created from the given requirements, and what are defects

which should be avoided. Second, they can use the strategies they learnt while evaluat-

ing other designs, in order to create as well as evaluate their own designs. Students can

simulate and model scenarios in their own created designs to ensure that it adheres to the

given requirements.
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Findings from this thesis also provides implications for teaching-learning of software de-

sign. First, teaching software design should provide students with tools and strategies to create

models of the design, rather than focussing on teaching the notations and syntax of UML di-

agrams. This is because the skill of effective modelling is more likely to be used in industry,

rather than a specific modelling language.

Second, the mental model for design diagrams outlined in this thesis can also serve as an

aid for instructors to design appropriate curricula and learning pathways for teaching-learning

of software design. Instructors can initially scaffold students to identify the diagram surface

elements and main goals of design diagrams, followed by a deeper exploration of the control

flow and the data flow. This can help students build an integrated understanding of different

design diagrams and construct effective mental models of the entire design.

9.5.2 Implications for Computing Education Researchers

This thesis extends research in computing education in three fronts - extending the theory of

program comprehension, characterization of students’ mental models in computing, and use of

the model-based learning paradigm in computing education. First, this work extends the ex-

isting theory of program comprehension. The Block model has been used as an educational

framework for teaching-learning of program comprehension. However, the model has predom-

inantly investigated comprehension of code artifacts. We expand this existing notion to design

diagrams as artifacts. We built upon existing work by exploring students’ comprehension and

evaluation processes, and the difficulties they face in the context of design diagrams. Com-

puting education researchers can conduct further studies to validate as well as extend on our

adapted mental model for design diagrams.

Second, computing education researchers can extend the findings of this thesis by explor-

ing variations in student models as they evaluate different design diagrams and problems of

varying complexities. How students’ mental models vary when they are presented with other

structural and behavioural diagrams (like activity diagram, object diagrams etc.) can be ex-

plored. Studies can also be conducted with problems from unfamiliar domains to examine

whether the behaviour of adding new functionalities persist. Findings from such studies can
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further contribute to the theory of how students evaluate design diagrams against the given

requirements.

Finally, the thesis gives evidence for the model-based learning paradigm as an appropriate

pedagogy for software design. This opens the space for researchers to investigate this paradigm

in other aspects of software design, as well as programming. Variations of this paradigm can

be applied to create pedagogies and designs which investigate learning and its effectiveness in

other contexts.
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Chapter 10

Conclusion

10.1 Contributions of the Thesis

This thesis provides contributions to pedagogy in software engineering education, and extends

research in computing education research as well as design of learning environments.

10.1.1 Contributions towards pedagogies for software design

The key contribution of this thesis is the VeriSIM pedagogy which helps students effectively

evaluate software design diagrams using the design tracing and scenario branching strategy.

These strategies can be directly used by instructors to train students in evaluating and creating

software designs for the given requirements. We have also provided guidelines which instruc-

tors can use for teaching of software design evaluation (see Section 9.5.1).

The theoretical basis of the VeriSIM pedagogy is the model-based learning paradigm. Al-

though model-based learning has been extensively studied and applied in science education
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research, it has not been explored in software design, or even computing education in general.

This thesis provides an instantiation of the model-based learning paradigm in the context of soft-

ware design. We believe this opens up the field for research in applying model-based learning

paradigms in computing education - in contexts like programming and creating designs.

10.1.2 Contribution towards computing education research theory

This thesis also contributes to computing education in two fronts. First, it contributes towards

a characterization of novices processes in software design evaluation. Based on our analysis of

literature from expert practices in software design and strategies they use to evaluate designs,

we found that experts create rich mental models of the problem domain and the design. They

perform mental simulations on these models by simulating the control flow and data flow of

various scenarios in the design. On the other hand, based on findings from novice studies, we

found that novices focus on surface-level parts of the design, and show limited instances of data

flow simulation. Novices also add new functionalities into the design rather than evaluating the

design against the given requirements. Computing education researchers can apply and extend

this characterization of novice processes for software design evaluation in varying contexts such

as for different design diagrams and unfamiliar problem domains.

Second, the thesis contributes towards the existing theory of program comprehension by

adapting the Block Model and extending the artifacts used to design diagrams (see Section

9.5.2). Computing education researchers can conduct studies to build on the mental model

elements for design diagrams proposed in this thesis, and thus further extend existing theory on

mental models as well as program and design comprehension.

