
Efficient Streaming for
Delay-tolerant Multimedia Applications

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

by

Saraswathi Krithivasan
(Roll No. 03429601)

Under the guidance of

Prof. Sridhar Iyer

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY–BOMBAY

2008

To my family

Thesis Approval

The thesis entitled

Efficient Streaming for
Delay-tolerant Multimedia Applications

by

Saraswathi Krithivasan
(Roll No. 03429601)

is approved for the degree of

Doctor of Philosophy

Examiner Examiner

Guide Chairman

Date:

Place:

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, INDIA

CERTIFICATE OF COURSE WORK

This is to certify that Saraswathi Krithivasan (Roll No. 03429601) was admit-

ted to the candidacy of Ph.D. degree on July 2003, after successfully completing

all the courses required for the Ph.D. programme. The details of the course work

done are given below.

S.No Course Code Course Name Credits

1 IT 605 Distributed Sytems 6

2 MA 603 Statistical Analysis and Design 6

3 IT 694 Seminar 4

4 IT 610 Quality of service in networks 6

5 HS 699 Communication and Presentation Skills PP

Total Credits 22

IIT Bombay

Date: Dy. Registrar (Academic)

Abstract

Delay-tolerant multimedia applications, where clients specify the time when playout must start,

fit the profile of many emerging applications, including distance education and corporate train-

ing. Such applications typically depend on a Content Delivery Network (CDN), where the

Content Service Provider (CSP) disseminates multimedia content to geographically dispersed

clients through a distribution network from servers located on the CDN. In these applications,

a client Ci connects to the source S at time t0 and requests for contents with base encoding rate

Γ and playout duration T ; Ci specifies the time it is willing to wait for the playout to start, its

delay tolerance δi; Playout at Ci starts at (t0+δi) and ends at ((t0 + δi) + T). Note that t0 may

also be the start time of a scheduled streaming session.

This thesis deals with the issue of maximizing the quality of the multimedia contents de-

livered at the clients even when link bandwidths are constrained in the path from the source

to the clients. To achieve this, we develop a suite of algorithms that can exploit clients’ delay

tolerance considering the following parameters: (i) Service type: whether contents are streamed

according to a schedule or occur on-demand and (ii) Bandwidth: whether link capacity is static

or variable, using appropriate resources at the nodes – Transcoders, Layer encoders, or Stream-

ing servers with transcoding or layering functionality. In particular, we consider the follow-

ing three cases: (i) Scheduled streaming when bandwidths are static, (ii) Scheduled streaming

when bandwidths are varying and predicted, and (iii) On-demand streaming when bandwidths

are static. The algorithms developed are a result of formulating the objectives in an optimiza-

tion framework or by an analysis of properties of the network topology and client requirements.

Furthermore, where an optimal algorithm is computationally expensive, we develop algorithms

based on heuristics as practical alternatives. The approaches are validated through extensive

simulations, using topologies derived from real-world scenarios.

The algorithms developed in this thesis would help a CSP serving clients in a subscription

based network in: (i) improving the quality of reception at the clients by leveraging their de-

lay tolerance values, (ii) estimating the resources required to provide the best delivered rates to

clients, and (iii) determining placement of resources to maximize the delivered rates at clients.

Thus, using the analysis presented and algorithms developed in this thesis, a CSP can deploy re-

sources in order to ensure effective quality of service to clients and efficient resource utilization

by leveraging clients’ delay tolerance.

iii

Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Focus area . 1

1.2 The problem: An overview . 3

1.2.1 The context . 3

1.2.2 Problem definition . 5

1.2.3 The parameter space . 6

1.3 Overview of contributions and solution approaches 9

1.4 Organization of the thesis . 12

2 Examples of delay-tolerant applications and literature survey 14

2.1 Introduction . 14

2.2 Corporate training . 17

2.3 Accessing content through a wireless connection 19

2.4 Concepts and mechanisms relevant to servicing delay-tolerant applications: A

literature survey . 21

2.4.1 Network structure . 22

2.4.2 Transcoding mechanisms . 23

2.4.3 Layering mechanisms . 24

2.4.4 Caching mechanisms . 25

2.4.5 Placement of resources within a dissemination network 26

2.5 Summary . 27

iv

3 System model and detailed problem definition 28

3.1 Definitions and key assumptions . 28

3.1.1 Definitions . 28

3.1.2 Key assumptions . 31

3.2 Detailed problem definition . 34

3.2.1 Problem 1A: Scheduled streaming, static link bandwidths 34

3.2.2 Problem 1B: Scheduled streaming, varying link bandwidths 38

3.2.3 Problem 2A: On-demand streaming, static link bandwidths 40

3.2.4 Problem 2B: On-demand streaming, varying link bandwidths 42

3.3 Flow of data through the nodes . 42

3.3.1 Scheduled streaming . 43

3.3.2 On-demand streaming . 45

3.4 Node architectures . 47

3.4.1 Node architectures for scheduled streaming 47

3.4.2 Node architectures for on-demand streaming 50

3.5 Summary . 53

4 Determining optimal delivered rates at clients

(Scheduled streaming, Static link bandwidths) 54

4.1 Introduction . 54

4.1.1 Optimal rates for different placement options: An illustrative example . 56

4.1.2 Overview of solution approaches . 58

4.2 Optimization-based approach . 58

4.3 Effect of delay tolerance on stream rates through links 62

4.3.1 Maximum stream rate through an unshared link 62

4.3.2 Maximum stream rate through any link 63

4.3.3 Maximum deliverable rate at a client – when considered in isolation . . 64

4.4 An iterative algorithm to find optimal rates delivered at clients 67

4.4.1 Variables and data structures used . 67

4.4.2 Algorithm for pass 1 . 67

4.4.3 Algorithm for pass 2 . 73

4.4.4 Optimality of find opt rates I . 73

4.4.5 Complexity of find opt rates I . 79

v

4.5 Experimental demonstration of effect of delay tolerance: Gnutella Peer Network 79

4.6 Conclusions . 81

5 Determining optimal placement of transcoders

(Scheduled streaming, Static link bandwidths) 82

5.1 Introduction . 82

5.1.1 Overview of solution approach . 83

5.2 Observations related to redundancy in transcoders 84

5.2.1 Redundancy in strings: Redundancy rule 1 84

5.2.2 Redundancy in trees: Redundancy rule 2 87

5.3 Determining optimal transcoder placement . 91

5.3.1 Finding the optimal set: find min transcoders 93

5.3.2 Complexity of find opt rates NR . 94

5.3.3 Optimality of O . 94

5.4 Conclusions . 99

6 Determining optimal placement for a given number of transcoders

(Scheduled streaming, Static link bandwidths) 101

6.1 Introduction . 101

6.2 Optimization-based approach . 102

6.3 Towards finding lower cost optimal algorithms 104

6.3.1 Insufficiency of considering only nodes in the optimal set 105

6.3.2 Super nodes and their properties . 106

6.3.3 Identifying super nodes: An illustrative example 108

6.3.4 Algorithm to identify super nodes . 110

6.4 Optimal algorithms . 112

6.4.1 Comparison of find opt placement E and find opt placement U 114

6.5 Property of useful set U . 114

6.6 Lower complexity alternatives: Greedy algorithms 117

6.6.1 Max-gain algorithm . 117

6.6.2 Min-loss algorithm . 118

6.6.3 Performance of greedy algorithms . 118

6.7 Conclusions . 123

vi

7 Solutions for scheduled streaming when link bandwidths vary 125

7.1 Introduction . 125

7.1.1 Additional definitions and assumptions 126

7.1.2 Overview of solution approaches . 132

7.1.3 Example used to illustrate solution approaches 136

7.2 Optimization-based approach . 136

7.3 Methods that use the scheduled streaming, static bandwidth formulations 141

7.3.1 Using the minimum predicted bandwidth 141

7.3.2 Using the average predicted bandwidth 142

7.4 An interval-by-interval solution . 147

7.5 A link-by-link solution . 150

7.5.1 Steps in the L-by-L algorithm . 151

7.5.2 Comparison of L-by-L and I-by-I algorithms 153

7.6 Details of the L-by-L algorithm . 155

7.6.1 Determining base stream rate for a link 155

7.6.2 Determining stream rates through links 159

7.6.3 Determining the loss-free delivered rate at clients 163

7.6.4 Delivered rates: L-by-L algorithm vs. optimization formulation 165

7.7 Experimental evaluation of the L-by-L algorithm 166

7.8 Adjusting stream rates based on refined estimates of available bandwidth 171

7.8.1 Example to illustrate algorithm find adjusted stream rates 172

7.9 Layering mechanism used . 175

7.9.1 Source-driven layering mechanism . 175

7.10 Conclusions . 177

8 Solutions for on-demand streaming when link bandwidths are static 178

8.1 Introduction . 178

8.1.1 Additional definitions and assumptions 179

8.1.2 Solution approach . 181

8.1.3 Example to illustrate the intuition behind the algorithm 182

8.2 Analysis of network properties . 184

8.2.1 Expression for time to transfer data 184

vii

8.2.2 Options for streaming server placement 185

8.3 Algorithm: find max clients . 188

8.4 Conclusions . 192

9 Buffer management issues: when a client device is memory constrained 193

9.1 Introduction . 193

9.2 Size of buffer required at a source/relay node 194

9.3 Buffer requirement at a client node: An illustrative example 195

9.4 Observations related to buffer management at client nodes 197

9.4.1 Observations on buffer size at a client for a given δ value 197

9.4.2 Effect of δ value on buffer size . 200

9.5 Leveraging residual delay tolerance . 202

9.5.1 Rescheduling session: An illustration 204

9.6 Conclusions . 205

10 Conclusions and future work 206

10.1 Summary of contributions . 206

10.2 Schematic for CSP tools . 208

10.3 Future work . 209

viii

List of Tables

3.1 Illustration of timeline . 32

4.1 Delivered rates for different transcoder placement options 57

7.1 Example: Predicted bandwidths over the session duration 135

7.2 Stream rates through links over session duration (for topology of Figure 7.3) . . 140

7.3 Using optimization function: delivered rates for clients in Figure 7.3 140

7.4 Case:1 . 145

7.5 Case:2 – UU indicates Under-Utilization of the link 145

7.6 Case:3 – BP indicates a Break Point . 146

7.7 Interval-by-interval solution: delivered rates 150

7.8 Stream rates through link 1 . 161

7.9 Stream rates through links over session duration 162

7.10 Maximum loss-free data supported by links in clients’ path 164

7.11 Link-by-link algorithm: delivered rates . 164

7.12 Adjusting stream rates through link 1 . 174

7.13 Example to illustrate layering mechanism . 176

9.1 Example to illustrate buffer requirements . 203

ix

List of Figures

1.1 The problem space . 2

1.2 The context . 4

1.3 Parameters defining the dimensions of the problem 6

2.1 Factors that affect multimedia content delivery 16

2.2 Example: Corporate training . 18

3.1 Multicast tree . 29

3.2 Example: Illustration of definitions related to connection, session, and playout . 32

3.3 Connection parameters . 32

3.4 Overview of solution approach: Scheduled streaming, Static link bandwidths . 36

3.5 Overview of solution approach: Scheduled streaming, Varying link bandwidths 39

3.6 Overview of solution approach: On-demand streaming, Static link bandwidths . 41

3.7 Example to illustrate data-flow: Scheduled streaming 42

3.8 Resource used . 45

3.9 Example to illustrate data-flow: On-demand streaming 46

3.10 Source node architecture for scheduled streaming 48

3.11 Relay node architecture . 48

3.12 Relay node with transcoder/layer encoder . 49

3.13 Client node architecture . 50

3.14 Source node architecture for on-demand streaming 51

3.15 Relay node with streaming server . 52

4.1 An illustrative example . 56

4.2 Overview of solution approaches: Chapter 4 58

4.3 Optimization function . 59

x

4.4 Example to illustrate transcoder constraint . 60

4.5 Determining stream rate through an unshared link 63

4.6 Basic block . 65

4.7 Clients sharing a link . 66

4.8 Input/output variables and global constants . 68

4.9 Illustration of variables and global constants 69

4.10 Global variables used in the algorithms . 70

4.11 Illustration of data structures used in the thesis 71

4.12 Instances of links . 73

4.13 Pass 1 of algorithm: find opt rates I . 74

4.14 Pass 2 of algorithm: find opt rates I . 75

4.15 Instances of links in the path of a client . 76

4.16 An instance of GNU peer network . 80

4.17 Effect of delay tolerance on delivered rates . 81

5.1 Overview of solution approaches: Chapter 5 84

5.2 Strings in a multicast tree . 86

5.3 Illustration of a redundant node . 88

5.4 Equi-deliverable rate clients . 90

5.5 Algorithm: find opt rates NR . 92

5.6 Example to illustrate application of redundancy rule 2 93

5.7 Illustration of non-uniqueness of the optimal set 96

5.8 Validation of optimality of O . 98

6.1 Overview of solution approaches: Chapter 6 102

6.2 Optimization function . 103

6.3 Redundancy in transcoders at relay nodes . 106

6.4 Identifying a super node . 107

6.5 Example to illustrate the role of super nodes 109

6.6 Algorithm: find super nodes . 111

6.7 Variables used in find opt placement . 112

6.8 Algorithm find opt placement . 113

6.9 Comparison of optimal algorithms(20-25 nodes) 115

xi

6.10 Comparison of optimal algorithms(35-40 nodes) 115

6.11 Algorithm: findplacement Max gain . 119

6.12 Algorithm: findplacement Min loss . 120

6.13 Performance of greedy algorithms . 122

6.14 Efficiency of greedy algorithms . 124

7.1 Flow of data over prediction intervals spanning session duration 129

7.2 Overview of the solution approaches . 134

7.3 Example to illustrate solution approaches . 135

7.4 Example: Network and application parameters 135

7.5 Optimization formulation . 137

7.6 Part 1: Constraints arising from delay-tolerance requirements 138

7.7 Part 2: Constraints arising from delay-tolerance requirements 139

7.8 Instances of links . 143

7.9 I-by-I algorithm . 149

7.10 L-by-L algorithm . 152

7.11 Comparison of L-by-L and I-by-I algorithms 153

7.12 Example: Shortcoming of I-by-I . 154

7.13 Input and global variables used in L-by-L algorithm 156

7.14 Algorithm: find base stream rate . 157

7.15 Algorithm: find rate . 158

7.16 Algorithm: find link stream rates . 160

7.17 Algorithm: find delivered rates . 163

7.18 Comparison of Optimal and L-by-L algorithms 167

7.19 Effect of increasing number of prediction intervals on CPU time 169

7.20 Effect of bandwidth fluctuation on average delivered rates 170

7.21 Effect of bandwidth fluctuation on CPU time 170

7.22 Algorithm: find adjusted stream rates . 173

8.1 Example to illustrate HSM . 182

8.2 Case 1: Streaming server at S . 183

8.3 Case 2: Data server at S and streaming server at R2 183

8.4 Schematic of find max clients . 189

xii

8.5 Algorithm: place streaming server . 190

8.6 Algorithm: find max clients . 191

9.1 Example to illustrate use of buffers . 195

9.2 Illustration used for derivations . 198

10.1 Schematic for tools to aid a CSP . 210

xiii

Chapter 1

Introduction

With the proliferation of world-wide computer networks, several popular streaming media ap-

plications have emerged: Universities offering their courses to a set of global subscribers, ser-

vice providers streaming movies requested by their clients, and multinational corporations pro-

viding training to employees across cities. Heterogeneous communication architectures com-

prising of satellite, terrestrial links as well as the Internet are increasingly deployed for such

applications. In these applications, a source disseminates multimedia contents (that may be en-

coded at different rates) to a set of geographically distributed clients, through links of varying

capacities and characteristics [18].

We consider applications where the clients specify their requirements: a minimum rate at

which the contents are to be played out (a minimum quality requirement) and a startup delay

after which they want the playout to start (a specific start time requirement). We term such

applications as delay-tolerant applications. Most of the contents in the education and enter-

tainment domain are in this category. For such applications it is possible to allow clients the

convenience of starting the playout at a specific time while improving the quality of the playout,

even in the presence of bandwidth constrained links along the path from the source to the client.

We have explored different dimensions of this problem in this thesis.

1.1 Focus area

Figure 1.1 depicts the area of focus for this thesis. We have considered two user-level parame-

ters, loss and start-up delay. Loss occurs due to dropped data packets when there is insufficient

bandwidth on a link to support the rate at which data is flowing through it. Start-up delay is

1

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

education

Sensitive Tolerant

Sensitive

Tolerant

e.g.: live streaminge.g.: e−surgery

Time−critical
 ApplicationsApplications

Delay tolerant
applications; tolerant applications

Loss and delay

e.g.: distance e.g.: static content

Soft real−time

streaming

Start−up delay

Loss

Figure 1.1: The problem space

a small time lag due to buffering at the client to control jitter during the playout. We classify

applications along the two dimensions sensitivity and tolerance.

1. Multimedia applications such as e-surgery which are demonstrated in real time fall under

the loss-sensitive and start-up delay sensitive category, i.e., such applications need loss-

free transmission in real time. These applications require dedicated bandwidth from the

source to the client so that the quality of reception is guaranteed.

2. Applications such as live sports streaming fall under the loss-tolerant and start-up delay

sensitive category. Such applications have been researched extensively. A review of

the existing mechanisms for effective and efficient delivery of multimedia in [14] [51]

indicates that existing work treats applications involving multimedia dissemination as

soft real-time applications that can tolerate some transmission errors and explores ways

to minimize the startup delay.

3. Applications such as streaming of personal video clips fall under the loss-tolerant and

start-up delay tolerant category. We believe that such applications can be handled by

the current best effort networks without any additional features. By allowing for longer

buffering at the clients, quality can be improved but, without guarantees for loss-free

playout. Typically, such applications do not have stringent quality requirements.

4. We focus on the fourth category of multimedia applications – those that are loss-sensitive

and start-up delay-tolerant. We have developed techniques for exploiting client specified

2

delay tolerance in order to maximize delivered multimedia quality in heterogeneous net-

work environments. Most multimedia applications in education and entertainment where

contents are valid for a period of time, fall in this category. However, there is hardly

any research that deals with improving delivered quality for applications in this category.

We show that by providing flexibility of viewing time to the clients and allowing them

to specify the start of playout, delivered quality can be improved even in the presence of

links with bandwidth constraints. The basic idea is as follows: given that weak links with

limited bandwidths can occur in the path from source to a client; when a client requests

for a particular content, the source starts transmission immediately; however, since the

client wants the playout to start only after a specified time, the extra time is leveraged to

deliver contents at a higher encoded rate, enhancing the quality of reception at the client.

1.2 The problem: An overview

Scalability is an inherent motivation for our research. In our past experience in administering

a distance education program, the main stumbling block to scalability was the low bandwidth

links in the path from the source to the clients. We realized that in order to scale the program to

reach remote universities within India, we needed an innovative approach that would overcome

bandwidth bottlenecks. Using the notion of delay tolerance, we not only utilize the resources

efficiently but also achieve scalability, to reach the contents at acceptable quality to clients.

In this section, we define the context and provide a high level definition of the problem. We

also provide a discussion of the parameters that affect the problem to outline the scope of the

solutions presented in this thesis.

1.2.1 The context

Traditionally, Content Delivery Networks (CDNs) [4] serve multimedia contents to clients

through proxy servers deployed at strategic locations at the edge of its core network, as shown

in Figure 1.2. Typically, a central server which is a content repository and a set of replica servers

which contain replicated contents, form the core network of the Content Service Provider (CSP).

With the tremendous growth in multimedia applications and the number of clients accessing

such applications, a replica server itself may serve clients connected to it through a multi-hop

distribution network of heterogeneous links. We focus on such a distribution network compris-

3

�� ��
�� ������

��
��
��
��

�
�
�
�

���� �
�
�
�
��

���� �
�
�
�

����

��
��
��
��

Distribution

network

CSP’s core
network

Access

network

Region node

Client

i)

(C i)

(R

(G i)

Relay node
Instance of a multicast tree served

by a single source

 repositoryContent

Peer−to−peer connectivity

 Direct connection

Replica server (S)

S

Figure 1.2: The context

ing of a replica server serving as a source for clients over a multicast tree.

Consider a multimedia stream originating at source S, the root of the multicast tree and

delivered to clients C1, C2, . . . Cn connected through relay nodes R1, R2, . . . Ri. Without loss

of generality, we define the multicast tree to be made up of the following two components: (i)

Distribution network and (ii) Access network. We define the distribution network and access

network with reference to Figure 1.2.

