Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Desigr

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Design of Multi-tier Wireless Mesh Networks

Raghuraman Rangarajan

Advisor Prof. Sridhar Iyer -July 2009, IIT Bombay

Introduction

Issues in Wireless Network Design Multi-tiered Wireless Network Design Solution Approach

Stage 1: AP-Client Association

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Design

Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Node Locationing and Topology Design Mesh Network Design Problem Problem Formulation WINDwmn Tool

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Goal

Design wireless data networks

- mesh networks and wireless local area networks
- capacity constraints

Purpose

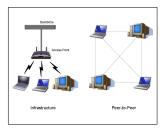
- Construct topology
- Position infrastructure nodes
- Provision bandwidth

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design Solution Approach


Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Overview of Wireless Networks

Wireless data networks can be used as

- Infrastructure or peer-to-peer (802.11)
- Local (WLAN) or Backhaul networks (802.16, Mesh)

Wireless vs Wired

- Removes physical connectivity
- Allows user mobility
- Re-configuration of network incurs minimal cost
- Wired n/w have higher data rates
- Capacity provisioning important in wireless n/ws

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_Line Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

ELE DQQ

Outline

Introduction

Issues in Wireless Network Design

Multi-tiered Wireless Network Design Solution Approach

Stage 1: AP-Client Association

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Design

Generic Framework Topology Construction WINDwlan Tool

Stage 3: WMN Node Locationing and Topology Design Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Design of Wireless Mesh Networks

Outline

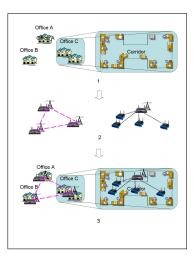
Introduction

Issues in Wireless Network Design

Multi-tier Wiess Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction


Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Wireless Network Design I

Example Campus Network

Network elements

- User devices
- Last-hop access (APs)
- Backhaul network (Routers)
- Application services

Design of Wireless Mesh Networks

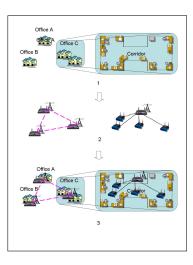
Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design

Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem


Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Wireless Network Design II

Design problem

Construct network topology satisfying design constraints

Design constraints

- Coverage
- Capacity
- Application scenarios

- Heterogeneous technologies
- Cost

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design

Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{winn} Tool

Wireless Network Design III

Generic Design Problem

Network design problem (NDP)

Given client nodes and deployment layout *Construct* network topology *Subject to* constraints *While* minimizing network infrastructure cost

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design

Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Wireless Network Design IV

Current approaches

- Site survey
- Simulations
- Test measurements
- Signal strength measurements
- RF planning

Drawbacks [Mclean, How to design a WLAN, 2003]

- Difficult to provision 802.11 DCF
- Suitable for small-sized networks
- Address only coverage issues

Need

Integrated Approach to Wireless Design

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design

Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

Stage 2: WLAN Topology

Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Wireless Network Design V

Design issues

- Provisioning 802.11 WLANs in heterogeneous application scenarios
- Capacity-constrained wireless network design
- Minimising network infrastructure cost
- Integrated design of local area and backhaul wireless networks

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design

Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WINDwmn Tool

Outline

Introduction Issues in Wireless Network Design Multi-tiered Wireless Network Design Solution Approach

Stage 1: AP-Client Association

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Design

Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Node Locationing and Topology Design Mesh Network Design Problem Problem Formulation WINDwmn Tool

Design of Wireless Mesh Networks

Outline

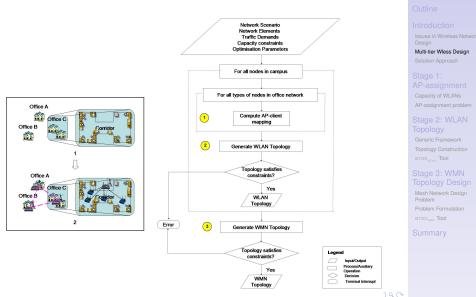
Introduction

Issues in Wireless Network Design

Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

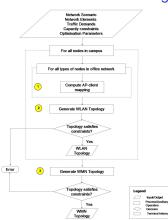
Stage 2: WLAN Topology Generic Framework Topology Construction


Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Bottom-up Design Flowchart


Three design stages

12/112

Design of Wireless Mesh Networks

Problem formulation

Stage 1

AP-assignment

Given client nodes *Compute* APs required *Subject to* capacity constraints *While* minimizing |APs|

Design of Wireless Mesh Networks

Outline

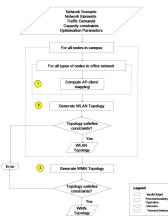
Introduction

Issues in Wireless Network Design

Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool


Stage 3: WMN Topology Desigr

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

<ロ> < 団> < 団> < 目> < 目> 三目 のへの

Problem formulation

Stage 2

WLAN topology design

Given client nodes, deployment layout Construct WLAN topology Subject to capacity constraints While minimizing network infrastructure (APs)

Design of Wireless Mesh Networks

Outline

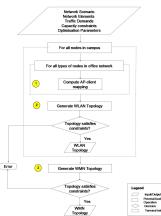
Introduction

Issues in Wireless Network Design

Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlap} Tool


Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

・ロト・西ト・ヨト・ヨト 山下 ろくの

Problem formulation

Stage 3

Mesh network design

Given deployment layout, AP nodes deployed and their characteristics Construct backhaul topology Subject to capacity constraints While minimizing network infrastructure (mesh nodes and links)

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design

Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

・ロト・日本・日本・日本・日本・日本・日本・日本・

Outline

Introduction

Issues in Wireless Network Design Multi-tiered Wireless Network Design Solution Approach

Stage 1: AP-Client Association

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Design

Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Node Locationing and Topology Design Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Design of Wireless Mesh Networks

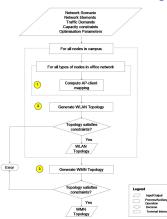
Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design

Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem


Stage 2: WLAN Topology Generic Framework Topology Construction

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Solution Approach

Stage 1

AP-assignment

- Analyse heterogeneous application deployments
- Prioritise applications to improve system utilisation
- Validate with simulation

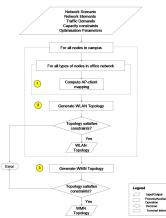
Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design

Solution Approach


Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wm} Tool

Solution Approach

Stage 2

WLAN topology design

- Framework for deploying WLANs from simple network input parameters
- Construct topology using AP-assignment solutions as input
- Validate with simulation

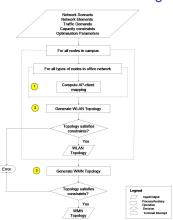
Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design

Solution Approach


Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Solution Approach

Stage 3

Mesh network design

- Framework for deploying WMNs from simple network input parameters
- Optimisation problem for Node locationing and topology construction
- Minimise network deployment cost using node and link costs

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design

Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Outline

Introduction

Issues in Wireless Network Design Multi-tiered Wireless Network Design Solution Approach

Stage 1: AP-Client Association Capacity of WLANs

AP-assignment problem

Stage 2: WLAN Topology Design

Generic Framework Topology Construction WINDwlan Tool

Stage 3: WMN Node Locationing and Topology Design Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Design of Wireless Mesh Networks

Outline

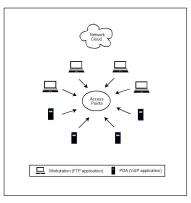
Introduction

Issues in Wireless Network Design Multi-tier Wiess Design Solution Approach

Stage 1: AP-assignment

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction


WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Associating Clients with APs

AP-assignment

Given client nodes Compute APs required Subject to capacity constraints While minimizing |APs|

