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Objective

To create a model to detect and respond to affective states of the students when

they interact with an Intelligent Tutoring System (ITS).
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Intelligent Tutoring System (ITS)

ITS dynamically adapts the learning content based on learner’s needs and

preferences.
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Affective components in Student Model

The learning process involves both cognitive and affective processes and the

consideration of affective processes has been shown to achieve higher learning

outcomes [29].

The importance of the students’ motivation and the affective component in

learning has led adaptive systems such as ITS to include learners’ affective

states in their student models.

Affective states used in affective computing research: Frustration, Boredom,

Confusion, Engaged Concentration, Delight, and Surprise.
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Affect Recognition

To include affective states in the student model, students’ affective states

should be identified and responded to, while they interact with the ITS.

In affective computing, detecting affective states is a challenging, key

problem as it involves emotions–which cannot be directly measured; it is the

focus of several current research efforts [32], [9].
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Affect Recognition

In order to respond to students’ affective states, the following methodologies are

employed to identify affective states of students while they interact with ITS.

1 Human observation [18], [47], [4]

2 Learner’s self reported data [5], [6]

3 Using sensing devices such as physiological sensors [7], [8], [83], [84]

4 Face-based emotion recognition systems [29], [102], [79], [80], [81], [82]

5 Mining the data from the student log [30], [31], [27], [46]

6 Modeling affective states [6], [10]
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Affect Recognition

Identifying affective states using the sensor signals is possible in laboratory

settings, but difficult to implement at a large scale. Also, the physiological

sensors are intrusive to the users.

Facial analysis methods use a web-cam to analyze the facial expressions of

the users. In the real-world scenario, keeping the camera in the right position,

and expecting users to face the camera all the time is not feasible.

Voice and text analysis methods can only be used in the ITS that considers

voice and subjective answers as an input from the users.
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Our Context

System: Mindspark, a commercial ITS implemented in large scale.

Affective State: Frustration.

Method: Modeling the data from student log.
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- A commercial mathematics ITS developed by Educational Initiatives India

(EI-India)

- Incorporated into the school curriculum for different age groups (grade 3 to

8) of students [21].

- Mindspark is currently being implemented in more than hundred schools and

being used by 80,000 students across India.

- Mindspark adaptation logic is based on student’s response to the question,

question’s difficulty level and student’s education background.

- Sparkies are the reward points to motivate the students.
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Related Work - Predicting Affective States

Table: Research Works, that Identify Frustration Using the Data from Student Log File,

with Number of Features, Detection Accuracy and Classifiers used

Ref

Number

ITS/Game used Features used Method of selecting

the feature

Detection

Accuracy

Classifiers used

[30] AutoTutor Data from students’ interaction Correlation analysis 78% 17 classifier like NB,

DT from Weka[50]

[46] Crystal Island Data from students’ interaction

and Physiological senors

All features 88.8% NB, SVM, DT

[31] Introductory

Programming

Course Lab

Data from students’ interaction Correlation analysis Regression

coefficient

r=0.3168

Linear regression

model

[10] Crystal Island Students’ learning pattern and

data from questionnaires

All features 28% DBN

[6] Prime Climb Students’ learning pattern and

data from questionnaires

All features For joy =

69% and for

distress =

70%$

DDN

NB- Nave Bayes, SVM- Support Vector Machine, DT - Decision Tree, DBN - Dynamic Bayesian Network, DDN - Dynamic Decision Network, $ = this

system was not detecting frustration
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Related Work - Predicting Affective States

Crystal Island [10], and Prime Climb [6] creates a Dynamic Bayesian Network

(DBN) model to capture the users’ affective states.

The users’ affective states are predicted by applying the theory.

The reason identified by the system helps to respond to user’s affective state

based on the reasons for it.

Disucssion

Accuracy in data-mining approaches is in the range of 77% to 88%.

Accuracy for emotions reported by using DBN and DDN model is

comparatively less, 28% to 70%.

