
Design of PSTN-VoIP Gateway with inbuilt
PBX & SIP extensions for Wireless medium

Dissertation

submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Priyesh Wadhwa

(Roll no. 05329011)

under the guidance of

Prof. Sridhar Iyer

Department of Computer Science and Engineering

Indian Institute of Technology Bombay

2007

Dissertation Approval Sheet

This is to certify that the dissertation entitled

Design of PSTN-VoIP Gateway with inbuilt PBX &

SIP extensions for Wireless medium

by

Priyesh Wadhwa

(Roll no. 05329011)

is approved for the degree of Master of Technology.

Prof. Sridhar Iyer

(Supervisor)

Prof. Anirudha Sahoo

(Internal Examiner)

Dr. Vijay T. Raisinghani

(External Examiner)

Prof. V. M. Gadre

(Chairperson)

Date:

Place:

iii

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

CERTIFICATE OF COURSE WORK

This is to certify that Mr. Priyesh Wadhwa was admitted to the candidacy

of the M.Tech. Degree and has successfully completed all the courses required for the

M.Tech. Programme. The details of the course work done are given below.

Sr.No. Course No. Course Name Credits

Semester 1 (Jul – Nov 2005)

1. IT601 Mobile Computing 6

2. HS699 Communication and Presentation Skills (P/NP) 4

3. IT603 Data Base Management Systems 6

4. IT619 IT Foundation Laboratory 8

5. IT623 Foundation course of IT - Part II 6

6. IT605 Computer Networks 6

Semester 2 (Jan – Apr 2006)

7. HS700 Applied Economics 6

8. IT630 Principles and Practices of Distributed Computing 6

9. IT610 Quality of Service in Networks 6

10. IT694 Seminar 4

11. IT680 Systems Lab. 6

Semester 3 (Jul – Nov 2006)

12. CS601 Algorithms and Complexity (Audit) 6

13. IT608 Data Warehousing and Data Mining 6

14. IT620 New Trends in Information Technology 6

M.Tech. Project

15. IT696 M.Tech. Project Stage - I (Jul 2006) 18

16. IT697 M.Tech. Project Stage - II (Jan 2007) 30

17. IT698 M.Tech. Project Stage - III (Jul 2007) 42

I.I.T. Bombay Dy. Registrar(Academic)

Dated:

v

Acknowledgements

I take this opportunity to express my sincere gratitude for Prof. Sridhar Iyer for

his constant support and encouragement. His excellent guidance has been instrumental

in making this project work a success.

I would like to thank Prof. Anirudha Sahoo for his constant help throughout the

project. I would also like to thank my colleague Sravana Kumar for helpful discussions

in the initial part of the project, and for being supportive throughout the project. I

would also like to thank the KReSIT department for providing me world class computing

infrastructure.

I would also like to thank my family and friends especially the entire M.Tech.

Batch, who have been a source of encouragement and inspiration throughout the duration

of the project.

Last but not the least, I would like to thank the entire KReSIT family for making my

stay at IIT Bombay a memorable one.

Priyesh Wadhwa

I. I. T. Bombay

July 03rd, 2007

vii

Abstract

VoIP gateway enables voice communication between users of the IP network and the

Public Switched Telephone Network(PSTN). The system setup requires a PC installed

with Asterisk, and a Gateway to integrate with PSTN. The problem with this solution is

the high cost, power consumption, and the involved setup of the system.

We have designed a single box solution for the PSTN-VoIP integration system. We

studied detailed architecture of the gateway, the protocols used in the VoIP call setup

and communication, the software used for the PBX systems, and the internal parts of

the SPA3000 gateway. We used the Via motherboard, flash memory, and a normal data

modem to create a improved and cost-effective system.

Next, we performed various studies on the Asterisk’s response time in wired and

wireless medium. We found a remarkable difference in the response time of Asterisk for

both the mediums. The reason for the high response time of Asterisk in wireless medium is

the slow call setup. SIP being a text-based protocol, is engineered for high data rate links,

and so SIP message’s size have not been optimized. With low bit rate IP connectivity

of signaling channel, the transmission delays for call setup and feature invocation are

significant.

We have extended the Session Initiation Protocol for improving its efficiency in wire-

less medium. We have implemented the compression and decompression mechanisms

according to the SigComp standard, and integrated them to the Asterisk server. We have

also developed a SigComp enabled client to run with Asterisk. We performed extensive

testing of the system and obtained upto 90% compression using SigComp and Deflate

compression algorithm.

ix

Contents

Acknowledgements vii

Abstract ix

List of figures xv

List of tables xvii

List of algorithms xix

Abbreviations xxi

1 Introduction and Motivation 1

1.1 Motivation . 2

1.2 Problem Statement . 2

1.3 Thesis outline . 3

2 Literature Survey 5

2.1 Open PBX Asterisk . 5

2.1.1 Asterisk Architecture . 5

2.1.2 Loadable Module APIs . 6

2.2 YATE - Yet Another Telephone Engine . 7

2.3 Sipura device internals . 7

2.3.1 Visba 3 Video CD Processor . 8

2.3.2 RTL8019AS (Realtek Full-Duplex Ethernet Controller with Plug

and Play Function) . 8

2.3.3 Si3210 (ProSLIC) . 9

xi

xii Contents

2.3.4 Si3050 (Direct Access Arrangement (DAA)) 9

2.4 Protocols . 9

2.4.1 SIP . 9

2.4.2 SDP . 10

2.4.3 SigComp . 11

2.4.4 RTP . 11

2.5 Compression Algorithms . 12

2.5.1 LZ77 (Lempel-Ziv 1977) . 12

2.5.2 DEFLATE . 12

2.5.3 LZW . 13

2.6 Related work . 14

2.6.1 Data storage on Edge Proxy . 14

2.6.2 ROHC . 15

2.6.3 IP Header Compression [RFC 2507] 15

2.6.4 Traffic payload Compression provided by Transport or Framing pro-

tocols . 16

3 Gateway with inbuilt Asterisk 17

3.1 Hardware components . 17

3.1.1 Via motherboard . 17

3.1.2 IDE Flash Memory . 17

3.1.3 Telephony Devices . 18

3.2 Different solutions for PSTN-VoIP integration 20

3.2.1 Server side setup . 20

3.2.2 Client side setup . 22

3.3 Final Solution . 23

3.3.1 Conventional setup . 23

3.3.2 Single box solution . 24

3.3.3 Improvements from conventional setup 25

4 SigComp 27

4.1 Signaling Compression (SigComp) . 27

4.2 SigComp Architecture . 27

Contents xiii

4.3 SigComp Compressor . 28

4.4 SigComp State Handler . 29

4.5 SigComp Message Format . 29

4.6 UDVM: Universal Decompressor Virtual Machine 30

4.6.1 UDVM Architecture . 30

4.6.2 UDVM Instruction Set . 31

5 Implementation of SigComp for Asterisk & Yate 33

5.1 Implementation Description . 33

5.1.1 Data Structures used in SigComp implementation 33

5.1.2 Pseudocode: Compression and Decompression mechanism 35

5.2 SigComp with Asterisk . 41

5.2.1 Integration of SigComp with Asterisk 41

5.2.2 Test Cases . 41

5.3 SigComp with Yate . 43

5.3.1 Integration of SigComp with Yate 43

5.3.2 Test Cases . 44

5.4 Experiments and Results . 45

5.4.1 Packet drop probability vs Packet size 45

5.4.2 Compression Ratio with UDP . 46

5.4.3 Improvement in Asterisk response time 47

5.4.4 Improvement in SIP to SIP communication 47

6 Conclusion and Future Work 49

6.1 Conclusion . 49

6.2 Future Work . 49

Bibliography 51

List of Figures

1.1 Response time of Asterisk in wireless and wired medium 3

2.1 Asterisk Architecture . 6

2.2 SPA3000 Block diagram . 8

2.3 Data storage on edge proxy . 14

3.1 Via PC1500 . 17

3.2 IDE Flash . 17

3.3 Sipura SPA3000 Gateway . 18

3.4 Linksys PAP2 Analog Telephone Adapter 19

3.5 X100P PCI card from Digium . 19

3.6 Conventional setup of asterisk system . 24

3.7 Improved setup of asterisk system . 25

4.1 SigComp Architecture . 27

4.2 SigComp message format . 29

4.3 UDVM architecture . 30

5.1 SigComp integration with Yate . 44

5.2 Packet drop probability vs Packet size for different bandwidths. 45

5.3 UDP: Deflate compression (Compression ratio vs Packet sequence number) 46

5.4 Asterisk response time with compression. 48

5.5 SIP to SIP connection improvement. 48

xv

List of Tables

3.1 Server setup cost . 23

3.2 Cost comparison of client side devices . 23

5.1 Data Structures used in SigComp implementation 33

5.2 Message compression obtained by using SigComp 46

xvii

List of Algorithms

1 Deflate dictionary . 36

2 Deflate compression . 36

3 Decompression . 39

xix

Abbreviations and Notations

Abbreviations

SIP : Session Initiation Protocol

SDP : Session Description Protocol

SigComp : Signaling Compression

FXO : Foreign Exchange Office

FXS : Foreign Exchange Station

POTS : Plain old telephone

DAA : Direct Access Arrangement

SLIC : Subscriber Line Interface Circuit

SHA-1 : Secure Hash Algorithm

xxi

Chapter 1

Introduction and Motivation

In this work, we have focused on two problems. First, to reduce the cost and the power

consumption of the PSTN-VoIP integrated system, and make it more suitable for use in

rural environment. The other, is to make SIP protocol more efficient in wireless medium,

to reduce the connection establishment time for Asterisk.