Design of Wireless Mesh Networks

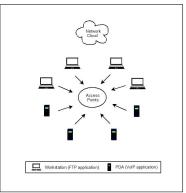
Outline

Introductior

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment

Capacity of WLANs AP-assignment problem


Stage 2: WLAN Topology Generic Framework Topology Construction

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Capacity of WLANs

Aim

- Study single application scenario
 - Analyse 802.11 DCF mechanism
 - Realtime applications (voice and video codecs)
 - Theoretical vs Simulation results
- Capacity of system (in number of flows)
- Base case for analysis of heterogeneous deployments

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

System Setup DCF schemes

Scheme	Data rate (in <i>Mbps</i>)
802.11b	1, 5.5, 11
802.11g	1, 11, 54

Codec parameters

\downarrow Parameters / Codecs \rightarrow	G.711	G.723.1	G.729	GSM	To
Bit rate (in kbps)	64	6.4	8	13.2	To
Framing interval (in ms)	20	20	20	20	St
Payload (in bytes)	160	24	20	33	То

MAC parameters and Stack overheads

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design Solution Approach

Stage 1: AP-assignment

Capacity of WLANs

Stage 2: WLAN

Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{winn} Tool

Summary

・ロト・西ト・モン・ビア ひょう・

Theoretical Calculation

Term	Definition
pkt	Packet size (at MAC, in bytes)
ACK	Size of ACK packet (14 bytes for 802.11)
r	Data rate (in <i>Mbps</i>)
DIFS	DIFS time (in μS)
SIFS	SIFS time (in μS)
slot	Slot time (in μS)
backoff	Backoff
PHY	PHY overhead (in μS)

Throughput (T)

 $T = \frac{Payload}{t_{total}}$ $= \frac{pkt * 8}{DIFS + SIFS + 2 * PHY + \frac{backoff}{2} * slot + t_{pkt} + t_{ack}}$

Where,

$$t_{pkt} = \frac{(pkt+MAC)*8}{r}, t_{ack} = \frac{ACK*8}{r}$$

▲□▶▲□▶▲□▶▲□▶ ▲□■ のへで

Design of Wireless Mesh Networks

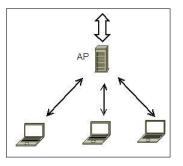
Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design Solution Approach

Stage 1: AP-assignment

Capacity of WLANs AP-assignment problem


Stage 2: WLAN Topology Generic Framework Topology Construction WIND Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WINDwwn Tool

Summary

Simulation Setup

Implementation details

- Opnet Modeler
- Voice scenarios modeled as application definition
- Number of flows increased until constraints failed
- Constraints
 - Throughput satisfaction
 - Delay \leq 75 msec

Design of Wireless Mesh Networks

Outline

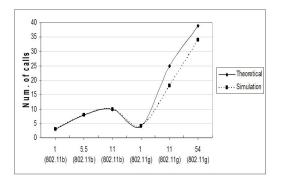
Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool


Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Results: G.711 Codec

Theoretical vs Simulation

Scheme	802.11b		802.11g			
\longrightarrow						
Data rate (r)	1	5.5	11	1	11	54
Theoretical	3	8	10	4	25	39
Simulation	3	8	10	4	18	34

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design Solution Approach

Stage 1: AP-assignment

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WINDwing Tool

Stage 3: WMN Topology Desigr

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Results: Voice Codecs

Scheme	802.11b 802.11			1g		
→ Data rate (r)	1	5.5	11	1	11	54
G.711	3	8	10	4	25	39
G.723.1	6	10	11	8	33	42
G.729	6	10	12	9	33	42
GSM	5	10	11	8	32	42

Table: Maximum number of voice calls: theoretical results.

Scheme	802.11b			802.11g			
\longrightarrow							
Data rate (r)	1	5.5	11	1	11	54	
G.711	3	8	10	4	18	34	
G.723.1	7	11	11	7	23	36	
G.729	6	11	11	7	22	36	
GSM	6	10	11	7	22	35	

Table: Maximum number of voice calls: simulation results.

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Observations

- Simulation results closely follow theoretical results
- Theoretical results form upper bound
- 802.11g vs 802.11b: Effect of shorter timings seen in 11 Mbps case
- Delay \ll Delay constraint (Max delay \leq 18 μ *S*)
- Minimal variation in number of calls between codecs
- CSMA/CA mechanism is main limitation
- Results well known [Anurag Kumar, Comm Networking, 2005]

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Results: Video Capacity

Scheme	802.11b		802.11g		1g	
\longrightarrow						
Data rate (r)	1	5.5	11	1	11	54
SQCIF 128x96, 30fps	4	13	16	5	34	59
QCIF 176x144, 15fps	3	13	20	3	31	83
CIF 352x286, 10fps	1	6	10	1	13	46

Table: Maximum number of video flows: theoretical results.

Scheme	8	802.11b		802.11g		
\longrightarrow						
Data rate (r)	1	5.5	11	1	11	54
SQCIF 128x96, 30fps	4	13	16	5	29	76
QCIF 176x144, 15fps	3	13	20	3	27	94
CIF 352x286, 10fps	1	6	10	1	14	52

Table: Maximum number of video flows: simulation results.

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment

Capacity of WLANs

Stage 2: WLAN Topology Generic Framework

Topology Construction

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WINDwmn Tool

Summary

Detailed calculation and graphs

Comments

- Homogeneous applications can be provisioned in DCF
- Realtime applications can be provided QoS guarantees - voice and video
- AP bottleneck: Equal opportunity CSMA/CA leads to AP starvation
- Heterogeneous deployment difficult
 - Single FTP flow breaks delay constraint (G.711 max calls scenario) Extending DCF
- 802.11e standard for QoS provisioning
 - Complex standard, difficult to implement
 - Not widely adopted
 - Wireless MultiMedia (WMM) uses parts of 802.11e

(日)

Homogeneous analysis forms base case for analysis of heterogeneous deployments

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation wIND_{wmn} Tool

Summary

Outline

Introduction

Issues in Wireless Network Design Multi-tiered Wireless Network Design Solution Approach

Stage 1: AP-Client Association

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Design

Generic Framework Topology Construction WINDwlan Tool

Stage 3: WMN Node Locationing and Topology Design Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Design of Wireless Mesh Networks

Outline

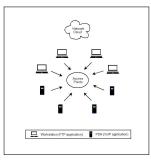
Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

AP-assignment problem

Stage 2: WLAN


Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Problem Statement: Recap

AP-assignment

Given heterogeneous client nodes *Compute* APs required *Subject to* capacity constraints *While* minimizing |APs|

Design of Wireless Mesh Networks

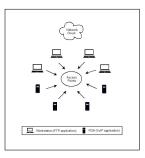
Outline

Introductior

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

AP-assignment problem


Stage 2: WLAN

Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Deploying Heterogeneous Applications I

Issues with homogeneous capacity analysis

- Network utilisation is not maximal (On average, number of flows less than maximum flows)
- Homogeneous capacity unrelated to heterogeneous capacity
- WLAN capacity usually evaluated as maximum capacity

Design of Wireless Mesh Networks

Outline

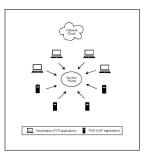
Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

AP-assignment problem

Stage 2: WLAN Topology


Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Deploying Heterogeneous Applications II

Heterogeneous capacity analysis

- Capacity in terms of heterogeneous applications
- Analysis of realtime applications with non-realtime applications
- Example: VoIP and FTP deployment

Design of Wireless Mesh Networks

Outline

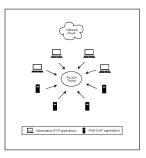
Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

AP-assignment problem

Stage 2: WLAN Topology


Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Deploying Heterogeneous Applications III

Sub-optimal heterogeneous application deployment Deploy restricted number of priority applications

- Implement priority mechanism
- Number of flows = k (< n, where n = homogeneous capacity)</p>

Design of Wireless Mesh Networks

Outline

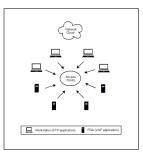
Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

AP-assignment problem

Stage 2: WLAN Topology


Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WINDwmn Tool

Summary

Deploying Heterogeneous Applications IV

Sub-optimal heterogeneous application deployment Deploy additional non-prioritised applications