• Distribution network: This is a multicast tree with the source S as root and the region

nodes Gis as leaves. We assume that this network is controlled by the CSP through

4

Service Level Agreement(SLA) with the Internet Service Provider (ISP). Typically, a

specified amount of bandwidth is allocated for a given application on every link in the

distribution network; we refer to this situation as provisioned links or simply refer to the

link being provisioned.

• Access network: This network is a forest with each region nodeGi as root and the clients

Cis as leaves. Typically bottlenecks occur here. CSP may not have control over the access

network nodes.

In our model, users on an intranet, within the same administrative domain or different

administrative domains within an organization, may be connected through a local server

to the CSPs network. Such local servers, and not the users themselves, are the clients

seen by the source. The local server places requests for contents on behalf of the users in

the organization. The contents from this server can be accessed by several users simul-

taneously in the multicast mode as high bandwidth connectivity exists between different

administrative domains and users within the organizations network.

• Region nodes: Region nodes Gis connect the distribution network to the access network.

These nodes are edge nodes in the distribution network; they are typically designated by

the CSP.

1.2.2 Problem definition

Having defined the context, we provide a high-level problem definition in this section. A de-

tailed problem definition is provided in Section 1.3.

Given:

• A multicast tree enabled with a specified set of resources such as transcoders, layer en-

coders, and streaming servers, with source S serving clients Cis;

• Each Ci specifies two requirements: (i) a minimum acceptable rate γmin
i (in kbps) and

(ii) delay tolerance δi (in seconds), the time it is willing to wait, once connection is estab-

lished, for start of playout of content.

• Content has playout duration T and is encoded at base encoding rate Γ, the best rate at

which the contents can be played out at any client.

5

Scheduled

Resource used

Service type

Varying

Static

On−demand

Layer encoder+streamer

Transcoder+streamer

Bandwidth

Figure 1.3: Parameters defining the dimensions of the problem

Assumptions: The topology of the distribution network and access network is known with link

bandwidths remaining constant over a given prediction interval P .

Objective: Leverage delay tolerance δi specified by each Ci to:

• provide continuous playout for each Ci at a rate ri such that each ri is greater than or

equal to the minimum acceptable rate γmin
i and

• maximize ris across all Cis; i.e., minimize ∀i, i = 1, 2, . . . m,
∑

i (Γ− ri)
2,

where m is the number of clients in the multicast tree.

1.2.3 The parameter space

We consider the following parameters which define the dimensions of the problem. The result-

ing parameter space is shown in Figure 1.3:

1. Service types

• Scheduled streaming: In scheduled streaming, content from a source S, is streamed

synchronously to all the clients, starting at time t0. When S is capable of transcoding

or layering, each subtree in the distribution network may be served with a stream

encoded at a different rate. However, the streaming session starts at t0 for all clients.

6

• On-demand streaming: In on-demand streaming, each client may request for the

contents at a different time; in this case the streaming is asynchronous. Suppose a

client Ci requests for contents at time ti specifying its requirements: a minimum

acceptable rate γmin
i and delay tolerance δi. As different clients (which may share

links in their paths), request for the contents at different times, the shared links may

be busy servicing a client request when another client from the same subtree requests

for the contents. Thus, streaming from the source S starts when the links from S to

Ci are free. Note that playout of the contents encoded at least at γmin
i must start at

Ci at time (ti + δi).

2. Link Bandwidths

• Known and static: In this case, link bandwidths are assumed to be known and static

over the period starting from when a client requests for transmission to end of play-

out at the client, defined as the connection duration, given by (δi + T).

• Varying and predicted: In this case, link bandwidths are assumed to be varying over

the period starting from when a client requests transmission to the end of playout

at the client. However, we assume a bandwidth profiling module which estimates

bandwidths available over several prediction intervals that cover this period. We

assume these predicted bandwidths to be static over each prediction interval.

3. Resources used

• Transcoder: Transcoder is a resource that encodes multimedia contents to a lower

bit rate from its original encoded rate without changing the data format. This process

of lowering the bit rate is also known as transrating.

• Layer encoder: Layer encoders encode the multimedia contents into a number of

discrete layers. There is a base layer which is the lowest encoded rate and a number

of enhancement layers which can be decoded and used in conjunction with the base

layer for enhanced quality.

• Streaming server with transcoder/layer encoder: A streaming server is a server that

is capable of sending a multimedia stream at a specific encoded rate. In our analysis,

we assume the streaming server to have transcoding or layering capability. Stream-

ing servers are used only in conjunction with on-demand streaming.

7

Thus, given the three parameters each taking two values, we have eight possible combina-

tions to consider. However, as we explain below, the resources used dimension is handled based

on the service type.

Combining the parameters

Given that our main objective is to maximize the delivered rates at clients by leveraging their

delay tolerance, either of the resources – transcoders or layer encoders – can be used to adapt

the encoding rate of the stream to deliver appropriate rates to clients. When link bandwidths

are varying, use of transcoders may involve high overheads and loss of video quality due to the

following reasons: (i) since any link in the client path can be the weakest link over the session

duration, transcoders would be required at every relay node in the multicast tree (ii) in bit-rate

reduction transcoding, even though resolution degradation is negligible, successive transcod-

ings introduce degradation, characterized as a generation loss [40]. When link bandwidths are

varying, since each node may be transcoding the stream to several different lower rates over the

session duration to serve the clients, this could reduce the quality of the resulting video due to

generation loss. Thus, transcoding is not an efficient solution when link bandwidths are varying.

Layered encoding where layers are coded so as to serve most clients with thei optimal rates is an

efficient alternative. Transcoding standards such as MPEG-4 [26] have integrated multi-layered

coding.

Based on the above discussion, we choose a resource: transcoders when the link band-

widths are static and layer encoders when link bandwidths are varying, to formulate our solu-

tions. When client requests are on-demand, streaming servers are placed at appropriate relay

nodes to utilize the available bandwidth on the links efficiently. Here again, streaming servers

having transcoding capability are used when the bandwidths are static; When bandwidths vary

over the session duration streaming servers with layer encoding capability are used. Thus, we

come up with the following four combinations of parameters:

• Scheduled streaming, Known and static link bandwidths

• Scheduled streaming, Varying and predicted link bandwidths

• On-demand streaming, Known and static link bandwidths

• On-demand streaming, Varying and predicted link bandwidths

Note that when the CSP has complete control over the distribution network and the access

network, it can provision all the links in the network; in such a case, the link bandwidths are

8

known and static. Even when the CSP does not control the access network, in a subscription-

based network, it is reasonable to assume that the CSP would have enough knowledge to predict

the bandwidths on the links over specified intervals of time.

1.3 Overview of contributions and solution approaches

In this thesis, we have identified multimedia applications which we have termed delay-tolerant

applications; in these applications, delivering the content with acceptable quality is given more

importance than delivering the contents in real-time. Given the nature of the contents in these

applications (which are relevant for a period of time), it makes lots of sense to use the delay

tolerance of clients to improve the quality of reception at the clients. This idea is useful to

the current CDN scenario, especially in the developing countries, where bandwidth bottlenecks

occur along the path to a client; even when the CSP provisions links in its distribution network,

the last-mile problem persists.

Thus, our first contribution in this thesis is the idea of delay-tolerant applications. Ap-

plications such as distance education and corporate training readily fit the specifications for

delay-tolerant applications. We explore various properties of such applications, given the con-

text and parameters that affect such applications. We also specify the architecture of nodes

required to support such applications.

We start with the simple case when all link bandwidths are static to understand the impact

of various parameters on the delivered rates at the clients and resource requirement and place-

ment. Then, we relax the assumption of static bandwidths to include variability in bandwidth

over prediction intervals spanning the session duration. We develop algorithms that would find

the loss-free delivered rates at the clients when bandwidths are varying. Given that the contents

are valid over a period of time, subscribed clients may be able to access the contents over this

validity period. Considering this on-demand streaming case with static link bandwidths, we

attempt to maximize the number of clients serviced and the delivered rates at the clients, given

an arrival schedule.

In summary, we have developed and implemented the algorithms that can be used by the

CSP in a tool to make decisions on service quality and resource requirement and placement.

We have developed solutions for the various sub-problems identified and demonstrated their

usefulness in aiding a CSP to administer delay-tolerant multimedia applications.

9

We now consider the four combinations discussed in the previous section and briefly out-

line our solution approach to problems identified under each case.

1. Problem 1A: Scheduled streaming, static link bandwidths

• Determining optimal rates delivered at clients for a given transcoder placement

option: Our objective is to develop solutions to find the optimal rates delivered at

clients given that a specific set of nodes have transcoders. We first formulate this as

an optimization problem, and show that the optimization-based approach is compu-

tationally expensive. We develop an optimal linear-time algorithm find opt rates I,

that exploits the properties of the multicast tree to find the optimal delivered rates at

clients, for a given transcoder placement option.

• Determining optimal number of transcoders and their placement for providing best

delivered rates at clients: When all relay nodes are transcoder capable, algorithm

find opt rates I determines the stream rates flowing through each link in the network

and the optimal rates delivered at the clients. We call these as the best delivered

rates, when there is no constraint on the number of transcoders. Even though all

relay nodes have transcoders, all of them are not enabled to serve the clients with

the best delivered rates. Our objective is to find the minimum set of transcoders

referred to as the optimal set, denoted by O, required to serve the clients with the

best delivered rates.

• Determining optimal placement for a given number of transcoders: In practical sce-

narios, resources available are limited. Given a number of transcoders q < |O|, we

know that the delivered rates at some clients would be less than their best delivered

rates. Our objective is to place the transcoders such that the decrease in delivered

rates across clients is minimal; i.e., given a limited number of transcoders, we find

the placement option that delivers the best possible rates to clients. We formulate

this as an optimization problem and also develop optimal algorithms that consider

combinations of nodes to find the best placement. We experimentally show that

the computation time required by the optimal algorithms render them infeasible in

practice. This motivates us to develop two greedy alternatives: a max-gain algo-

rithm and a min-loss algorithm and evaluate these algorithms to demonstrate their

effectiveness.

10

2. Problem 1B: Scheduled streaming, varying link bandwidths

• Determining optimal rates delivered at clients when the link bandwidths are varying:

When link bandwidths vary over the session duration, we assume a bandwidth pre-

diction module that provides an advance estimate of the available link bandwidths

over prediction intervals spanning (T + max(δi)), where δis are the delay tolerance

values of the clients. We formulate this as an optimization problem. Given the ex-

ponential complexity of the optimization approach, we explore different solutions

based on the nature of bandwidth variation. We start with simple ones that convert

the problem to the static bandwidth case. Subsequently, using the insights gained

from the shortcomings of these solutions, we develop a link-by-link algorithm to

find the delivered rates at the clients, considering the flow of the stream through

each link.

• Adjusting stream rates if revised bandwidth estimates are available: Finally, we de-

velop an approach to exploit more precise estimates that may become available at the

beginning of each prediction interval. We show how to use the revised estimate of

link bandwidths, if available at the beginning of every prediction interval, to adjust

the delivered rates at the clients. We show that this algorithm is effective in exploit-

ing the available bandwidth on the links over each prediction interval compared to

just using the advance estimate.

3. Problem 2A: On-demand streaming, static link bandwidths

• Determining optimal rates delivered at clients when the clients request for contents

over a period of time: We assume an observation period over which client request

arrivals are monitored. Network characteristics and client requirements are given.

Given highly provisioned links in the distribution network, we propose an algorithm

that combines data transfer and streaming mechanisms to efficiently handle requests

for the same contents over a period of time. Our goal is to maximize the number of

serviced clients and the delivered rates at the clients.

• Determining appropriate placement for streaming servers: Given the arrival pattern

of client requests over the observation period, streaming servers have to be placed

at appropriate network nodes in order to maximize number of clients serviced. Us-

ing observations relating to the network characteristics that affect data transfer and

11

streaming, we develop rules for placement of the streaming servers. These rules

are applied in the algorithm for finding the number of serviced clients and the rates

delivered at the clients.

4. Problem 2B: On-demand streaming, varying link bandwidths

Determining optimal rates delivered at clients over a observation period, given the net-

work characteristics and an arrival pattern, when the distribution network links are

highly provisioned and access network links have varying bandwidths: Using the insights

gained from the analysis for solving Case 1B and Case 2A, algorithms can be designed

for this case; however, detailed analysis is not in the scope of this thesis.

Lastly, given that all our algorithms require buffers at the network nodes, we discuss the impli-

cation of buffers, considering the special case when a client device is memory constrained. This

discussion is relevant to clients joining the network using mobile phones or other hand-held

devices which may have limited memory.

1.4 Organization of the thesis

The rest of this thesis is organized as follows: In Chapter 2, we identify the factors that affect

multimedia dissemination and present several real-world examples that fall under delay-tolerant

applications. We then present a literature survey of concepts and mechanisms that are relevant to

servicing delay-tolerant applications. In Chapter 3, we present the system model and a detailed

definition of the problem. We begin the chapter with definitions and key assumptions used in

this thesis. We then trace the flow of data for the scheduled and on-demand streaming applica-

tions; we conclude the chapter with an overview of architectures for the different types of nodes

in the multicast network. We present solutions to the three sub-problems identified under prob-

lem 1A, for scheduled streaming, static link bandwidths in Chapters 4, 5, and 6. In Chapters

7 and 8, we deal with the sub-problems identified for scheduled streaming, varying link band-

widths and On-demand streaming, static link bandwidths, respectively. In Chapter 9, we discuss

another important resource required for servicing delay-tolerant applications: buffers. In this

chapter, we analyze the size of buffers required at various nodes for servicing delay-tolerant

applications and also discuss the case of client devices with limited memory. We identify future

work required in this area and present a schematic for a CSP tool which can be built using the

12

algorithms presented in this thesis, in the concluding Chapter 10. Such a tool would help a CSP

in making decisions on resource requirement, deployment, scheduling, and admission control

to maximize the efficiency of servicing delay-tolerant applications.

13

Chapter 2

Examples of delay-tolerant applications

and literature survey

2.1 Introduction

Increasing popularity of applications such as live broadcasts of events, streaming stored movies,

video games, video conferencing, and distance education implies that a large amount of mul-

timedia content is being disseminated to users scattered at different locations. Several factors

influence the design and implementation of techniques for the dissemination of multimedia

contents. These factors are:

• Network topology: The underlying network can be Intranet, Internet or heterogeneous; An

Intranet can comprise of a LAN, satellite network, or a network which combines different

network technologies, but typically controlled by a single administrative domain. Internet

is a public network, which provides best effort service to all the applications sharing the

resources. A heterogeneous network is a combination of private and public networks and

thus can include interconnected Local Area Networks (LANs) and Wide Area Networks

(WANs). Mechanisms needed for effective and efficient dissemination of multimedia

vary based on the characteristics of the network, such as, resource availability, nature of

links, link access mechanisms, etc. [15] [21].

• Encoding mechanism: Multimedia files are huge in size compared to data files. Several

standards exist for efficient coding of the multimedia data to reduce their size. Moving

Picture Experts Group (MPEG) [26] has defined a family of standards for coding audio-

14

visual information, e.g., MPEG-1, MPEG-2, and MPEG-4 [26][46]. Encoding techniques

generally trade off between the file size, resolution quality, and the complexity of the de-

coding algorithm. Based on the nature of the multimedia content, appropriate algorithms

can be chosen that strikes a balance between these three factors.

• Delivery mode: Typically, the following delivery modes are used while streaming multi-

media:

– Synchronous mode: where a streaming session is multicast to multiple receivers

receiving the stream simultaneously. There are two ways in which synchronous

transmission can happen: (i) from a live source: Here a live media stream is encoded

on the fly and transmitted to receivers in real time, or (ii) from a stored medium:

Here the media stream is played from a recorded source (e.g. tape, CD).

In both cases, broadcast is synchronous and the clients receive the transmission

simultaneously. In the rest of this thesis, we refer to transmission in the synchronous

mode as scheduled streaming.

– On-demand mode: where the media files are typically stored and served to clients

as and when they request for the contents. We refer to transmission in this mode as

on-demand streaming.

The mode of transmission places different requirements on the system and network re-

sources. For example, for the live transmission of sporting events it is desirable to pro-

vide end-to-end guaranteed minimum bandwidth, for providing continuous and jitter-free

playout; Synchronous transmission from a stored medium and on-demand delivery re-

quire storing of the multimedia contents, introducing server and storage management

issues.

• Service model: Service model can be unicast, broadcast, or multicast. Unicast of content

involves individual connections between the source and each of the receivers while a

broadcast can be received by any receiver on the network. Typically a multicast model is

assumed while delivering multimedia contents to multiple clients, as serving the contents

to individual receivers with a unicast stream will quickly deplete the network resources.

Details of a multicast model and its associated protocols can be found in [28][31].

15

Multimedia content dissemination

Network topology Encoding Delivery mode Service model

MPEG 1, 2, 4

H.323

Synchronous

On−demand Broadcast

Multicast

Unicast

Mechanisms for effective delivery

Private

Internet

Heterogeneous

Examples:

Mechanisms for efficient delivery

Given a combination of the above, choice of delivery mechanisms needs to be made

Figure 2.1: Factors that affect multimedia content delivery

Given any combination of these factors, the mechanisms used for the delivery of multime-

dia contents must be:

• Effective, i.e., guarantee a minimum quality of reception to ensure a smooth playout of

the multimedia files.

• Efficient, i.e., optimally use network and system resources, allowing for scalability.

Thus, the choice of mechanisms for effective and efficient delivery of multimedia becomes

important. These factors that affect the dissemination of multimedia are summarized in Figure

2.1.

A survey of adaptive Internet multimedia applications can be found in [51]. We have

provided a classification of the mechanisms for effective and efficient delivery and discussion

of relevance of these mechanisms in heterogeneous network environments in [14]. Given the

vast literature in the area of multimedia dissemination, in this chapter, we map our research to a

real-world problem that fall under the delay-tolerant application category and discuss existing

mechanisms that can play a role in developing the solutions for this application. We provide a

comprehensive survey of the concepts and mechanisms, discussing their relevance to this thesis.

16

2.2 Corporate training

Before we present the model for this application, we recap the definition for delay-tolerant

applications: Delay tolerant applications are those applications where, a client Ci connects to

the source S at time t0 and requests for contents with base encoding rate Γ ; Ci specifies the

time it is willing to wait for the playout to start, its delay tolerance δi; Playout at Ci starts at

(t0+δi) and ends at ((t0 + δi) + T), where T is the playout duration of the contents.

Consider a corporate network of a Multi National Company (MNC) as shown in Figure

2.2. Note that this figure represents the same network as given in Figure 2.2 which defined the

context for our problem. We explain the mapping between the two figures below:

• A central office responsible for content generation and dissemination is the content repos-

itory.

• The central office is connected to other country offices through a P2P overlay network.

Each of the country offices has local content repositories serving different training centers

located in the country.

• Our focus is on the network served by each country node. Training centers are connected

to the country node, denoted by S, over a multicast overlay. Several streams can be

served from S, each stream served to a set of training centers; each stream is disseminated

through a multicast tree. A training center may be receiving more than one stream, hence

part of different multicast trees. Note that the links are typically provisioned for each

stream originating from S.

• Clients access training sessions through:

1. a Local Area Network (LAN) within the training center: this would be a high band-

width link.

2. an intermediary node via a leased line or dial-up modem: in this case the last link

could have low bandwidth.

3. a wireless device: in this case, while the link bandwidth may be high, the client

device may be memory constrained, affecting buffer availability; this motivates us

to look at memory-constrained client devices as a special case.

We summarize the characteristics of such a network below:

17

�� ��
�� �
�
�
�
��
��
��
��

�
�
�
�

��
��
��
��

���� �
�
�
�
�
�
�
�

���� �� ��

�
�
�
�

Instance of a multicast tree served

by a single source

network
MNC’s core

Distribution

network

Access

network

Peer−to−peer connectivity

 Direct connection

Central server with all the contents
Country server

serving regional offices

b/w links provisioned for multiple streams

serving multiple clients

Region node − server in a regional office

Client node − device with different

capabilities

Relay node − connected through limited

S

Figure 2.2: Example: Corporate training

18

• System model: Country office is the single source; training centers within the country are

region nodes connected through heterogeneous links. Clients can be directly connected

to the training center or through an access network. Unlimited buffers are assumed at all

relay nodes.

• Operational specifications: Each training center subscribes to courses based on client

registrations. Suppose there are 8 courses disseminated from the country center. Note

that a subset of the training centers would subscribe to one or more of these courses.

Also, at each training center different clients may subscribe to different courses. Thus,

based on the subscription from each training center for each course, different multicast

trees emerge.