There are many villages where we have only single PSTN communication line working,

and no appropriate power supply. We have tried to enable a single PSTN line to be used

by multiple users, in order to increase the communication range. For this we require a

PBX system for routing the calls appropriately. But the cost of switching devices are very

high, and also the setup is quite involved. Also, because of the lack of appropriate power

we have to make the device consume as much low power as possible. So the problem

that we have worked on, is to reduce the setup cost of the system needed for PSTN-VoIP

integration, in order to make it affordable for the rural environment.

The Session Initiation Protocol is designed for initiating, and managing multimedia

sessions. SIP is a text based protocol engineered for bandwidth rich links. As a result,

the messages have not been optimized in terms of size. Typical SIP messages range

from a few hundred bytes up to several Kilobytes(upto 1200Bytes). When SIP is used

in wireless handsets as part of 2.5G and 3G cellular networks, where the bandwidth and

energy represent high cost resources, and the medium has potential high packet loss and

collision rates, the large message size and the need to handle high number of messages

per transaction becomes problematic.

2 Chapter 1. Introduction and Motivation

1.1 Motivation

The emergence of VoIP technology has now made possible the use of data network for

data, as well as voice communication. The data network is completely digital network

and voice network is a completely analog one, so we need a medium that can encapsulate

the analog signals to digital format, we call it a gateway. A gateway is used for converting

the analog signals from Public Switched Telephone Network(PSTN) to digital signals in

Packet Network(VoIP) and vise versa.

In a single user environment we don’t need any switching equipment, but if multiple

users are going to use the communication channel we need a PBX server to figure out

which user is being called, the authorization of the user, and several other features specific

to a user.

In the present technology, we use a gateway at the customer premises, and a PBX

server is provided by the ISP. But in rural areas, where we have low power supply and

less communication facilities available, we need to setup a single box solution for a facility

like VoIP communication, as we can’t afford to setup a PBX server. We need to build

a single box solution that provides the functionality of both the gateway, and the PBX

server. This solution reduces the cost of the overall setup.

For the second problem, viz making SIP more efficient in wireless medium, the moti-

vation is the results we obtained in our first stage, while experimenting with Asterisk’s

response time in wired and wireless medium. From the graph 1.1, as we go on increasing

the number of parallel calls in wireless medium the packet loss and error rate increases

enormously. So there is a need to device mechanisms that make the SIP messages’ trans-

mission more robust in the wireless medium.

1.2 Problem Statement

The problem is to design a single box solution that integrates the functionality of the

Asterisk PBX as well as the gateway. We should reduce the cost, power consumption and

the intricacies of the system setup.

The other problem is to make Session Initiation Protocol more efficient in wireless

medium, and to implement these extended features in Asterisk server. We have imple-

mented Signaling compression (SigComp) mechanism in Asterisk. We also propose a

1.3. Thesis outline 3

Figure 1.1: Response time of Asterisk in wireless and wired medium

solution to minimize the message size between SIP client and Edge-proxy by using data

storage at the edge proxy. The data that we store at the edge proxy is usually transmitted

again and again by the client. If we store that data on edge proxy the message size for

all the communication between the client and proxy will be minimized.

1.3 Thesis outline

In chapter 2, we have presented the related work and the literature survey we have done.

In this chapter, we have described the open source Asterisk PBX architecture, SPA3000

internals, the protocols we have used, and the related technologies. In the next chapter,

we have described our solution for PSTN-VoIP integration, and the hardware devices we

have worked with. Chapter 4 describes the SigComp standard from an implementation

perspective. In chapter 5, we have described the implementation details of the SigComp

for Asterisk and Yate. The next chapter concludes the thesis and describes the future

work to continue the project.

Chapter 2

Literature Survey

In this chapter, we have discussed about the related work and the literature study done

for the project. Here, we have presented the detailed study of the softwares involved,

protocols we dealt with, hardware devices we studied and used, and different other related

methods already implemented to handle similar problems.

2.1 Open PBX Asterisk

Asterisk [1, 2, 3] is an open source software PBX, created by Digium. Asterisk runs

on Linux and other Unix platforms with or without hardware that connects the PBX

server to the traditional global telephony network, the PSTN. Asterisk gives us real-time

connectivity on both PSTN and VoIP networks.

Asterisk is much more than a standard PBX. With Asterisk as the telephony switching

platform, we’ll not only have a high-class PBX replacement, but also we can do telephony

in new ways.

2.1.1 Asterisk Architecture

Asterisk consists of five base components:

• Dynamic Module Loader - When Asterisk is first started, the Dynamic Module

Loader loads and initializes each of the drivers which provide channel drivers, file

formats, call detail record backends, codecs, applications and more, linking them

with the appropriate internal APIs.

• PBX Switching - The essence of Asterisk is a Private Branch Exchange Switching

system, connecting calls together between various users and automated tasks. The

5

6 Chapter 2. Literature Survey

Figure 2.1: Asterisk Architecture

Switching Core transparently connects callers arriving on various hardware and

software interfaces.

• Application Launcher - launches applications which perform services for users, such

as voicemail, file playback, and directory listing.

• Codec Translator - uses codec modules for the encoding and decoding of various

audio compression formats used in the telephony industry. A number of codecs are

available to suit diverse needs and arrive at the best balance between audio quality

and bandwidth usage.

• Scheduler and I/O Manager - handles low-level task scheduling and system man-

agement for optimal performance under all load conditions.

2.1.2 Loadable Module APIs

Four APIs are defined for loadable modules, facilitating hardware and protocol abstrac-

tion. Using this loadable module system, the Asterisk core becomes independent of the

details like how a caller is connecting, what codecs are in use, etc.

2.2. YATE - Yet Another Telephone Engine 7

• Channel API - the channel API handles the type of connection a caller is arriving on,

be it a VoIP connection, ISDN, PRI, or some other technology. Dynamic modules

are loaded to handle the lower layer details of these connections.

• Application API - the application API allows for various task modules to be run to

perform various functions. Conferencing, paging, directory listing, voicemail, in-line

data transmission, and any other task which a PBX system might perform now or

in the future are handled by these separate modules.

• Codec Translator API - loads codec modules to support various audio encoding and

decoding formats such as GSM, Mu-Law, A-law, and even mp3.

• File Format API - handles the reading and writing of various file formats for the

storage of data in the file system.

2.2 YATE - Yet Another Telephone Engine

Yate is an open source soft phone which can be used as VoIP client, VoIP to PSTN

gateway, PC2Phone and Phone2PC gateway, SIP router, SIP registration server, IAX

server and/or client etc. We have used Yate as a VoIP client to make calls through

Asterisk server. Yate provides many modules like ‘callgen’, and ‘message sniffer’ for

measuring the performance of the PBX server. We have used callgen to generate parallel

SIP calls to the server, to get the response time of the Asterisk server under heavy loads.

2.3 Sipura device internals

The LinkSys SPA 3000 is a residential gateway; we have used it to understand the imple-

mentation details of a gateway. The main ICs that are present in SPA 3000 are:

• Visba 3 Video CD Processor.

• SST39VF080 (Flash memory).

• RTL8019AS (Realtek Full-Duplex Ethernet Controller with Plug and Play Func-

tion).

8 Chapter 2. Literature Survey

Figure 2.2: SPA3000 Block diagram

• Si3210 (ProSLIC).

• Si3050 (Direct Access Arrangement (DAA)).

2.3.1 Visba 3 Video CD Processor

The Visba3 ES3890 is a single chip Video CD Processor. The ES3890 integrates an audio

ADC for microphone inputs, two video DACs for Composite and S-Video outputs, and

digital echo circuitry. The ES3890 performs all of the functions such as video filtering,

NTSC/PAL conversion, audio and video error concealment.

The Visba3 VCD processor in SPA3000 works as the processor of the system. It

controls the web based monitoring/settings system of the device. It provides the web

interface to the users for configuring the device. The processor interacts with the flash

memory in order to store/retrieve the configuration information of the gateway.