- Best effort service
- Applications can be of same class as priority applications

Use restricted number of flows to set ACL policies

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

AP-assignment problem

Stage 2: WLAN

Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Design of Wireless Deploying Heterogeneous Applications V Mesh Networks Example Sub-optimal G.711 Calls 802.11b 11 Mbps, G.711 codec Theoretical capacity Payload AP-assignment problem *pkt* * 8 $DIFS + SIFS + 2 * PHY + \frac{backoff}{2} * slot + t_{okt} +$ lackeric Framework 200 * 8 $DIFS + SIFS + 2 * PHY + \frac{31}{2} * slot + 170.18 + 10.18$ 1600 $= 1.712 \ Mbps$ 934 36 G.711 bandwidth b = 0.16 Kbps • Maximum theoretical calls = |T/b| = 10 calls

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣|= のへで

Deploying Heterogeneous Applications VI

Sub-optimal capacity

 $\lfloor k.T/b \rfloor = \lfloor 1.73k/.16 \rfloor$

► Example: 30% bandwidth reservation for voice calls [1.73k/.16] = [1.73 * 0.3/.16] = 3 calls

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

AP-assignment problem

Stage 2: WLAN Topology

Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Sub-optimal Capacity: G.711 deployment

	Number of calls: $\lfloor kT/b \rfloor$					
k	802.11b			802.11g		
↓↓	(in mbps)			(in mbps)		
	1	5.5	11	1	11	54
$\frac{T}{b} \rightarrow$	3.805	9.135	10.818	4.781	25.782	39.651
Ĩ.0	3	9	10	4	25	39
0.9	3	8	9	4	23	35
0.8	3	7	8	3	20	31
0.7	2	6	7	3	18	27
0.6	2	5	6	2	15	23
0.5	1	4	5	2	12	19
0.4	1	3	4	1	10	15
0.3	1	2	3	1	7	11
0.2	0	1	2	0	5	7
0.1	0	0	1	0	2	3

Table: k vs Number of voice calls for G.711 codec.

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

AP-assignment problem

Stage 2: WLAN Topology


Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WINDwmn Tool

Summary

Sub-optimal capacity calculations

Application classes

- Alpha (α): Prioritised applications under ACL
- Beta (β): Applications with normal priority
- Gamma (γ): Applications of same class as Alpha running un-prioritised

Design of Wireless Mesh Networks

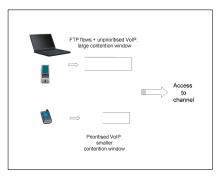
Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

AP-assignment problem


Stage 2: WLAN Topology Generic Framework

Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wm} Tool

Summary

SOAP1

Given k Alpha flows ($|\alpha| = k$) Compute number of Beta flows ($|\beta|$) Subject to constraints **R**

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

AP-assignment problem

Stage 2: WLAN

Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Implementation details

- Contention-window based service differentiation mechanism
- Impose ACL mechanism on α flows
- Add additional β and or γ flows as best effort service
- Extension of DCF MAC in OPNET Modeler
- Constraints R:
 - α : Throughput and delay constraints
 - β, γ : Throughput constraint

Application	CWmin	CWmax
VoIP (priority)	15	31
FTP	31	1023

Table: Contention window parameters for SOAP.

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

AP-assignment problem

Stage 2: WLAN Topology

Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WINDwmn Tool

Summary

Simulation setup

- 802.11g mechanism
- G.711 codec
- Application classes

Application class	L A	Application
α	VoIP -	G.711
β	FTP -	250 & 500 Kbps
γ	VoIP -	G.711

- Constraints R:
 - For all classes: Throughput satisfaction
 - α : $\alpha_k < 75ms$

▶ Other simulation parameters

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design Solution Approach

Stage 1: AP-assignment

AP-assignment problem

Stage 2: WLAN

Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation wINDwmn Tool

Summary

・ロト・日本・モート 山田 うくの

k	$ \alpha_{k} $	$lpha_{k}$ delay (in s)	$ \beta_{k} $	β_k throughput (in bps)	eta_k delay (in s)
1.0	18	0.086	1	101247	0.008
0.9	16	0.070	2	758230	0.105
0.8	14	0.073	4	1481418	0.013
0.7	12	0.073	5	2229776	0.015
0.6	10	0.072	7	2969675	0.015
0.5	9	0.071	9	3386316	0.016
0.4	7	0.038	12	4293402	0.022
0.3	5	0.011	15	5179227	0.021

Design of Wireless Mesh Networks

Outline

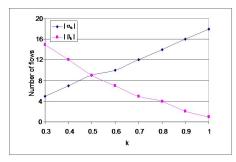
Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction

Stage 3: WMN Topology Design


Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣|曰 のへで

▶ Other results

Sub-Optimal Application Deployment Observations

• $\alpha = G.711$ voice codec and $\beta = FTP$ 500 Kbps

- At k = 0.4 effect of β on α negligible
- System utilisation improves from 30% to 50%
- Table used to set ACL operating point of AP

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

AP-assignment problem

Stage 2: WLAN Topology Generic Framework

Topology Construction

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WINDwmn Tool

Summary

イロト イヨト イヨト イヨト ショー

Stage Summary

- Theoretical and simulation study of homogeneous and heterogeneous deployments
- Joint deployment of realtime and non-realtime applications
- Application prioritisation for sub-optimal application deployment
- System utilisation improvement ~ 75% over normal DCF (with SOAP1)
- Access control limit mechanism for AP management

SOAP improves system utilisation

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction

Topology Construction

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation wIND_{wmn} Tool

Summary

Problem Definition

WLAN topology design problem

Given client nodes & deployment area, Construct WLAN topology, Subject to capacity constraints, While minimizing nw infrastructure (num of APs).

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology

Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

・ロト・日本・日本・日本・日本・今日・

Outline

Introduction

Issues in Wireless Network Design Multi-tiered Wireless Network Design Solution Approach

Stage 1: AP-Client Association Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Design Generic Framework

Topology Construction WIND_{wlan} Tool

Stage 3: WMN Node Locationing and Topology Design Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Design of Wireless Mesh Networks

Outline

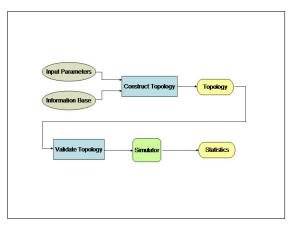
Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology

Generic Framework Topology Construction


WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Generic Framework

Advantages

- Allows planning for capacity at design stage
- Automate design process
- Eases validation with simulation, and a set one

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology

Generic Framework Topology Construction

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WINDwmn Tool

Summary

Outline

Introduction

Issues in Wireless Network Design Multi-tiered Wireless Network Design Solution Approach

Stage 1: AP-Client Association Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Design

Generic Framework

Topology Construction

WIND_{wlan} Tool

Stage 3: WMN Node Locationing and Topology Design Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Design of Wireless Mesh Networks

Outline

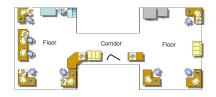
Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework

Topology Construction


Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Example I

Office layout: (a) floor plan, (b) corresponding deployment layout

Design of Wireless Mesh Networks

Outline

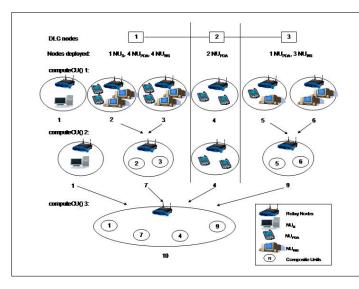
Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework

Topology Construction


Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

・ロト・西ト・山下・山下・山下・山下

Example II Topology construction

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework

Topology Construction

Stage 3: WMN Topology Desigr

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

・ロト・西・・ヨト・ヨト シート

Outline

Introduction

Issues in Wireless Network Design Multi-tiered Wireless Network Design Solution Approach