• Transmission characteristics: Scheduled transmission to subscribed clients having re-

quirements: minimum rate, delay tolerance. Note that delay tolerance of training centers

could be specified based on factors such as work schedule, being in different time zones,

or improving quality due to low bandwidth connections.

In the above scenario, the addition of the following requirement necessitates a solution involving

on-demand streaming:

In addition to the scheduled streaming sessions, each lecture has an accessibility period of, say

4 hours. Note that accessibility period for each lecture is predetermined. During this period,

clients can access the lecture at any time, to review the lecture. Now, we have a case for on-

demand streaming for the same contents. Note that each client Ci is connected to the source S

for a period: ((T + δi) - tb), where tb is the time during which links in Ci’s path may be busy

serving some other client.

2.3 Accessing content through a wireless connection

In this section, we outline an existing multimedia application and explain how by using the

concept of delay-tolerance, this application can be tied to a CSP as in the example discussed in

the previous section. Such a step would allow for the following benefits: (i) a regional repository

of a CSP can be used for serving clients instead of maintaining media servers at each location,

(ii) variety of contents could be stored at the regional repository, allowing for numerous choices

19

of programs to customers, and (iii) utilize the time (of travel in the example that we present) to

compensate for lower bandwidths available on the CSP’s network.

Consider the multimedia applications, offering service to travelers during the time they

wait for their flights. In such applications, popular multimedia programs such as movies and

videos can be made available through access points, to customers with laptops or other hand-

held devices. Note that managing such a service at each airport would be an expensive activity.

With the current trend of acquisitions and diversification, where airports are acquired and oper-

ated by MNCs (especially, in a country like India), a Closed User Group network such as the

one we described in the previous example can be extended to service customers at airports also.

Suppose a client connects to the airport portal and places a request for a particular media

content, specifying the time after which the customer would start viewing the contents. Note

that as a customer leaves for the airport, she/he can estimate the time when they would arrive

at the airport and specify this estimated travel time as their delay tolerance. Instead of having

huge storage systems at each airport where contents are stored, customer’s delay tolerance can

be transferred to the access point which would acquire the required data from the appropriate

content repository. Note that the access point is a streaming point with a limited cache facility

similar to the model we presented for the on-demand streaming case. The connection from

access point to end device is a high bandwidth link. Thus, as the customer reaches the airport

the contents can be accessed in real-time through an access point.

• System model: Client subscribes to the content delivery service through an appropriate

portal and requests for a particular content at the time of leaving home for the airport,

considering the time it takes for travel to the airport, specified as delay tolerance. The

receiving point at the airport is termed access point. The last link, a wireless connection at

the airport from the access point, has high bandwidth. The client device may be memory

constrained, so playout happens from contents cached at the access point.

• Operational specifications: CSP has a menu of contents to choose from. Based on the

number of requests for a particular content over a period of time, CSP can cache the

contents at an appropriate relay node or at the access point itself. CSP may use a caching

policy which uses client access information over a specific period of time to decide on

which contents to keep in the cache and which to evict.

• Transmission characteristics: Transmission can be subjected to two parts:

20

1. The client’s delay tolerance is inherited by the access point; Contents are streamed

to the access point at the best possible encoded rate (given the delay tolerance).

2. When the client gets to the airport and connects to the access point, contents are

streamed in real-time from the access point.

Having discussed some real-world applications which fit the profile of delay-tolerant ap-

plications, we now identify concepts and mechanisms that can be used in the implementation

of these applications, from the existing literature.

2.4 Concepts and mechanisms relevant to servicing delay-

tolerant applications: A literature survey

Before we examine the relevance of existing mechanisms, we discuss Delay-Tolerant Networks

(DTNs) which may sound similar to the concept of delay tolerance which is the key idea behind

this thesis. A delay-tolerant network is a network designed to operate effectively over extreme

distances such as those encountered in space communications or on an interplanetary scale [37].

It can be thought of as a network of regional networks; an overlay on top of regional networks,

including the Internet [52]. One of the problems that needs to be addressed in a DTN is the long

and variable delay, and hence its name. We define delay tolerance to be the time that a client

is willing to wait for playout of the multimedia to start. The client requires that the playout be

continuous and loss-free, once playout starts. Thus, while DTNs deal with network delays (of

the order of hours and days) through a store-and-forward mechanism, we deal with clients with

a diverse set of delay-tolerance values (of the order of seconds and minutes); delay tolerance

values are leveraged to improve the quality of delivered contents at the clients using buffering

capabilities of the nodes. Since buffers can be co-located at the routers or L4 switches [13], we

believe that our model is feasible in practice. We elaborate on the issue of buffering in Chapter

3, where we present detailed architecture of the nodes.

The work in [1] deals with broadcasting multimedia products in the spare bandwidth avail-

able in a television channel. Customers can be provided with a set of delivery options corre-

sponding to the time of delivery, which is similar to the notion of delay tolerance. This work

focuses on maximizing profits for the e-commerce merchant. While we are also motivated by

the goal of revenue maximization for the CSP, in this thesis we deal with transcoder placement

21

strategies – placement at relay nodes, bit rate conversions they need to perform – to enhance the

delivered rates at clients in a heterogeneous multicast environment.

In the rest of this section, we identify existing concepts and mechanisms that can be ex-

ploited in the design and implementation of techniques for the dissemination of multimedia

contents to delay-tolerant clients. We review the literature discussing the relevance and usage

of these in our work.

Multimedia dissemination is a well-researched topic with many mechanisms proposed for

effective and efficient distribution of multimedia data [51][14]. As mentioned, most of the ex-

isting literature treats multimedia applications as soft real time applications where playout of

the content begins as soon as the client requests for the data. Typically, research has focused on

reducing the start-up latency – a small time lag due to buffering at the client to control jitter dur-

ing the playout. In contrast, we are focusing on delay-tolerant multimedia applications, where

client specified delays are used to improve the quality of the multimedia contents delivered.

2.4.1 Network structure

Considering the context of our thesis, our focus is on content delivery networks such as Akamai

[4]. As illustrated in Figure 1.2, a CSP’s core is a mesh network with peer-to-peer (P2P) con-

nectivity between nodes. Note that the P2P connectivity could be structured where Distributed

Hash Tables (DHT) are used to identify peers or unstructured which are ad-hoc in nature. We

refer the reader to [22] for an overview of P2P overlay network schemes.

The distribution network of the CSP is a multicast tree with one of the replica servers in the

CSP’s core network serving as source to clients distributed in that region. Again, multicasting is

a highly researched topic with many protocols and techniques proposed [28][31] for its efficient

implementation.

IP multicast remains popular with researchers but has failed to take off in general, except

for the limited domain of IPTV. Difficulties with IP multicast - capacity planning and traffic

engineering have discouraged ISPs from adopting IP multicast in a big way. IP multicast can

be used to deliver the same stream to multiple users (as in the case of IPTV, specifically live

TV broadcast), where all clients in the multicast tree have the same requirement. In our case

where each client specifies a delay-tolerance requirement, the stream has to be modified to serve

each client with its best possible encoded rate. This can be achieved by an Application Level

Multicast(ALM) implementation.

22

The lack of large scale deployment of IP multicast has led to ALM systems that are built

using the structured P2P overlays. Any of the different P2P overlays and different implemen-

tations of ALM [6] can be used in the delivery networks used in our analysis. Note that in our

ALM implementation, unlike the traditional implementation, each client gets the contents en-

coded at an appropriate rate, taking into account the bandwidth constraints and delay tolerance

requirement of the clients.

2.4.2 Transcoding mechanisms

Typically transcoding refers to a process that converts media from one format to another. Transcod-

ing functionality also includes reducing the encoding rate of a media stream, also referred to as

transrating. For our analysis, we require only the transrating functionality at appropriate relay

nodes in order to serve the clients with different delivered rates. As discussed in Section 1.2.3

in Chapter 1, we use transcoders when the link bandwidths are static and layer encoders when

the link bandwidths are varying. We assume the following two properties for the transcoders:

• Pipelining property: When a transcoding enabled relay node is a RTP/RTSP client as in

[35][36], as the bits are streamed, they go into an in-buffer (large enough to hold bits

required for transcoding) and the transcoded bits are pushed into the out-buffer. This

process is referred to as pipelining. The processing rate is defined as the number of bits

processed by the transcoder per second. As long as this rate is more than Min(bandwidth

of the incoming link , bandwidth of outgoing link), there is no significant latency intro-

duced due to the transcoding process [40]. Thus, the transcoding process can be as-

sumed to be real-time. Also, compressed domain transcoding [42] can improve the speed

of transcoding as it reuses the motion information. Thus, we include a small constant

transcoding latency, the worst-case delay that may result from deploying transcoders in

the relay nodes.

• Concurrent-processing property: A transcoder is capable of transcoding a single incom-

ing stream encoded at ri to multiple outgoing streams simultaneously, having different

rates rj, rk, . . ., where each outgoing rate is less than or equal to ri. The advances in

transcoder technologies have resulted in many products that are capable of real-time

transcoding, such as Dynamic Bandwidth Manager (DBM) from RGB [34] and Explorer

II card [7]. Using compressed domain based approaches concurrent rate adaptations can

23

be efficiently performed. In compressed domain adaptation, the incoming video is only

partially decompressed; rate adaptation is performed in this compressed domain while the

motion information is reused [42]. Compared to the conventional decoding-transcoding-

recoding approach, this approach improves the speed of rate adaptation considerably.

2.4.3 Layering mechanisms

When the link bandwidths are varying, transcoders would be required at every relay node serv-

ing multiple clients, in order to serve them with appropriate rates. A better mechanism would be

to encode the contents in layers such that based on the available bandwidth, clients add appro-

priate layers. Typically, a base layer is mandatory which contains the crucial media data and the

enhancement layers are add on to the base layer, that improve the quality of playout. Note that

(i) the maximum number of layers is bounded and (ii) a minimum amount of data is required to

construct an enhancement layer. Due to these two reasons, in layering, it is difficult to provide

the exact rate (the optimal rate) to every client. There could be some under-utilization of link

bandwidths.

There are two approaches to layering:

• Sender-driven: In this approach, the source is responsible for constructing the layers and

adjusting the layers based on feedback on link bandwidths, from network nodes. Ex-

amples of algorithms that fall in this approach include the source adaptive multi-layered

multicast (SAMM) [47][48][3][2] algorithms, the probabilistic feedback algorithm [5],

and some unicast adaptive algorithms [10] [20].

Sender-driven algorithms have the ability to adjust the encoding rates of the layers and

the number of layers, using congestion feedback based on loss experienced by the client.

This allows for the available bandwidth to be used efficiently. In our analysis for the

scheduled streaming, varying bandwidth case, we assume an end-to-end source adaptive

multi-layered multicast (SAMM) algorithm as discussed in [2]. Suppose bandwidths

are varying over prediction intervals spanning the session duration, for each prediction

interval based on the link bandwidths, the source can adjust the number of layers and

the encoding rate of the layers to best serve the clients. One disadvantage of the SAMM

algorithm is that the algorithm may negatively impact other competing flows, as the layers

are priority marked. Given the context of our problem, a subscription based provisioned

24

network controlled by a CSP, this is not a major concern. This is because, when link

bandwidths are static, constant bandwidths are assumed to be provisioned for the stream

for the duration of the session; when bandwidths are varying, bandwidths are assumed to

remain constant over each prediction interval.

• Receiver-driven: In this approach, the source sends a fixed number of layers encoded

at fixed rates; receivers perform join experiment to add new layers; if they experience

loss, the experiment is a failure. Similarly, a receiver receiving multiple layers may have

to prune itself from the distribution tree for a layer, when bandwidth drops. In this al-

gorithm, receivers have to periodically conduct join experiments, and whenever loss is

experienced, need to perform pruning. Examples of receiver-driven algorithms include:

Receiver-driven Layered Multicast (RLM) [25], Layered Video Multicast with Retrans-

mission (LVMR) [29], and TCP-like congestion control for layered data [49].

In a best effort network, such as the Internet, receiver-driven algorithms can be deployed

as they are friendly to competing data traffic. However, these algorithms have high over-

heads due to the join experiments and pruning.

2.4.4 Caching mechanisms

In our work related to on-demand streaming for the static link bandwidth case, we place stream-

ing servers with transcoding capability at appropriate nodes, termed streaming points. We also

assume caching capability at these streaming points.

Similar research has been done in the context of delivering contents encoded at appropri-

ate format and rate to end users having different devices such as laptops and mobile phones,

having different capabilities to receive multimedia data. Work presented in [39] [40] [41] use

a Transcoding-enabled proxy system to achieve efficient delivery of multimedia contents to di-

verse end-users; Several caching algorithms are proposed. Note that in our work we propose a

simple caching strategy to hold the content in cache for the duration of playout; if the content is

accessed before expiry, its TTL (Time to Live of the content) is reset to the playout duration.

Any of the caching algorithms proposed in these papers can be used in our streaming

servers. These algorithms are especially relevant to our work presented in Chapter 9, where we

deal with buffer management issues when the client devices are memory-constrained.

25

2.4.5 Placement of resources within a dissemination network

There is a large body of work on the optimal placement of resources. We consider some of

these, focusing on works that deal with resources such as transcoders and caches, and discuss

the relationship between them and our solutions.

In our work, in scheduled streaming, static link bandwidth case, we find the placement for

a given number of transcoders, when the number of transcoders is limited. Our objective is to

place the transcoders such that the delivered rates at the clients are maximized. A related prob-

lem is addressed in [9]. This work shows that in a multicast streaming environment, performing

transcoding at intermediate nodes is more efficient than transcoding at the source or clients. In

this respect, this work justifies our claim that placement of transcoding capability at appropriate

relay nodes would increase the effectiveness of the resource usage.

The objective in [9] is to optimally multicast a media stream while delivering it in a suit-

able format to each client. This translates into finding optimal placement for transcoders in a

multicast tree, considering the costs involved. Three cost components considered are: (i) Com-

munication cost of transmitting the streams over the network with appropriate formats, (ii) Cost

of the transcoding operation, and (iii) Storage cost of the multimedia contents. The authors

pose this as an optimization problem, formally described using a novel graph model termed

multi layered mixed graph (MLMG) which is developed in order to better describe the flow of

data over the heterogeneous network. Note that in our work, we consider rate conversions rather

than format conversions. This is in line with our context, where a CSP is responsible for gen-

erating and disseminating content to its subscribed clients. Since we are dealing with a Closed

User Group (CUG) with all client information available to the CSP, we do not worry about

format conversions. However, in Chapter 9, we deal with resource constrained devices, which

may require format conversions to adapt the contents to the device capabilities. Typically, for-

mat conversions are more expensive in terms of processing time compared to rate conversions;

however, such delays can be taken into account by using appropriately reduced δ values, while

computing the delivered rates at the clients.

In summary, [9] deals with the problem of transcoder placement at intermediate network

nodes in order to serve the clients with appropriate format and rate. This work considers a

graph and finds the path with minimal cost to decide placement of transcoders. In contrast, in

our work, given a multicast tree, where the paths from the server to each client are known, our

objective is to maximally utilize the available bandwidth and the delay tolerance to maximize

26

rates delivered to the clients.

In [13], placement of caches at network nodes with the goal of reducing network traffic

and server load is discussed. One of the cases considered is a multicast tree with a single server,

which is the same as the multicast topology we consider. However, the objective of this work is

to minimize the delay at the clients requesting contents. In contrast, we proactively utilize the

delay specified by the client to maximize the delivered rates at the clients. Thus, the methodlogy

used in [13] cannot be used in our context.

Authors of [45] deal with the problem of placing a given number of replicas within a

network, to deliver content to clients within a specified delay bound. Whereas this delay relates

to the time for downloading the contents, in our case, it connotes the delay until the start of

playout of the continuous media content; once playout at the client begins at a certain rate, it

continues without loss of content or reduction in quality till the end of the playout; Further, our

objective is to place the transcoders such that the delivered rates at the clients are maximized.

Even though in specific scenarios, for example, when playout duration is very short, i.e., when

all the content is downloaded before playout starts, the two models converge, the problem we

have at hand calls for solutions that explicitly take the delivery needs for continuous media into

account.

2.5 Summary

In this chapter, we started with a discussion of the factors that affect multimedia dissemination.

We discussed some real-world examples which fall under the delay-tolerant multimedia appli-

cations category to understand the concepts and mechanisms that are relevant. Given the vast

expanse of research performed in this area, we have discussed existing literature relevant to the

context of delay-tolerant applications and mechanisms that can be used in serving the clients in

such applications.

27

Chapter 3

System model and detailed problem

definition

We start this chapter with definitions of the terms and the set of key assumptions that are used

throughout this thesis. We then present the problem definition in detail and trace the flow of

data through the nodes, to understand the functionality required at the nodes to support delay-

tolerant applications. This leads us to specify the architecture of the nodes required to service

delay-tolerant applications.

3.1 Definitions and key assumptions

3.1.1 Definitions

Multicast tree: The network for multimedia dissemination with S as the source serving a set of

geographically distributed clients Cis connected through intermediate relay nodesRis is termed

as the multicast tree. Multicast tree is denoted by Λ. Figure 3.1 illustrates a multicast tree and

its different components.

Source: At the root of a multicast tree is the source, denoted by S.

Relay node: Any intermediate node in the multicast tree is termed relay node, denoted by Ri,

where i is the numerical index of the node.

Client: The leaf nodes in the multicast tree are the clients, denoted byCk, where k = 1, 2, . . . m.

Nodes: The source, relay nodes, and clients make up the nodes in the network. Each node has

28

��
��
��
��

���� �
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

Relay node

Client

Source

Relay nodes with multiple subtrees

Λ
3

Subtree

Λ

Subtree

4Λ

Subtree

2

1
R

2
R

3
R

Figure 3.1: Multicast tree

a unique id.

Links: Links connect nodes to each other. A link that terminates at a node ni is referred to as

the incoming link of ni and a link emanating out of a node ni is referred to as an outgoing link

of ni.

Subtree: A subtree is a portion of a tree that can be viewed as a tree in itself [44]. Any node in

a multicast tree Λ, together with all the nodes below it, comprises a subtree of Λ. The subtree

corresponding to the root node S is the entire tree. Subtrees are referred to by Λm, where m

is the node id of the root of the subtree. With reference to Figure 3.1, there are three distinct

subtrees emanating from S which are marked as Λ2, Λ3, and Λ4.

Path: A set of nodes and links from S to a given client Ci defines the path of Ci, denoted by

p(Ci).

Link bandwidth: Link bandwidth is the actual physical bandwidth available on a given link.

Each link is assigned a unique numerical id. The link bandwidth on link li is denoted by bi.

Network parameters: Network parameters, which are given as input to the algorithms devel-

29

oped in this thesis, refer a multicast tree (network topology) with specific link bandwidths.

Client arrivals: In the context of on-demand streaming, where clients request for contents at

any time, the arrival pattern of client requests are referred to as client arrivals. This is a required

input for the algorithms developed for on-demand streaming.

Base encoding rate: Base encoding rate, denoted by Γ, is the highest rate at which the stream

is encoded and available at the source. In the context of layered encoding, base encoding rate

determines the upper bound on the total encoding rate of all the layers.

Stream rate: Given a stream flowing through a link lj , the rate at which the stream is encoded

currently is referred to as the stream rate, denoted by rj .

Maximum deliverable rate: Maximum deliverable rate is the stream rate that can be deliv-

ered to a client by considering its path from the source in isolation. For a given client Ci, its

maximum deliverable rate is denoted by γmax
i .

Delivered rate: The actual stream rate that is delivered at a client Ci (by considering other

clients that share links in its path and other constraints such as the capability of a node in its

path to transcode or not) is defined as its delivered rate denoted by γi. Note that γi at best is

equal to γmax
i .

Minimum required rate: Each Ci specifies its requirement for a minimum encoding rate for

the stream, denoted by γmin
i .

Delay tolerance: Each Ci specifies its delay tolerance requirement, the time it is willing to wait

for the transmission to start, after connection establishment, denoted by δi.

Start of connection: For a given clientCi, the time ti when the client connects to S and requests

for content is defined as the start of connection.

Start of playout: The start of playout at each Ci is given by (ti + δi), where δi is the delay

tolerance of the client.

Playout duration: The time elapsed between the start of the playout till the end of the playout

at a client Ci is the playout duration, denoted by T . Note that irrespective of the rate at which a

file is encoded, the playout duration remains constant.

End of playout: End of playout at a given Ci happens when the content finishes playing at Ci

30

given by tei = (ti + δi) + T , where T is the playout duration.

Connection duration: The time elapsed between the start of connection ti till the end of the

playout at a client Ci, (ti + δi) + T , is the connection duration. This is given by δi + T .