10.1.3 Contribution towards learning environment design

In this thesis, we designed and developed the VeriSIM learning environment in order develop

students’ design diagram evaluation skills. VeriSIM is available online for anyone to use at the

following link - https://verisim.tech. The learning environment can be directly used by instruc-

tors as well as students to be trained in evaluating design diagrams against the requirements.
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The VeriSIM learning environment incorporates various design features such as the ability

to construct, modify, and visualize the execution of a given scenario. This extends the current

work in program visualization literature, which has primarily looked at visualizations of pro-

gram execution. Learning environment designers can adapt and extend these features for other

software design diagrams and contexts, as well as teaching-learning of programming.

10.2 Future Work

This thesis opens avenues for development as well as research in several areas.

10.2.1 Extending the model-based learning paradigm to program com-

prehension

This thesis provides evidence for the suitability of the model-based learning paradigm for de-

sign diagram evaluation. A natural extension of this paradigm is towards the teaching-learning

of program comprehension. There have been studies which show that tracing is an effective

strategy to help students comprehend a given program (Cunningham et al., 2017; Xie et al.,

2018). However, how tracing can be taught is not given sufficient emphasis. The model-based

learning paradigm and model order progression can serve as teaching strategies for tracing.

For example, an instructor can scaffold students to first explore a trace, then correct a trace,

followed by completing an incorrect trace of a program. Such gradual progressions can help

students develop expertise in comprehending a given program.

Effects of the benefits of model progression for program tracing can be investigated us-

ing a quasi-experimental research design, which compares students tracing programs with and

without model progression. Findings from such studies can investigate the usefulness of model-

based learning and the model progression activities in programming as well.
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10.2.2 Developing an instructor interface for the VeriSIM learning envi-

ronment

The current version of VeriSIM Module 1 involves challenges in which users trace scenarios

for a single design problem - an automated door locking system. However, in order to be used

by instructors in a classroom, we believe that several types of problems need to be provided to

students. Hence, future work with regards to VeriSIM’s development is providing an interface

where instructors can add problems from different contexts and different types of design dia-

grams of varying complexities. A series of such problems can be used in a lab or classroom

setting for sustained instruction in teaching-learning of design evaluation.

10.2.3 Using eye-tracking for a deeper understanding of how students

evaluate a design

In Study 1b, we used video data as the primary data source to understand the strategies which

students used to make sense of the design. We could only infer which diagram they were

focusing on, but not on which part or aspect of the design diagram. Physiological sensors such

as eye-tracking can provide an even more finer level of detail towards how students comprehend

a given design. For example - the tracking device can provide details about certain parts or areas

in the design diagrams students focus on the most. It can also provide accurate patterns of how

students are switching between different diagrams, and what areas in these design diagrams

they are focusing on. Such findings can further contribute towards strategies which students use

to make sense of the design and also uncover difficulties and misconceptions encountered by

students.

10.2.4 Conducting qualitative studies to gain deeper insights

The effectiveness of the VeriSIM pedagogy has been ascertained mainly by (1) Comparison of

answers in pre-test and post-test (2) Student perceptions after using VeriSIM and (3) Analysis
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of student interaction logs. Findings from these data sources and analysis have shown that

the VeriSIM pedagogy has caused changes in students’ evaluation processes as well as their

attitude towards design. In addition to these analysis methods, qualitative studies involving

video capture, think-aloud and in-depth interviews can also be conducted as students interact

with VeriSIM. These studies can lead to deeper insights and provide a deeper understanding of

students’ learning pathways during their interactions with VeriSIM.

10.2.5 Investigating the effect of evaluation on creation of designs

In introductory programming literature, skills like comprehension and debugging are essen-

tial skills which contribute towards effective programming. In fact, there is a recent emphasis

towards introducing students to comprehend programs before they actually start creating pro-

grams (Xie et al., 2018; Schulte et al., 2010; Nelson et al., 2017). We conjecture that the same

holds true for software designs as well. We believe that as students comprehend and evaluate

designs, they will be able to create better designs. This conjecture can be tested conducting

a quasi-experimental study comparing students who create a design versus students who first

evaluate designs and then create a design. Findings from such studies can provide evidence for

the usefulness of evaluation tasks in enabling students to create better designs.