Stage 1: AP-Client Association

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Design

Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Node Locationing and Topology Design Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction

 $\texttt{WIND}_{\texttt{wlan}} \ \textbf{Tool}$

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Composite Unit I

Definition

Virtual network element constructed for aggregating nodes, or branch of network, and their properties

$$CU = (CU' \mid NU)^+$$

Where, *CU* = Composite Unit *NU* = Node Unit (any network element)

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction

 $\texttt{WIND}_{\texttt{wlan}} \ \textbf{Tool}$

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WINDwmn Tool

Summary

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Composite Unit II Class definition

class CU

private:	public:
int id;	<pre>void print(int tab);</pre>
<pre>string name;</pre>	CU(NodeType* nt);//NU constructor
<pre>double outLoadTotal; double inLoadTotal;</pre>	
	ASList* getASList();
LinkList* linkList;	<pre>LinkType* getBestLink();</pre>
ASList* asList;	<pre>void addChild(CU* cu);</pre>
CUList* childList;	<pre>void rstChildProperty(LinkType*);</pre>
	<pre>void setProperty();</pre>
	<pre>void resetLinks(LinkType*);</pre>
	<pre>void resetTraffic();</pre>
	LinkList* getUnusedLinks();
	<pre>ASList* getUnfulfilledTraffic();</pre>

Design of Wireless Mesh Networks

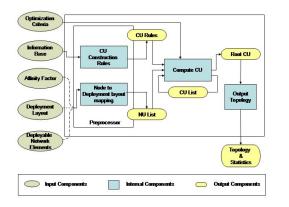
Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WINDwise Tool


Store 2: M/M

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Wireless Infrastructure Network Deployment Tool (WIND)

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

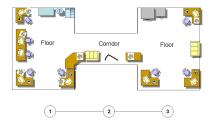
Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction

 $\texttt{WIND}_{\texttt{wlan}} \ \textbf{Tool}$

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool


Summary

- Implemented using C++
- Input and output descriptions correspond with OPNET Modeler XML formats(for validation)

Pseudo code for WIND

・ロト・西・・田・・田・ 山下 ろくの

Validation I Deployment layout

Example parameters

- 5 PDAs running a VoIP call (Load 100 Kbps)
- 5 Workstations running FTP client (Load 1000 Kbps)

Information base and affinity factor

Design of Wireless Mesh Networks

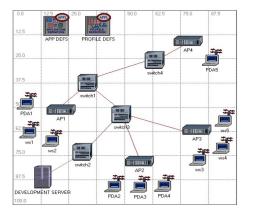
Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction


 $\texttt{WIND}_{\texttt{wlan}} \ \textbf{Tool}$

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WINDwmn Tool

Summary

Validation II Constructed topology

Simulation results

- Average VoIP throughput \sim 100 Kbps
- Average FTP throughput ~ 1000 Kbps

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction

 $\texttt{WIND}_{\texttt{wlan}} \ \textbf{Tool}$

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

ELE OQO

Stage summary

- Framework for deploying WLANs from simple network input parameters
- Inputs and Outputs modeled on simulator formats for integration
- Validation with simulation

Topology construction tool for WLANs

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WINDwise Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Outline

Introduction

Issues in Wireless Network Design Multi-tiered Wireless Network Design Solution Approach

Stage 1: AP-Client Association

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Design

Generic Framework Topology Construction WINDwlan Tool

Stage 3: WMN Node Locationing and Topology Design Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Design of Wireless Mesh Networks

Outline

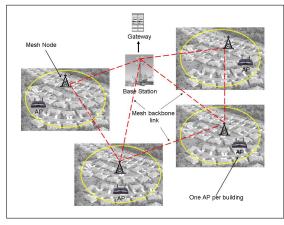
Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design


Mesh Network Design Problem

Problem Formulation

WIND_{wmn} Tool

Summary

Example Campus Mesh Network

- Each building represents a WLAN
- APs connected to mesh with AP-mesh links
- Mesh nodes provide routes to gateway (through mesh links)
- ► AP-mesh forms a two-tier architecture < => < => < == つへで

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem

Problem Formulation

WIND_{wmn} Tool

Summary

Mesh Network Design Problem

Mesh network design problem

Given deployment layout, AP nodes and their characteristicsConstruct backhaul topology,Subject to demand constraintsWhile minimizing network infrastructure (mesh nodes and links)

Constraints

- Capacity: Satisfy demand placed by APs (& their underlying networks)
- Cost: Minimise mesh nodes and links
- Connectivity: Connect all APs

Design of Wireless Mesh Networks

Outline

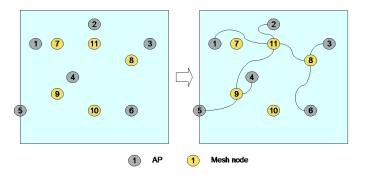
Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design


Mesh Network Design Problem

Problem Formulation

WIND_{wmn} IOOI

Summary

Example Deployment: 6 APs, 5 Mesh Nodes

Deployment details

- Potential mesh nodes = 5
- Transmission range AP = 1.5 and mesh = 2
- Upper bound on mesh links (G) = 4
- ▶ Demands (100 Kbps) = < 1 2 >, < 2 5 >, < 2 - 6 >, < 3 - 4 >, < 3 - 6 >, < 4 - 6 > & < 5 - 2 >,<</p>

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem

Problem Formulation

WIND_{wmn} Tool

Summary

Outline

Introduction

Issues in Wireless Network Design Multi-tiered Wireless Network Design Solution Approach

Stage 1: AP-Client Association

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Design

Generic Framework Topology Construction WINDwlan Tool

Stage 3: WMN Node Locationing and Topology Design Mesh Network Design Problem Problem Formulation

WIND_{wmn} Too

Design of Wireless Mesh Networks

Outline

Introduction

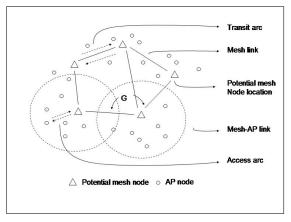
Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem


Problem Formulation

WIND_{wmn} Too

Summary

・ロト・西・・ヨト・ヨト 単言 めんの

Network Model

Requirements

- Determine potential links (Mesh and Mesh-AP)
- Node and link costs
- Objective function
- Constraints

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem

Problem Formulation

WIND_{wmn} Too

Summary

イロト (同) (ヨ) (ヨ) (ヨ) ショー ショー

Computing Potential Links

 Distance-based: Compute distance between nodes and compare with transmit radius of AP Example:

Given AP = (x, y, r, ...), Mesh = (x', y', r', ...)Potential link condition:

$$\sqrt{(x-x')^2 + (y-y')^2} < r$$

 Power-based: Compute distance between nodes using transmit power

Calculating potential links using channel conditions

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem

Problem Formulation

WIND_{wmn} Tool

Summary

Node and Link Costs

- φ_v : cost of installing mesh node v.
- κ_e: cost of installing link e.