2.3.2 RTL8019AS (Realtek Full-Duplex Ethernet Controller with

Plug and Play Function)

The RTL8019AS is a highly integrated Ethernet controller which offers a simple solution

to implement a plug and play adapter with full-duplex and power down features. The

full-duplex function enables simultaneous transmission and reception on the twisted-pair

link to a full-duplex Ethernet switching hub. This feature not only increases the chan-

nel bandwidth but also avoids the performance degrading problem due to the channel

2.4. Protocols 9

contention characteristics of the Ethernet CSMA/CD protocol.

2.3.3 Si3210 (ProSLIC)

The Si3210 ProSLIC provides a complete analog telephone interface, ideal for customer

premise equipment (CPE) applications. The Si3210 integrates subscriber line interface

circuit (SLIC), codec and battery generation functionality into a single low-voltage CMOS

integrated circuit. The integrated battery supply continuously adapts its output voltage

to minimize power and enables the entire solution to be powered from a single 3.3V or

5V supply.

2.3.4 Si3050 (Direct Access Arrangement (DAA))

The Si3050 connects to the PSTN line and emulates a POTS phone. Its main function is

to remove the high voltage DC bias from the signals coming from the PSTN system, and

pass only the analog AC signal.

2.4 Protocols

2.4.1 SIP

SIP (Session Initiation Protocol)[4] is an application-layer control protocol that can estab-

lish, modify, and terminate multimedia sessions such as Internet telephony calls (VOIP).

SIP can also invite participants to already existing sessions, such as multicast conferences.

Media can be added to (and removed from) an existing session. SIP transparently sup-

ports name mapping and redirection services, which supports personal mobility - users

can maintain a single externally visible identifier regardless of their network location.

SIP supports five facets of establishing and terminating multimedia communications:

• User location: determination of the end system to be used for communication

• User availability: determination of the willingness of the called party to engage

in communications

• User capabilities: determination of the media and media parameters to be used

10 Chapter 2. Literature Survey

• Session setup: “ringing”, establishment of session parameters at both called and

calling party

• Session management: including transfer and termination of sessions, modifying

session parameters, and invoking services

SIP is a component that can be used with other IETF protocols to build a complete

multimedia architecture, such as the Real-time Transport Protocol (RTP) for trans-

porting real-time data and providing QoS feedback, the Real-Time streaming protocol

(RTSP) for controlling delivery of streaming media, the Media Gateway Control Pro-

tocol (MEGACO) for controlling gateways to the Public Switched Telephone Network

(PSTN), and the Session Description Protocol (SDP) for describing multimedia sessions.

Therefore, SIP should be used in conjunction with other protocols in order to provide

complete services to the users. However, the basic functionality and operation of SIP

does not depend on any of these protocols.

2.4.2 SDP

The Session Description Protocol (SDP)[5] describes multimedia sessions for the purpose

of session announcement, session invitation and other forms of multimedia session initia-

tion.

Session directories assist the advertisement of conference sessions and communicate

the relevant conference setup information to prospective participants. SDP is designed

to convey such information to recipients. SDP is purely a format for session description

- it does not incorporate a transport protocol, and is intended to use different transport

protocols as appropriate including the Session Announcement Protocol (SAP), Session

Initiation Protocol (SIP), Real-Time Streaming Protocol (RTSP), electronic mail using

the MIME extensions, and the Hypertext Transport Protocol (HTTP) .

SDP is intended to be general purpose so that it can be used for a wider range of

network environments and applications than just multicast session directories. However,

it is not intended to support negotiation of session content or media encodings. SDP

communicates the existence of a session and conveys sufficient information to enable

participation in the session.

Many of the SDP messages are sent by periodically multicasting an announcement

2.4. Protocols 11

packet to a well-known multicast address and port using SAP (session announcement

protocol). These messages are UDP packets with a SAP header and a text payload. The

text payload is the SDP session description.

The SDP text messages include:

• Session name and purpose

• Time for which the session is active

• Media comprising the session

2.4.3 SigComp

SigComp is the method described to compress the SIP and RTP messages for efficient use

of the low bandwidth channels. The method works by two basic principles:

• Store the state of the previous messages and use it for further compression.

• Use of UDVM for decompression which can run with any compression algorithm. It

makes the SigComp compression algorithm independent.

As our main focus is the implementation of SigComp for Asterisk, we have described

SigComp standard from an implementation perspective in Chapter 4.

2.4.4 RTP

RTP provides end-to-end network transport functions suitable for applications transmit-

ting real-time data, such as audio, video or simulation data, over multicast or unicast

network services. These services include payload type identification, sequence number-

ing, timestamping and delivery monitoring. RTP does not address resource reservation

and does not guarantee quality-of-service for real-time services. The data transport is

augmented by a control protocol (RTCP) to allow monitoring of the data delivery in a

manner scalable to large multicast networks, and to provide minimal control and identi-

fication functionality. RTP and RTCP are designed to be independent of the underlying

transport and network layers. The protocol supports the use of RTP-level translators and

mixers.

12 Chapter 2. Literature Survey

2.5 Compression Algorithms

2.5.1 LZ77 (Lempel-Ziv 1977)

Principle

The algorithm searches the window for the longest match with the beginning of the

lookahead buffer and outputs a pointer to that match. Since it is possible that, not even

a one-character match can be found, the output cannot contain just pointers. LZ77 solves

this problem this way: after each pointer it outputs the first character in the lookahead

buffer after the match. If there is no match, it outputs a null-pointer and the character

at the coding position.

The encoding algorithm

1. Set the coding position to the beginning of the input stream.

2. Find the longest match in the window for the lookahead buffer.

3. Output the pair (P,C) with the following meaning:

• P is the pointer to the match in the window;

• C is the first character in the lookahead buffer that didn’t match;

4. If the lookahead buffer is not empty, move the coding position and the window L+1

characters forward and return to step 2.

Decoding

The window is maintained the same way as while encoding. In each step the algorithm

reads a pair (P, C) from the input. It outputs the sequence from the window specified by

P and the character C.

2.5.2 DEFLATE

Deflate is a lossless data compression algorithm that uses a combination of the LZ77

algorithm and Huffman coding. The deflate algorithm finds duplicate strings in the input

data. The second occurrence of a string is replaced by a pointer to the previous string, in

2.5. Compression Algorithms 13

the form of a pair (distance, length). Distances are limited to 32K bytes, and lengths are

limited to 258 bytes. When a string does not occur anywhere in the previous 32K bytes,

it is emitted as a sequence of literal bytes. Literals or match lengths are compressed with

one Huffman tree, and match distances are compressed with another tree. There are three

modes of compression that the compressor has available:

1. No compression at all: This is used, when data is already compressed. Data stored

in this mode will expand slightly, but not by as much as it would if it were already

compressed and one of the other compression methods was tried upon it.

2. Compression: first with LZ77 and then with a slightly modified version of Huffman

coding. The trees that are used to compress in this mode are defined by the Deflate

specification itself, and so no extra space needs to be taken to store those trees.

3. Compression: first with LZ77 and then with a slightly modified version of Huffman

coding with trees that the compressor creates and stores along with the data. The

data is broken up in “blocks”, and each block uses a single mode of compression. If

the compressor wants to switch from non-compressed storage to compression with

the trees defined by the specification, or to compression with specified Huffman

trees, or to compression with a different pair of Huffman trees, the current block

must be ended and a new one is started.

2.5.3 LZW

It is a lossless ‘dictionary based’ compression algorithm. Dictionary based algorithms scan

a file for sequences of data that occur more than once. These sequences are then stored

in a dictionary and within the compressed file, references are put where-ever repetitive

data occurred.

LZW compression replaces strings of characters with single codes. It does not do any

analysis of the incoming text. Instead, it just adds every new string of characters it sees

to a table of strings. Compression occurs when a single code is output instead of a string

of characters.

The code that the LZW algorithm outputs can be of any arbitrary length, but it must

have more bits in it than a single character. The first 256 codes (when using eight bit

14 Chapter 2. Literature Survey

characters) are by default assigned to the standard character set. The remaining codes

are assigned to strings as the algorithm proceeds.

2.6 Related work

2.6.1 Data storage on Edge Proxy

We have proposed a solution to reduce the size of SIP messages exchanged between a

mobile client and the edge proxy. The basic concept is to utilize the feature of repetition

of the same content transmission in SIP message. If we make the edge proxy stateful and

also store the call profile information then, we can reconstruct the message on the edge

proxy. In this case, the client needs to send only the minimal message content that make

it reach the edge proxy and there the message is reconstructed with the help of the stored

state. Now, the client doesn’t need to send full SIP message for the communication. In

Figure 2.3: Data storage on edge proxy

this approach the first message is sent completely. Using this message the edge proxy

creates the state for the client and stores the data used for communication. Further

messages from client and edge proxy contain only minimum information. This way the

data size in the SIP message is reduced. The advantage of this approach is that, it is

transparent to the other SIP mechanisms, i.e, it is fully compatible with the existing SIP

protocol and its extensions.