Affective state modeling captures not only the affective states but also why

the user is in that state.
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Related Work - Addressing Affective States

Table: Related Research Works to Respond to Student’s Affective States along with the

Theories used, Experiment Method and Results

Ref Num-

ber

ITS/Game used Theory used to respond to frus-

tration

Experiment Method Results

[52] Affect-Support

computer game

Active listening, emotional feed-

back, sympathy statement [181]

Factorial study, 2 (level of frus-

tration) x 3 (interactive design),

N = 71. Self reporting using

questionnaire

On an average the affect support group

played more minutes compared to non-

affect support group.

[4] Scooter the Tu-

tor

Agents were given emotions Control-experiments group

study. N = 60. Human

observation

Reduction in frustration instances.

There is no significant difference in ob-

served affect between control and ex-

perimental group.

[19] Wayang Out-

post

Agent to reflect student’s affec-

tive states and messages based

on Dweck’s messages [78], [77]

N = 34, physiological sensor data

to detect affective states

Initial studies results that students

change their behavior based on digital

interventions

N = Number of participants
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Theory-Driven Approach

The theory-driven approach to detect affective states is given below:

1 Operationalize the theoretical definition of affective state for the system

under consideration.

2 Construct features from the system’s log data; based on the theoretical

definition of affective state.

3 Create a model using the constructed features to detect the affective state.

4 Conduct an independent method to detect affective state and use the data

from independent method to train the weights of model.

5 Validate the performance of the model by detecting the affective state in the

test data and compare the results with the data from independent method.
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Definitions of Frustration

The following factors of frustration are considered in our research to model the

student’s frustration.

Frustration is the blocking of a behavior directed towards a goal [25].

The distance to the goal is a factor that influences frustration [88].

Frustration is cumulative in nature [146].

Time spent to achieve the goal is a factor that influences frustration [55].

Frustration is considered as a negative emotion, because it interferes with a

student’s desire to attain a goal [88], [146].

(IMURA) Enriching the Student Model in an ITS Aug 22, 2014 16 / 88



Theory-Driven Approach to Detect Frustration

1. Define Frustration: An emotion caused by
 interference preventing/blocking one from 

achieving the goal

2. Identify the students’ goals while they 
interact with the system (goal1, goal2,...,goaln)

3. List the blocking factors of each identified
goal (goal1

bf
,
 
goal2

bf
, ..., goaln

bf
).

Operationalize it for the system using 
log data

4. Create a linear regression model for 
frustration index (Fi) with the 

blocking factors identified

5. Learn the weights of the linear regression
model using labeled human observation data

System 
under study

(ITS)

Log data 
from System

6. Validate the performance of model with test
data and compare the results with labeled

human observation data

Figure: Steps of theory-driven approach to create frustration model using data from log

file
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Generic Linear Regression Model for Frustration

We formulate a linear function Fi , as the frustration index at i th question based on

the blocking behaviour of student’s goals.

Linear regression formulation of frustration

Fi = α[w0 + w1 ∗ goal1.bf + w2 ∗ goal2.bf + ....

+wn ∗ goaln.bf + wn+1 ∗ ti ] + (1− α)[Fi−1

W0,W1, ...Wn are weights, will be determined during training.

∝ is to accommodate the cumulative nature of frustration.

ti is the response time at i th question.
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Human Observation & Data Collection

Independent method to identify the student’s frustration while they interact

with Mindspark

Figure: Facial Action Coding System (FACS) [62]
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Human Observation & Data Collection

Students’ facial expressions during the interaction with Mindspark is recorded

using a web camera

The student’s interaction with Mindspark is recorded using Camstudio1, open

source free streaming video software.

932 facial expression form the 27 student’s interaction video.

Based on guidelines given in [48] and [47] the student’s facial expressions

such as outer brow raise, inner brow raise, pulling at her hair, statements like

“what”, “this is annoying”, and so on are considered as frustration.

80% of time observers agree to other observers facial expression coding and

Cohen’s κ was found to be 0.74, a substantial agreement.

we recorded 932 observations from 27 students. Among those, 137 observations

were classified as frustration (Frus) and remaining as non-frustration (Non-Frus).