10.3 Final Reflections

The main goal of this thesis has been to provide learners with scaffolds to help them better

reason with a given design. I believe that training students to build and reason with software

designs should be an important goal of computer science programmes, particularly because

building and reasoning with software systems are essential activities software engineers perform

on their job. I believe that this thesis has contributed towards enhancing students’ competence

in these activities.

Looking back, the idea of exploring this field of study had been planted even before I

started my PhD. For my Masters thesis, I developed a tool which automatically ascertained if
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a set of sequence diagrams satisfy a given property. I found that programming a software to

reason with software designs was difficult, but still tractable, since the tool behaves exactly the

way I program it to behave. However, explorations in this thesis made me realise that teaching

students to do it is much harder! What really goes on inside a person’s mind as they interact with

software systems? This thesis does shed some light to this question. Humans come with their

own set of life experiences, prior knowledge and biases, and all of these have a part to play as

one reasons with software artifacts. Findings from literature and novice studies made me realise

the complex interactions which occur in an experts’ mind as they reason with a software design,

and the difficulties which novices face. Designing pedagogies to address these difficulties has

also shown me that technological tools and affordances can certainly help students become

better at reasoning with software systems.

My PhD journey has helped me make the transition from reasoning with software, to help-

ing learners effectively reason with them. My experiences of conducting studies with students,

designing learning environments, and evaluating its effectiveness has helped me become more

aware of the challenges of doing educational research. However, it has also provided great

satisfaction to see learners using the tools and scaffolds which I designed, to make small, yet

significant improvements in their learning. I believe the PhD experience has been a great start-

ing point to a research journey in computing education research which I hope to pursue.
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Appendix A

Sample Student Consent Form
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Consent to Participate in Educational Research 

 

[Title: Evaluating a Software System Design] 

 
You have been asked to participate in a research study conducted by Prajish Prasad from the 

Inter-Disciplinary Program in Educational Technology at the Indian Institute of Technology 

Bombay (IITB). The purpose of the study is to get feedback on a pedagogy to help students 

evaluate a software system design. You were selected as a possible participant in this study 

because of your educational background as a computer science  under-graduate. 

 

 PARTICIPATION AND WITHDRAWAL 

 

Your participation in this study is completely voluntary and you are free to choose whether to be 

in it or not. If you choose to be in this study, you may subsequently withdraw from it at any time 

without penalty or consequences of any kind.  The investigator may withdraw you from this 

research if circumstances arise which warrant doing so.  

 

You will not be compensated for the participation. You should read the information below, and 

ask questions about anything you do not understand, before deciding whether or not to 

participate.  

 

 

 PURPOSE OF THE STUDY 

 

The purpose of the study is to get feedback on a pedagogy to help students evaluate a software 

system design 

 

 PROCEDURES 

 

If you volunteer to participate in this study, we would ask you to do the following things: 

1. Perform a task which consists of verifying properties of a software system design 
2. Participate in interview 

We expect that the study will take about 2 hours. There will be a screen recording of your 

interactions on the computer and an audio recording during the interview. 

 

 POTENTIAL BENEFITS  

 

 The students get familiar with authentic software design problems. 
 Learn how to correctly and effectively verify properties of a software system design. 

 

 CONFIDENTIALITY 

 

Any information that is obtained in connection with this study and that can be identified with you 

will remain confidential and will be disclosed only with your permission or as required by law.  

 

We will not use your name in publications; however we may need to use your academic 

performance details if you give us permission.  

 

 

 



 
 

 IDENTIFICATION OF INVESTIGATORS 

 

If you have any questions or concerns about the research, please feel free to contact Prajish 

Prasad (prajish.prasad@gmail.com) or Prof. Sridhar Iyer, CDEEP IITB (sri@iitb.ac.in) with any 

questions or concerns. 
 

SIGNATURE OF PARTICIPANT 

 

I understand the procedures described above.  My questions have been answered to my 

satisfaction, and I agree to participate in this study.  
 

________________________________________ 

Name of Subject 

 

________________________________________  __________________________ 

E-mail address       Contact No. 