Start of streaming session: For a given client Ci, the time tsi when transmission starts from S

is the start of the streaming session.

Note that tsi is later than the start of connection ti, when links in p(Ci) are busy; When the links

from S to Ci are free when Ci connects, tsi is equal to ti. Also, tsi is earlier than the start of

playout at Ci. Note that if tsi is greater than (ti + δi), Ci can not be serviced as its requirement

is violated.

Connection busy period: Suppose a client Ci connects at time ti and requests for content.

However, since link/s from the source in the path of Ci is/are busy serving another client, trans-

mission starts from S, say at tj to Ci. Connection busy period is given by (tj − ti).

Session duration: For each Ci the session duration is the time elapsed from the start of the

streaming session tsi to the end of playout at ((ti + δi) + T). In other words,

session duration = connection duration - connection busy period= δi + T − (tsi − ti).

Prediction interval: A prediction interval is the duration of time over which bandwidths avail-

able on links in the network are assumed to remain constant. Note that the prediction interval

spans the session duration when the bandwidth is assumed to be static/provisioned.

Consider an example where link 1 and link 2 are the links shared by clients C1 and C2. Sup-

pose these two links are busy serving C1, C2 waits for these links to become free. Figure 3.2

illustrates the definitions related to connection and session. Table 3.1 and Figure 3.3 illustrate

the actions along the timeline and the connection parameters for the two clients.

3.1.2 Key assumptions

We make the following assumptions:

• Network topology is known and static.

We assume a subscription based network where all the nodes in the network are known.

Examples include networks used for distance education, remote corporate training, movie

31

C 1

C 2

C 1

C 2

t=15 t=30 t=75 t=90t=60t=0 t=135

Playout duration = 60 minutes

Delay tolerance of = 60 minutes

Delay tolerance of = 30 minutes

− Indicates timeline for

− Indicates timeline for

Figure 3.2: Example: Illustration of definitions related to connection, session, and playout

Time Action Comment

t = 0 C1 connects Start of connection for C1

C1’s transmission begins Start of streaming session for C1

t = 30 Playout at C1 begins Start of playout at C1

t = 90 Playout at C1 ends End of playout at C1

End of streaming session for C1

End of connection for C1

t = 15 C2 connects Start of connection for C2

t = 60 Links 1 and 2 are freed; Start of streaming session for C2

C2’s transmission can begin

t = 75 Playout at C2 must start Start of playout at C2

t = 135 Playout at C2 must end End of playout at C2

End of streaming session for C2

End of connection for C2

Table 3.1: Illustration of timeline

Connection duration for C1 = Session duration of C1 = 90 minutes;

Connection busy period for C2 =(60− 15)= 45 minutes;

Connection duration for C2 =(135− 15)= 120 minutes;

Session duration of C2 =(120− 45)= 75 minutes;

Figure 3.3: Connection parameters

32

clubs, etc. Note that different streaming sessions may have different clients participating,

thus the resulting distribution network or multicast tree for each session may be different.

• Buffers are available at all network nodes.

We assume unlimited buffers at the network nodes for the analysis presented in this thesis.

We outline the buffer management issues in Chapter 9.

• The source S has all the information about the network parameters, client arrivals, and

client requirements.

• All nodes have accurate information on the rate at which data is flowing into the node

and the rate at which data is flowing out of the node through each outgoing link.

• All links in the multicast tree support the minimum rate requirement of every client ad-

mitted.

For all our analysis we assume that all n links in the multicast tree have a minimum

bandwidth equal to the minimum rate required by any client in the tree. i.e.,

∀i, i = 1, 2, . . . , n, bi >= γmin
i .

• For the duration of a streaming session, each ΛS (subtree rooted at S) can have only one

stream flowing through its links.

For the on-demand streaming, static link bandwidths case, we assume a provisioned dis-

tribution network, where bandwidths sufficient to support a multimedia stream is available

on every link in the distribution network. While the bandwidth available on the links may

be higher than base encoding rate of a stream, they may not be high enough to support

multiple streams simultaneously. Given that bandwidth is a constrained resource, this

assumption reflects reality.

• Size of multimedia file is (Γ * T).

Maximum size of a content file encoded at a rate Γ having playout duration T is given

by: (Γ *T). Note that this is the worst case assumption. In reality, the size would be

lesser which may lead to under-utilization of the available bandwidths on the links.

• End-to-end transmission delays are negligible.

We assume that transmission delay, propagation delay, and receiver delay which consti-

tute the end-to-end transmission delay are negligible.

33

Typical values for end-to-end delays are of the order of msecs; Client delay tolerance

values are typically several magnitudes higher, in the order of minutes. In practice, when

these delays add up to a significant value, we can reduce the delay tolerance values of

the clients appropriately to take these delays into account. The idea is as follows: The

CSP estimates the end-to-end delay that would be experienced by the clients. This delay

is subtracted from the delay tolerance values specified by the clients to produce updated

delay tolerance values, using which delivered rates are calculated using our algorithm.

If it is not possible to deliver the minimum required rate for any client, that client is not

admitted for the session.

• Source S has transcoding capability. This, as we shall see, is necessary to service clients

with optimal rates without loss.

• Transcoders are capable of transcoding a stream into multiple streams at different rates

simultaneously.

• Client delay tolerance requirements are known.

When a client desires to join a session it sends a request with its requirements: a minimum

acceptable rate γmin
i and its delay tolerance δi, the time it is willing to wait for the transmission

to start while staying connected.

3.2 Detailed problem definition

In this section, we consider the four combinations identified in Chapter 1, Section 1.2.3, and

discuss the problems solved for each of these cases in detail.

3.2.1 Problem 1A: Scheduled streaming, static link bandwidths

We depict the solution approach for the scheduled streaming, static link bandwidths case in

Figure 3.4.

For a given topology and client requirements, quality of playout at the clients can be

improved by leveraging the clients’ delay tolerance. Optimal rates delivered at clients depend

on the (i) number of transcoders and (ii) options available for the placement of these transcoders.

34

Transcoder placement option: refers to the combination of nodes in the network which

can have transcoders. Since S is always assumed to have a transcoder, the basic transcoder

placement option is Source only Transcoding (ST), where other than S , no network node can

have a transcoder. When all the relay nodes have transcoders, the resulting placement option is

Anywhere Transcoding (AT). When only a chosen subset of the relay nodes has transcoders,

we term it as Selected Node Transcoding (SNT).

1. Determining optimal rates delivered at clients for a given transcoder placement option:

Our objective is to develop solutions to find the optimal rates delivered at clients for any

given transcoder placement option, ST, AT, or SNT.

(a) Optimization-based approach: We formulate the problem as an optimization func-

tion, subject to the following three sets of constraints:

i. Rate constraints which bound the lower and upper limits of the encoded rate,

ii. Transcoder constraints that enforce the property of transcoding, viz., the en-

coded rates can only be non-increasing, and

iii. Delay tolerance constraints which enforce the client specified delay tolerance,

to find the maximum rate at which the stream should be played out for each client.

(b) Algorithm based on properties of the network: Given the exponential search

space, as we experimentally show, the optimization based approach can incur com-

putation overheads which make it impractical. We show that it is possible to develop

a two-pass algorithm find opt rates I with O(DC) complexity where D is the num-

ber of levels in the multicast tree and C is the number of clients. This algorithm

finds the optimal delivered rates at clients, for any transcoder placement option, ST,

AT, or SNT. We prove the optimality of the algorithm find opt rates I.

2. Determining optimal number of transcoders and their placement (for transcoder place-

ment option AT): When all relay nodes are transcoder capable, find opt rates I determines

the stream rates flowing through each link in the network and the optimal rates delivered

at the clients. We call these the best delivered rates, when there is no constraint on the

number of transcoders. Even though all relay nodes have transcoders, all of them are

not enabled to serve the clients with the best delivered rates. Our objective is to find the

35

find_opt_rates_I

Redundancy rules

U

Client requirements

Network parameters

2. Given no constraints on the number

of transcoders, find minimum

number required to provide best

delivered rates

stream_rates

find_min_transcoders

find_eligible_nodes

rates at clients

* Stream rates

* number of transcoders

find_super_nodes

find_opt_placement
transcoders

super nodes
O set

* U set
* number of transcoders

find_placement_Max_gain find_placement_Min_loss

Option

* Optimal delivered

* Placement for

Transcoder placement
option

AT option

1. Given a transcoder placement

option, find the optimal delivered

rates at clients

* E set

in E set

1 to use E set

2 to use U set

in U set

* U set
* number of transcoders

in U set

* number of transcoders
in O set

* O set

for n transcoders

q < |O|, find optimal placement

4. Given n transcoders where

n transcoders

q < |O|, find placement for

* Optimal placement for q

q transcoders

find_opt_rates_NR

3. Given n transcoders where

find_opt_rates_NR

Figure 3.4: Overview of solution approach: Scheduled streaming, Static link bandwidths

36

optimal transcoder placement option required to serve the clients with the best delivered

rates.

(a) Using find opt rates I and network properties related to transcoder placement that

detect redundant transcoders, we develop an algorithm find min transcoders that

determines the optimal transcoder placement option required to deliver best deliv-

ered rates to clients. The optimal set of transcoders is referred to as the optimal set,

denoted by O.

(b) We prove that O is the optimal set of transcoders required to provide best delivered

rates at all clients.

3. Determining optimal placement for a given number of transcoders: In practical scenarios,

resources available are limited. Given a number of transcoders q < |O|, we know that

the delivered rates at some clients would be less than their best delivered rates. Our

objective is to place the transcoders such that the decrease in delivered rates across clients

is minimal; i.e., given a limited number of transcoders, we find the placement option that

delivers the best possible rates to clients.

(a) Optimization-based approach: We formulate the problem as an optimization func-

tion subject to the rate constraints and delay tolerance constraints as explained in

1(a). Instead of the transcoder constraints, we specify number of transcoder con-

straint to limit the number of transcoders deployable to the specified value q.

(b) Algorithm based on properties of the network: We also develop an algorithm that

considers all combinations of all the relay nodes in the network for placing a given

number of transcoders. Suppose there areN nodes in the network. The total number

of eligible nodes E that have to be considered for transcoder placement is given by

the expression: E = N−(C+1), whereC is the number of clients. Since we always

have a transcoder at S, we do not include it in the set of eligible nodes. Let |O| be

the optimal number of transcoders required for best delivered rates at the clients as

determined by algorithm find min transcoders discussed in the previous problem.

Given q transcoders, where q < |O|, our objective is to seek a placement which

delivers the best possible rates to clients. Number of possible unique placements is

given by:

37

 E

q

 =
E!

q!(E − q)!

We show that the number of combinations to be considered for determining the op-

timal placement for q transcoders can be reduced to nodes inO under certain condi-

tions. We also determine when nodes outside of O, which are termed super nodes,

must be considered for finding optimal placement for q transcoders. Algorithm

find super nodes determines the additional nodes R1, R2, . . . , Rk to be considered.

We show that optimal placement for q transcoders can be determined by considering

all combinations of q nodes from the set,

U = O ∪ {R1, R2, . . . Rk}, termed the useful set.

(c) Greedy algorithms: Given the exponential complexity of the optimal algorithm

since the number of nodes in the network can be large, we develop two greedy

alternatives: a max-gain algorithm and a min-loss algorithm and evaluate these al-

gorithms.

3.2.2 Problem 1B: Scheduled streaming, varying link bandwidths

When link bandwidths vary over the session duration, we assume a bandwidth prediction mod-

ule that provides an advance estimate of the available link bandwidths over prediction intervals

spanning the session duration. Suppose t0 is the scheduled start of the streaming session; client

requirements are given. The advance estimate provides predicted bandwidths over prediction

intervals spanning (t0 + max(δi)) where δis are the delay tolerance values of the clients. We

summarize the contributions made by this thesis for this case in Figure 3.5.

• Determining optimal rates delivered at clients when the link bandwidths are varying:

1. Optimization-based approach: We formulate the problem as an optimization func-

tion, subject to the following three sets of constraints:

(a) Rate constraints which bound the lower and upper limits of the encoded rate,

(b) Layer constraints that enforce the property of layering, viz., the stream rates

flowing through two consecutive links must be such that the stream rate through

the first link is greater than or equal to the rate flowing through the next one;

38

* Delivered rates
at clients for each PI

* Stream rates for

each PI

* Stream rates through

* Delivered rates
at clients

links

* Stream rates through

* Delivered rates
at clients

links

Average value is

unbiased

Weakest link for each client

remains same with very

small fluctuations in bandwidth

across PIs

Random

Client requirements

Advance estimate of link bandwidths
over prediction intervals

for each link
link b/w =

min(predicted b/ws over
session duration)

find_opt_rates_I

link bandiwdths

avg(predicted b/ws over

link bandiwdths

for each link

link b/w =

session duration)

find_opt_rates_I

find_opt_rates_I

link b/w =
for each PI

link b/ws for PI

at clients for each PI
* Delivered rates

* Stream rates for

base_stream_rate

link_stream_rates

find_base_stream_rate

find_link_stream_rate

for each link

find_delivered_rates

each PI

link_stream_rates

Interval−by−interval

Link−by−link

adj_link_by_link

Nature of bandwidth variation

predicted b/w of PI

available

infrequent

Very small and

Revised estimate

Figure 3.5: Overview of solution approach: Scheduled streaming, Varying link bandwidths

39

note that these constraints are the same as the transcoder constraints as given in

1(a), and

(c) Delay tolerance constraints which enforce the client specified delay tolerance,

to find the maximum rate at which the stream should be played out for each client.

2. Given the exponential complexity of the optimization approach, we explore differ-

ent solutions based on the nature of bandwidth variation. We start with simple ones

that convert the problem to the static bandwidth case such as (i) using the minimum

value of bandwidth predicted over the session duration for each link (ii) using the

average bandwidth over the session duration for each link, and (iii) treating each pre-

diction interval as an instance of static bandwidth case, termed interval-by-interval

algorithm. For each solution we propose, we outline the usefulness of that solution

and its limitations.

Our objective is to maximize the use of available bandwidth to provide clients with

the best possible loss free delivered rates. To this end, we develop a link-by-link

algorithm that considers each link to find the maximum rate supported by the link

without loss. Considering the links in each client’s path, the algorithm determines

the delivered rates at the clients.

We show that the link-by-link algorithm with linear complexity performs close to

the optimal algorithm in finding the maximum loss-free delivered rates at the clients.

3. Adjusting stream rates if revised bandwidth estimates are available: We show how

to use the revised estimate of link bandwidths, if available at the beginning of every

prediction interval, to adjust the delivered rates at the clients; note that the delivered

rates are calculated by the link-by-link algorithm using the advance estimate across

all prediction intervals. We show that this algorithm is effective in exploiting the

available bandwidth on the links over each prediction interval compared to just using

the advance estimate.

3.2.3 Problem 2A: On-demand streaming, static link bandwidths

In the previous two problems, we considered scheduled streaming, where streaming of a given

content starts at time t0 for all clients. Now we consider on-demand streaming where client

requests are handled as and when they arrive. Unlike the scheduled streaming case, transmission

40

find_max_clients

place_streaming_server
* delivered rates at

clients

* number of
serviced clients

1. Given first client in a

subtree, find placement

for streaming server

placement of
streaming server

(Streaming point)

2. Given client arrivals over

observation period, find number

of serviced clients and their

delivered rates

place_streaming_server

Thumb rules for placement

Client requirements
Network parameters

Client arrivals

Figure 3.6: Overview of solution approach: On-demand streaming, Static link bandwidths

from S may not start immediately, if links are busy serving requests from other clients. Thus, a

client Ci connects to the source S at time ti and requests for contents with base encoding rate

Γ and playout duration T ; Ci specifies the time it is willing to wait for the playout to start, its

delay tolerance δi. S admits Ci and services its request with an appropriate rate ri such that

playout at Ci starts at (ti+δi) and ends at ((ti +δi)+T), if ri >= the client’s minimum required

rate γmin
i . We summarize the contributions made by this thesis for this case in Figure 3.6.

• Determining optimal rates delivered at clients when the clients request for contents over

a period of time:

– We assume an observation period over which client request arrivals are monitored.

Network characteristics and client requirements are given.

– Given highly provisioned links in the distribution network, we propose an algorithm

that combines data transfer and streaming mechanisms to efficiently handle requests

for the same contents over a period of time.

Determining appropriate placement for streaming server: Given the arrival pattern of

client requests over the observation period, streaming servers have to be placed at appro-

41

ri

bj

bk

ri

ri

bj

bk

ri
rm

S

R

C

S

R

Case 1: No transcoder at R

C

Case 2: Transcoder at R;

Stream transcoded from

rm

 to

Figure 3.7: Example to illustrate data-flow: Scheduled streaming

priate network nodes in order to maximize number of clients serviced. Using observations

of the network characteristics related to data transfer and streaming, we develop rules for

placement of the streaming servers. These rules are applied in the algorithm for finding

the number of serviced clients and the rates delivered at the clients.

3.2.4 Problem 2B: On-demand streaming, varying link bandwidths

Determining optimal rates delivered at clients over a observation period, given the network

characteristics and an arrival pattern, when the distribution network links are highly provi-

sioned and access network links have varying bandwidths: Using the insights gained from the

analysis for solving Case 1B and Case 2A, algorithms can be designed for this case. Detailed

analysis is not in the scope of this thesis.

3.3 Flow of data through the nodes

In this section, we consider the flow of data for the two service types: scheduled streaming and

on-demand streaming. Based on this discussion, we propose the node architectures to support

these two service types in Section 3.4.

42

3.3.1 Scheduled streaming

Consider the nodes in the network as depicted in Figure 3.7. A stream encoded at ri originates

from the source node S. bj and bk are bandwidths on the links connecting S to the relay node

R and R to client C respectively, as indicated in the figure. We have three types of nodes in

the network: (i) Source node, (ii) Relay node, and (iii) Client node. In the scheduled streaming

case, a relay node can be of two types: (i) capable of transcoding/layering and (ii) not capable

of transcoding/layering.

With reference to the Figure 3.7, we trace the flow of data through the nodes below:

•• Let ri be the maximum encoded rate of the stream required by clients in the multicast tree,

as computed by find opt rates I. Note that ri is at best equal to Γ. When ri < Γ, the source

S transcodes the stream to ri. Thus, data rate of the stream is ri for S and the outgoing

data rate depends on the bandwidth of the outgoing link from S. In our example, bj is the

bandwidth of the outgoing link from S.

• Consider the relay node R. Data flows into R at bj kbps and flows out of R at bk kbps.

When R has no transcoder, the stream rate ri remains unchanged, as shown in Case 1 in

Figure 3.7. Based on the bandwidths on the incoming and outgoing links, bk kbps is sent

out of the buffer at R and the remaining data is maintained in the buffer.

Suppose the transcoder atR transcodes the stream from ri to rm, where rm is the delivered

rate at C, as shown in Case 2 in Figure 3.7.

• Data flows at a rate bk kbps into the client C. The data is played out at the encoded rate

ri starting at (t0 + δ), where t0 is the start time of the transmission and δ is the delay

tolerance of C. Hence the data is buffered at C till the start of playout. The stream is

played out using a media player application at the client.

Note that every node requires buffering capability. The source and some relay nodes have

transcoding/layering capability. The client needs capability to re-assemble the stream to play it

out at the encoded rate. We look at each of these capabilities and discuss the components that

provide the capability to the node.

43

Buffer: Storing capability

The buffer is a simple First in First out (FIFO) mechanism which is available on every node

in the network. All the data flowing into the node passes through the buffer. The amount of

data supported by the outgoing link is continuously sent out and the remaining data stays in the

buffer. When bandwidths are varying, the encoding rate of the stream varies over the prediction

intervals. Encoding rate of the stream over a given prediction interval may be less than, equal

to, or more than the bandwidth available on the outgoing link. Irrespective of these variations,

the buffer follows the first in first out order to send data at a maximum rate sustainable, given

the bandwidth available on the outgoing link.

Transcoder/Layer encoder: Transrating capability

As defined in Chapter 1, transrating refers to decreasing the encoding rate of a stream without

changing its encoding format. The maximum amount of data that can flow into a node depends

on the bandwidth of its incoming link and maximum data that can flow out of a node depends on

the bandwidth of its outgoing link. However, a stream can be encoded at a rate higher than the

bandwidths of a node’s incoming and outgoing links. When a node serves multiple clients with

different delivered rates, the node can reduce the stream rate appropriately to serve the clients

with their delivered rates. When ni is transcoder capable, we assume a real-time transcoder

that appropriately reduces the stream rate before sending it through the outgoing link. When ni

is layer encoding capable, we assume a layering mechanism that appropriately drops layers to

ensure loss free transmission through the outgoing link.