1www.camstudio.org
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Metrics

Human Observation

Frustrated Non-Frustrated

Model Frustrated True Positive (TP) False Positive (FP)

Data Non-Frustrated False Negative (FN) True Negative (TN)

Precision =
TP

TP + FP
, Recall =

TP

TP + FN

Accuracy =
TP + TN

TP + FP + FN + TN

F1 score and Cohen’s kappa are measured to check the performance of our model

compared to random guess.
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Frustration Model for Mindspark Log Data

Table: Student Goals and Blocking Factors for Mindspark

Student Goal Blocking factor

goal1: To get the correct answer

to the current question

goal1.bf : Answer to the current question is wrong

goal2: To get a Sparkie (answer

three consecutive questions cor-

rectly)

goal2a.bf : Answers to two previous questions are correct

and to the current question is wrong

goal2b.bf : Answer to the previous question is correct and

to the current question is wrong

goal3: To reach the Challenge

Question (answer five consecu-

tive question correctly)

goal3a.bf : Answers to four previous questions are correct

and to the current question is wrong

goal3b.bf : Answers to three previous questions are correct

and to the current question is wrong

goal4: To get the correct answer

to the Challenge Question

goal4.bf : Answer to the Challenge Question is wrong
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Frustration Model for Mindspark Log Data

Fi = α[w0 + w1 ∗ goal1.bf + w2 ∗ goal2.bf + w3 ∗

goal3.bf + w4 ∗ goal4.bf + w5 ∗ ti ] + (1− α)[Fi−1]
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Solving Linear Regression Model

Human Observation, Bi at the i th instance, Bi = 0 for non-frustration and

Bi = 1 for frustration.

Predicted frustration Pi , Pi = 0 if Fi < 0.5 and Pi = 1 if Fi > 0.5, 0.5 -

threshold.

Our Goal:

min(Pi − Bi )
2

by varying w0,w1,w2,w3,w4,w5

GNU Octave2 is used to solve the above optimization problem. We used gradient

decent algorithm with step size = 0.001.

2http://www.gnu.org/software/octave/
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Results

Table: Contingency Table

Human Observation

Frustrated Non-Frustrated

Pred Frustrated 45 12

Result Non-Frustrated 92 783

Table: Performance of our Approach

Metrics Results

Accuracy 88.84%

Precision 78.94%

Recall 32.85%

Cohen’s kappa 0.41

F1 Score 0.46
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Performance of Related Data-Mining Approaches Applied

to the Data from Mindspark Log File

System Classifiers Accuracy in

%

Precision in Recall in %

AutoTutor Logistic

Model Tree

88.63 65.97 46.71

Crystal Island Decision Tree 86.05 52.63 51.09

Programming

lab

Linear regres-

sion

r = 0.583

Our Ap-

proach

Linear Re-

gression

88.84 78.94 32.85

Our approach performed comparatively better than other approaches in precision

of 79.31%
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Performance of Theory-Driven Features using Different

Classifiers

Order of Polynomial Model Precision Recall Accuracy Kappa

First 78.94% 32.85% 88.84% 0.41

Second 85.1% 29.2% 88.84% 0.3889

Third 82.4% 30.7% 88.84% 0.3989

Fourth 77.4% 29.9% 88.4% 0.3808

Classifiers Precision Recall Accuracy Kappa

Naive Bayes 55.24% 57.66% 86.91% 0.4873

Logistic 77.94% 38.69% 89.38% 0.4649

Bagging Pred 60.18% 49.64% 87.77% 0.4741

Logistic Model Tree 79.69% 37.23% 89.38% 0.4566

Decision Table 68.97% 43.80% 88.84% 0.4759
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Discussion

The advantage of the theory-driven approach is that the features identified

provides the reasons for students’ frustration.

The reason for frustration provides information on which variables to control

while responding to students’ frustration.

Limitations:

The frustration model is specific to Mindspark.

To apply our theory-driven approach to other systems, careful thought is

required to operationalize the blocking factors of goals.