When combined with the compression mechanism it further improves the utilization

of the wireless channel. The compression mechanism provides the compress up to ratio

2.6. Related work 15

1:8. When combined with data storage on edge proxy we expect further improvement in

message compression.

Illustration: We have identified some of the parameters that can be stored on the

edge proxy. For example, from the SIP message we can store parameters like Organi-

zation, Subject, Accept-Encoding, Accept, Accept-Language, Date, and Content-Type.

From the SDP message we can store parameters like v(protocol version), o(owner/creator

and session identifier), c(connection information), m(media name and transport address),

a(media attribute) etc.

2.6.2 ROHC

Robust Header Compression (ROHC) is a standardized method to compress the IP, UDP,

RTP, and TCP headers of Internet packets. It performs well over links where the packet

loss rate is high, such as wireless links. In streaming applications, the overhead of IP,

UDP, and RTP is 40 bytes for IPv4, or 60 bytes for IPv6. For VoIP this corresponds to

around 60% of the total amount of data sent. Such large overheads may be tolerable in

wired links where capacity is often not an issue, but are excessive for wireless systems

where bandwidth is scarce.

ROHC compresses these 40 bytes or 60 bytes of overhead typically into only 1 or 3 bytes

by placing a compressor before the link that has limited capacity, and a decompressor

after that link. The compressor converts the large overhead to only a few bytes, while the

decompressor does the opposite.

2.6.3 IP Header Compression [RFC 2507]

IP header compression is the process of compressing excess protocol headers before trans-

mitting them on a link and uncompressing them to their original state on reception at

the other end of the link. It is possible to compress the protocol headers due to the

redundancy in header fields of the same packet as well as consecutive packets of the same

packet stream. This is done by saving the state of TCP connections at both ends of a

link, and only sending the differences in the header fields that change. This makes a very

big difference for interactive performance.

16 Chapter 2. Literature Survey

2.6.4 Traffic payload Compression provided by Transport or

Framing protocols

The data in the payload is compressed before transmission. HTTP provides such func-

tionality of compression. Some well known industry algorithms from Cisco are ‘Stacker’

and ‘Predictor’. Stacker uses an encoded dictionary of symbols and tokens to replace

redundant strings of characters in the data stream. Predictor tries to predict the next

sequence of characters in a data stream with an index to look up in a compression dictio-

nary. If a match is found, Predictor replaces the matched sequence with the sequence that

was looked up in the dictionary. Predictor is memory intensive but less CPU intensive.

On the other hand, Stacker uses less memory. Predictor is generally considered more

efficient than Stacker because of lower CPU requirements.

Chapter 3

Gateway with inbuilt Asterisk

3.1 Hardware components

We have designed a single box solution for the VoIP-PSTN integrated system. We per-

formed various experiments with different telephony devices. In this chapter, we have

described the hardware components used for the experiments and the final solution we

designed.

3.1.1 Via motherboard

Figure 3.1: Via PC1500

The VIA PC1500 provides enhanced performance and built-

in security features to provide an energy-efficient, feature-rich

solution. Via PC1500 is fully compatible with Windows and

Linux operating systems. The VIA PC1500 Platform is the

most cost-effective processor platform available. It delivers

all the necessary performance for running applications while

maintaining low levels of power consumption and effective

heat dissipation.

3.1.2 IDE Flash Memory

Figure 3.2: IDE Flash

Flash memory is many times more reliable than hard drives

due to the lack of moving parts. The IDE flash memory plugs

directly into a standard 40-pin IDE port on the mainboard

to replace a hard drive. However, flash memory has a limited

number of write cycles, so extra care has to be taken when

17

18 Chapter 3. Gateway with inbuilt Asterisk

running softwares from compact flash cards.

3.1.3 Telephony Devices

3.1.3.1 Sipura SPA3000

The SPA-3000 is a PSTN-VoIP gateway designed to provide VoIP (Voice over IP) ca-

pabilities by interfacing with a normal analog telephone and a standard PSTN line.

Figure 3.3: Sipura SPA3000 Gate-

way

Sipura has both FXS and FXO interfaces. The

FXS interface allows a normal telephone to be

turned into an IP phone, and the FXO interface

provides connectivity to the PSTN line. These in-

terfaces can be configured independently using the

Sipura’s on-board web interface. It has several pa-

rameters which help us in fine tuning the device for

specific environment.

Once setup and working, apart from allowing us to make VoIP calls, the SPA-3000

provides the following functions:

• A PSTN to VoIP gateway - this allows us to make a call using our PSTN phone

line to a VoIP user.

• A VoIP to PSTN gateway - a VoIP phone user can make a call over the PSTN

phone line.

• Power Cut Protection - if the SPA-3000 looses either the power or it’s network

connection, it can be configured to directly connect the two interfaces together - so

the phone will be effectively directly connected to the phone line, so we can still

make calls over the phone line during a power cut as if the device was not connected.

If the power comes back on while a call is in progress, normal operation will not be

resumed until the existing call has ended.

• Complex dial plans can be constructed - we can create dial plans suitable for the

environment (e.g, enterprise, office, home etc).

3.1. Hardware components 19

• Asterisk - we can use the SPA-3000 as an FXS and FXO interface to the Asterisk

open source PBX system to get more flexibility and features.

3.1.3.2 Linksys PAP2 ATA

Figure 3.4: Linksys PAP2 Analog

Telephone Adapter

The Linksys Phone Adapter enables high-quality,

feature-rich telephone service through an Internet

connection. With an appropriate Internet telephone

service provider, we can get clear telephone recep-

tion, even while using the Internet at the same time

for normal data operations. The Linksys Phone

Adapter also provides us with the other special

telephone features that are available from the tele-

phone service provider, such as caller-id, call wait-

ing, voicemail, call forwarding etc.

3.1.3.3 Digium card

The X100P is the standard single port FXO Inter-

face for Asterisk. It provides a single, full featured FXO port for connecting the open

source Asterisk PBX server to PSTN.

Figure 3.5: X100P PCI card from

Digium

Digium X100P allows Asterisk to make calls to

or receive calls from a traditional analog phone line.

The X100P is an affordable and ideal component

for building Interactive Voice Response (IVR) and

voicemail applications. It also supports all standard

enhanced call features including caller-id, call con-

ferencing, and call waiting.

By combining the X100P and the open source

Asterisk PBX, we can easily and economically im-

plement sophisticated and very flexible call services.

Such services range from multi-menued IVR, multi-protocol VoIP gateways, directory ser-

vices to business class voicemail.

20 Chapter 3. Gateway with inbuilt Asterisk

3.2 Different solutions for PSTN-VoIP integration

We have performed various experiments with different hardware devices that are used in

the integration of PSTN & VoIP networks. In this section, we have described the setup of

the experiments and presented a comparison of their cost, advantages, and disadvantages.

3.2.1 Server side setup

• Experiment 1: Sipura SPA3000 with Normal PC

We performed the first experiment with a normal PC, and Sipura SPA3000. The

Asterisk server is installed and configured on the computer system. SPA3000 as

defined in 3.1.3.1 is the gateway that enables PSTN-VoIP integration. The SPA3000

needs to be configured to work along with Asterisk on the network.

Advantages :

– This setup is easy to install.

– Sipura provides a nice web interface for its configuration.

– SPA3000 provides us the facility for fine tuning the system(like callerId, call

blocking, dial planning etc).

Disadvantages :

– This setup is the most expensive in terms of cost and power consumption.

– Asterisk server is installed on a computer system, causing wastage of computing

resources.

• Experiment 2: Sipura SPA3000 with Via motherboard

In the previous solution, we were using a costly and more faster processor and thus

also were wasting computational resources, so we replaced the processing unit with

a inexpensive motherboard. We used the Via motherboard along with SPA3000 to

build the system.

Advantages :

– In this setup, we have made efficient usage of computational resources.

3.2. Different solutions for PSTN-VoIP integration 21

– The cost and power consumption of the system is reduced by using Via moth-

erboard.

Disadvantages :

– The cost of SPA3000 is still high, compared to the Digium card.

– The power consumption of the setup is still high because of the use of hard

disk.

• Experiment 3: Digium X100P with Via motherboard

Next, we focused on reducing the cost of the gateway. We replaced the SPA3000

with the Digium X100P PCI card (see section 3.1.3.3). The Digium card provides

the functionality of the gateway, however we can not fine tune it like the SPA3000.

Advantages :

– This setup requires no extra effort to configure the gateway. Asterisk provides

us the Zaptel drivers to communicate with Digium card. We just need to

configure the zaptel.conf file to make the communication possible.

Disadvantages :

– The X100P card provides only the functionality of FXO and FXS ports. No

fine tuning of the system is possible unlike SPA3000.