Suppose ni serves multiple clients C1 and C2. Let ri be the delivered rate at C1 and rj

be the delivered rate at C2, where ri > rj . When node ni has a transcoder or layer encoder

functionality built in, C1 is served with a stream encoded at ri and the rate of the stream is

reduced from ri to rj to serve C2.

Media player: Streaming capability

Let node ni be a client; suppose data is flowing into ni at a rate bk. Let ri be the delivered rate

at ni. Data flowing into ni is buffered till the start time of playout given by: (t0 + δ), where t0 is

the start time of the transmission and δ is the delay tolerance of the client. Data is stored in the

buffer in the order of arrival as discussed in the previous section. Starting at (t0 + δ) the stream

44

r
jr

i

r
i

r
j

TRANSCODER

<

r
jr

i

r
i

r
j

r
i

r
b

r
1= + r

b
r
j<

LAYER ENCODER

=

Figure 3.8: Resource used

is played out encoded at rate ri and transmission ends at (t0 + δ+T). The media player fetches

data from the buffer and streams the data at the appropriate encoded rate.

Figure 3.8 depicts the architecture of the transcoder/layer encoder component; buffer and

media player are presented as part of the node architectures.

3.3.2 On-demand streaming

Consider the nodes in the network as depicted in Figure 3.9. A stream encoded at ri originates

from the source node S. bj and bk are bandwidths on the links connecting S to the relay node

R and R to the streaming relay node Rst respectively, as indicated in the figure. We have four

types of nodes in the network: (i) Source node, (ii) Relay node, (iii) Relay node with streaming

server, and (iv) Client node. With reference to Figure 3.9, we trace the flow of data through the

nodes below:

• Let ri be the maximum encoded rate of the stream, as computed by find opt rates I. Note

that ri is at best equal to Γ. When ri < Γ, the source S transcodes the stream to ri. Thus,

data rate of the stream is ri for S and the outgoing data rate depends on the bandwidth of

the outgoing link from S. In our example bj is the bandwidth of outgoing link. Suppose

bj is much greater than Γ. S does the following:

– invokes algorithm place streaming server and identifies the relay node where stream-

ing server is placed. With reference to Figure 3.9, let Rst be the relay node chosen

for streaming server placement.

– invokes the data transfer mechanism and sends the data at the best possible loss-free

45

ri

bj

R

bm

C

S

rj

streaming server

 are much

greater than α

bj

st
R : Relay node with

R
st

b
m

,...,

Figure 3.9: Example to illustrate data-flow: On-demand streaming

rate based on the bandwidths of links from S to Rst. In our example data transfer

happens at a rate = min(bj, . . . , bm). Let this rate be bk.

• Consider the relay node Rst. Data flows into Rst at bk kbps. Rst streams the data at ri

to Ci. In addition, Rst maintains the contents in a cache to serve future requests for the

same contents when the links from S to Rst are busy. Note that Rst requires transrating

capability to serve requests for the same content from other clients.

Based on the above discussion, we outline the additional capabilities required at the nodes for

on-demand streaming in the next sections.

Data transfer mechanism: Packetizing capability

Since S has the information on the placement of streaming server and the available bandwidths

on the links from itself to the node with streaming server, it invokes a data transfer mechanism

to send the data at an appropriate loss-free rate. The data transfer mechanism packetizes the

data such that the highly provisioned links from S to Rst are utilized maximally.

46

Storage for future use: Caching capability

Each relay node chosen for streaming server placement termed a streaming point, has caching

capability. The content stream is cached at this node while being streamed to the requesting

client. A simple Time To Live of Content (TTL) mechanism can be used to evict the contents

from the cache. Details are provided in Chapter 7.

3.4 Node architectures

In this section, we present the architectures of the network nodes based on our discussion of

dataflow through these nodes. We present the node architectures for the scheduled streaming

case and then provide the architecture for the nodes for on-demand streaming.

3.4.1 Node architectures for scheduled streaming

Considering the dataflow for the scheduled streaming as discussed in Section 3.3.1, architecture

of the nodes to support the dataflow are presented in this section.

Source node architecture for scheduled streaming

A source node uses the following basic components: (i) Transcoder/Layer encoder and (ii)

Buffer. Architecture of source node is presented in Figure 3.10.

Relay node architecture

A relay node that has no transcoder/layer encoder consists of the buffer to transmit the data

without loss. When a relay node has the additional resource of a transcoder or a layer encoder,

it can reduce the encoded rate of the stream before sending the data through its outgoing link.

Relay node architectures with and without the transcoder/layer encoder functionality are pre-

sented in Figures 3.11 and 3.12 respectively.

Client node architecture

Playout at a client starts only after δ time units, the delay tolerance specified by the client from

the start of transmission. Thus, even though data starts flowing into the client node at time t0,

47

r i

ri

Buffer

bj

bjr i <

r i

Runs algorithms to determine

* stream rates through links

* delivered rates at clients

* placement of resources

CSP Tool: TOPRATES
(for scheduled streaming)

jb

<

No

α

Yes

Yes No

T

R

A

N

S

C

O

D

E

R

L

A

Y

E

R

E

C

N

O

D

E

R

1

2

b/w static

SOURCE NODE

α : original stream rate
(Base encoding rate)

i

jb

r : stream rate through outgoing link from S

: available bandwidth on outgoing link from S

1. When the stream rate required by clients

in the subtree is less than α

−− Reduce stream rate by transcoding or layering

2. Maxium data that can flow through outlink is:

the link is under−utilized

When and the buffer is empty,

Figure 3.10: Source node architecture for scheduled streaming

RELAY NODE

Buffer

ib

jb

Figure 3.11: Relay node architecture

48

Buffer

r i

bj

r j r i

rj

r j r i

bjr j

<

No

Yes

Yes No

T

R

A

N

S

C

O

D

E

R

L

A

Y

E

R

E

C

N

O

D

E

R

1

b/w static

RELAY NODE

(with Transcoder/Layer encoder)

2

−− Reduce the stream rate

2. Maxium data that can flow through outlink is: bj

1. When the stream rate required by clients

in the subtree , is <

<when and the buffer is empty, the link

is under_utilized

Figure 3.12: Relay node with transcoder/layer encoder

49

bk

bk

ri

Media player

bk

Buffer

Yes

No

− Bandwidth on incoming link

− Delay tolerance of client

− playout rate of the stream

 δ

CLIENT NODE

YesNo

Is buffer
empty?

Start transmission

Is start_time

) δ

r i

= (t +0

Figure 3.13: Client node architecture

data is buffered till (t0+δ). Playout at the client node starts at (t0+δ) using the player application,

which streams the data at the appropriate encoded rate.

Figure 3.13 depicts the architecture of a client node.

3.4.2 Node architectures for on-demand streaming

As discussed in Section 2.2.2, for on-demand streaming, additional data transfer functionality

is required at the source node. Note that relay nodes have architectures as presented in Figure

3.11. However, there are special relay nodes where streaming servers are placed. Each of these

nodes has caching capability. We present the architecture for the source node and relay nodes

with streaming server in this section. The client node architecture is similar to the scheduled

streaming case as presented in Figure 3.13.

Source node architecture for on-demand streaming

In on-demand streaming, the source node has an additional function to packetize the data appro-

priately to maximally utilize the bandwidths on the links from S to the streaming point without

loss. Source node architecture required to support on-demand streaming is given in Figure 3.14.

50

streaming
from S?

r i

rmin

ri

ri

Buffer

b1

r i jb

r i

 min()jb

jb j = 1, 2, ...,n

from source to the streaming
point

s,

: available bandwidths on links
No send control message

α : original stream rate
(Base encoding rate)

Yes

* placement of resources

* delivered rates at clients

* number of serviced clients

CSP Tool: TOPRATES
(for on−demand streaming)

Runs algorithms to determine

is
<

No

Yes
reject client

<

No

α

Yes

Yes No

T

R

A

N

S

C

O

D

E

R

L

A

Y

E

R

E

C

N

O

D

E

R

b/w static

No

Yes

SOURCE NODE

is
< min()

?

to streaming point

i
r : stream rate through outgoing link

from S

Packetize and

transmit

Figure 3.14: Source node architecture for on-demand streaming

51

r i

T

R

A

N

S

C

O

D

E

R

L

A

Y

E

R

E

C

N

O

D

E

R

Buffer

rk

rk

jb

r
k

RELAY NODE

(with Streaming server)

jb

ri

bk

kr

rk r i

kb

rk bk

<

No

Yes

Yes No

b/w static

: stream rate through outlink

from source to the streaming
point

1

, j = 1, 2, ...,ns

data packetscontrol message
to stream from cache at

: available bandwidths on links

* update TTLC

* update TTLC
* cache stream

at rate min()

2

1. When the stream rate required by clients

−− Reduce stream rate by transcoding or layering

2. Maxium data that can flow through outlink is:

the link is under−utilized

in the subtree <

<When and the buffer is empty,

* get stream encoded at from cache

Figure 3.15: Relay node with streaming server

52

Architecture of relay node with streaming server

Relay node with streaming server requires the following additional functionality: (i) stream the

packetized data flowing in, at appropriate rate through the outlink, while caching it (ii) when

a control message is received, stream the data at appropriate rate from the cache. Figure 3.15

depicts the architecture of a relay node with a streaming server.

3.5 Summary

In this chapter, we provided the definitions of the terms used throughout this thesis and listed

the key assumptions made. We provided detailed definition of the problem and presented an

overview of the data flow for the two service types we consider: Scheduled streaming and

On-demand streaming. We discussed the architecture of the nodes required to support the two

service types. This chapter provides the system model in a nutshell before we proceed to discuss

each sub-problem in detail in the next sections.

53

Chapter 4

Determining optimal delivered rates at

clients
(Scheduled streaming, Static link bandwidths)

4.1 Introduction

For a given topology and client requirements, optimal rates delivered at clients depend on the (i)

number of transcoders and (ii) placement of these transcoders. As discussed in Section 1.3.1,

there are three transcoder placement options, viz. Source only Transcoding (ST), Anywhere

Transcoding(AT), and Selected Node Transcoding (SNT) [17]. These refer to the combination

of nodes in the network which can have transcoders. Note that we can have the following cases:

1. Unlimited number of transcoders, all nodes available for placement – This case is equiv-

alent to AT. Note that when all network nodes are capable of transcoding, the delivered

rates at the clients are the best delivered rates for the given network topology and link

bandwidths. Our objective is to find these best delivered rates at clients and the minimal

placement of transcoders to deliver the best delivered rates.

2. Unlimited number of transcoders, Limited nodes available for placement – This case

arises when the CSP does not have access to some of the relay nodes in the network or

when some relay nodes cannot be equipped with transcoders. Our objective is to find the

optimal delivered rates at clients for a specific choice of relay nodes having transcoders.

This case is an instance of SNT.

3. Limited number of transcoders, all nodes available for placement – In this option, for a

54

given number of transcoders, we can decide on their placement anywhere among the relay

nodes. Our objective is to find an optimal placement that delivers the optimal rates. This

case is also an instance of SNT.

4. Limited number of transcoders, Limited nodes available for placement – In this case the

CSP has access only to some relay nodes to place a specific number of transcoders. Our

objective is to find an optimal placement among the available nodes for placement that

maximizes the delivered rates across clients. This case is handled as a special case of (3).

We convert the objectives defined for these cases into the following questions that define

the scope of Problem 1A:

1. Given a multicast tree and client requirements, what are the optimal delivered rates at

which the clients can be serviced for a given transcoder placement option?

2. In order to provide the clients with the best delivered rates

(a) How many transcoders are needed?

(b) Where should the transcoders be placed?

(c) What rate conversions should these transcoders perform?

3. Given a limited number of transcoders, where should these be placed such that the deliv-

ered rates across all clients is maximized?

We address the first question in this chapter. Questions 2 and 3 are discussed in Chapters

5 and 6 respectively.

Our initial focus is on establishing that client specified delay tolerance can be leveraged

to improve the delivered rates at clients. We develop an optimal algorithm to find the delivered

rates at the clients. By modifying the algorithm slightly to eliminate redundant transcoders,

we find the optimal transcoder placement to deliver the optimal delivered rates. In all our

formulations, we first devise an optimization function for the following reasons: (i) to see if

a readily available optimization framework can be used (ii) to compare the results of our al-

gorithm. Whenever we found the optimal solution to be computationally expensive, we have

devised other greedy alternatives.

55

S

512

1

384

2

C
1R1

R 2
128

C 3

256

C 2

3

256

4 5

Figure 4.1: An illustrative example

4.1.1 Optimal rates for different placement options: An illustrative ex-

ample

Source S is streaming contents to clients C1, C2, and C3 connected through links 1 to 5, with

bandwidths in kbps as indicated in Figure 4.1. Let the base encoding rate of the file, Γ be

512 kbps and the duration of the playout, T be 1 hour. We assume the same minimum rate

requirement for all three clients: a minimum rate of 128 kbps. Our objective is to provide the

best possible rates to clients in this network without any loss. We consider the following cases:

1. Source Transcoding (ST), where only the source is capable of transcoding, assuming

zero delay tolerance: Clients require immediate playout without loss (delay tolerance

= 0). In this case, the bandwidth of the weakest link in a client’s path determines the

maximum deliverable rate at that client. Bandwidths of the weakest links in the paths

from S to C1, C2, and C3 are 384 kbps, 256 kbps, and 128 kbps respectively. C1 gets

384 kbps while both C2 and C3 get 128 kbps as they share the first link, and since no

transcoding is possible in the relay nodes.

2. Source Transcoding (ST) considering clients’ delay tolerance of 30 minutes: Suppose

buffers are available in the network nodes. While the bandwidth of the weakest link in a

client’s path determines the rate at which data can be sent, now extra time is available to

collect the data at this rate. Thus, when the clients are willing to wait for 30 minutes, the

following are the maximum deliverable rates at the clients: C1: 512 kbps, C2: 384 kbps

and C3: 192 kbps (We find the amount of data that can be buffered given the extra time of

30 minutes to arrive at the maximum deliverable rates at the clients. A formal discussion

56

Case Delivered rates

C1 C2 C3

ST when δ = 0 384 128 128

ST when δ = 30 512 192 192

AT when δ = 30 512 384 192

SNT when δ = 30 512 384 192

Table 4.1: Delivered rates for different transcoder placement options

is presented in Section 4.3.1). C1 gets 512 kbps, being a client directly connected to the

source. However, in ST, as no transcoding is possible in the relay nodes, both C2 and C3

get 192 kbps.

3. Anywhere Transcoding (AT), where transcoding capability is available at all relay

nodes, considering clients’ delay tolerance of 30 minutes: C1 still gets 512 kbps, its

maximum deliverable rate, and C2 gets 384 kbps as R1 transcodes the stream from 512

kbps to 384 kbps for C2. C3 gets 192 kbps. However, when transcoders are available both

at R1 and R2, there may be redundant use of transcoders to deliver 192 kbps to C3. In this

example, two transcoders are used; R1 converts stream from 512 to 384 kbps, R2 from

384 to 192 kbps.

4. Selected Node Transcoding (SNT), where transcoding capability is provided only

at selected nodes, considering clients’ delay tolerance of 30 minutes: By restricting

transcoding capability only to R1, we can still deliver the same rates at the clients as in

(3) while reducing costs, assuming that R1 can simultaneously transcode the incoming

stream at 512 kbps to two streams encoded at 384 kbps and 192 kbps to serve C2 and C3

respectively.

Delivered rates at the clients for the four transcoder placement options discussed above are

presented in Table 4.1.

From the above example, it can be seen that the delivered rates at clients depend on the

placement of transcoders. Our objective is to develop a solution that determines the optimal

delivered rates at clients in a multicast tree when a specified subset of the relay nodes is enabled

with transcoders.

57

Optimization function:

Maximize delivered

rates across clients

Max. rate through a link

Theorem 2.1

Theorem 2.2

Max. deliverable rate at client

find_opt_rates_I

Algorithm

Optimization−based approach

at clients

optimal delivered rates

Algorithm based approach

Delay tolerance constraints

Transcoder constraints

Rate constraints

at clients

optimal delivered rates

Network parameters

Client constraints

Transcoder
placement option

Figure 4.2: Overview of solution approaches: Chapter 4

4.1.2 Overview of solution approaches

We start with an optimization formulation to find the optimal delivered rates at clients, given

a specific transcoder placement option. We solve it using the optimization toolbox of Matlab

[24]. We experimentally show that the optimization based approach can incur computation

overheads which make it impractical. Hence we develop algorithmic alternatives.

To this end, we present two theorems; Theorem 4.1 determines the maximum stream rate

that can flow through a link and Theorem 4.2 quantifies the maximum deliverable rate at a

client when the client is considered in isolation. Using these theorems, we develop an iterative

algorithm find opt rates I that computes the optimal delivered rates at clients for any given

transcoder placement option. We prove the optimality of this algorithm. Figure 4.2 provides an

overview of solution approaches presented in this chapter.

4.2 Optimization-based approach

We formulate our objective of maximizing delivered rates across all clients in the network as an

optimization problem, where paths from source to every client in the network are considered.

58

Objective function: Minimize ∀k, k = 1, 2, . . . m,
∑

k (Γ− rk)2,

where m is the number of clients in the multicast tree.

Constraints:

Rate constraint: ∀i, i = 1, 2, . . . n, ri <= Γ,

where n is the number of links in the multicast tree.

Transcoder constraint: ∀ni: ni has a transcoder and ri is the incoming stream rate and

rj is the outgoing stream rate, ri >= rj .

Delay tolerance constraint: ∀k, k = 1, 2, . . . m, Lk <= δk, where Lk is the

latency incurred in the path from S to Ck, due to buffering and transcoding.

Figure 4.3: Optimization function

Let n be the number of links in the network and m be the number of clients. Suppose Γ is the

base encoding rate and T is the playout duration of the content.

The optimization function formulated using the fmincon function from the optimization

toolbox of Matlab is presented in Figure 4.3. We explain the optimization function and the

constraints below.

Design variables: Stream rates ris flowing through links lis.

Objective function: Maximize delivered rates at the clients, written as:

Minimize ∀k, k = 1, 2, . . . m,
∑

k (Γ− rk)2, where and r1, r2, . . . rm are the rates delivered at

the clients.

Choice of objective function: Since transcoding is a process where encoded rates can

only be reduced, we choose to maximize the stream rates through every link in the network.

Our objective is to minimize the variance between the chosen values while finding the optimal

delivered rates at the clients. Hence, we use the square function rather than the linear function

which will minimize the mean.

Constraints:

• Rate constraint: This constraint ensures that the stream rate flowing across any link in

the network is bounded by Γ, which is the highest possible stream rate. ∀i, i = 1, 2, . . . n,

ri <= Γ.

59

n
1

n
2

kC

S

Figure 4.4: Example to illustrate transcoder constraint

• Transcoder constraint: This constraint captures the property of transcoding, i.e., the

incoming stream rate at a transcoder is greater than or equal to its outgoing rate.

Consider a client Ck having links l1, l2, l3 in its path from the source S connected by

nodes n1 and n2 as shown in Figure 4.4. Let r1, r2, r3 be the stream rates flowing through

links l1, l2, l3 respectively. Let both the nodes n1 and n2 in the path of Ck from S have

transcoders. In this case, the following conditions hold: r1 >= r2; r2 >= r3.

Consider the case when only one relay node in p(Ck) from S is capable of transcoding.

Suppose node n1 is capable of transcoding and node n2 is not capable of transcoding. In

this case, the following conditions hold: r1 >= r2 and r2 = r3.

Thus, through an appropriate combination of the equality and inequality constraints on the

stream rates flowing through the links, we can emulate any transcoder placement option.

• Delay tolerance constraint: This constraint ensures that the client specified delay tol-

erance δ is not exceeded while delivering enhanced rate to the client. It is specified as:

∀k, k = 1, 2, . . . m, Lk <= δk, where Lk is the latency incurred in the path from S to Ck,

due to buffering and transcoding. We derive the expression for Lk below.

As explained in Section 2.1.2, we assume the end-to-end transmission delays to be negli-

gible; when they are significant, the delay tolerance value of the client can be reduced appro-

priately to take these delays into account. There are two other significant factors that contribute

to Lk, the latency incurred in the path from S to a client Ck : (i) the latency introduced due to

buffering, Lb
k, when a stream encoded at a higher rate is flowing through a link having lesser

60

bandwidth, and (ii) latency introduced due to transcoding in the relay nodes, Lt
k. Thus, we have

the expression,

Lk = Lb
k + Lt

k (4.1)

We consider each component of Lk.