The goals of the students when they interact with the system should be

captured; this is a limitation in the scalability of our approach.

The results of the theory-driven approach are dependent on how well the

goals are captured and how well the blocking factors of the goals are

operationalized.
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Our Approach to Respond to Frustration

1. Detect frustration with its
reasons

3. Develop the algorithm 
to show messages 

The theoy-driven 
model

Strategies to res-
pond and reasons 

for Frustration 

2. Create motivational 
messages to respond

to frustraiton

Log data and 
reasons for 
frustration

4. Collect data 
for validation

5. Validate the impact of
motivational messages on 

students' frustration

Figure: Steps of our Approach to Respond to Frustration
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Strategies

Create motivational message to attribute the students’ failure to achieve the

goal to external factors [76].

Create messages to praise the students’ effort instead of outcome [77].

Create messages with empathy, which should make the student feel that s/he

is not alone in that affective state [52].

Create message to request student’s feedback [121].

Display messages using an agent [182], [121].
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Sample Algorithm
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Integration with Mindspark
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Sample Screenshot
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Data Collection - Methodology

Calculate number of frustration 
instances per session for the 

identical students

Select three ICSE board 
schools. School ID:  1752, 

153271, 420525

Collect class 6 student’s 
log data for one week.

Remove the sessions with 
no of questions < 10

Remove the sessions with 
average time spent to 

answer the questions < 
11 seconds

Select the unique user ID 
and corresponding data

In the following week, 
implement addressing 

frustration algorithms for 
same schools.

Collect class 6 student’s 
log data for one week.

Remove the sessions with 
no of questions < 10

Remove the sessions with 
average time spent to 

answer the questions < 
11 seconds

Select the unique user ID 
and corresponding data

Figure: Methodology to collect data for validating our approach to respond to frustration
(IMURA) Enriching the Student Model in an ITS Aug 22, 2014 35 / 88



Data Collection - Details

Table: Details of the data collected from three schools to measure the impact of

motivational messages on frustration

School

Code

Number of stu-

dents in Class 6

Mindspark topic in

first week (With-

out motivational

Messages)

Mindspark topic

in second week

(with motivational

messages)

Number of match-

ing students’ sessions

considered for analy-

sis

1752 326 Integers Integers 54

153271 279 Decimals Decimals 72

420525 164 Algebra Geometry 62

Total 188
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Results

Table: Median and Median Absolute Deviation (MAD) of number of frustration

instances from the Mindspark session data from three schools

Number of Mindspark Ses-

sions

Median of Frustration In-

stances

MAD of Frustration In-

stances

188 sessions without moti-

vational messages

2 2.1942

188 sessions with motiva-

tional messages

1 1.4628
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Figure: Box plot of Frustration instances from 188 sessions without and with

motivational messages. Box = 25th and 75th percentiles; bars = minimum and

maximum values; center line = median; and black dot = mean.
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Results

Number of frustration instances is reduced in from very high to less due to the

motivational messages.
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Results

Table: Impact of motivational messages on frustration in three schools

School

Code

Number of

Sessions

Without Motiva-

tional Message

With Motivational

Messages

Mann-

Whitney’s

Significance

Test

Sum of

Frustration

instances

Median Sum of

Frustration

instances

Median

1752 54 92 1 57 0 P < 0.05

153271 72 212 3 148 1 P < 0.05

420525 62 130 2 72 1 P < 0.05
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Validation of Impact of Motivational Messages

School

Code

Number

of Ses-

sions

First Week Data Second Week

Data

Mann-Whitney’s

Significance Test

Sum of

Frustration

instances

Median Sum of

Frustration

instances

Median

1752 99 215 2 203 1 P > 0.05
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Analysis on Ordering Effects - Removal of Motivational

Messages

Figure: Box plot of Frustration instances from 42 session in each week. First week

without motivational messages, second week with motivational messages and third week

without motivational messages.
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Discussion

From the histograms, the frustration instances of students are reduced in the

sessions with motivational messages.

There is a statistically significant reduction in the number of frustration

instances per session due to the approach to respond to frustration.