– The cost of X100P is high, compared to data modem.

• Experiment 4: Normal Data modem with Via motherboard

In order to reduce the cost further, we used the normal data modem in place of the

Digium card. This requires some code modification in the Asterisk’s Zaptel driver’s

code. The normal data modem provides us the FXO and FXS ports just like X100P

after the code modification in Asterisk. We have described the code modifications

done in the drivers in section 3.3.2.

Advantages :

– Cost of the system is reduced by the use of data modem.

Disadvantages :

22 Chapter 3. Gateway with inbuilt Asterisk

– Code modification in Asterisk is required to make Asterisk work with the mo-

dem.

– Power consumption of the system is still high, because of the use of hard disk.

• Experiment 5: Flash memory with Via motherboard

Next, we tried to reduce the power consumption of the system. We replaced the

hard-disk of the system with a 40-pin flash IDE. Flash IDE is just like a hard disk

that is connected to the motherboard on its 40-pin slot used to connect hard-disk

data bus. We used AstLinux as our platform for the system. We have described

this solution in more detail in section 3.3.

Advantages :

– This setup makes efficient utilization of resource.

– The setup is low power consuming and less costly.

Disadvantages :

– The life time of the system is reduced because of the use of flash memory.

– Data retrieval/storage is slow in flash memory.

– We need to make code modifications in Linux and Asterisk to stop the logging.

3.2.1.1 Cost analysis of the experiments

Table 3.1 shows, the cost analysis of all the experiments we have done. As on Decem-

ber 2006, the approximate cost of the devices were like, SPA300(Rs 7,000), POTS(Rs

500), X100P(Rs 2,500), data modem(Rs 500), Via motherboard(5,000), and Flash IDE(Rs

1,000).

3.2.2 Client side setup

On the client side, we experimented with different devices like simputer, laptop with

softphone, and ATA adapter with POTS phone. Each setup has its advantages and dis-

advantages. The major differentiating factors are the cost and the availability of the

technology. POTS with adapter is the most common solution we have tried on. It is

the most inexpensive solution, but can be used only for communication purpose. On the

3.3. Final Solution 23

Table 3.1: Server setup cost

S.No. System setup Setup Cost(Rs.)

1. Sipura SPA3000 with Normal PC 8,030

2. Sipura Spa3000 with VIA motherboard 7,030

3. Digium X100P with Normal PC 7,530

4. Digium X100P with VIA motherboard 6,530

5. Normal Data Modem with VIA motherboard 5,360

other hand, if we use a softphone on a laptop we don’t have to make any new invest-

ments. Simputer can also be used to make and receive calls. Simputer has most of the

functionality which is similar to a softphone installed on PC.

Table 3.2: Cost comparison of client side devices

S.No Client side solutions Cost

1. ATA + POTS Rs. 4,000

2. Simputer Rs. 15,000

3. Laptop with Softphone Rs. 30,000

4. Desktop PC with Softphone Rs. 20,000

3.3 Final Solution

3.3.1 Conventional setup

In the conventional setup for getting the VoIP functionality with PSTN, we need a sep-

arate computer system with Asterisk server configured on it, and gateway for the VoIP-

PSTN communication. In this setup, the cost and power consumption of the system is

very high. Gateways are usually expensive and the use of a computer system for asterisk

make the system unsuitable for use in rural areas where we don’t have electricity sup-

ply, rather we have some solar cells to work with. In this setup we also get lot of other

functionalities which are of no use for the end user.

24 Chapter 3. Gateway with inbuilt Asterisk

Figure 3.6: Conventional setup of asterisk system

3.3.2 Single box solution

We have designed a single box solution for the PSTN-VoIP integrated system. The

hardware components we used are Via motherboard, data modem, and flash memory. We

used AstLinux as the PBX system. AstLinux is a ‘CentOS Linux plus Asterisk’ combined

package that can be installed directly on any system. AstLinux has the minimum required

features of Linux that are needed for Asterisk to run properly. We installed AstLinux on

the flash drive, so as to avoid the use of the hard-disk. The goal is to remove the use of

hard-disk and avoid the power consumption by it, and so the SMPS can be removed.

The main problem was to stop the logging functionality of Linux and Asterisk, which

they perform for error handling. For that, we compiled the Linux and Asterisk with

logging disabled and then created a single package for installation by the user. Now after

the bootup, Linux and Asterisk both are loaded in main memory and there is no need for

any external storage.

After installing the modified AstLinux on flash memory, we used the Via motherboard

for the processing needs of the system. Via motherboard as described in section 3.1.1 is

a very inexpensive processor, with low power consumption.

For the gateway we first used the Digium card, then later we replaced the Digium card

with a normal data modem. Data modem is quite inexpensive compared to the Digium

PCI card or any other external gateway (like SPA3000). Asterisk is not designed to work

3.3. Final Solution 25

with the data-modems, so we modified the ZAP channel files in order for the system to

work with data-modem.

We modified the zaptel/wcfxo.c file as follows:

Existing code:

static struct pci_device_id wcfxo_pci_tbl[] __devinitdata = {

{ 0xe159, 0x0001, 0x8085, PCI_ANY_ID, 0, 0, (unsigned long) &wcx101p },

{ 0x1057, 0x5608, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcx100\$ };

Now change the wcfxo_pci_tbl[] in zaptel/wsfxo.c to:

static struct pci_device_id wcfxo_pci_tbl[] __devinitdata = {

{ 0xe159, 0x0001, 0x8085, PCI_ANY_ID, 0, 0, (unsigned long) &wcx101p },

{ 0xe159, 0x0001, 0x8086, PCI_ANY_ID, 0, 0, (unsigned long) &wcx101p },

{ 0x1057, 0x5608, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (unsigned long) &wcx100\$ };

3.3.3 Improvements from conventional setup

Figure 3.7: Improved setup of asterisk system

The resulting system was a small single box device. As compared to the previous

solution in which we have to use a separate gateway and computer system, it is very easy

to install and already configured for use. The cost of the system was greatly reduced as

shown in table 3.1. The power consumption of the system was also reduced. As shown

in figure 3.7, the motherboard contains the data modem which is connected to the PSTN

network and POTS. The Ethernet port on the motherboard connects to the Internet.

Chapter 4

SigComp

4.1 Signaling Compression (SigComp)

In this chapter, we have described the SigComp (Signaling Compression)[6] mechanism

from an implementation perspective. SigComp defines the mechanism to compress and

decompress the SIP messages in end-to-end VoIP applications. Using SigComp we have

obtained a compression ratio between 1:5 and 1:8. The important thing about SigComp

is that it is totally independent of compression algorithm used.

4.2 SigComp Architecture

Figure 4.1: SigComp Architecture

27

28 Chapter 4. SigComp

The major components of the SigComp are:

• Compressor dispatcher: SigComp invokes compressors on a per-compartment basis,

so when the application provides a message to be compressed it also provides a com-

partment identifier. The compressor dispatcher forwards the application message

to the correct compressor based on the compartment identifier. The compressor

returns a SigComp message that can be passed to the transport layer.

• Decompressor dispatcher: The decompressor dispatcher receives a SigComp message

and invokes an instance of the Universal Decompressor Virtual Machine (UDVM).

It then forwards the resulting decompressed message to the application, which may

return a compartment identifier, if it wishes to allow state to be saved for the

message.

• Compressor: The Compressor is the component that compresses the messages and

uploads the ByteCode for the corresponding decompression algorithm in the UDVM

as part of the SigComp message.

• Decompressor (UDVM): UDVM provides a mechanism to uncompress messages by

interpreting the corresponding ByteCode. The UDVM can be used to decompress

the output of various compressors such as DEFLATE.

• State Handler: The State Handler retains information between received SigComp

messages, and thus eliminates the need to send decompression instructions with

each of the compressed message.

4.3 SigComp Compressor

An important feature of SigComp is that decompression functionality is provided by

a Universal Decompressor Virtual Machine (UDVM). This means that the compressor

can choose any algorithm to generate compressed SigComp messages, and then upload

bytecode for the corresponding decompression algorithm to the UDVM as part of the

SigComp message.

For robustness, we have to use CRC of the message, and for security we have to

perform SHA1 hash of the message.

4.4. SigComp State Handler 29

The compressor is also responsible for forwarding the requested feedback items re-

turned by the state handler, and also for uploading the local SigComp parameters to the

remote endpoint.

4.4 SigComp State Handler

The function of the state handler is to retain information between received SigComp

messages. To provide security against the malicious insertion or modification of SigComp

messages, a separate instance of the UDVM is invoked to decompress each message. This

ensures that damaged SigComp messages do not prevent the successful decompression of

subsequent valid messages.

The UDVM can only create a state item when a complete message has been successfully

decompressed and the application has returned a compartment identifier under which the

state can be saved.