 

________________________________________  ______________ 

Signature of Subject      Date 
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You  are  a  software  developer  in  the  software  development  team  of  “SafeHome  Solutions”.
SafeHome solutions is a startup which wants to create automated door locking systems for homes.
After  discussions  with  various  stakeholders,  an  initial  set  of  requirements  have  been  captured.
Based on these requirements, the design team has come up with an initial design of the product.
They have now passed on the design to your team. Your team lead, Nisha wants to do a check on
the design before passing it to her team for development. She approaches you to do this task. 

She provides  you with a  set  of  key  requirements  for  the  automated  door  locking system.  The
requirements collected are - 

1. If the passcode hasn't been set yet, the user can register and enter a required passcode.
2. When the user chooses the lock option, and enters the correct passcode, the door should

lock. If the passcode is incorrect, the door remains unlocked.
3. When the user chooses the unlock option, and enters the correct passcode, the door should

unlock. If the passcode is incorrect, the door remains locked.
4. The door should lock/unlock only if it is closed.

She also provides you with the design, which is a set of UML diagrams.(Provided on the system)

Task Objective:  For each requirement, your task is to provide a logical explanation for how the
design  satisfies/does  not  satisfy  the  requirement.  You are  free  to  use  any notation/diagrams to
support your explanation.



B.1 UML Diagrams provided to Students

Figure B.1: Use case diagram of the door locking system

Figure B.2: Class diagram of the door locking system
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Figure B.3: Sequence diagram for the register use case
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Figure B.4: Sequence diagram for the lock door use case
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Figure B.5: Sequence diagram for the unlock door use case
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Overview of a Use Case Diagram

A use case diagram at its simplest is a representation of a user's interaction with the system that
shows the relationship between the user and the different use cases in which the user is involved. A
use case diagram can identify the different types of users of a system and the different use cases and
will often be accompanied by other types of diagrams as well. 

The purpose of the use case diagrams is simply to provide the high level view of the system and
convey  the  requirements  in  layman's  terms  for  the  stakeholders.  Additional  diagrams  and
documentation can be used to provide a complete functional and technical view of the system.

Overview of a Class Diagram

In software engineering, a class diagram in the Unified Modeling Language (UML) is a type of
static structure diagram that describes the structure of a system by showing the system's classes,
their attributes, operations (or methods), and the relationships among objects.

The class diagram is the main building block of object-oriented modelling. It is used for general
conceptual modelling of the systematic of the application, and for detailed modelling translating the
models into programming code.

In the diagram, classes are represented with boxes that contain three compartments:



• The top compartment contains the name of the class. It is printed in bold and centered, and

the first letter is capitalized.

• The middle compartment contains the attributes of the class. They are left-aligned and the

first letter is lowercase.

• The bottom compartment contains the operations the class can execute. They are also left-

aligned and the first letter is lowercase.

In the design of a system, a number of classes are identified and grouped together in a class diagram
that helps to determine the static relations between them. With detailed modelling, the classes of the
conceptual design are often split into a number of subclasses.

Overview of a Sequence Diagram

A sequence diagram shows object interactions arranged in time sequence. It depicts the objects and
classes  involved in  the  scenario  and the  sequence  of  messages  exchanged between the  objects
needed to carry out the functionality of the scenario. A sequence diagram shows, as parallel vertical
lines (lifelines), different processes or objects that live simultaneously, and, as horizontal arrows, the
messages exchanged between them, in the order in which they occur. This allows the specification
of simple runtime scenarios in a graphical manner.



Appendix C

Participant Registration Form used in

Study 2 and 3

227



1. Email address *

Basic Information
Please provide following information to register for the workshop

2.

Understanding So�ware Design Session -
SIES - Registration Form
Our research team has designed a technology-enhanced learning environment, for 
helping students get a better understanding of software design diagrams(UML). You 
will be introduced to a technique called design tracing. VeriSIM contains various 
challenges and reflection questions which will help you understand and apply the 
design tracing technique on a given design. 

WHY SHOULD YOU ATTEND THIS SESSION 
When you graduate and enter the software industry, you will be spending your first 
several months working on an existing projects and developing additional features 
based on new requirements. These activities require you to explicitly understand the 
software design. 