Cost of link

- Cost of hardware (σ_e)
- Cost of power requirements (determined by transmit power)
 - Fixed power: $\kappa_e = \sigma_e + ceil (r_e^2/\rho_e)$ Where,
 - r_e is transmit radius of node in link $e \rho_e$ is a cost factor
 - ► Variable power: $\kappa_e = \sigma_e + ceil (tx_dist_e^2/\rho_e)$ Where,

tx_dist_e is transmission distance

 ρ_e is a cost factor

Design of Wireless Mesh Networks

Outline

Introduction

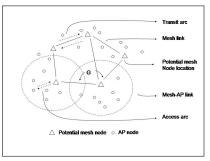
Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem


Problem Formulation

WIND_{wmn} Tool

Summary

・ロト・西・・田・・田・ 小口・

Objective Function

Objective function Minimize

$$F = \sum_{e} \kappa_{e} u_{e} + \sum_{v} \varphi_{v} s_{v}$$

Where,

 u_e = binary variable specifying whether link *e* is ON/OFF s_v = binary variable specifying whether node *v* is ON/OFF

Mesh topology design formulation

Design of Wireless Mesh Networks

Outline

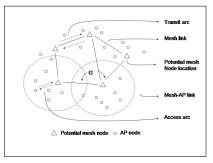
Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design


Mesh Network Design Problem

Problem Formulation

WIND_{wmn} Tool

Summary

Constraints

Demand constraints

- Total demand flowing on each link not to exceed link capacity (1,5)
- Each demand has path from source AP to destination (2,3,4)
- Upper bound on number of demands per AP

Link constraint

Upper bound on the number of links per node - G (6)

Design of Wireless Mesh Networks

Outline

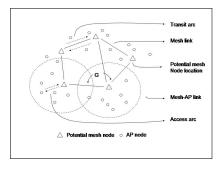
Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Fopology Design


Mesh Network Design Problem

Problem Formulation

WIND_{wmn} Too

Summary

Comments

Modeling of nodes and links as binary variables

- Mixed-Integer Linear Programmming problem (MILP)
- Finds node location and topology
- Routing algorithm computes all pairs shortest path
 Routing algorithm

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem

Problem Formulation

Summary

Outline

Introduction

Issues in Wireless Network Design Multi-tiered Wireless Network Design Solution Approach

Stage 1: AP-Client Association

Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Design

Generic Framework Topology Construction WINDwlan Tool

Stage 3: WMN Node Locationing and Topology Design

Mesh Network Design Problem Problem Formulation

WINDwmn Tool

Design of Wireless Mesh Networks

Outline

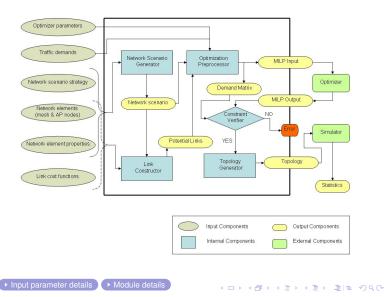
Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design


Mesh Network Design Problem Problem Formulation

 $\texttt{WIND}_{\texttt{wmn}} \; \textbf{Tool}$

Summary

Extending WIND

WINDwmn tool overview

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design Solution Approach

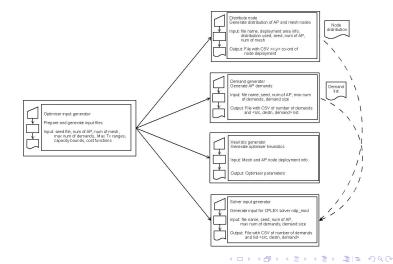
Stage 1: AP-assignment

Capacity of WLANs AP-assignment problem

Stage 2: WLAN

Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Desigr


Mesh Network Design Problem Problem Formulation

 $\texttt{WIND}_{\texttt{wmn}} \ \textbf{Tool}$

Summary

Implementation Details

- Implemented using PERL and ILOG OPL
- CPLEX solver used for MILP formulation

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

Stage 2: WLAN Topology Generic Framework

Stage 3: WMN

Mesh Network Design Problem Problem Formulation

 $\texttt{WIND}_{\texttt{wmn}} \ \textbf{Tool}$

Summary

69/112

Experiment Details

Parameter	Value
Area	100mx100m
AP/Mesh Tx Range	70m
Mesh node cost $arphi$	1000
Mesh link cost factor ρ	10
Max. Links G	4
Link capacity	10 Mbps
Demand	1 Mbps

Mesh and AP nodes deployed randomly

 11 artificially generated loads for each network scenario

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wiess Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation

 $\texttt{WIND}_{\texttt{wmn}} \ \textbf{Tool}$

Summary

Results

Design of Wireless Mesh Networks

AP	Potential mesh	Exec time (s)	Mesh nodes (min,max)	Links (min,max,avg)	Outline
8	5	< 1	2, 3	8, 10, 10	Introduction
10	7	50.93	3, 4	10, 13, 12	Issues in Wireless Netw
10	8	69.86	3, 4	10, 13, 12	Design Multi-tier Wless Design
12	7	178.12	3, 6	12, 16, 15	Solution Approach
12	8	854.51	3, 5	12, 16, 15	Stage 1:

Average number of links: avg = ceil(average of all scenarios)

WIND_{WED} Tool

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣国 のへで

Stage Summary

- Framework for deploying WMNs from simple network input parameters
- Node locationing and topology construction
- Minimise network deployment cost using node and link costs

Node locationing and topology construction tool for WMNs

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs AP-assignment problem

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Fopology Design

Mesh Network Design Problem Problem Formulation

 $\texttt{WIND}_{\texttt{wmn}} \ \textbf{Tool}$

Summary

Summary

Contributions

- Provisioning 802.11 WLANs in homogeneous and heterogeneous scenarios.
- Capacity-constrained design of wireless networks.
- WIND tool for design of local area and backhaul wireless networks.

Possible extensions

- Include coverage as constraint in design problem
- Scheduling and routing issues in WMN design
- Use of tool in other areas: Sensor networks (lifetime constraint), Sparse networks (reachability)

Design of Wireless Mesh Networks

Outline

Introduction

Issues in Wireless Network Design Multi-tier Wless Design Solution Approach

Stage 1: AP-assignment Capacity of WLANs

Stage 2: WLAN Topology Generic Framework Topology Construction WIND_{wlan} Tool

Stage 3: WMN Topology Design

Mesh Network Design Problem Problem Formulation WIND_{wmn} Tool

Summary

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ���

Publications

- Automatic topology generation for a class of wireless networks. IEEE International Conference On Personal Wireless Communications, 2005. Joint work with: Sridhar Iyer.
- Automated design of VoIP-enabled 802.11g WLANs. OPNETWORK, 2005. Joint work with: Sridhar Iyer and Atanu Guchhait.
- Designing multi-tier wireless mesh networks: Capacity-constrained placement of mesh backbone nodes. World Wireless Congress, 2006. Joint work with: Sridhar Iyer.
- Capacity-constrained design of resilient multi-tier wireless mesh networks. IEEE Infocom Student Workshop, 2006. Joint work with: Sridhar lyer.
- WIND: A Tool for capacity-constrained design of resilient multi-tier wireless mesh networks. *IEEE Infocom Poster Session*, 2006. Joint work with: Sridhar Iyer.
- Bridging the gap between reality and simulations: An Ethernet case study. *IEEE International Conference on Information Technology*, 2006. Joint work with: Punit Rathod and Srinath Perur.
- VoIP-based intra-village teleconnectivity: An architecture and case study. First annual workshop on Wireless Systems: Advanced Research and Development (WISARD), 2006.

Joint work with: Janak Chandarana, K. Sravana Kumar, Srinath Perur, Sameer Sahasrabuddhe and Sridhar Iyer.

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

NLAN Design

MAC Parameters and Stack Overheads

802.11 DCF MAC parameters

Parameter (in μS)	802.11b	802.11g
Slot time	20	9
SIFS	10	10
DIFS (= SIFS + 2 * Slot time)	50	28
PHY preamble	192	20
Signal extension	-	6

Table: 802.11 b and g MAC parameters: timing, preamble transmission time and signal extension.

Stack overheads

Overhead	Value (in bytes)
RTP	12
UDP	8
IP	20
MAC	34

Table: RTP, UDP, IP and MAC stack overheads.

Design of Wireless Mesh Networks

Appendix


Publications

Capacity of WLANs

WLAN Design

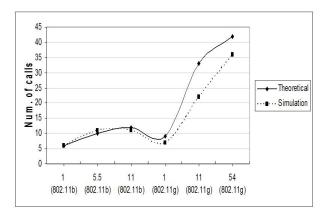
Voice Capacity: Maximum Calls I

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs


WLAN Design

Mesh Network Design

Figure: Maximum G.723.1 voice calls: theoretical vs simulation results.