SigComp protects state access by creating a state identifier that is a hash over

the item of state to be retrieved. This state identifier must be supplied to retrieve

an item of state from the state handler.

4.5 SigComp Message Format

A SigComp message takes one of two forms depending on whether it accesses a state item

at the receiving endpoint, or it is the first message that is uploading the bytecode. The

T-bit controls the format of the returned feedback item.

Figure 4.2: SigComp message format

30 Chapter 4. SigComp

For both variants of the SigComp message, the T-bit is set to 1 whenever the SigComp

message contains a returned feedback item. The returned feedback length specifies

the size of the returned feedback field.

The len field of the SigComp message determines which fields follow the returned feed-

back item. If the len field is non-zero, then the SigComp message contains a state iden-

tifier to access a state item at the receiving endpoint. The partial state identifier

is passed to the state handler, which compares it with the most significant bytes of the

state identifier in every currently stored state item. If a state item is successfully

accessed then the state value byte string is copied into the UDVM memory beginning

at state address. The 12-bit code len field specifies the size of the uploaded UDVM

bytecode.

4.6 UDVM: Universal Decompressor Virtual Machine

4.6.1 UDVM Architecture

Figure 4.3: UDVM architecture

A new UDVM is instantiated and ini-

tialized for each received incoming Sig-

Comp message. The memory layout of the

UDVM is shown in the figure 4.3.

Address 0-63 is initialized after receiv-

ing the message. Addresses 0 to 5 indi-

cate the resources available to the receiv-

ing endpoint. The UDVM memory size is

expressed in bytes modulo 216, so in par-

ticular, it is set to 0 if the UDVM memory

size is 65536 bytes.

The cycles per bit is expressed as a

2-byte integer taking the value 16, 32, 64

or 128. The UDVM then begins execut-

ing instructions at the memory address

contained in state instruction, which is

part of the retrieved item of state.

4.6. UDVM: Universal Decompressor Virtual Machine 31

SigComp version is either 0 or 1. Addresses 6 to 9 are initialized to the length of

the ppartial state identifier, followed by the state length from the retrieved state

item. Addresses 10 to 31 are reserved and are initialized to 0 for Version 0x01 of SigComp.

The addresses 32-63 are used as working space by the UDVM for example storing

stack. The next 8 bytes (64-71) are used as four registers by the UDVM. To provide bit-

wise compatibility with various well-known compression algorithms, the input bit order

register can modify the order in which individual bits are passed within a byte. The P

flag in the input bit order determines the way of interpreting the bits received as input.

If set to 0, it indicates that the bits within an individual byte are passed to the INPUT

instructions in MSB to LSB order. The stack location register stores the base address

of the stack. The PUSH, POP, CALL and RETURN instructions use the stack.

4.6.2 UDVM Instruction Set

There are in all 35 different instructions defined in the standard for the UDVM. The in-

structions are highly optimized for the general purpose compression algorithms. Because

of this major compression algorithms can be expressed in less than 100 bytes in UDVM

byte-code. The instructions can be classified into categories of arithmetic, bitwise, mem-

ory management, program flow, I/O instructions.

Chapter 5

Implementation of SigComp for

Asterisk & Yate

5.1 Implementation Description

We have implemented the SigComp[6] standard with Deflate compression algorithm for

Asterisk server. The aim is to improve the Asterisk’s response time for the signaling

messages. The available implementation of Asterisk doesn’t provide the SigComp com-

pression algorithms. We have also integrated SigComp to the Yate, a SIP client, to work

with Asterisk server. In this chapter, we have presented a detailed description of the im-

plementation intricacies of the standard and its integration with Asterisk and Yate. We

have shown the main data structures, the flow of control, the integration points in both

Asterisk and Yate.

5.1.1 Data Structures used in SigComp implementation

The main data structures we designed for the implementation are shown in the table 5.1

with a short description of each.

Table 5.1: Data Structures used in SigComp implemen-

tation

S.No. Data Structures Description

1. BitBuffer Used by the UDVM to read input and write output

in a bit-oriented fashion.

2. Buffer Used for encapsulating buffers of bytes.

Continued on next page...

33

34 Chapter 5. Implementation of SigComp for Asterisk & Yate

Table 5.1 – continued from previous page

S.No. Data Structures Description

3. Compartment Tracks information for a single remote endpoint.

Compartment contains SigComp state objects, in-

formation about the amount of memory and adver-

tised states available at the remote end, and any

information that the compressor must store.

4. CompartmentMap Hash map of compartments.

5. CompartmentBucket Bucket for storing compartments after performing

the hash in CompartmentMap.

6. Compressor Interface for the compressors in SigComp.

7. CompressorData A generic interface for all the compressor data. As

we can use any compression algorithm with Sig-

Comp we have defined a generic interface that all

the compression algorithms must follow.

8. DeflateCompressor A SigComp compressor based on the Deflate algo-

rithm.

9. DeflateData Compartment state information used by the De-

flateCompressor.

10. MultiBuffer Used to combine arrays so that they can be used

as a single array.

11. MutexLockable Mutex functionality for multithread synchroniza-

tion.

12. NackMap Hash map used to correlate from NACK messages

to the proper compartment.

13. NackNode NackNode allows storage of NACK records.

14. ReadWriteLockable Provides Read/Write Lock functionality for multi-

thread synchronization.

15. Sha1Hasher Performs SHA-1 hashing.

Continued on next page...

5.1. Implementation Description 35

Table 5.1 – continued from previous page

S.No. Data Structures Description

16. SigcompMessage Encapsulates a SigComp message, and provide

methods for accessing information from the mes-

sage.

17. SipDictionary Contains the SIP/SDP dictionary defined in RFC

3485

18. Stack The main interface between the application and

the SigComp

19. State Tracks the states stored and used by the UDVM

and Compressors

20. StateChanges Represents the state changes requested by a suc-

cessfully decompressed SigComp message

21. StateHandler Stores state for the UDVM and tracks NACK mes-

sages and compartments

22. StateList Tracks a list of states associated with a compart-

ment

23. StateNode Tracks state associated with a single state in a

StateList

24. StateMap Hash map of State objects, keyed by State ID

25. UDVM The UDVM is the main component of the decom-

pression mechanism. It takes the compressed mes-

sage, accesses the state associated with it and de-

compresses the message. UDVM is capable of us-

ing any compression mechanism; we just need to

upload the bytecode for the algorithm. For now

we have fixed the algorithm to be Deflate.

5.1.2 Pseudocode: Compression and Decompression mechanism

In this section, we have presented the algorithm that we designed to implement the Sig-

Comp. This the core algorithm that defines the compression and decompression according

36 Chapter 5. Implementation of SigComp for Asterisk & Yate

to the standard. We have left out the internal details in order to maintain the clarity of

the algorithm.

Compression: If this is the first message, we add the bytecode for decompression

in the outgoing message, otherwise we extract the data from the state of previously sent

messages and use it. Now, we add the message to be sent to the dictionary, and perform

the string matching, and encoding of length and distance. If no match is found we add

the literal after encoding it.

Algorithm 1 Deflate dictionary

1: DeflateDictionary provide methods to encode the length, distance, and literals in

message. These methods are used by the compress() method while performing com-

pression.

2: findNextLenghtAndDistance(len,dis) /*Get the next (length,distance) pair.*/

3: encodeLength(len) /*Encode the length of match.*/

4: encodeDistance(dis) /*Encode the distance where pattern is found.*/

5: encodeLiteral() /*Encode the literals, for which no pattern was found.*/

Algorithm 2 Deflate compression

6: /*Initializations*/

7: Create & initialize the stateHandler

8: Create & initialize stack

9: Initialize stack’s UDVM

10: Create & add stateChanges to UDVM

11: Create & initialize deflateCompressor

12: Add deflateCompressor to stack

13: /*Initializations complete*/

14:

15: /*CompressMessage*/

16: compartment ⇐ Get the Compartment from stateHandler

17: if !compartment then

18: Create compartment and add it to stateHandler

19: end if

20: Increment compartment.retainCounter

5.1. Implementation Description 37

21: if stateHandler.nackCount > threshold then

22: trim the stateHandler.nackMap to remove old Nacks from stateHandler

23: end if

24: //start the compression

25: deflateData ⇐ Get DeflateData from compartment

26: if !deflateData then

27: Create and add deflateData to compartment

28: end if

29: oldstate ⇐ Get most recently acked state from compartment

30: //Now create a SigComp message that we will be writing into

31: if !oldstate then

32: sm ⇐ Create SigComp message with oldState’s data.

33: else . this is the first message

34: sm ⇐ Create SigComp message with bytecodes added.

35: end if

36: if sending bytecodes then

37: Include our local capabilities with outgoing message.

38: Add CpbDmsSms

39: end if

40: Advertise: statememory, SIPdictionary, and decompressionbuffersize in sm.