At the end of the session, you will be able to: 
1. Understand the purpose of class diagram and sequence diagram in a given design 
2. Understand and apply the design tracing technique to trace a given scenario 
3. Visualize how data and events can be used to trace a given scenario

* Required

Name *
Your name as you want it to appear in your certificate



3.

Mark only one oval.

Other:

Female

Male

Prefer not to say

4.

5.

6.

Mark only one oval.

Other:

B.E

B. Tech

B. Sc

Gender *

Age *

College *
Name of your college as you want it to appear in your certificate

Degree *



7.

Mark only one oval.

Other:

1st

2nd

3rd

4th

8.

Mark only one oval.

Other:

Computer Engineering

Information Technology

9.

Mark only one oval.

Other:

90 - 100%

80 - 90%

70 - 80%

60 - 70%

50 - 60%

40 - 50%

Less than 40%

Year *

Course *

Overall percentage scored in last semester *
You can convert CGPA to percentage by multiplying it by 100



Rate your confidence
regarding your
knowledge of the
following

1 indicates "Not confident at all", 5 indicates "Absolutely 
confident". If a specific term or task is totally unfamiliar to 
you, please mark 1

10.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

11.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

12.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

Understand the object-oriented paradigm in design *

Read and understand a given class diagram *

Read and understand a given sequence diagram *



13.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

14.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

15.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

16.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

Understand the purpose of using class diagrams in software design *

Understand the purpose of using sequence diagrams in software design *

Identify defects in a set of UML diagrams created by someone else *

Identify defects in a set of UML diagrams that I have created myself *



17.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

Create software design diagrams(Eg: UML) for a given set of requirements *



Consent
Form

STUDY TITLE:  Study of student use of a learning environment for Software Design 
 
You have been asked to participate in a research study conducted by Prajish 
Prasad from the Inter-Disciplinary Program in Educational Technology at the 
Indian Institute of Technology Bombay (IITB). The purpose of the study is to get 
feedback on a learning environment which helps students understand and 
comprehend software design diagrams. You were selected as a possible 
participant in this study because of your educational background. 
 
PARTICIPATION AND WITHDRAWAL 
Your participation in this study is completely voluntary and you are free to choose 
whether to be in it or not. If you choose to be in this study, you may subsequently 
withdraw from it at any time without penalty or consequences of any kind. The 
investigator may withdraw you from this research if circumstances arise which 
warrant doing so. 
You should read the information below, and ask questions about anything you do 
not understand, before deciding whether or not to participate. 
  
• In this study you will be asked to go through activities in the learning 
environment 
 
• Your solutions will be used for research purposes only by the investigators of 
this study. 
 
• Participating in this research study is voluntary. You have the right not to 
answer any question, and to stop your  participation in the study at any time. We 
expect that the study will take upto 5 hours. 
 
• You will not be compensated for the participation. You will be provided a 
participation certificate from Inter-Disciplinary Program in Educational 
Technology, IIT Bombay 
 
• We will not use your name in publications; however we may need to use your 
academic qualification details if you give us permission.  
 
• We would like to capture user logs of your interaction with the learning 
environment. so that we can use it for reference while proceeding with this study. 
If you grant permission for this interaction log capture, you have the right to 
revoke recording permission and/or end your participation at any time. 
 
• We would like to record the audio of your interview so that we can use it for 
reference while proceeding with this study. If you grant permission for this 
interview to be recorded, you have the right to revoke recording permission and/or 
end your participation at any time. If we use your voice anywhere it will not be 
identified by name. 
 
I understand the procedures described above. My questions have been answered 
to my satisfaction, and I agree to participate in this study. I have been given a 
copy of this form.  
 
Please contact Prajish Prasad (prajish.prasad@gmail.com) or Prof. Sridhar Iyer, 
IDP ET IITB (sri@iitb.ac.in) with any questions or concerns.



18.

Check all that apply.

My academic qualification details

Direct quotes from my audio recordings

My interaction logs

19.

20.

This content is neither created nor endorsed by Google.

I give permission for the following information to be included in publications
resulting from this study (Please check all that apply):

Your Name *

Any other questions or concerns?