イロト (同) (ヨ) (ヨ) (ヨ) ショー ショー

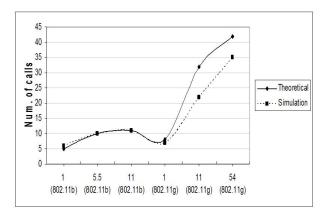
Voice Capacity: Maximum Calls II

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs


WLAN Design

Mesh Network Design

Figure: Maximum G.729 voice calls: theoretical vs simulation results.

78/112

Voice Capacity: Maximum Calls III

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

Figure: Maximum GSM voice calls: theoretical vs simulation results.

Voice Capacity: Maximum Calls IV

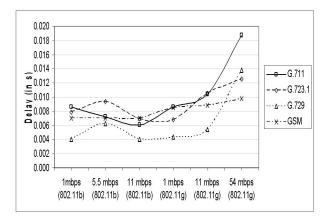


Figure: Delay for voice schemes in 802.11b/g.

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

・ロト・西ト・ヨト・ヨト 山口 ろんの

Voice Capacity: Detailed Calculations

Scheme		802.11b			802.11g		
	\longrightarrow						
Data rate	Data rate (r)		5.5	11	1	11	54
pkt	G.711	200	200	200	200	200	200
(in bytes)	G.723.1	64	64	64	64	64	64
	G.729	60	60	60	60	60	60
	GSM	73	73	73	73	73	73
DIFS		50	50	50	28	28	28
SIFS		10	10	10	10	10	10
PHY		192	192	192	20	20	20
backoff		31	31	31	31	31	31
slot		20	20	20	9	9	9
t _{pkt}	G.711	1872	340.364	170.182	1872	170.182	34.667
(in µs)	G.723.1	784	142.546	71.273	784	71.273	14.519
	G.729	752	136.727	68.364	752	68.364	13.926
	GSM	856	155.636	77.818	856	77.818	15.852
tack	(in <i>µs</i>)	112	20.364	10.182	112	10.182	2.074
Throughput (T)	G.711	0.584	1.435	1.712	0.727	4.022	6.293
(in Mbps)	G.723.1	0.310	0.558	0.613	0.460	1.713	2.187
	G.729	0.297	0.527	0.577	0.444	1.621	2.056
	GSM	0.339	0.628	0.694	0.493	1.912	2.481
Bandwidth (b)	G.711	0.160	0.160	0.160	0.160	0.160	0.160
(in Mbps)	G.723.1	0.051	0.051	0.051	0.051	0.051	0.051
	G.729	0.048	0.048	0.048	0.048	0.048	0.048
	GSM	0.058	0.058	0.058	0.058	0.058	0.058
Number of calls	G.711	3	8	10	4	25	39
	G.723.1	6	10	11	8	33	42
	G.729	6	10	12	9	33	42
	GSM	5	10	11	8	32	42

Table: Number of voice calls: voice capacity calculations.

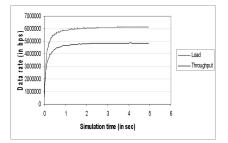
Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design


Mesh Network Design

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣国 のへで

Voice Capacity: 39 Call Scenario Simulation: 802.11g - G.711 codec

- Maximum 39 voice calls
- ▶ Packet drop ≤ 20 %
- Delay bounded

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

Figure: Load and throughput for G.711, 54 mbps 802.11g - 39 call scenario.

Video Capacity: Theoretical Calculation

Throughput equation: Extension for large payloads

- Maximum MAC payload size = 2304 bytes
- Large packets are fragmented
- Depending on codec, video packets may be fragmented

 $T_{frag} = \frac{Payload}{rac{backoff}{2} * slot + t_{frag} * frag_num}$

Where,

$$\begin{array}{l} t_{frag} = DIFS + SIFS + 2*PHY + t_{pkt_{frag}} + t_{ack} \\ t_{pkt_{frag}} = \frac{(pkt_{frag} + MAC)*8}{r} \\ frag_num = \lceil pkt/pkt_{frag} \rceil \\ \hline \bullet \text{ Go back} \end{array}$$

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

83/112

Video Capacity: Maximum Calls I

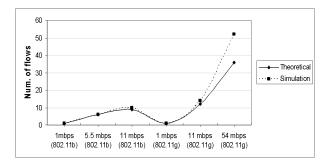
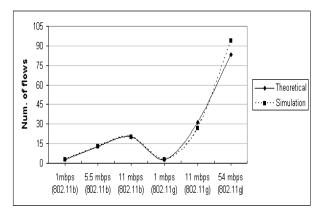


Figure: Maximum CIF video flows: theoretical vs simulation results.

Design of Wireless Mesh Networks


Appendix

Publications

Capacity of WLANs

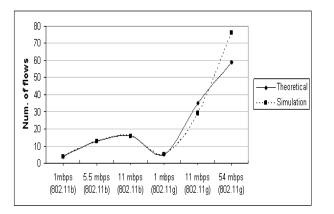
WLAN Design

Video Capacity: Maximum Calls II

Design of Wireless Mesh Networks

Appendix

Publications


Capacity of WLANs

WLAN Design

Mesh Network Design

Figure: Maximum QCIF video flows: theoretical vs simulation results.

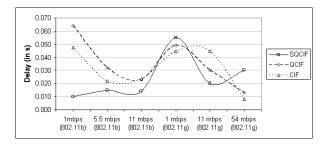
Video Capacity: Maximum Calls III

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs


WLAN Design

Mesh Network Design

Figure: Maximum SQCIF video flows: theoretical vs simulation results.

86/112

Video Capacity: Maximum Calls IV

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

Figure: Delay for video schemes in 802.11b/g.

Video Capacity: Observations

- Large packet size affects maximum number of flows
- Maximum number of flows varies with codec (unlike Voice codecs)
- Efficient use of channel due to large packet size

Go back

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

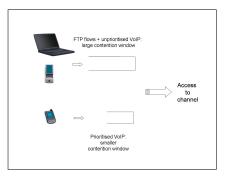
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●目目 のへで

Video Capacity: Detailed Calculations

Scheme	Scheme		802.11b			802.11g	
	\longrightarrow						
Data rate (Data rate (r)		5.5	11	1	11	54
pkt	SQCIF	304	304	304	304	304	304
(in bytes)	QCIF	1112	1112	1112	1112	1112	1112
	CIF	3256	3256	3256	3256	3256	3256
frag_size		1500	1500	1500	1500	1500	1500
fragments	SQCIF	1	1	1	1	1	1
per pkt	QCIF	1	1	1	1	1	1
	CIF	3	3	3	3	3	3
DIFS		50	50	50	28	28	28
SIFS	SIFS		10	10	10	10	10
PHY	PHY		192	192	20	20	20
backoff	backoff		31	31	31	31	31
slot		20	20	20	9	9	9
t _{pkt}	SQCIF	2704	491.636	245.818	2710	251.818	56.074
(in <i>µs</i>)	QCIF	9168	1666.909	833.455	9174	839.455	175.778
	CIF	12000	2181.818	1090.909	12006	1096.909	228.222
tack	(in <i>µs</i>)	1.978	0.36	0.18	7.978	6.18	6.037
Throughput	SQCIF	0.681	1.921	2.408	0.799	5.009	8.635
(T)	QCIF	0.887	3.644	5.568	0.936	8.290	22.165
(in Mbps)	CIF	0.686	3.281	5.267	0.709	7.016	24.065
Bandwidth (b)	SQCIF	0.146	0.146	0.146	0.146	0.146	0.146
(in Mbps)	QCIF	0.267	0.267	0.267	0.267	0.267	0.267
	CIF	0.521	0.521	0.521	0.521	0.521	0.521
Number of calls	SQCIF	4	13	16	5	34	59
	QCIF	3	13	20	3	31	83
	CIF	1	6	10	1	13	46

Table: Number of video flows: video capacity calculations.