41: Add 4-bit serialnumber to sm.

42: dictionary ⇐ Create and initialize DeflateDictionary

43: /*Now we will perform the actual compression.*/

44: if not the first message then

45: Extract the data from the oldState and add it to dictionary.

46: end if

47: Add the new message’s data to the dictionary.

48: /*Now we will encode the message using dictionary.*/

49: while dictionary.isfinished() do

50: if dictionary.findNextLengthAndDistance(len,dis) then

51: dictionary.encodeLength(len);

38 Chapter 5. Implementation of SigComp for Asterisk & Yate

52: dictionary.encodeDistance(dis);

53: else

54: dictionary.encodeLiteral(dictionary.getCurrent());

55: end if

56: end while . After this encoding of the message the compression is complete.

57: //Check to ensure we’re not about to overflow the decompression memory size on the

remote stack

58: if sm.getDatagramLength() > maxSigcompMessageSize then

59: //We have exceeded the size

60: //Report error

61: end if

62: newState ⇐ Generate new state using oldState and new data.

63: Release oldState

64: Add newstate in stateHandler

65: Add newstate in compartment for future use

66: Add newState in compartment.remoteStateList

67: Store newstate’s id as current stateId in deflateData

68: Release newstate

69: if sm is not valid then

70: Create SigComp message without compression, and mark the header indicating

the uncompressed message

71: end if

72: Add the requested feedback to outgoing sm

73: Hash the outgoing SigComp message in stateHandler.nackMap . If we get a NACK

for this message we can refer to this message

74: Release compartment

return sm

Decompression: On receiving the compressed SigcompMessage, we first check for

its validity. Next, we load either the stored state or the received bytecode in UDVM,

depending on the message content. Then, we execute the code and create the stateChanges

object, which defines the changes in the compartment to get the uncompressed message.

5.1. Implementation Description 39

Algorithm 3 Decompression

1: /*Decompression*/

2: buffer ⇐ Read the message from the socket

3: sm ⇐ Create the SigcompMessage from buffer

4: if sm is Nack then

5: compartment ⇐ Find the corresponding Compartment in stateHandler

6: Remove all the remote-states that the NACKed message was expected to create

from compartment

7: Release compartment

8: end if

9: Create an outputBuffer to extract the uncompressed message in it

10: /*Initialize the UDVM for decompression*/

11: if sm is not valid then

12: Put the failure reason in UDVM

13: break

14: end if

15: Initialize the UDVM memory size . Different for TCP/UDP

16: if bytecode is present in the message then

17: Load the code in UDVM

18: else

19: Load the state in UDVM

20: end if

21: Initialize the UDVM’s memory space parameters: memorySize, cyclesPerBit, and

sigcompVersion

22: /*UDVM Initialization complete*/

23: if sm is valid then

24: Execute the code and prepare the stateChanges object accordingly

25: end if

26: if UDVM fails & sigcompVersion > 2 then

27: stack.nack ⇐ Get the Nack from UDVM & return

28: end if

29: stateChanges ⇐ Get proposed states from the UDVM

40 Chapter 5. Implementation of SigComp for Asterisk & Yate

30: Add the returnedfeedback from sm into stateChanges

31: /*Here the decompression of the message is complete. We have the uncompressed

message in UDVM’s output buffer*/

32: //Provide compartment Id

33: if no stateChanges then

34: return

35: end if

36: compartment ⇐ Get compartment from stateHandler

. Process stateChanges

37: if S-bit is set then

38: Remove compartment from the stateHandler

39: end if

40: for all the operations in stateChanges do

41: if operation == ADD STATE then

42: Get state from stateChanges

43: Add state in compartment

44: end if

45: if operation == REMOVE STATE then

46: Remove state from compartment

47: end if

48: Set compartment.CpbDmsSms

49: Reset remote advertised states of compartment

50: Add the remote advertised states in compartment from statechanges

51: if I-bit is valid then

52: Set I-bit

53: end if

54: Set Requested Feedback and Returned Feedback in compartment

55: end for

56: //Handle feedback

57: feedback ⇐ Get returned feedback from compartment

58: stateId ⇐ Get stateId from deflateData

5.2. SigComp with Asterisk 41

59: Ack remote state.

60: Release compartment

5.2 SigComp with Asterisk

5.2.1 Integration of SigComp with Asterisk

In Asterisk, we have different channels for each type of communication, like for SIP we

have chan sip.c, for ZAP channel chan zap.c. For integrating SigComp, we have modi-

fied the Asterisk’s SIP channel. We have made it thread safe, in order make it work for

different calls from different users. Now, when a call is made through Asterisk, a thread

is created, to transfer messages for both the clients. The Asterisk compresses & decom-

presses the messages similar to the end user. We have inserted the compression code in

its sip transmit() method, and the decompression code in sipsock read() method.

5.2.2 Test Cases

• Working of SigComp as stand alone application.

– Underlying protocol (TCP/UDP):

We have tested the working of SigComp as a stand alone application with

TCP and UDP. TCP being a stream oriented protocol uses the TCPStream

data structure to add the stream in to the ongoing connection. It also uses

the stream to extract the SigComp messages on the receiving end. We need to

insert the message-end markers in the stream to indicate the message bound-

aries.

With UDP we used the datagram to send and receive the SigComp messages.

After receiving the SigComp message we decompress the message using de-

compressMessage() method. Along with the uncompressed SIP message, it

also provides the StateChanges object which provides a number of states to be

added and removed as requested by the bytecodes.

– Compression test

We have implemented the Deflate compressor as per the SigComp standard.

We have to test for the state extraction from the compartment, compression of

42 Chapter 5. Implementation of SigComp for Asterisk & Yate

message, and inclusion of bytecode and state identifier in the outgoing message.

– Decompression test

After receiving the compressed message we need to perform the decompression.

For both UDP and TCP, the application examines the decompressed message.

If it finds it to be valid, it calls “provideCompartmentId” on the Stack; this

method takes the compartmentId associated with the decompressed message

and the “StateChanges” object that was returned from the earlier call to “un-

compressMessage”. The stack then updates the StateManager according to

the instructions in the “StateChanges” object. If the application decides that

the message is invalid, it simply destroys the StateChanges object.

– CrcComputer test

The CRC is added to every outgoing SigComp message for reliability. We have

tested the CRC computation by giving a message to it and comparing it with

the expected output.

– Sha1Hasher test

We have used the SHA1 hasher as specified in the SigComp standard for hash-

ing the messages. We keep on adding the message data to SHA1 hasher and

then call getSha1hash() method to get the hash of the message.

– Stack test

Stack is the user-end interface to the SigComp. It provides all the methods

to perform operation on the SIP message to compress and decompress it. We

have tested the working of Stack by running it for sending messages as given

in SIP standards example.

– Torture tests

We have followed the torture tests described in RFC 4465[7] to implement the

torture tests for our implementation.

Stack: We have performed the torture tests on the system by compressing and

decompressing 1000 messages back to back.

UDVM: We did the torture test for UDVM by performing all the operation

defined for UDVM in the standard.

5.3. SigComp with Yate 43

StateHandler: The torture test for State Handler includes the test for Sig-

Comp feedback mechanism, state memory management, multiple compart-

ments, bytecode state creation.

• Asterisk and SigComp.

We also performed test on the SigComp’s working with Asterisk server in following

scenarios:

– Single client: Only one client connected to the Asterisk, making no calls. It

checks that the client registration with Asterisk is working fine. Then we also

tested it when one client is making call to itself.

– Multiple clients: Multiple clients from one machine connected to Asterisk and

making calls to each other. It checks that threading is done properly for each

client and each call.

– Torture test: We used the Yate callgen to generate around 20,000 calls to the

Asterisk server. It checks the load handling of the system and also shows how

much improvement is made by using the SigComp with the Asterisk.

5.3 SigComp with Yate

Yate is a open source SIP client. We have integrated SigComp with the Yate softphone to

make calls using the Asterisk server. Yate provides us the callgen facility to make multiple

parallel calls, which we have used to test the working of Asterisk server on heavy loads.

5.3.1 Integration of SigComp with Yate

We have integrated SigComp with Yate in its SIP-channel (ysipchan.c) file. As shown in

the figure 5.1, we first create and initialize the Statehandler, the Stack, DeflateCompressor

and give an Id to the client. Now, whenever the client sends a SIP message we first

compress it and the send it to the other user. On reception of the SigComp message, the

user first checks for the message’s validity. Now it decompresses the message, then again

check the uncompressed message. If the message is valid it sends it to the upper layer,

else it sends a NACK message to the other user to inform it about the error.

44 Chapter 5. Implementation of SigComp for Asterisk & Yate

Figure 5.1: SigComp integration with Yate

5.3.2 Test Cases

• Single instance one call

Create only one Yate client on a machine and make call to itself. This verifies that

on calling the same client we are able to differentiate between incoming and outgoing

calls.