 Forms
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Name:                                                                                                         Date: 
 
Year and department:                                                                               College: 
 
Instructions:  
1. Use the design diagrams of the ATM system in page 3,4 to answer the following questions 
2. You can use additional sheets if space is not sufficient. Attach them along with these sheets 
 
The design of an ATM system has been provided in pages 3,4. The requirements of the system 
are - 

1. A user with a valid account can register his/her ATM and set a PIN if he/she has not set 
a PIN yet. The PIN should be of length 4 and should contain only numbers. 

2. When the user enters the ATM and inputs the correct PIN, the following options are 
shown 

a. Withdraw - The user can withdraw money from his/her account. If the balance is 
less than Rs.1000, withdrawal is denied 

b. Change PIN - The user can change his/her PIN by entering the previous PIN 
correctly 

 
Q1. Consider the execution of the following incomplete scenario - “The user has a balance of 
Rs. 5000 in his account, enters the correct PIN and withdraws Rs.500”. What happens at the 
end of this scenario? Explain the sequence of steps and changes that occur in the system from 
the beginning to the end on execution of this scenario.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Q2. Consider the execution of the following incomplete scenario - “ A new user selects the 
option register and sets a PIN ”. What happens at the end of this scenario? Explain the 
sequence of steps and changes that occur in the system from the beginning to the end on 
execution of this scenario.  
 
 
 
 
 
 

1 



Q3. Identify defects(if any) in the following design diagrams based on the requirements. For 
each defect, provide a logical explanation of why you think it is a defect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q4. What according to you is the purpose of class diagrams in a software design?  
 
 
 
 
 
 
 
Q5. What according to you is the purpose of sequence diagrams in a software design?  

2 



Class Diagram 

 
 
Register PIN Sequence Diagram 

 
 
  

3 



Withdraw Sequence Diagram 
 

 
Change PIN Sequence Diagram

 

4 



D.2 Post-test
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Name:                                                                                                         Date: 
 
Year and department:                                                                               College: 
 
Instructions:  
1. Use the design diagrams of the online library system in page 3,4 to answer the following 
questions 
2. You can use additional sheets if space is not sufficient. Attach them along with these sheets 
 
The design of an online library has been provided in another sheet to you. The requirements are 
as follows - 

1. If the user has not registered, then they should register in order to obtain access to the 
library 

2. Registered users can issue books if it is available. 
3. Registered users can return issued books. 
4. Registered users can issue upto 5 books. 
5. A book can be issued to a single user only 

 
Q1. Using the design tracing technique, trace the following scenario -  
“When a new user selects the register option, and enters the username and password, the user 
registers successfully.” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q2. Using the design tracing technique, trace the following scenario -  
“When the user selects the return option and enters the bookId, the user successfully returns 
the book” 
 
 
 
 
 

1 



Q3. Identify defects(if any) in the following design diagrams based on the requirements. For 
each defect, provide a logical explanation of why you think it is a defect. You can use the design 
tracing technique which you learnt to identify defects.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q4. After interacting with VeriSIM, do you think there is a change in your understanding 
specifically of the purpose of class diagrams and sequence diagrams in software design? If so, 
how? 
 
 
  

2 



 
Class Diagram 

 
 
Register Sequence Diagram 

 
 
 

3 



Issue Sequence Diagram 

 
 
Return Sequence Diagram 

 

4 



D.3 Feedback form after interacting with VeriSIM
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1. Email address *

2.

Feedback
about
usability of
VeriSIM

In the upcoming sections we will be asking your feedback about VeriSIM. 
Do provide us your honest feedback and do not hesitate to point out 
shortcomings.

3.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

VeriSIM Feedback Form
Dear Learner, 
Thank You for your sustained participation during this workshop. We hope you had 
something concrete to take-away at the end of this workshop.  

This survey is a mechanism through which you can communicate your feedback to 
the instructor about various aspects of the learning environment.

* Required

Your Name *
Your personal details will be kept confidential

2.1. I think that I would like to use VeriSIM frequently *



4.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

5.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

6.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

7.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

2.2. I found VeriSIM unnecessarily complex *

2.3. I thought VeriSIM was easy to use *

2.4. I think that I would need the support of a technical person to be able to use
VeriSIM *

2.5. I found the various functions in VeriSIM were well integrated *



8.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

9.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

10.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

11.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

2.6. I thought there was too much inconsistency in VeriSIM *

2.7. I would imagine that most people would learn to use VeriSIM very quickly *

2.8. I found VeriSIM very cumbersome to use *

2.9. I felt very confident using VeriSIM *



12.