The significant reduction in the frustration instances is independent of the

schools analyzed and topics used in the Mindspark sessions.

The approach to respond to frustration has a relatively higher impact on the

students whose performance in the sessions is low.

The approach to respond to frustration has a relatively higher impact on the

students who spend more time to answer the questions in Mindspark session.
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Approach to Detect Boredom

The theory-driven approach to model boredom

Figure: Steps of theory-driven approach to create a boredom model using data from the

Mindspark log file
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Definition of Boredom Used in Our Research

The most common feature in all existing work on boredom is repetitiveness and

monotonous stimulation [189], [191]. The other key features of boredom are

1 Conflict between whether to continue the current situation or not due to lack

of motivation [190].

2 The student is forced to do the an uninteresting activity. Non-interest occurs

when the student not challenged enough [37], [194].

3 The student is prevented from doing a desirable action or forced to do an

undesirable action [191].

4 The student lost the interest in outcome of the event [193].
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Boredom Model

The logistic regression model to detect boredom is given below:

Bi = w0 + w1 ∗ f 1 + w2 ∗ f 2 + w3 ∗ f 3 + ...+ wn ∗ fn (1)
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Independent Method -Self Reporting

Figure: EmotToolbar integrated with Mindspark user interface to collect students’

emotions. The emote bar is in right side of the figure.
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The emotToolbar consists of six options for the students to choose from as

Figure: The EmotToolbar
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Sample

We collected 1617 instances of student’s answering the questions in

Mindspark from 90 students.

Out of 1617, 442 instances are self reported as boredom (Bored) by students,

the remaining instances are marked as (Non-Bored).

The dataset is stratified at questions (instances) level. Unit of analysis is the

instances where students respond to questions in Mindspark.

(IMURA) Enriching the Student Model in an ITS Aug 22, 2014 49 / 88



Results

Table: Results of Boredom Model when Applied to Mindspark Log Data

Self Reported Data

Bored Non-Bored

Pred Bored 98 46

Result Non-Bored 344 1129

The values from Table 9 are used to calculate the performance of our model. The results are given in Table 10.

Table: Performance of our Approach Shown Using Various Metrics when Applied to

Mindspark Log Data

Metrics Results

Accuracy 75.88%

Precision 68.1%

Recall 22.22%

Cohen’s kappa 0.23

F1 Score 0.33
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Major Contributions

Theory-driven Approach: We developed an approach to detect affective states using data

from the students’ interaction with the system. Our approach uses only the data from log

files, hence, it can be implemented in the large scale deployment of ITS. We have tested

our approach on a math ITS to detect frustration. Moreover, we validated the likelihood of

generalizing the theory-driven approach to detect other affective states by creating a model

to detect boredom in an ITS.

Frustration Model: We developed a linear regression model to detect frustration in a math

ITS – Mindspark, using the theory-driven approach. The detection accuracy of our model

is comparatively equal to the existing approaches to detect frustration. Additionally, our

model provides the reasons for the frustration of the students.

Respond to Frustration: We provided an approach to avoid the negative consequences of

frustration, such as dropping out, by using the motivational messages. The messages to

respond to frustration are created based on the reasons for frustration. The impact of

motivational messages was analyzed and it was found that our approach significantly

reduced the number of frustrations per session.
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Publications Arising Out of this Thesis

A Theory-Driven Approach to Predict Frustration in an ITS, Ramkumar

Rajendran, Sridhar Iyer, Sahana Murthy, Campbell Wilson, and Judithe

Sheard, IEEE Transactions on Learning Technologies, Vol 6 (4), pages

378–388, Oct-Dec 2013.

Responding to Students’ Frustration while Learning with an ITS, To be

submitted to the IEEE Transactions on Learning Technologies.

Literature Driven Method for Modeling Frustration in an ITS, Ramkumar

Rajendran, Sridhar Iyer, and Sahana Murthy, International Conference on

Advanced Learning Technologies (ICALT), 2012, Rome, Italy.