• Single instance multiple calls

Create single instance of Yate and make multiple calls to the itself. This verifies

that each call is being treated separately.

• Two instances on different machines with one call

Now make a call from a different machine. This verifies that the socket level pro-

gramming is working fine.

• Two instances on different machines with multiple calls

Create two instances and make multiple calls. This gives us the improvement in

Asterisk’s response time. We have done this test rigorously for 20,000 parallel calls,

and shown our results in figure 5.5.

5.4. Experiments and Results 45

5.4 Experiments and Results

In this section, we have presented the results of the experiments we have done with Sig-

Comp. We have shown the improvement in the response time of Asterisk that we have

obtained by using SigComp. We have also shown the improvement in session establish-

ment while making direct SIP-to-SIP call.

5.4.1 Packet drop probability vs Packet size

We have made the study of packet drop probability with varying packet sizes for different

bandwidths. We have made this study by sending 200 packets of a particular size and

calculating the number of packets received correctly.

We made this study because, the compression mechanism is of no use, if even after

compression the packet size doesn’t fall in the safe range.

Figure 5.2: Packet drop probability vs Packet size for different bandwidths.

Analysis : From the graph 5.2, we can see that, on heavy load the packets starts

dropping more rapidly as compared to light load. The heavy load is representative of low

46 Chapter 5. Implementation of SigComp for Asterisk & Yate

available bandwidth. So we can conclude that if the message size is less in low bandwidth

medium we can get good throughput and faster response time.

5.4.2 Compression Ratio with UDP

In this experiment, we have calculated the compression ratio of the SIP messages that we

have obtained using SigComp. When the Yate starts up it sends a REGISTER request

to the server. Starting from the REGISTER method till BYE we have observed the size

of the compressed SIP messages being exchanged. The graph 5.3, shows the percentage

compression we have obtained by using SigComp.

Figure 5.3: UDP: Deflate compression (Compression ratio vs Packet sequence number)

Table 5.2: Message compression obtained by using Sig-

Comp

Message No. Original size Compressed size % compression

1 850 1017 119

2 468 710 151

Continued on next page...

5.4. Experiments and Results 47

Table 5.2 – continued from previous page

Message No. Original size Compressed size % compression

3 1168 586 50

4 483 208 43

5 418 42 10

6 1360 105 7

7 393 59 15

8 632 189 29

9 405 55 13

10 405 39 9

11 384 38 9

Analysis : We have obtained upto 90% compression ratio by using the SigComp with

Asterisk. The first few messages become larger because of the transmission of the bytecode

along with the message. We can reduce the size of these messages too if we fix the

algorithm before hand.

5.4.3 Improvement in Asterisk response time

The graph 5.4, shows the improvement we have obtained by using SigComp with Asterisk.

We have made 20,000 parallel calls and recorded the response time of Asterisk. Here, we

have compared the response time of Asterisk server in wireless medium, for two cases: 1)

with compression mechanism and 2) without compression.

Analysis : By using the SigComp with Asterisk we have obtained the improvement of

about 15% in its response time. The gain is highly varying, sometimes the response time

is more for some calls. But on an average the response time is much improved for multiple

parallel calls.

5.4.4 Improvement in SIP to SIP communication

In this experiment, we have measured the improvement in SIP-to-SIP connection estab-

lishment that we obtain by using SigComp.

48 Chapter 5. Implementation of SigComp for Asterisk & Yate

Figure 5.4: Asterisk response time with compression.

Figure 5.5: SIP to SIP connection improvement.

Analysis : In this experiment we make calls from Yate to Yate without using Aster-

isk, and we have got about 4-5% improvement in the connection establishment by using

SigComp with Yate.

Summary

In this section, we have described the SigComp implementation and its integration with

Asterisk and Yate. The improvement in session establishment via Asterisk server shows

the potential benefits of using the compression methods with SIP. The computational

load on the system is not much affected by using compression, given the use of efficient

bytecodes for compression and very large number of users.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have done a lot of experiments with different hardware devices that are used in VoIP

and PSTN integration. From the discussion in the previous chapters, we have seen that

the design of the single box solution is the most inexpensive, easy to install, robust and,

is a low power consuming device. It is the best we can get out by using off-the-shelf

components.

Using SigComp we have achieved a compression of about 90% in the SIP messages.

The Deflate compression algorithm reduces the size of messages using the pattern of bytes

being transferred. We have improved Asterisk’s response time by about 10-15%. We have

also reduced the session establishment time in direct SIP-to-SIP calls. We have planned

to integrate the SigComp implementation with the main branch of Asterisk’s open source

code repository.

6.2 Future Work

The project can be enhanced in the following ways:

• Hardware implementation of the solution

We can implement the architecture design of the single box solution on a hardware

unit. That will give us better cost reduction and power efficiency.

• More compression algorithms

We have currently implemented only Deflate compression algorithm for Asterisk

and Yate. More compression algorithms can be implemented and compared with

49

50 Chapter 6. Conclusion and Future Work

the current results we have obtained.

• Data storage on Edge Proxy

We have proposed the solution of data storage on Edge Proxy, for reducing the

message size. But the implementation of the proposal is still undone. Along with

the compression mechanisms, the implementation of stateful Edge Proxy is expected

to produce much more better results.

• 3GPP2 standard

3GPP2 IMS project also proposes the use of SigComp for compression in mobile

clients. Its standards are still in the making phase. Once its standards are available

we can integrate the SigComp implementation with its applications.

Bibliography

[1] J. V. Meggelen, J. Smith, and L. Madsen, Asterisk The Future of Telephony.

O’Reilly, August 15, 2007.

[2] M. Spencer, M. Allison, and C. Rhodes, The Asterisk Handbook. Asterisk Docu-

mentation Team, 2003.

[3] L. Madsen, J. Smith, S. Sokol, W. Baig, D. Heinzen, J. Rollyson, P. Grace, N. Bach-

mann, M. Preston, M. List-Petersen, W. Suffill, J. V. Meggelen, and C. Tooley, The

Hitchhiker’s Guide to Asterisk, 2003.

[4] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,

M. Handley, and E. Schooler, SIP: Session Initiation Protocol. RFC 3261, June

2002. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3261.txt

[5] M. Handley and V. Jacobson, SDP: Session Description Protocol. RFC 2327, April

1998. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2327.txt

[6] R. Price, S. Manor, C. Bormann, T. Bremen, J. Christoffersson, H. Hannu, Z. Liu,

and J. Rosenberg, Signaling Compression (SigComp). RFC 3320, January 2003.

[Online]. Available: http://www.rfc-editor.org/rfc/rfc3320.txt

[7] A. Surtees and M. West, Signaling Compression (SigComp) Torture Tests. RFC

4465, June 2006. [Online]. Available: http://www.rfc-editor.org/rfc/rfc4465.txt

[8] H. Hannu, J. Christoffersson, S. Forsgren, K.-C. Leung, Z. Liu, and R. Price,

Signaling Compression (SigComp) - Extended Operations. RFC 3321, January

2003. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3321.txt

[9] P. Carden, Building Voice over IP, May 8, 2000. [Online]. Available:

http://www.networkcomputing.com/netdesign/1109voip.html

51

52 Bibliography

[10] ShenKai, XiangYong, and S. MeiLin, “Design of lan based ip phone,” in Communi-

cation Technology Proceedings, 2000. WCC - ICCT 2000. International, 2000.

[11] R. Balbinot, J. Guedes-Silveira, and P. Franco, Desktop Voice Over IP Development

with PSTN integration, 2001.

[12] W. E. Witowsky, IP Telephone Design and Implementation Issues, July 1998.

[13] Y. Zhang, SIP-based VoIP network and its interworking with the PSTN, Dec 2002.

[14] Sipura User Guide, July 2004.

[15] M. Lad, M. Jalan, D. Patil, and S. Sule, IP based Single-line VoIP Residential Gate-

way, 2002.

[16] “Asterisk - open source pbx.” [Online]. Available: http://www.asterisk.org/

[17] “Yate - yet another telephony engine.” [Online]. Available: http://yate.null.ro

[18] “Deflate compression algorithm.” [Online]. Available: http://www.gzip.org/

algorithm.txt

[19] T. Y. Chan, D. Greenstreet, G. Yancey, K. Devlin-Allen, D. Jarrett, K. Buchanan,

S. Scoggins, M. Harvill, and D. Jobson, “Building residential voip gateways: A tuto-

rial,” in White paper, Texas instruments, 2000.

[20] H. Fathi, S. S. Chakraborty, and R. Prasad, “Optimization of sip session setup delay

for voip in 3g wireless networks,” in Global Telecommunications Conference, 2004.

GLOBECOM ’04. IEEE, 3 Dec 2004, pp. 4092– 4096 Vol.6. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1379135