Mark only one oval.

Strongly Disagree

1 2 3 4 5

Strongly Agree

Now that you have interacted with
VeriSIM, rate your confidence
regarding your knowledge of the
following

1 indicates "Not confident at all", 5 indicates 
"Absolutely confident". If a specific term or task is 
totally unfamiliar to you, please mark 1

13.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

14.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

2.10. I needed to learn a lot of things before I could get going with VeriSIM *

Identify relevant data variables from the the class diagram to trace a scenario *

Identify relevant events from sequence diagrams to trace a scenario *



15.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

16.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

17.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

18.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

Visualize the change of values of variables while tracing a scenario *

Understand the purpose of using class diagrams in software design *

Understand the purpose of using sequence diagrams in software design *

Identify defects in a set of software design diagrams created by someone else *



19.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

20.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

21.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

22.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

Identify defects in a set of software design diagrams that I have created myself *

Create software design diagrams(Eg: UML) for a given set of requirements *

Debug (correct all the errors) a long and complex program that I had written, and
make it work *

Comprehend (Understand) a long, complex multi file program in my favorite
programming language *



23.

Mark only one oval.

Not confident at all

1 2 3 4 5

Absolutely confident

One last section! This information will help us improve the workshop for future participants. Thank 
you so much for providing this feedback.

24.

Mark only one oval.

Other:

I completed all the stages - Problem Understanding, Design Tracing and
Reflection stages

I completed the Problem Understanding Stage and some challenges in the
Design Tracing stage

I completed the Problem Understanding Stage but I could not complete any
of the challenges in the Design Tracing stage

I could not complete the Problem Understanding stage

25.

Mentally trace through the execution of a long, complex, multi file program given to
me. *

How many stages of VeriSIM did you complete? *

What are the main things you learned from the workshop? *



26.

27.

28.

This content is neither created nor endorsed by Google.

What features of VeriSIM did you find most useful ? *

What features of VeriSIM did you find challenging/ frustrating ? *

Any suggestions to improve when we design the next online workshop for you. *

 Forms
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Name:                                                                                                         Date: 
 
Year and department:                                                                               College: 
 
Instructions:  
We will be using the ATM system example in this session. The requirements of the system are - 

1. A user with a valid account can register his/her ATM and set a PIN if he/she has not set 
a PIN yet. The PIN should be of length 4 and should contain only numbers. 

2. When the user enters the ATM and inputs the correct PIN, the following options are 
shown 

a. Withdraw - The user can withdraw money from his/her account. If the balance is 
less than Rs.1000, withdrawal is denied 

b. Change PIN - The user can change his/her PIN by entering the previous PIN 
correctly 

 

Example: Requirement 1: 
A user with a valid account can register his/her ATM and set a PIN if he/she has not set a PIN 
yet. The PIN should be of length 4 and should contain only numbers. 
 
Step 1: Identifying sub-goals in the requirement 
Identify the sub-goals in the requirement. For example, in requirement 1, the sub-goals are: 

a. User with valid account 
b. Sets a PIN if a PIN hasn’t been set yet 
c. PIN should be of length 4 and should contain only numbers 

 
Step 2: For each sub-goal, identify relevant variables. Identify different possibilities of 
these variables. Use the concept map to come up with alternate scenarios 
Consider the example for requirement 1 
a. User with valid account - The account object can be either set or not set. Hence, two 
scenarios are possible, either the user has a valid account or an invalid account. The linking 
phrases indicate the different scenarios. The values inside the node indicate objects and data 
members from the class diagram 

 
 

1 



b. Sets a PIN - Based on the value of Pin, two scenarios are possible, either the PIN is already 
set or it is not set

 
 

c. Finally, the entered Pin can be valid or invalid - setPin() is called to set the correct Pin. 