Design of Wireless Mesh Networks


Appendix

Publications

Capacity of WLANs

WLAN Design

Extending DCF to provide guarantees I

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

Figure: Contention window for ACL scheme - VoIP + FTP flows.

Extended DCF

- Simple scheme to differentiate traffic flows
- Prioritise realtime time applications
- Additional flows of best effort service

Extending DCF to provide guarantees II

Application	CWmin	CWmax
VoIP (priority)	15	31
FTP	31	1023

Table: Contention window parameters for SOAP.

Attribute	Value
Command mix (get/total)	50%
Inter-request time (s)	exponential(60)
File size (bytes)	constant(125000)
Fragmentation size (bytes)	1500
Type of service	Best Effort (AC_BE)

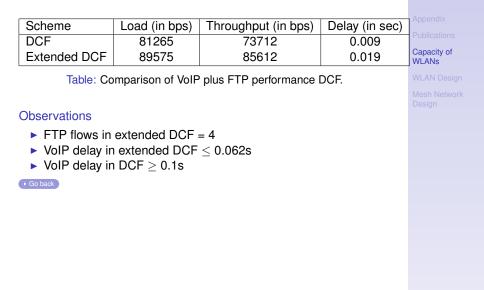
Table: FTP simulation parameters.

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs


WLAN Design

Mesh Network Design

イロト イボト イヨト イヨト ヨヨ のくや

Extending DCF to provide guarantees III

Design of Wireless Mesh Networks

Sub-optimal Capacity: Voice Codecs

		Number of calls: $\lfloor kT/b \rfloor$					
k		802.11b			802.11g		
↓↓		(in mbp	s)		(in mbps	5)	
	1	5.5	11	1	11	54	
$\frac{T}{b} \rightarrow$	6.494	11.15	12.115	9.966	34.608	43.093	
1.0	6	11	12	9	34	43	
0.9	5	10	10	8	31	38	
0.8	5	8	9	7	27	34	
0.7	4	7	8	6	24	30	
0.6	3	6	7	5	20	25	
0.5	3	5	6	4	17	21	
0.4	2	4	4	3	13	17	
0.3	1	3	3	2	10	12	
0.2	1	2	2	1	6	8	
0.1	0	1	1	0	3	4	

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

Table: k vs Number of voice calls for G.723.1 codec.

Sub-optimal Capacity: Voice Codecs

		Number of calls: $\lfloor kT/b \rfloor$						
k		802.11b	1		802.11g			
↓↓		(in mbps	5)	(in mbps	;)		
	1	5.5	11	1	11	54		
$\frac{T}{b} \rightarrow$	6.631	11.222	12.157	10.294	34.96	43.204		
Ĩ.0	6	11	12	9	34	43		
0.9	5	10	10	9	31	38		
0.8	5	8	9	8	27	34		
0.7	4	7	8	7	24	30		
0.6	3	6	7	6	20	25		
0.5	3	5	6	5	17	21		
0.4	2	4	4	4	13	17		
0.3	1	3	3	3	10	12		
0.2	1	2	2	2	6	8		
0.1	0	1	1	1	3	4		

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

Table: k vs Number of voice calls for G.729 codec.

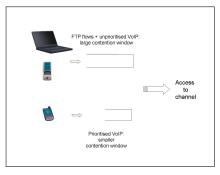
Sub-optimal Capacity: Voice Codecs

		Number of calls: $\lfloor kT/b \rfloor$						
k		802.11b	1		802.11g			
↓↓		(in mbps	5)		(in mbps	5)		
	1	5.5	11	1	11	54		
$\frac{T}{b} \rightarrow$	6.204	10.989	12.019	9.298	33.841	42.847		
Ĩ.0	6	10	12	9	33	42		
0.9	5	9	10	8	30	38		
0.8	4	8	9	7	27	34		
0.7	4	7	8	6	23	29		
0.6	3	6	7	5	20	25		
0.5	3	5	6	4	16	21		
0.4	2	4	4	3	13	17		
0.3	1	3	3	2	10	12		
0.2	1	2	2	1	6	8		
0.1	0	1	1	0	3	4		

Table: k vs Number of voice calls for GSM codec.

Design of Wireless Mesh Networks

Appendix


Publications

Capacity of WLANs

WLAN Design

Sub-Optimal Application Deployment

Problem definition

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

SOAP2

Given k Alpha flows ($|\alpha| = k$) Compute number of Beta flows ($|\beta|$) & Gamma flows ($|\gamma|$) Subject to constraints **R**

Other Simulation Parameters

Attribute	Value
Command mix (get/total)	100%
Inter-request time (s)	exp(1)
File size (bytes)	FTP 250 - cons(31250)
	FTP 500 - cons(62500)
Fragmentation size (bytes)	1500
Type of service	Best Effort (AC_BE)

Table: SOAP simulation parameters for FTP - Average load 250 and 500 kbps.

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

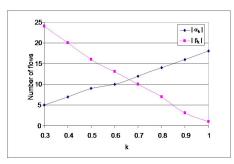
WLAN Design

SOAP1 Results I

k	$ \alpha_k $	α_k delay (in s)	$ \beta_k $	β_k throughput (in bps)	β_k delay (in s)
1.0	18	0.086	1	63672	0.007
0.9	16	0.067	3	713658	0.010
0.8	14	0.074	7	1447647	0.012
0.7	12	0.075	10	2181612	0.013
0.6	10	0.071	13	2920485	0.015
0.5	9	0.071	16	3306418	0.017
0.4	7	0.027	20	4134720	0.023
0.3	5	0.009	24	5002889	0.021

Table: <code>SOAP1</code> results for FTP 250 Kbps with G.711 codec on 11 Mbps 802.11g.

Design of Wireless Mesh Networks


Appendix

Publications

Capacity of WLANs

WLAN Design

SOAP1 Results II

Mesh Networks Appendix Publications Capacity of WLANs WLAN Design

Design of Wireless

Mesh Network Design

Figure: SOAP1 FTP 250 Kbps: k vs Number of α_k and β_k flows.

(日)

SOAP2 Results I

<i>β</i> _k	$ \gamma_k $	γ_k delay	α_k delay
7 to 3	0	-	-
2	2	0.033	0.074
1	4	0.337	0.012

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

Table: SOAP2 results for k = 0.8 ($|\alpha_{0.8}| = 14$), FTP 250 Kbps with G.711 codec on 11 Mbps 802.11g. α_k and γ_k delays are in seconds.

WINDwlan Algorithm

```
input : ib: info base, ip: input parameters
cuList ← NULL
// G<sub>DL</sub>:Deployment layout
forall v ∈ V(ip.G<sub>DL</sub>) do
    // af:affinity factor
    deployedList ← U<sub>∀i</sub>(v.af<sub>i</sub> * ip.num<sub>NUi</sub>).NU<sub>i</sub>
end
cuList ← computeCU(cuList, ib)
printTopology(cuList)
```

Algorithm 1: Pseudo-code for WINDwlan

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

WINDwlan Algorithm: ComputeCU()

```
input : cuList,ib: info base
if sizeOf(cuList) = 1) then return cuList
newCUList ← NULL
L \leftarrow linktypes present(cuList)
forall lt \in I do
     cuList_{lt} \leftarrow cuList_{lt} + \{cuList[i], cuList[i].linktype = lt\}
     while cuList<sub>lt</sub> NOTEMPTY do
           cuList' = lt.maxNodes(cuList_{lt})
           // Average load
           t \leftarrow \frac{\sum_{\forall j} cuList'[j].total_load}{sizeOf(cuList')}
           new cu'
           cu'.child(cuList')
           cuList<sub>lt</sub>.remove(cuList')
           newcu_{relay} = findRelayNode(lt, t)
           cu'.child(cu_{relay})
           for cu \in cuList' do cu.resetProperty()
           cu<sub>relav</sub>.resetProperty()
           cu'.setProperty()
           newCUList.add(cu')
     end
end
```

```
return computeCU(newCUList, ib)
```

Algorithm 2: Psuedo-code for computeCU()

Publications

Capacity of WLANs

WLAN Design

```
▲□▶▲□▶▲□▶▲□▶ ▲□■ のへで
```


Information Base and Affinity Factor

NU	Traffic _{out}	Traffic _{in}	Addr _{src}	Addr _{destn}	Link	AS-Link Map	Mobil <mark>ity</mark> pendix
NU _{PDA} NU _{WS} NU _S	10000 10000 10 ⁶	100000 1000000 100000	< N _{PDA} > < N _{WS} > < N _S >	< N _S > < N _S > Undefined	1 1 2	1 1 2	Yes No No No
NU _S NU _{Relay}		$5 * 10^5$	Undefined	Undefined	1,2	2	No WLAN Design
							Mesh Network Design

Table: Example information base. Traffic_{out}, Traffic_{in} are in bits per second. Link type 1 represents a 802.11 10 Mbps wireless link and type 2 represents a 10 Mbps Ethernet link.