In order to provide loss-free transmission to Ck, the highest rate at which data can be sent

depends on the bandwidth of the weakest link bw, in p(Ck) from S. The total amount of data

that can be delivered to the client per second, rk is: (bw + (bw ∗ δk)/T), where δk is the delay

tolerance of Ck. (A formal theorem is presented in Section 4.3.3) . Given the delivered rate rk

at a client Ck and the bandwidth of the weakest link in its path bw, the expression for latency

due to buffering can be derived by substituting Lb
k for δk in the above expression and solving

for Lb
k.

Lb
k = ((rk − bw)/bw) ∗ T (4.2)

As explained in Chapter 2, due to the real-time nature of the transcoding process and the

pipelined property of streaming, irrespective of the number of transcoders used in the path of a

client, we assume the transcoding latency to remain constant. Thus, we include a small constant

transcoding latency Lt
k, the worst-case delay that may result from deploying transcoders.

As mentioned, we implemented the optimization function using fmincon from the opti-

mization toolbox of Matlab to find the optimal delivered rates at the clients. Function fmincon

uses Sequential Quadratic Programming (SQP) optimization method [38]. It is a gradient de-

scent based search algorithm in the continuous search space. It starts from an initial point and

usually converges to a constrained local optimum close to the initial point.

Complexity of the optimization formulation

Considering our optimization formulation, suppose we have an average of n links in the path of

each client, in the worst case the optimizer solves the problem by trying all possible values for

the q distinct values corresponding to the stream rates that flow across the links. A total of nq

computations are needed to find the delivered rates at a given client. For example, if there are

20 links in the path a client, with the stream rates flowing through each link taking at minimum

one of 15 possible values, the search space is of the order of 2015.

61

4.3 Effect of delay tolerance on stream rates through links

Our objective is to find the loss-free delivered rates at clients in a multicast tree given: (i)

client requirements and (ii) a transcoder placement option. The following parameters affect the

delivered rates at clients:

1. Bandwidth of the weakest link in a client’s path.

2. Delay tolerance of the client.

3. Nature of links in a client’s path – whether a given link is shared or not.

4. Resources available in the nodes in a client’s path – whether a given node is capable of

transcoding or not.

In order to develop an optimal algorithm that finds the delivered rates at clients for any

transcoder placement option, we need to understand the impact of these parameters on the

stream rates that flow through the links in the multicast tree.

In this section, we present an analysis on the impact of delay tolerance on the rates deliv-

ered at the clients. We first present a lemma that captures the impact of delay tolerance on the

stream rate that flows through a link that is not shared. We then present two theorems: the first

generalizes the lemma to find the upper bound on the stream rate that can flow through any link

in a multicast tree; the second finds the maximum deliverable rate at a client considering the

client in isolation.

4.3.1 Maximum stream rate through an unshared link

We first consider a link that is in the path of a single client, to understand the effect of delay

tolerance on the maximum stream rate that can flow through the link without loss.

Lemma 4.1: Consider a link li having bandwidth bi in the path of a client Ck from the source

S as shown in Figure 4.5. The maximum stream rate that can flow through li for a loss-free

transmission across that link is given by:

ri = bi ∗ (1 + (δk/T)) (4.3)

where δk is the delay tolerance of Ck and T is the playout duration of the contents.

62

b
il i

S

kC

Figure 4.5: Determining stream rate through an unshared link

Proof:

In order for the stream to flow across li without loss, the stream has to be encoded at most at

bi, when δk = 0. Given the additional time δk, (δk × bi) additional bits can flow across li over

time T . Thus, the additional amount of data that can flow through li per second is (δk × bi)/T .

Hence, the maximum rate that can flow through li without loss is given by: ri =bi×(1+(δk/T)).

2

4.3.2 Maximum stream rate through any link

Lemma 4.1 provides the stream rate that can flow through a link, considering the link in isola-

tion. When a link is shared, maximum stream rate that can flow through the link depends on the

delay tolerance values of the clients sharing the link, to provide loss-free playout at the clients.

We generalize Lemma 4.1 to find the maximum stream rate that can flow through any link,

shared or not, to provide loss-free playout at the clients. Although this theorem is intuitively

obvious, we provide a formal statement and proof, for the sake of completeness.

Theorem 4.1:

Consider a link li having bandwidth bi in the path of one or more clients C1, C2, . . . Cm. rmax
i ,

the maximum stream rate that can flow through li is given by:

rmax
i = bi ∗ (1 + (δp/T)) (4.4)

where δp = min(δk), δks are the delay tolerance values of Cks, k = 1, 2, . . . m.

Proof:

63

We use induction to prove this theorem.

• Base case: Consider the case when li is in the path of a single client Ck. Let δk be the

delay tolerance of Ck. By Lemma 4.1, the maximum stream rate that can flow through li

is given by:

bi ∗ (1 + (δk/T)). Since Ck is the only client served by link li, δp = min(δk) = δk.

• Hypothesis: Now consider the case when li is the shared link in the path of clients

C1, C2, . . . Ck. Equation 4.4 holds when clients C1, C2, . . . Ck share the link.

• To prove: We need to prove that Equation 4.4 also holds when the link is shared by clients

C1, C2, . . . Ck+1.

• Let δk+1 be the delay tolerance of client Ck+1. If δk+1 > δp the equation is not affected.

Let δk+1 < δp. Suppose the stream is encoded at bi ∗ (1 + (δp/T)), client Ck+1 would

experience lossy playout. In order for all clients to experience loss-free playout, the

stream needs to be encoded at min(δ1, δ2, . . . δk+1) = δk+1. Hence the maximum stream

rate that can flow through li is bounded by bi ∗ (1 + (δp/T)). 2

4.3.3 Maximum deliverable rate at a client – when considered in isolation

We considered a single link thus far. In this section we consider a set of links that are in the path

of a client from the source. We derive the expression for the upper bound on the delivered rate

at a client, maximum deliverable rate, considering the links in its path in isolation. Given that

we have three types of nodes, source, relay, and client, we first consider a simple topology with

one of each type of node. We refer to this three-node topology as the basic block presented in

Figure 4.6.

Theorem 4.2:

Given a source S serving a client Ck connected through a set of relay nodes R1, R2, . . . Rn and

links l1, l2, . . . ln+1 having bandwidths b1, b2, . . . bn+1. Maximum deliverable rate γmax
k at Ck is

given by:

γmax
k = bw ∗ (1 + (δk/T)) if bw ∗ (1 + (δk/T)) < Γ

= Γ otherwise; (4.5)

where bw = min(b1, b2, . . . bn+1), bandwidth of the weakest link in p(Ck) and T is the

playout duration of the content having base encoding rate Γ.

64

S
l 1

b1

l 2

b2

b1 b2 l 1 l 2

S: Source

R: Relay node

C: Client

: Bandwidths on links

R C

Figure 4.6: Basic block

Proof:

We use induction to prove this theorem. We consider Part 1 of the equation.

• Base case: Consider the basic block, having a path S–R-C as shown in Figure 4.6. With-

out loss of generality, let l1 be the weakest link such that min(b1, b2) = b1;

To provide loss free playout, the stream has to be encoded at b1, when the delay tolerance

is zero. Given δk, by Lemma 4.1, a maximum rate of b1 ∗ (1 + (δk/T)) can flow through

link l1 to provide loss-free playout to Ck. Hence,

γmax
k = b1 ∗ (1 + (δk/T)).

• Hypothesis: Consider a path S–R1–R2–. . . -Rn–Ck, having bandwidths b1, b2, . . . bn+1.

Part 1 of equation 4.5 holds for this path.

• To prove: We need to prove that part 1 of equation 4.5 also holds for the path: S–R1–R2–

. . . -Rn– Rn+1–Ck.

Let min(b1, b2, . . . bn+1) = bw.

When an additional node is inserted into the path, it introduces one additional link, ln+2.

Let bn+2 be the bandwidth of this link. If bn+2 >= bw, part 1 of equation 4.5 does not

change since bw remains the bandwidth of the weakest link. However, when bn+2 < bw,

if bw is used to calculate γmax
k , this rate cannot be supported by ln+2 without loss. Thus,

in order for Ck to receive loss-free transmission, the maximum encoded rate is bounded

by bn+2, which is min(b1, b2, . . . bn+2), the new bw. Hence we have,

γmax
k = bw ∗ (1 + (δk/T)).

• Suppose γmax
k > Γ. Given that Γ is the best possible rate at which the stream can be

delivered, γmax
k = Γ, as in part 2 of equation 4.5. 2

65

l i

Ri

Cj
Ck

Figure 4.7: Clients sharing a link

Corollary 4.1:

The maximum deliverable rate γmax
k determined using Theorem 4.1 is the upper bound on the

delivered rate to client Ck. i.e., γmax
k is the upper bound on rk.

Proof:

Consider clients Cj and Ck sharing a link li as shown in Figure 4.7. Let rj and rk be the max-

imum deliverable rates at Cj and Ck as calculated by Theorem 4.1. Without loss of generality,

let rj < rk. Note that a single stream serves both Cj and Ck flowing through the common link

li.

• When there is no transcoder in relay node Ri, rk cannot be chosen as the encoding rate

for the stream as Ck will experience lossy playout. Hence rj is chosen so that both the

clients are served without loss. Note that while Cj gets its maximum deliverable rate rj ,

Ck also gets rj , which is less than its maximum deliverable rate rk.

• When a transcoder is available at Ri, stream encoded at rk is delivered to Ck. Using the

transcoder at Ri stream is transcoded to rj and delivered to Cj .

Extending the logic to any number of clients sharing one or more links, a client at best can

get the maximum deliverable rate as calculated by Theorem 4.1. Thus, for any client Ck,

rk <= γmax
k . 2

The theorems discussed so far help us to develop an efficient iterative algorithm find opt rates I

for finding the optimal rates delivered at the clients for a given transcoder placement option.

66

4.4 An iterative algorithm to find optimal rates delivered at

clients

In this section, we discuss algorithm find opt rates I in detail. Before we discuss the algorithm,

we take the same example as in Figure 4.1 and illustrate the variables and data structures used

in the algorithm. These variables and data structures are also used for all the algorithms that we

have developed in this thesis.

4.4.1 Variables and data structures used

The network topology is specified as a n × n matrix, where n is the number of nodes in the

network. An entry M(i,j) provides the bandwidth available on the link between nodes i and

j. M(i,j) is 0, when nodes i and j are not directly connected. Client requirements include the

minimum rate requirement and delay tolerance requirement of each client. In addition to these

two global parameters, transcoder placement option is given as input to the algorithm. The

algorithm determines the stream rates flowing through the links and the delivered rates at the

clients. The input and output variables and the global constants are described in Figure 4.8.

We take the example of Figure 4.1 to illustrate the input and output variables and the global

constants, presented in Figure 4.9. Data structures accessed as global variables are described in

Figure 4.10. Illustrations of these data structures for the example are presented in 4.11.

4.4.2 Algorithm for pass 1

The algorithm uses two passes. In the first pass, the algorithm starts with links from the leaf

nodes of the multicast tree. For each link, the maximum stream rate that can flow through that

link without loss is determined. Note that the maximum stream rate that can flow through a link

depends on the following three factors:

1. Bandwidth available on that link: Given the bandwidth available on the link, maximum

rate that can be supported by the link is calculated using Lemma 4.1; this rate provides

the upper bound on the stream rate that can be supported by the link without loss.

67

Input:

% the following global variables are used as input by the algorithm %

M: Multicast tree represented as a n x n matrix, where n is the

number of nodes in the network

cli req: three-columned matrix, indexed by the client-id, having

the node-id in the first column, values of minimum rate

required in the second column, and delay tolerance in

the third.

% the following input parameter is passed to the algorithm %

transinfo: Boolean vector of size n, where n is the number of nodes

in the network, that indicates nodes having transcoders

Output:

actual rates: Vector of stream rates flowing through each link

optim rates: Vector of optimal rates delivered at clients

Global constants:

TRANSDURATION: Playout duration of the contents

BASEENCODINGRATE: The best rate at which the contents are encoded

Figure 4.8: Input/output variables and global constants

68

OUTPUT:

actual_rates = [384

512

384

160

384]

optim_rates = [512

160

384]

transinfo = [1

1]

nodeid minrate delay tol.

cli_req =
3 128

5

6

128

128

1800

900

1800

512
1

384
2

128 256

3
256

4 5

1

4

2 3

5
6

INPUT:

GLOBAL CONSTANTS:

BASEENCODINGRATE: 512

TRANSDURATION: 3600

M =

0 0 0 0 0

0 00000

0 0 0 0

0 0 0 0 00

0 0 0 0 0

[0 512 0 0 0

0]

384

256

128 256

Figure 4.9: Illustration of variables and global constants

69

numnodes: Scalar value of number of nodes in the network

numlinks: Scalar value of number of links

numclients: Scalar value of number of links

clients: Matrix that provides following information

on each client in the multicast tree:

client id, node id, minimum required rate, delay tolerance,

number of nodes in path, weakest link in path.

This matrix is created by concatenating two more columns to

the client constraint table.

clientinfo: a three-dimensional matrix that provides the node ids

and the bandwidths on links that connect the nodes in the paths

of each client.

linkinfo: Matrix that provides the following information

on each link in the multicast tree:

from node, to node, number of clients sharing the link,

clients sharing the link

pathinfo: Matrix that provides link ids in the path of

each client in the multicast tree.

subtreeinfo: Matrix that provides the following information

for each node in the network:

nodes connected to it, number of subtrees emanating from it,

depth, clients served by the node

Figure 4.10: Global variables used in the algorithms

70

0 0 1]

11 1

1 0 0

0 1 1

10 1

00 1

(:,:,1) [3 0

1 384]

 nodeid link b/w

(:,:,2) [5 0

4 128

2 384

1 512]

clientinfo =

from node to node num clients clients
sharing link

linkinfo =

1 0

12 1

1

0

3 1 1 0

2 4 0

4 5 1 0 0

4 6 1 0

3

102 2 1[1

1]

128 1800 2 384

128 5 900 4 128

128 4 6 1800 256]

[3clients =

 nodeid minrate delay tol. nodes in path weakest link b/w

(:,:,3) [6 0

4 256

2 384

1 512]

3

subtreeinfo =

0 0 30

[1 2 3 02

0 0 10

5 6 22

4 0 11

0 0 30

321

21

1

4

3

5

3

clients

pathinfo = [2

1]

0

0

1 2 3

numclients = 3;

numnodes = 6;

numlinks = 5;

node id next node num subtrees level num clients
(var. length)

2

3

4

6

5

Figure 4.11: Illustration of data structures used in the thesis

71

2. Maximum of the maximum deliverable rates at the clients served by that link: For each

client served by a link, its maximum deliverable rate is calculated using Theorem 4.2.

Maximum of these rates provides the upper bound on the stream rate that needs to be

supported by the link without loss.

3. Whether the node at the terminating end of the link has a transcoder or not: In addition

to the above two factors, the stream rates at which the clients having the link in their paths

are served without loss depends on availability of transcoders at the nodes.

The first two factors enforce the delay tolerance constraints to ensure loss-free playout at the

clients. The third parameter enforces transcoder constraints.

To understand the first pass of the algorithm, we consider the instances of links that occur in the

multicast tree as shown in Figure 4.12. Note that a link can be directly attached to a client as in

Figure 4.12 (i) or it can be attached to a relay node having one outgoing link as in Figure 4.12

(ii) or many outgoing links as in Figure 4.12 (iii).

1. In the first case, the maximum rate that can flow through the link lj is determined by

the maximum deliverable rate at the client Ca, the link is attached to. (Note that finding

the maximum rate supported by the link calculated using Lemma 4.1 is redundant in this

case).

2. In the second and third cases, the maximum rate that can flow through the link lj depends

on whether the node nj has a transcoder or not in addition to the bandwidth available

on that link. Note that since we compute the maximum rate flowing through links from

the bottom to top of the tree, when transcoder is available at nj , maximum of the rates

computed for the outgoing links from nj can flow through lj provided it can be supported

by lj without loss. when there is no transcoder at nj , only minimum of the rates can flow

through lj .

We provide the algorithm for Pass 1 in Figure 4.13. Note that when there is only one outgoing

link from nj , rate of the stream flowing through that link is assigned to lj , irrespective of whether

there is a transcoder at nj or not.

Thus, in the first pass, the algorithm determines the maximum rate that can flow through each

link in the multicast tree.

72

jl jl

jn jn

jl

Ca

jr

jr jr

jr

jr

ir

kr

lr

ir jr kr l)r jr

(i)

(ii) (iii)

max(=

Figure 4.12: Instances of links

4.4.3 Algorithm for pass 2

In the second pass, the algorithm starts with links from the top of the tree. The algorithm

traverses the tree from the top to bottom tracing the path of each client in the tree. It checks

that the stream rate flowing through a link in the client’s path is less than or equal to the stream

rate flowing through the previous link in the path, as the stream can only be transcoded down.

This step enforces the rate constraints. At the end of this step, the actual rates flowing through

the links are determined. For each client, the actual rate flowing through the last link in its path

determines the delivered rate at that client.

We present the algorithm for Pass 2 in Figure 4.14. In the next section, we prove that this

algorithm determines optimal delivered rates at clients for any transcoder placement option.

4.4.4 Optimality of find opt rates I

Claim 4.1:

Algorithm find opt rates I finds the optimal rates delivered at the clients for a given transcoder

placement option.

To prove: Let rk be the delivered rate at client Ck as determined by find opt rates I. A rate rk+

ε, ε > 0 can be delivered to Ck, only if the constraints of one or more clients are violated.

In other words, we need to prove that in each pass of the algorithm, the stream rates assigned to

each link is the maximum that can flow through that link without violating any constraint.

Proof: By contradiction

73

function find opt rates I (transinfo);

Initialize stream rate [numlinks]

% stream rate is a vector of dimension numlinks %

Initialize optim rates [numclients]

% optim rates is the output vector of dimension numclients %

% start pass 1 %

for each link lj % Starting from the leaf nodes of the tree %

if link is directly attached to a client

max stream rate = find max deliverable rate (Ci)

% Calculated using Theorem 4.2 %

else

max rate thru link = linkbandwidth(1+ bj/T);

if there is a transcoder at node ni

% at the terminating end of the link %

max stream rate =

max(stream rates flowing through

the outgoing links from ni);

else

max stream rate =

min(stream rates flowing through

the outgoing links from ni);

end

end

stream rate [li] =

min(max rate thru link, max stream rate);

% Apply Theorem 4.1 to assign appropriate rate to link %

end

Figure 4.13: Pass 1 of algorithm: find opt rates I

74

% start pass 2%

for each client C

for link L in Cs path starting from S

if L is the first link in path

max rate = stream rate [L]

% Traverse path from source to client and

assign stream rate of first link to max rate %

else

if stream rate [L] is greater than max rate

actual rate [L] = max rate;

else

actual rate [L] = stream rate [L];

max rate = stream rate [L];

end

end

optim rates [C] =

actual rate [last link in C’s path]

end

Figure 4.14: Pass 2 of algorithm: find opt rates I

75

jl

jn

Ca

il

in

jl

il

in

Ca

ir

ir

jr

jr

jljr (i)

(ii)
(iii)

S

Figure 4.15: Instances of links in the path of a client

Let us consider any link lj in the path of any client Ck in the multicast tree. Let lj be the

incoming link to node nj .

• By Theorem 4.2, the maximum deliverable rate atCk is given by γmax
k = b1∗(1+(δk/T))

where b1 is the bandwidth of the weakest link in p(Ck). Thus, any link in p(Ck) requires

to support γmax
k at maximum.

• By Theorem 4.1, the maximum rate that can flow through lj is bounded by rmax
j = bj ∗

(1 + (δp/T)) where δp = min(δk), δks are the delay tolerance values of clients sharing

the link lj .

Consider Pass 1 of the algorithm with the following possibilities for link lj as illustrated in

Figure 4.15:

• Let lj be directly connected to Ck. Two possibilities exist: (i) lj is weakest link in p(Ck)

(ii) lj is not the weakest link in p(Ck). In the first case, γmax
k is the maximum stream

rate that can flow through lj . In the second case, rmax
j is the maximum rate that can be

supported by lj . However rmax
j which is greater than γmax

k will violate the requirement

of loss-free playout at Ck. Thus, in either case, γmax
k is the maximum rate that can flow

through lj as determined by the first pass of the algorithm.

76

• Let lj be any intermediate link occurring in the multicast tree. Let rj be the rate assigned

to lj . We have to prove that any rate higher than rj assigned to lj will violate one/more

constraints or would lead to redundant resource use without having any effect on the

delivered rates at the clients it is serving.