 
In the above scenario tree, start from the root node and traverse all the way down. Each path 
corresponds to a scenario. 
Scenario 1: User with a valid account has already set a Pin 
Scenario 2: User with a valid account has not set a Pin and sets a valid Pin 
Scenario 3: User with a valid account has not set a Pin and sets an invalid Pin 
Scenario 4: User has an invalid account 
 
Which of the following scenarios are not described in the design diagrams? - Scenario 1, 
Scenario 3 and Scenario 4 
Hence, these are defects which need to be rectified in the diagrams 
 

Activity: Requirement 2a and 2b: 
Come up with the scenario tree for requirement 2a and 2b. Use the steps similar to the ones 
done for requirement 1.  
You can use the following form to record your observations - https://bit.ly/2sG1QxT 

2 
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Name:                                                                                                         Date: 
 
Year and department:                                                                               College: 
 
Instructions:  
1. Use the design diagrams of the ATM system in page 3,4 to answer the following questions 
2. You can use additional sheets if space is not sufficient. Attach them along with these sheets 
 
The design of an ATM system has been provided in pages 3,4. The requirements of the system 
are - 

1. A user with a valid account can register his/her ATM and set a PIN if he/she has not set 
a PIN yet. The PIN should be of length 4 and should contain only numbers. 

2. When the user enters the ATM and inputs the correct PIN, the following options are 
shown 

a. Withdraw - The user can withdraw money from his/her account. If the balance is 
less than Rs.1000, withdrawal is denied 

b. Change PIN - The user can change his/her PIN by entering the previous PIN 
correctly 

 
Q1. Consider the execution of the following incomplete scenario - “The user has a balance of 
Rs. 5000 in his account, enters the correct PIN and withdraws Rs.500”. What happens at the 
end of this scenario? Explain the sequence of steps and changes that occur in all the design 
diagrams from the beginning to the end on execution of this scenario.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Q2. Consider the execution of the following incomplete scenario - “ A new user selects the 
option register and sets a PIN ”. What happens at the end of this scenario? Explain the 
sequence of steps and changes that occur in all the design diagrams from the beginning to the 
end on execution of this scenario.  
 
 
 
 
 
 

1 



 
Q3. For each requirement, list all possible scenarios based on the design. Examples of 
scenarios are given in Q1 and Q2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q4. Identify defects(if any) in the following design diagrams based on the requirements. For 
each defect, provide a logical explanation of why you think it is a defect. 
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Class Diagram 

 
 
Register PIN Sequence Diagram 

 
 
  

3 



Withdraw Sequence Diagram 
 

 
Change PIN Sequence Diagram

 

4 



F.2 Post-test
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Name:                                                                                                         Date: 
 
Year and department:                                                                               College: 
 
Instructions:  
1. Use the design diagrams on page 2,3 to answer the following questions 
 
Indiaflix is a streaming service that offers a wide variety of regional movies and TV shows – on 
thousands of internet-connected devices. You are given the responsibility to create a user 
interface for Indiaflix. The requirements are as follows - 

1. There are two plans - Basic and Premium. If a person is not registered yet, they can 
choose any of the plans during signup. 

2. The basic account is free. In the basic account, users have access only to a limited 
number of movies and TV shows. Each content is assigned a tag - basic or premium. 
Users of the basic account can only watch upto 5 hours of content every week. Basic 
users can login only in a single screen at a time. 

3. For the premium account, users have to pay an annual subscription of Rs. 999/-. 
Premium account holders have access to all content in the platform, and can watch 
unlimited hours of content every week. Premium users can login in to upto 4 screens at a 
time. 

  
Q1. Consider the execution of the following scenario - “When a new user selects the register 
option, chooses the basic plan and enters the username and password, the user registers 
successfully.” 
What happens at the end of this scenario? Explain the sequence of steps and changes that 
occur in all the design diagrams from the beginning to the end on execution of this scenario.  
 
Q2. Consider the execution of the following scenario - “When a premium user logs in to 
IndiaFlix, and selects a content to watch, the system allows them to watch the content” 
What happens at the end of this scenario? Explain the sequence of steps and changes that 
occur in all the design diagrams from the beginning to the end on execution of this scenario. 
 
Q3. For each requirement, list all possible scenarios based on the design. Examples of 
scenarios are given in Q1 and Q2. 
 
Q4. Identify defects(if any) in the following design diagrams based on the requirements. For 
each defect, provide a logical explanation of why you think it is a defect. 
 
 
  

1 



 
Class Diagram 

 
 
Register Sequence Diagram 

 

2 



 
 
 
Watch Basic Content Sequence Diagram 

 
 
Watch Premium Content Sequence Diagram 

 

3 
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