Node type \downarrow , Vertex \rightarrow	1	2	3
NU _{PDA}	0.6	0.2	0.2
NU _{WS}	0.6	0	0.4
NUs	1	0	0

Table: Affinity factors.

Potential Links: Including Channel Conditions

$$(\Psi_{rcv})_{dB} = (\Psi_{xmt})_{dB} - 10\eta \log_{10}(d/d_0) - \xi$$

Where,

 $(\Psi_{rcv})_{dB}$ & $(\Psi_{xmt})_{dB}$ are received and transmit powers *d* is transmit distance d_0 is reference distance η is path loss exponent ξ is shadowing component

Go back

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Variables:

 x_{fw} : flow realising all demands originating at AP w on access arc f

 x_{tw} : flow realising all demands originating at AP w on transit arc t

ye: capacity of link e

 $u_e = 1$ if link *e* is provided; 0, otherwise

 $s_v = 1$ if mesh node v is installed; 0, otherwise

Objective function:

minimize
$$\mathbf{F} = \sum_{e} \kappa_{e} u_{e} + \sum_{v} \varphi_{v} s_{v}$$

Constraints:

$$\sum_{t} w_{et} \sum_{w} x_{fw} + \sum_{f} w_{ef} \sum_{w} x_{fw} \leq y_{e} ,$$

$$e = 1, 2, \dots, E - (1)$$

$$\sum_{f} \beta_{fw} x_{fw} = H_{w}, w = 1, 2, \dots, W - (2)$$

$$\sum_{f} \beta_{fw'} x_{fw} = -h_{ww'} - (3)$$

$$\sum_{t} \beta_{tv} x_{tw} + \sum_{f} \beta_{fv} x_{fw} = 0 - (4)$$

$$y_e \le M_e u_e - (5)$$

$$\sum_{e} \beta_{ev} u_e \leq G_v s_v$$
 - (6)

Go back Complete problem formulation

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

▲□▶▲□▶▲□▶▲□▶ ▲□■ のへで

Indices:

w = 1, 2, ..., W: APs v = 1, 2, ..., V: mesh nodes e = 1, 2, ..., E: links f = 1, 2, ..., F: directed access arcs (between AP & mesh nodes)

 $t = 1, 2, \dots, T$: directed transit arcs (between mesh nodes)

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

<ロ> <日> <日> <日> <日> <日> <日> <日> <日> <日</p>

Constants:

 $\begin{array}{l} h_{ww'}: \text{volume of demand from AP } w \text{ to } w' \\ H_w = \sum_{w'} h_{ww'}: \text{ total demand outgoing from AP } w \\ \beta_{ev} = 1 \text{ if link } e \text{ is incident with mesh node } v; 0, \\ \text{otherwise} \end{array}$

- $\beta_{fw} = -1$ if access arc *f* is incoming to AP *w*
 - = 1 if access arc f is outgoing from AP w
 - = 0 otherwise
- $\beta_{fv} = -1$ if access arc *f* is incoming to mesh node *v*
 - = 1 if access arc f is outgoing from mesh node v
 - = 0 otherwise
- $\beta_{tv} = -1$ if transit arc *t* is incoming to mesh node *v*
 - = 1 if transit arc *t* is outgoing from mesh node *v*
 - = 0 otherwise
- $w_{ef} = 1$ if access arc *f* is realised on link *e*; 0, otherwise
- $w_{et} = 1$ if transit arc t is realised on link e; 0, otherwise
- κ_e : cost of installing link e
- M_e : upper bound on the capacity of link e
- $\varphi_{\mathbf{v}}$: cost of installing mesh node \mathbf{v}
- G_v : upper bound on the number of radios of mesh node v

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

IN DIE OQO

Variables:

 x_{fw} : flow realising all demands originating at AP w on access arc f

 x_{tw} : flow realising all demands originating at AP w on transit arc t

ye: capacity of link e

 $u_e = 1$ if link *e* is provided; 0, otherwise

 $s_v = 1$ if mesh node v is installed; 0, otherwise

Objective function:

minimize
$$\mathbf{F} = \sum_{e} \kappa_{e} u_{e} + \sum_{v} \varphi_{v} s_{v}$$

Constraints:

$$\sum_{t} W_{et} \sum_{w} x_{fw} + \sum_{f} W_{ef} \sum_{w} x_{fw} \leq y_{e} ,$$

$$e = 1, 2, \dots, E - (1)$$

$$\sum_{f} \beta_{fw} x_{fw} = H_w, w = 1, 2, \dots, W - (2)$$

$$\sum_{f} \beta_{fw'} x_{fw} = -h_{ww'} - (3)$$

$$\sum_{f} \beta_{fv} x_{tw} + \sum_{f} \beta_{fv} x_{tw} = 0 - (4)$$

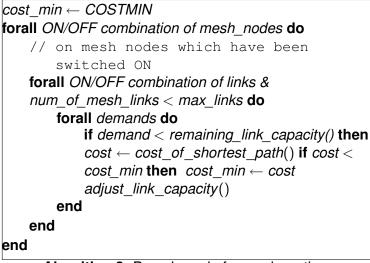
$$\sum_t eta_{tv} x_{tw} + \sum_f eta_{fv} x_{fw} = 0$$
 - (

$$\sum_{e}eta_{ev}u_{e}\leq G_{v}s_{v}$$
 - (6)

Design of Wireless Mesh Networks

Appendix

Publications


Capacity of WLANs

WLAN Design

Mesh Network Design

▲□▶▲御▶★臣▶★臣▶ 連世 のへで

Mesh Algorithm Formulation

Algorithm 3: Psuedo-code for mesh routing.

Mesh Network

Design

WINDwmn Input Parameters

- 1. Network elements: Number of AP and potential mesh nodes
- Network element properties: Properties of nodes and their associated links
- 3. Network scenario strategy: Properties of deployment layout and node distribution
- 4. Traffic demands: User generated traffic demands for each AP
- 5. Link cost functions: Cost functions for fixed and variable transmit powers
- 6. Optimizer parameters and heuristics: Heuristics and initial settings for the optimiser

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣国 のへで

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

NLAN Design

Mesh Network Design

110/112

WINDwmn Modules I

- Network scenario generator: Created based on deployment layout parameters and number of nodes. Creates locations of AP nodes and potential mesh nodes
- Link constructor: Uses heuristics to generate list of potential links
- Optimization preprocessor: Constructs inputs for optimiser and demand matrix for the constraint verifier

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

WINDwmn Modules II

- Optimizer: External optimizer invoked to solve MILP problem
- Constraint verifier: Verifies capacity constraints imposed on scenario by comparing optimizer output with demand matrix
- Topology generator: Constructs corresponding capacity-constrained topology
- Simulator: External simulator invoked to validate topology generated

▸ Go back

Design of Wireless Mesh Networks

Appendix

Publications

Capacity of WLANs

WLAN Design

Mesh Network Design

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 ろく?