Note that rj is assigned to lj by considering the following three parameters: (i) bj , the

actual available bandwidth on lj , (ii) δp = min(δk), where δks are the delay tolerance val-

ues of clients sharing the link lj , and (iii) availability of transcoder at node nj . According

to the algorithm, maximum value of rj = max(rates flowing through outgoing links from

nj). We need to consider the following cases:

– With reference to Figure 4.12 (ii), suppose rmax
j > rj . When there is no transcoder

at nj , assigning rmax
j to lj would violate the requirement of loss-free delivery at the

clients served by lj .

When there is a transcoder at nj , rmax
j can be assigned to lj . In this case rmax

j will

be flowing through lj while rj is the rate flowing through the outgoing link from nj .

Note that in this case the transcoder at nj is redundant as both the links are part of a

string, serving the same set of clients. Hence having rmax
j flow through lj does not

affect the delivered rates at the clients it is serving.

– With reference to Figure 4.12 (iii), when there is no transcoder at nj , assigning any

rate greater than rj to lj would violate the requirement of loss-free delivery at the

clients.

When there is a transcoder at nj , rmax
j can be assigned to lj . In this case rmax

j will

be flowing through lj while rj , max(stream rates through outgoing links from nj) is

less than rmax
j . The transcoder at ni would reduce the stream rate to rj and other

rates less than rj , in order to serve all the clients without violating their require-

ments. Note that having rmax
j flow through lj does not affect the delivered rates at

the clients.

Thus, the first pass of the algorithm assigns stream rates to the links that would maximize

the delivered rates at the clients.

Consider Pass 2 of the algorithm. This step considers links in the path of each client from source

to adjust the rates flowing through the links. The rate flowing through the last link in a client’s

77

path is its delivered rate. Note that in the first pass, last link in every client’s path is assigned the

client’s maximum deliverable rate. Let us consider the three possibilities for link lj in the path

of a client Ck as illustrated in Figure 4.15. Let rj be the stream rate assigned to lj in pass 1.

1. Let lj be the first link in p(Ck) as shown in 4.15 (i). As proven above, this is the maximum

rate that can flow through lj without violating any requirement and without affecting

delivered rate at any client. Thus the actual rate flowing through lj is rj .

2. Let lj be any intermediate link occurring in p(Ck) as shown in 4.15 (ii). Let ri be the

stream rate flowing through the incoming link li into node ni. The following three possi-

bilities exist:

(a) rj < ri; in this case as rj is the maximum stream rate that can flow through lj ,

increasing rj would violate the requirement for Ck. Thus rj remains unchanged in

this case.

(b) rj = ri; in this case also rj remains unchanged.

(c) rj > ri; in this case since the incoming stream rate ri is less than rj , the maximum

rate that can flow through lj is limited by ri. Hence the actual rate that flows through

lj is changed to ri. Note that irrespective of the rate assigned to the link in the first

pass, the highest rate that can actually flow through the link depends on the actual

rate of the incoming stream.

3. Let lj be the last link in p(Ck). Using the same argument in the previous case, the actual

rate flowing through lj depends on the actual rate ri, flowing through its previous link in

p(Ck). When rj <= ri, rj is the delivered rate at Ck; else ri is the delivered rate at Ck.

Extending the same logic to links in every client’s path, the delivered rates at the clients as

computed by Pass 2 of the algorithm are the maximum rates that can delivered to the clients

without violating any requirement.

Thus, algorithm find opt rates I finds the optimal delivered rates at the clients. Since the pres-

ence or absence of a transcoder at every node is considered while computing the maximum

stream rate that can flow through each link, this algorithm finds the optimal delivered rates at

clients for any given transcoder placement option. 2

78

4.4.5 Complexity of find opt rates I

Consider a multicast tree having L links and C clients. Let D be the number of levels in the

multicast tree, also referred to as its depth. Let us consider the steps in the algorithm to estimate

the number of computations required and the order of complexity of the algorithm:

In the first pass, starting from the leaf nodes of the tree, for each link the maximum possible

rate that can flow through the link is determined:

• When the link is directly connected to the client, the maximum deliverable rate of the

client is found. This step involves finding the weakest link in the client’s path. Given a

tree with D levels, the number of computations is of O(DC) (which is > L).

• When the link is any intermediate link connected to a node ni, the stream rates through all

the out going links from ni are considered. Let F be the maximum number of out going

links from any node in the tree. The number of computations required is O(F), where

F << L.

• The maximum rate supported by the link without violating the delay tolerance require-

ment of any client having the link in its path is found. Let K be the maximum number

of clients having the link in their paths. The number of computations required is O(K),

where K < C.

Thus, computations required for the first pass of the algorithm is O(DC).

In the second pass, links are traversed from top to bottom, to ensure appropriate rates are as-

signed to each link. The number of computations for this step is O(L).

Thus, algorithm find opt rates I requires O(DC) computations.

4.5 Experimental demonstration of effect of delay tolerance:

Gnutella Peer Network

In this section, we present the results of experiments to study the effect of delay tolerance on

the delivered rates at the clients. We have implemented the algorithm find opt rates I using

Matlab and have conducted extensive experiments to understand the implication of clients’

delay tolerance and link bandwidths, on the delivered rates at the clients.

79

Figure 4.16: An instance of GNU peer network

In our performance analysis, we have assumed a constant minimum rate requirement of

128 kbps for all the clients and concentrated on studying the effects of different delay tolerance

values of the clients. Note that using our algorithm we can devise an admission control module,

when clients specify different minimum rates. Given the knowledge of nodes with transcoders,

the admission control module would run the algorithm to see if any clients minimum rate re-

quirement is not satisfied. If so, that client will not be admitted for service.

We present a case study on the Gnutella Peer Network [8] (See Figure 4.16). We simplify

the original network topology to a tree-based network by removing cycles in the topology.

Our approximated Gnutella Peer distribution network contains 510 nodes and 10 levels. In

this simulation, we set the clients’ minimum rate requirement to 128 Kbps. We run algorithm

find opt rates I, for 40 sets of delay tolerance values with the AT transcoder placement option.

Delay tolerance values of the clients for each run are randomly chosen from (0 ∗ T − 0.1 ∗ T),

(0.1 ∗ T − 0.2 ∗ T), . . ., (0.9 ∗ T − T), . . ., (3.9 ∗ T − 4 ∗ T) respectively.

We plot the range of delay tolerance values for clients (as a fraction of the playout duration)

along the X-axis and the average delivered rates at the clients along the Y-axis as shown in

Figure 4.17. As seen from the graph, as the delay tolerance values of the clients increase, the

average delivered rates increase. When the delay tolerance values are chosen from (3.0 ∗ T −

3.1 ∗ T), the average delivered rate is 512 kbps which is the base encoding rate of the file.

Note that increasing the delay tolerance values beyond this range does not improve the average

80

Figure 4.17: Effect of delay tolerance on delivered rates

delivered rates, as the best possible rate that can be delivered to any client is bounded by the

base encoding rate, 512 kbps.

4.6 Conclusions

Given a subscription-based service for disseminating contents synchronously to clients, where

each client specifies the time it is willing to wait for transmission to start, the first question

that needs to be answered is: what are the optimal rates that can be delivered to these clients,

given a transcoder placement option. In this chapter, we show that the client specified delay

tolerance can be leveraged to enhance the delivered rates at the clients. Links that are shared

by clients and the availability of transcoders at relay nodes are the other factors that determine

the delivered rates at clients. We analyze network properties affected by these factors. Us-

ing the properties we develop an algorithm to find the optimal delivered rates at clients for a

given transcoder placement option and prove the optimality of this algorithm. The analysis

and algorithm presented in this chapter are very relevant for a CSP catering to a diverse set of

subscribed clients who may have bandwidth constraints along their path from the source. This

analysis is also useful for a CSP to introduce various classes of service (say, Platinum, Gold,

and Silver memberships) as, given a specific playout start time at a client, the CSP would be

able to guarantee a loss-free rate.

When all the relay nodes are transcoder capable, algorithm find opt rates I finds the op-

timal rates delivered at the clients which are the best rates that the clients can get given the

network characteristics and the clients’ delay tolerance requirements. We discuss the optimal

placement of transcoders for providing best delivered rates to clients in the next chapter.

81

Chapter 5

Determining optimal placement of

transcoders
(Scheduled streaming, Static link bandwidths)

5.1 Introduction

As discussed in the last chapter, transcoder placement option refers to the combination of nodes

in the network which have transcoders. There we presented algorithms to compute the optimal

rates delivered at clients in a multicast tree for a given transcoder placement option. Before we

pose the question that we address in this chapter, we recap some definitions and introduce some

new ones which are used to state the question precisely:

Maximum deliverable rate: Maximum deliverable rate is the stream rate that can be delivered

to a client considering its path from the source in isolation. For a given client Ci, its maximum

deliverable rate is denoted by γmax
i .

Recall that this rate depends on the bandwidth of the weakest link in the client’s path and the

client’s delay tolerance.

Optimal rate: Optimal rate is the highest loss-free rate that can be delivered to a client in the

multicast tree for a given transcoder placement option.

Best delivered rate: The optimal rate delivered at a client, when all relay nodes are capable of

transcoding is referred to as its best delivered rate.

Note that for a given network with static link bandwidths and specific client requirements, best

82

delivered rates provide the upper bound on the delivered rates at the clients.

Eligible set: If there are N nodes and C clients in the tree, the maximum number of transcoders

that can be placed, assuming that the source always has a transcoder, is bounded by: (N − (C+

1)). This set is referred to as the eligible set.

Optimal set: The set of nodes where transcoders have to be placed to obtain the best delivered

rates for all clients such that the number of transcoders deployed is minimal. The optimal set is

denoted by O.

In this chapter we find the optimal set O, i.e., address the following question:

What is the minimum number of transcoders required and where should they be placed to pro-

vide the best delivered rates to clients?

In a multicast tree with specific link bandwidths and client requirements, when AT placement

option is used (when all nodes in the eligible set are transcoder capable), the optimal rates

computed are the best delivered rates at the clients. Even though all relay nodes are transcoder

capable, not all of them are required to provide the best delivered rates to clients. Thus, there

is a set of transcoders which are necessary and sufficient for providing the best delivered rates

to clients termed the Optimal set denoted by O. Our objective in this chapter is to develop an

algorithm to determine O.

5.1.1 Overview of solution approach

As explained in the previous chapter, find opt rates I determines the actual stream rates flowing

through each link in the multicast tree and the optimal rates delivered at clients, for any given

transcoder placement option. When there is no restriction on the number of transcoders, this

algorithm finds the best delivered rates at clients; these rates can not be improved with any

additional transcoders, given the multicast tree and client requirements. We can find the set

of transcoders that are enabled for providing the best delivered rates using find opt rates I.

However, as we shall see, find opt rates I might employ some transcoders that can be shown to

be redundant.

We analyze the properties of the network related to placement of transcoders and come

up with observations to eliminate redundancy when all relay nodes are capable of transcoding.

Using this insight, we modify find opt rates I to include checks to ensure that only the nec-

83

through links
Stream rates

Algorithm

find_min_transcoders

AT option

Client constraints

Network parameters

Algorithm

at clients

* Optimal number of

transcoders

Algorithm find_opt_rates_I

Check for redundant transcoders

using redundancy rules 1 and 2

find_opt_rates_NR

Optimal delivered rates

Figure 5.1: Overview of solution approaches: Chapter 5

essary and sufficient set of transcoders (required to provide best delivered rates) are enabled.

We call this algorithm find opt rates NR, where NR stands for No Redundancy. Note that this

algorithm also finds the stream rates flowing through the links and the delivered rates at the

clients as find opt rates I, when there is no restriction on the number of transcoders. Using the

stream rates as determined by find opt rates NR, function find min transcoders finds the opti-

mal placement of transcoders and the rate conversions they perform. Figure 5.1 depicts the re-

lationship between the algorithms and function find min transcoders and presents an overview

of the contributions made in this chapter.

We prove that find min transcoders in fact findsO, the minimal set of transcoders required

to provide the best delivered rates to clients. We also demonstrate optimality of O through

experimental results.

5.2 Observations related to redundancy in transcoders

In this section, we explore the properties related to placement of transcoders in the network

nodes to develop rules for eliminating redundancy in transcoder placement. We modify find opt rates I

to include these redundancy rules. The resulting algorithm is called find opt rates NR.

5.2.1 Redundancy in strings: Redundancy rule 1

We consider paths from the source to clients and identify instances where placing a transcoder

at a node is redundant. We define a string as a set of nodes connected to each other such that

84

each node in the string has only one outgoing link. Note that a string can occur in the following

sequences:

1. starting at the source, ending at a client.

2. starting at the source, ending at any relay node.

3. starting at any relay node, ending at a client.

4. starting at any relay node, ending at any relay node.

All occurrences of strings in a multicast tree are depicted in Figure 5.2.

Lemma 5.1:

Consider various instances of a string n1, n2, . . . nm as shown in Figure 5.2. Let ra be the

stream rate flowing into n1. Let rk be the rate flowing into nm. If rk < ra, i.e., transcoders are

needed in this string, it is sufficient to place a transcoder at n1.

Proof:

Given a string n1, n2, . . . nm. With reference to any instance of a string as shown in Figure 5.2,

we consider the following:

• Without loss of generality, let ni, nj , nk be some intermediate nodes transcoding the

stream from ra to ri to rj to rk where ra > ri > rj > rk.

• Let nk be the last node with transcoding capability, i.e.,nodes nk+1 to nm do not have

transcoders. nm receives the stream encoded at rate rk.

1. None of the clients can receive rate rj flowing from nj to nk without loss, as rk is

the maximum encoded rate required in this subtree. So, nj can transcode the stream

at the rate rk and send it to nk.

2. n1, n2, . . . nm is a string; hence no other branches exist.

3. Similarly, none of the clients can receive the rate ri without loss, which is greater

than rj and rk.

• Extending the same logic, instead of encoding a stream with higher rate from n1 to ni, n1

can transcode the stream to rk.

Thus, only one transcoder is needed at the first node of a string. 2

85

S
n

3
r

k

n
mn

2
(i)

r
a

n
22

n
3

nS m
(ii)

r
kr a

S
n

m
r

a r
k

n
1

n
2

(iii)

S n n n1
2 m

r a r
k

(iv)

n

n
 1

n
 1

n
 1

mn

n m

Directly connected

Connected to other nodes

(i) S is first node in the string;

is the same as S; n m is the client

 1 is the same as n
m

is root of a subtree

(i) S is first node in the string;

S;

(iv) is first node in the string;

(iii) is the first node in the string; is the client

is the root of a subtree

Figure 5.2: Strings in a multicast tree

86

Corollary 5.1: Redundancy rule 1

In a multicast tree, placing transcoders only at relay nodes having multiple subtrees,R is, yields

the same delivered rates at clients as placing transcoders at all relay nodes.

Proof:

This proof directly follows from observation 5.1. 2

When there is no constraint on the number of transcoders, we apply Redundancy rule 1 and

select all the relay nodes which have multiple outgoing links for placing transcoders. Our next

step is to identify any redundant transcoders placed at these relay nodes.

5.2.2 Redundancy in trees: Redundancy rule 2

In this section, we present an observation that detects redundant transcoder at the root of a

subtree. We first present a lemma which is used in the observation.

Lemma 5.2:

Let Rk be a node with m outgoing links l1, l2, . . . , lm. Let ra be the stream rate flowing in to

ni. Suppose r1, r2, . . . , rm are the maximum stream rates through l1, l2, . . . , lm as calculated by

Theorem 4.2 as shown in Figure 5.3. If r1, r2, . . . , rm are greater than or equal to ra, there is no

need to transcode the stream at Rk.

Proof:

With reference to Figure 5.3, consider nodes Rk and R1. A stream encoded at ra can be deliv-

ered without loss from a node Rk to R1 under the following conditions: (i) when the maximum

stream rate through l1 is greater than or equal to ra or (ii) when a transcoder at Rk transcodes

the stream to the maximum stream rate that can flow through l1. SinceRk has multiple outgoing

links, the above conditions have to be applied to each of these links. Since r1, r2, . . . , rm are all

greater than or equal to ri, the stream can be delivered without loss across l1, l2, . . . , lm. Hence

there is no need to transcode the stream at Rk.2

Corollary 5.2:

Let Λ be a subtree rooted at a relay node Rk. ra is the stream rate flowing into Rk as shown in

Figure 5.3. Suppose relay nodesR1, R2, . . . Rm connected toRk have transcoders. If maximum

stream rates that can be supported without loss by each outgoing link fromRk are r1, r2, . . . rm,

such that each ri >= ra, it is redundant to have a transcoder at Rk.

87

1r

ar

2r 3r
mr

R k

R 1 R 2
R 3 R m

Connected through multiple hops

Directly connected

Clients

Relay nodes

Figure 5.3: Illustration of a redundant node

Proof:

By Lemma 5.2, to send the stream to R1, R2, . . . , Rm without loss, there is no need for a

transcoder at Rk. However, R1, R2, . . . , Rm are roots of subtrees, each serving multiple clients.

In order to serve each client without loss, Lemma 5.2 has to be applied to each ofR1, R2, . . . , Rm.

But, since R1, R2, . . . , Rm have transcoders, these can be enabled to serve clients without loss.

Hence there is no need for a transcoder at Rk. 2

Redundancy due to equi-deliverable rate clients

In a multicast tree with specific link bandwidths and client requirements, even though clients

may have different delay tolerance values and different weakest link bandwidths, they may still

have same maximum deliverable rates. We define clients having the same maximum deliverable

rates as equi-deliverable rate clients.

Identifying equi-deliverable rate clients

We find the maximum deliverable rates at clients using Theorem 4.2. When all the clients in a

subtree have the same maximum deliverable rate, γmax
eq , we identify these as the equi-deliverable

88

rate clients. Note that the maximum deliverable rate provides the upper bound on the delivered

rates at these clients.

Determining delivered rate req at the equi-deliverable rate clients

Let clientsC1, C2, . . . Cn be the equi-deliverable rate clients having delivered rates r1, r2, . . . rn.

The following two cases have to be considered to find the delivered rates at C1, C2, . . . Cn:

1. When none of the shared links is the weakest link on any client’s path: In this case, since

the shared links do not have any impact on the delivered rates at the clients, for each client

Ci, its delivered rate = its maximum deliverable rate. Hence, r1, r2, . . . rn = γmax
eq .

2. When one of the shared links is the weakest link in the path of one or more clients: Let a

shared link lk having bandwidth bk be the weakest link in one of the clients, say Cj’s path.

By Theorem 4.1, the maximum stream rate that can flow through lk = bk∗min(δi), where

δis are the delay tolerance values of clients sharing this link. Note that since lk is not their

weakest link, all other clients sharing lk, must have weakest links in their paths having

bandwidth < bk. The only way these clients can have the same maximum deliverable

rate as Cj is by having a higher delay tolerance value than Cj . Thus, the delivered rates

at C1, C2, . . . Cn = maximum rate that can flow through the shared link lk = maximum

deliverable rate at Cj = γmax
eq .

From the above discussion it is clear that when we find an instance of equi-deliverable rate

clients, all these clients have the same delivered rate equal to their maximum deliverable rate.

i.e.,

req = γmax
eq (5.1)

This important insight is used to eliminate redundant placement of transcoders as discussed be-

low.

Lemma 5.3:

Consider a subtree Λ rooted at a relay nodeRk as shown in Figure 5.4 having clientsC1, C2, . . . Cn

having maximum deliverable rates r1, r2, . . . rn, (as calculated by Theorem 4.2), where r1 =

r2 = . . . = rn = req. The incoming stream rate ra > req. In order to provide the optimal

delivered rates to C1, C2, . . . Cn, it is sufficient to place the only transcoder in Λ at Rk.

89

ra

k
R

1 2 3 n

C C C C

=r1 2
r = r

3 = = r n

Relay nodes

Clients

Figure 5.4: Equi-deliverable rate clients

Proof:

According to Equation 5.1, the delivered rates at C1, C2, . . . Cn is also req. Since req is less than

the incoming stream rate ra, transcoding is required. However, since all clients have the same

delivered rates, in order to serve the clients with minimum number of transcoders, it is sufficient

to place a transcoder at Rk. 2

Let us suppose that all relay nodes are capable of transcoding. With reference to Figure

5.3, according to Corollary 5.2, when all outgoing links from Rk are capable of supporting ra,

no transcoder is required at Rk. Thus, multiple transcoders in relay nodes R1, R2, . . . Rm are

enabled based on the delivered rates at the clients. However, this rule does not apply, when all

clients are equi-deliverable rate clients as explained below.