Automatic identification of affective states using student log data in ITS,

Ramkumar Rajendran, Doctoral Consortium in International Conference on

Artificial Intelligence in Education (AIED), 2011, Auckland, New Zealand.
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Thank You
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Marylène Gagné and Edward L Deci.

Self-determination theory and work motivation.

Journal of Organizational behavior, 26(4):331–362, 2005.

Edward L Deci and Richard M Ryan.

Self-Determination.

Wiley Online Library, 2010.

(IMURA) Enriching the Student Model in an ITS Aug 22, 2014 85 / 88



Bibliography XXXIII

Thomas Gordon.

PET: Parent Effectiveness Training.

New American Library, 1970.

William R Nugent and Helene Halvorson.

Testing the effects of active listening.

Research on Social Work Practice, 5(2):152–175, 1995.

Helmut Prendinger and Mitsuru Ishizuka.

The empathic companion: A character-based interface that addresses users’ affective states.

Applied Artificial Intelligence, 19(3-4):267–285, 2005.

Timo Partala and Veikko Surakka.

The effects of affective interventions in human–computer interaction.

Interacting with computers, 16(2):295–309, 2004.

Craig C Pinder.

Work motivation in organizational behavior .

Psychology Press, 2008.

Diane F Halpern, Joshua Aronson, Nona Reimer, Sandra Simpkins, Jon R Star, and Kathryn Wentzel.

Encouraging girls in math and science.

2007.

(IMURA) Enriching the Student Model in an ITS Aug 22, 2014 86 / 88



Bibliography XXXIV

Allan Wigfield and Kathryn R Wentzel.

Introduction to motivation at school: Interventions that work.

Educational Psychologist, 42(4):191–196, 2007.

Edwin A Locke and Gary P Latham.

What should we do about motivation theory? six recommendations for the twenty-first century.

Academy of Management Review, 29(3):388–403, 2004.

Friedrich Försterling.

Attributional retraining: A review.

Psychological Bulletin, 98(3):495, 1985.

Richard P Smith.

Boredom: A review.

Human Factors: The Journal of the Human Factors and Ergonomics Society, 23(3):329–340, 1981.

Joseph E Barmack.

The effect of benzedrine sulfate (benzyl methyl carbinamine) upon the report of boredom and other

factors.

The Journal of Psychology, 5(1):125–133, 1938.

James F O’Hanlon.

Boredom: Practical consequences and a theory.

Acta psychologica, 49(1):53–82, 1981.

(IMURA) Enriching the Student Model in an ITS Aug 22, 2014 87 / 88



Bibliography XXXV

Jonathan SA Carriere, J Allan Cheyne, and Daniel Smilek.

Everyday attention lapses and memory failures: The affective consequences of mindlessness.

Consciousness and cognition, 17(3):835–847, 2008.

Jennifer J Vogel-Walcutt, Logan Fiorella, Teresa Carper, and Sae Schatz.

The definition, assessment, and mitigation of state boredom within educational settings: A

comprehensive review.

Educational Psychology Review, 24(1):89–111, 2012.

Mihaly Csikszentmihalyi.

Finding flow: The psychology of engagement with everyday life.

Basic Books, 1997.

R. S. J. d. Baker, Sujith M Gowda, Michael Wixon, Jessica Kalka, Angela Z Wagner, Aatish Salvi,

Vincent Aleven, Gail W Kusbit, Jaclyn Ocumpaugh, and Lisa Rossi.

Towards sensor-free affect detection in cognitive tutor algebra.

International Educational Data Mining Society, 2012.

(IMURA) Enriching the Student Model in an ITS Aug 22, 2014 88 / 88


	Introduction
	Intelligent Tutoring System
	Affect Recognition

	Related Work
	Predicting Affective States
	Addressing Affective States

	Theory-Driven Approach
	Predicting Frustration using Mindspark Log Data
	Human Observation
	Results
	Discussion

	Addressing Frustration
	Strategies to Address Frustration
	Algorithm
	Data Collection
	Results

	Generalizing Theory-Driven Approach
	Applying Theory-Driven Approach to Model Boredom
	Data Collection
	Results