With reference to Figure 5.4, consider the subtree Λ rooted at Rk. When the incoming

stream rate ra > req we consider the following:

• Let the maximum stream rates that can be supported without loss by each outgoing link

from Rk, r1, r2, . . . rm are such that each ri >= ra. By Corollary 5.2, there is no need to

transcode the stream at Rk as all the outgoing links from it are capable of supporting ra.

• Since all the clients attached to Rk need req which is less than ra, transcoders are required

at nodes in Λ to serve the clients with req. This means that, by Corollary 5.2, multiple

transcoders are required to serve the clients with the same rate.

90

• However, by placing a transcoder at Rk to transcode the stream to req, all clients can be

serviced with just one transcoder.

When C1, C2, . . . Cn in Λ rooted at Rk have the same maximum deliverable rate, the only

transcoder enabled is at the root Rk, even when all the outgoing links from Rk are capable of

supporting ra.

Thus, in order to find the optimal number of transcoders, based on the maximum deliverable

rates at the clients, appropriate lemma is applied in Redundancy rule 2.

5.3 Determining optimal transcoder placement

As discussed, when there is no constraint on the number of transcoders, algorithm find opt rates I

finds the best delivered rates at the clients. However, it may use more than the minimum number

of transcoders required for providing best delivered rates to clients. For the algorithm to find

the optimal number of transcoders, we have to ensure that all redundancy rules are applied so

that only the minimal set of transcoders required for providing best delivered rates are enabled.

This algorithm which enables the optimal transcoder placement for best delivered rates at the

clients is called algorithm find opt rates NR. We modify Pass 2 of algorithm find opt rates I to

assign appropriate stream rates to the links such that an optimal set of transcoders are enabled.

We present the algorithm with appropriate comments to show the application of the redundancy

rules in Figure 5.5.

Note that when there is only one outgoing link from ni, Algorithm find opt rates NR assigns

the rate of the stream flowing through that link to lk. Hence no transcoder is enabled at ni. Thus,

the algorithm ensures application of Redundancy rule 1. We provide an example to illustrate

how algorithm find opt rates NR ensures that Redundancy rule 2 is applied.

• Consider the network presented in Figure 5.6 (i). Stream rates assigned by algorithm

find opt rates I are indicated in the figure. Note that transcoders at both nodes R1 and

R2 are enabled. In this case, if link l1 has enough bandwidth to support 512 kbps, this

should be assigned as the stream rate flowing through l1 to avoid redundant enabling of a

transcoder at R1.

91

function find opt rate NR(transinfo);

Initialize stream rate [numlinks]; Initialize optim rates [numclients];

for each link L %Starting from the leaf nodes of the tree

if link is not shared

max stream rate = find max deliverable rate (Ci)

else

.

.

% same as for algorithm find opt rates I %

end

stream rate [L] = min (max rate thru link, max stream rate);

% Apply Redundancy rule 1 eliminates redundancy in strings %

end

for each client C

for each link L in C’s path

if link L serves equi-deliverable rates clients

% Case 1 of Redundancy rule 2 Corollary 5.2 %

if link L is first link in client’s path

stream rate [L] = delivered rate at client;

else

stream rate [L] =

min(stream rate of prev. link, delivered rate at client)

end

else % Case 2 of Redundancy rule 2 Lemma 5.3 %

max deli rate = stream rate [L1]

% Traverse path from source to client and

% assign stream rate of first link to max deli rate

if stream rate [L] is greater than max deli rate

actual rate [L] = max deli rate;

else

actual rate [L] = stream rate [L];

max deli rate = stream rate [L];

end

end

end

optim rates [C] = actual rate [last link in C’s path]

end

Figure 5.5: Algorithm: find opt rates NR
92

1
l

1
l

1

r

rr

1

2
3

= 512

= 384
= 256

2

(i)

34 = 384

1

2

r
r

rrr

1
2

= 448
= 512

= 384

(ii)

R

R

512

512384

384256

512

R

R

384

384 384

448

512

Figure 5.6: Example to illustrate application of redundancy rule 2

• Let us consider a similar network presented in Figure 5.6 (ii). Stream rates assigned by

algorithm find opt rates I are indicated in the figure. Note that only one transcoder at R1

is enabled. In this case, even if link l1 has enough bandwidth to support 512 kbps, this

should not be assigned as the stream rate flowing through l1 to avoid redundant enabling

of a transcoder at R2, as transcoder at R1 can be used to transcode the stream to 384 kbps

required to serve both the clients.

5.3.1 Finding the optimal set: find min transcoders

Algorithm find opt rates NR computes the best delivered rates using the minimum number of

transcoders. The algorithm finds the stream rates flowing through the links and the delivered

rates at the clients. Traversing the links top to bottom in each client’s path, when the incoming

stream rate to a node is greater than the outgoing stream rate from the node, we can infer that

the transcoder at that node is enabled. Function find min transcoders takes the stream rates

as determined by find opt rates NR as input and determines the minimum set of transcoders

93

enabled to provide the best delivered rates to clients.

Thus, to find the optimal transcoder placement and the rate conversions the transcoders

perform, we use the following two steps: (i) run find opt rates NR with the AT transcoder

placement option. This gives the stream rates flowing through the links as an output. (ii) Using

these stream rates, run find min transcoders to find the minimum set of transcoders enabled and

the rate conversions they perform.

5.3.2 Complexity of find opt rates NR

The first pass of find opt rates NR is the same as that of find opt rates I. Hence, the number of

computations is of the order of O(DC), where D is the number of levels and C is the number

of clients in the multicast tree, as derived in Section 4.4.5, in Chapter 4.

In the second pass, as in find opt rates I, each link in a client’s path is traversed. As in

the case of find opt rates I, the number of computations is O(L). Note that in find opt rates NR

there is a conditional check to verify whether the link serves equi-deliverable rates clients; thus,

this algorithm requires less number of computations in this step than find opt rates I, when

there are equi-deliverable rates clients.

Algorithm find opt rates NR requires O(DC) computations.

We have the following claim with respect to the optimal placement of transcoders discussed

thus far:

The resulting set of transcoders after eliminating redundancy in placement, known as the opti-

mal set, denoted by O, is the minimal set that is required for providing the best delivered rates

to clients (the redundancy rules identify all instances of redundant transcoders). We prove this

claim below.

5.3.3 Optimality of O

In order to show that O is the minimal set to provide best delivered rates to clients, we need to

prove that all occurrences of redundant transcoders are identified and eliminated while selecting

the nodes in O.

Claim 5.1: O is the minimal set of transcoders required to provide best delivered rates to clients.

To prove:

94

1. O provides the best delivered rates to clients.

2. removing one or more transcoders fromO and placing an equal number at nodes not inO

does not improve the delivered rate for any client, i.e., even if O is not unique, any other

combination of nodes would not provide higher delivered rates at the clients.

3. placing transcoders at nodes not inO in addition toO does not improve the delivered rate

at any client.

4. removing any transcoder from O results in reduction of the delivered rate for at least one

client.

Proof:

1. When all the relay nodes are capable of transcoding, the rates delivered at the clients are

the best delivered rates. Thus, to prove that O provides the best delivered rates to clients,

we need to prove: delivered rates with transcoders placed at nodes in O are the same as

delivered rates with AT option. We state this as: ∀Ci, i = 1, 2, . . . ,m, rOi = rAT
i .

Under the AT option, all relay nodes have transcoders. For a given network bandwidths

and client requirements, the delivered rates at the clients with this option can not be

improved. As proven by the optimality claim in Section 4.4.1, delivered rates at clients

using the AT option are the best delivered rates.

Nodes in O are selected from the relay nodes by applying the redundancy rules. We have

already proven that the two redundancy rules do not reduce the delivered rates for any

clients. Hence, ∀i, i = 1, 2, . . . m, rOi = rAT
i .

2. Consider a subtree Λ rooted at Rk with incoming stream rate ra as shown in Figure 5.7.

Delivered rates at the clients in this subtree are as indicated in the figure. Algorithm

find opt rates NR would choose node Rk for transcoder placement by Redundancy rule

1. i.e., Rk ∈ O. However, we can remove the transcoder from Rk and place it at Rn,

when link li has enough bandwidth to support ra without loss. Note that the delivered

rates at the clients do not change. This demonstrates that the optimal set O need not

be unique. However, irrespective of the optimal set used for placement, the delivered

rates at the clients do not change. Thus, more than one node may qualify for placing

a transcoder in a string; however, delivered rates at the clients do not change with the

95

ar

R k

R n R m

ar

ar

C 2
C 3

C 3

ir ir ar

ar

C 1

C 1

ir

il

ar

Delivered rates at

; <=

Clients

Relay nodes

Delivered rates at

C = 2

Figure 5.7: Illustration of non-uniqueness of the optimal set

choice. Other options to move the transcoder from node k to node l /∈ O include: (a)

moving to a subtree root which has multiple outgoing links that support the incoming

rate, with appropriate nodes in its subtrees having transcoders and (b) moving to a node

in a subtree which has equi-deliverable rate clients. Note that both these cases are shown

to be redundant by Corollary 5.2 and Lemma 5.3. Thus, the delivered rates can not be

improved by the new placement of transcoders.

3. Suppose a transcoder is placed at node q /∈ O, in addition to the nodes in O. Any

additional transcoder can be placed only at a node which is proven to be redundant as per

Lemma 5.1, Corollary 5.2, or Lemma 5.3. Thus, placing additional transcoders does not

improve the rate for any client.

4. Suppose we remove a transcoder from a node k in subtree Λm. Since k is chosen for place-

ment by applying Lemma 5.1, Corollary 5.2, or Lemma 5.3, removal of the transcoder

would reduce the delivered rates at one or more clients.

Thus, O serves the best delivered rates to clients. 2

96

Property of optimal set O

Optimality of O as proven by Claim 5.1, can be stated mathematically in the following two

ways:

1. The average delivered rates across all clients is a monotonically increasing function of the

number of deployed transcoders from O, when the transcoders are enabled one by one

starting with the source stated as:

• f(q) >= f(q − 1), where f(q) finds the average delivered rates across clients for a

given number of transcoders q from O.

• f(q) is constant when q > |O| and all nodes inO are already selected for transcoder

placement.

2. Let the number of transcoders inO be J . Suppose initially there are K relay nodes in the

network which are enabled with transcoders, where K > J . There are (K − J) nodes

that are not in O.

When transcoders at the nodes that are not in O are disabled, the average delivered rate

remains constant.

With transcoders at all nodes in O, when transcoders are disabled one by one starting at

the leaf nodes of the tree, the average delivered rates across all clients is a monotonically

decreasing function of the number of removed transcoders from O. These are stated as:

• f(q) is constant when q > |O| and transcoders at (K − J) nodes that are not in O

are disabled.

• f(q − 1) <= f(q), where f(q) finds the average delivered rates across clients for a

given number of transcoders q from O.

The above statements capture the optimality claim as stated in Claim 5.1. These two

properties can be used to prove the optimality of O.

Experimental validation of optimality of O

In this section, we demonstrate the optimality ofO through experiments. We have implemented

algorithm find opt rates NR using Matlab and run several experiments to ensure that the algo-

rithm always determines the optimal set of transcoders to provide best delivered rates to clients.

97

Figure 5.8: Validation of optimality of O

We consider 100 randomly generated topologies of various sizes. We present one example in

Figure 5.8. The network has 200 nodes and 10 levels. There are 98 clients. Hence there are

200 − (98 + 1) = 101 eligible relay nodes for transcoder placement. Using find opt rates NR

we find that there are 21 nodes in the optimal set O.

1. We first start with one transcoder at S and find the average delivered rate across all clients.

This value is 149.2 kbps. We then place transcoders one by one at the nodes in the optimal

set in the top-down order. Figure 5.8(a) plots the average delivered rates when transcoders

are added to each node in O incrementally. When all the nodes in O are selected, the

average rate is maximum at 254.3 kbps. When transcoders are added to other nodes,

there is no change in the average rate as portrayed in the figure.

2. With all relay nodes enabled with transcoders, we start removing transcoders one by

one from the nodes that are not in O. Figure 5.8(b) plots the average delivered rates

when transcoders are removed one by one. Note that the average rate remains constant

at the maximum 254.3 kbps when the transcoders from nodes that do not belong to O

98

are removed one by one. This trend continues till the point when all the transcoders

from relay nodes which are not in O are removed. At this point, we remove transcoders

from each node in the optimal set starting with the node in the bottom-up order. The

average delivered rate decreases in a manner similar to the case when transcoders are

incrementally added, as each transcoder from O is removed. When the last transcoder is

removed, the average rate converges to the minimum average rate 149.2 kbps, the average

delivered rate when transcoding is done only by S.

5.4 Conclusions

A Content Service Provider (CSP) catering to the needs of clients dispersed around the world

on a subscription based model, needs to understand the resources required to provide quality of

service to the clients and appropriate placement of these resources [9] to maximize the delivered

rates at the clients. The first question that needs to be answered is: how many transcoders are

required if all clients are to be provided with optimal rates, assuming no constraints on the

number of transcoders? Answer to this question would give the upper bound on the number of

transcoders and their placement for providing the best delivered rates to clients. In this chapter,

we presented an algorithm to find the optimal set O of transcoders for providing clients with

the best delivered rates.

Our algorithm for finding the optimal rates and optimal transcoder placement is applied

for one multicast tree at a time. This algorithm can be run for each instance of the multicast

tree to determine the nodes that require transcoders. Note that since nodes may overlap across

different trees, a node may require multiple transcoders from different runs of the algorithm;

or a node chosen for placement in one run may not require a transcoder in another run. As

discussed in the final section of the previous chapter, by providing various classes of service at

different premiums, a CSP catering to a set of subscribed clients can enhance its revenue. Our

algorithm can be readily used by the CSP to understand the benefits of investing in resources,

given the cost of the resource and the revenue model from the classes of service offered. While

such an analysis from a business perspective is beyond the scope of this thesis, we can claim that

the analysis and algorithms presented in this chapter can be readily used by a CSP for efficient

dissemination of multimedia contents.

In the next chapter, we look at the problem of finding optimal placement for a given

99

number of transcoders, q, where q < |O|. While we know that the delivered rates at clients

would be less than the best delivered rates, we want to answer the following question: how can

we place the transcoders such that the maximum possible rates are delivered at the clients?

100

Chapter 6

Determining optimal placement for a given

number of transcoders
(Scheduled streaming, Static link bandwidths)

6.1 Introduction

In this chapter we address the following question: Given a limited number q of transcoders,

where can these be placed such that the delivered rates are maximized across all the clients?

Recall that the Eligible set E contains all the relay nodes in the multicast tree and Optimal set

O is the smallest set of nodes where transcoders have to be placed to obtain the best delivered

rates for all clients.

We define the following additional terms for the ease of understanding the solutions presented

in this section:

Super node: A node other than S, which is the common ancestor of two or more nodes in O

and does not have a transcoder.

Useful set: The union of O and the set of super nodes. This set is denoted by U .

We first formulate the placement for q transcoders as an optimization function. We also de-

velop an algorithm, find opt placement E, that finds the best combination of nodes for transcoder

placement that delivers the maximum delivered rates to clients, considering all possible combi-

nations of nodes from E . We next show that by limiting the set of nodes considered for place-

ment to the useful set U , the complexity can be reduced by several orders of magnitude. We

101

find_placement_Min_lossfind_placement_Max_gain

Option
1 to use Eligible set
2 to use Useful set

number of transcoders
to be placed (q)

* Client requirements

* AT option

to be placed (q)

number of transcoders

find_eligible_nodes
num_elig_nodes

find_opt_placement

stream_rates

find_min_transcoders
O

num_opt_nodes
optim_nodes_list (O)

find_super_nodes
super nodes

= useful set

u_nodes_list
num_unodes

num_unodes

placement

optimal placement

O U {super nodes}

find_opt_rates_NR

elig_nodes_list (E)

for q transcoders

for q transcoders

u_nodes_list (U)

Network parameters

Figure 6.1: Overview of solution approaches: Chapter 6

prove that the resulting algorithm find opt placement U is equivalent to find opt placement E.

find opt placement U narrows the search space thereby making the algorithm converge

faster; however, the computation time required by this optimal algorithm may render it infea-

sible in practice. Hence we develop two greedy alternatives: max-gain and min-loss. Both

the algorithms select nodes from U . The max-gain algorithm starts with no transcoders (other

than S). It adds q transcoders choosing one node from U at a time, such that at each step, the

improvement in delivered rates at clients from the added transcoders is maximum.

The min-loss algorithm starts with transcoders at all nodes in U and removes one transcoder

at each step until q transcoders are left. The node chosen at a step is such that it has the least

impact on the delivered rates at the clients. The algorithms are presented in detail in the next

sections. Figure 6.1 provides an overview of the contributions of this chapter.

6.2 Optimization-based approach

We formulate our objective of maximizing delivered rates across all clients in the network for

a given number q of transcoders as an optimization problem, where paths from source to every

client in the network are considered. Note that we can use the same formulation presented in

Section 4.2 in Chapter 4, with the following difference: In this case, instead of the Transcoder

102

Objective function: Minimize ∀k, k = 1, 2, . . . ,m,
∑

k (Γ− rk)2,

where m is the number of clients.

Constraints:

Rate constraint: ∀i, i = 1, 2, . . . n, ri <= Γ, where n is the number of links in the multicast tree.

Delay tolerance constraint: ∀k, k = 1, 2, . . . m, Lk <= δk, where Lk is the latency incurred

in the path from S to Ck, due to buffering and transcoding.

Number of transcoder constraint: |k: node k has an outgoing link with stream rate smaller than

rate flowing into it | <= q, where q is the number of transcoders to be placed.

Figure 6.2: Optimization function

constraint which provides the information on whether a given node is transcoder capable or

not, we use the Number of transcoder constraint that ensures that only the specified number

of transcoders are deployed. The optimization function formulated using the fmincon function

from the optimization toolbox of Matlab is presented in Figure 6.2.

Design variables: Stream Rates ris flowing through links lis

Objective function: Maximize delivered rates at the clients, written as: Minimize
∑

k (Γ− rk)2,

where Γ is the base encoding rate and rk is the rate delivered at client Ck.

Constraints:

• Rate constraint: This constraint ensures that the stream rate ri flowing across any link li

in the network is bounded by Γ which is the highest possible stream rate. We represent

this constraint as:

ri <= Γ

• Delay tolerance constraint: This constraint ensures that the client specified delay toler-

ance δk is not exceeded while delivering enhanced rate to the client. It is specified as:

L k <= δk,

where Li is the latency incurred in the path from S to Ck, due to buffering and transcod-

ing.

• Number of transcoder constraint: As explained before, when the stream rate flowing into

a node is greater than the stream rate flowing out of it through any of its out going links,

103

we can infer that the node has a transcoder. We want to constrain number of such nodes.

We specify this constraint as:

|k: node k has an outgoing link with stream rate smaller than rate flowing into it | <= q,

where q is the number of transcoders to be placed.

Results: We used the fmincon function from the optimization toolbox of Matlab for imple-

mentation. Note that the same objective function as in Section 4.2 is used, with the number of

transcoder constraint replacing the transcoder constraint.

Given the eligible set E . Given q transcoders, where q < |O|, our objective is to seek a

placement which delivers the best possible rates to clients. Number of possible unique place-

ments is given by:

 E

q

 =
E!

q!(E − q)!
(6.1)

We found the following two problems in computing the placement when any network

having 15 or more nodes is given as input to the fmincon function: (i) due to the exponential

search space, the algorithm takes a long time to converge or (ii) it converges to a local optimum;

this is explainable, given the fact that fmincon may be trapped to local optima and may not be

able to find a feasible solution when constraints are nonlinear [38]. Hence, we next explore

ways to reduce the number of combinations to be considered in finding the optimal placement

for a given number of transcoders.

6.3 Towards finding lower cost optimal algorithms

We first present an algorithm that finds the optimal placement of q transcoders, considering all

possible subsets of q nodes of the eligible set E . We refer to this algorithm as find opt placement E,

where E stands for the eligible set. As expected, while the algorithm converges in a reasonable

amount of time for networks with small number of nodes, as the number of combinations in-

creases exponentially, it is not a practical approach for networks with large number of nodes.

Given that the optimal set consists of the minimal set of nodes where transcoders have to

be placed to provide best delivered rates to clients, we explore whether confining to nodes from

the optimal set suffices in finding the optimal combination for a given number of transcoders.

Let O be the optimal set which provides the best delivered rates to clients, as determined by

104

find min transcoders. Suppose q transcoders are available for placement, where q < |O|. We

define best possible rates for a given number of transcoders as the rates that result in the mini-

mal reduction in delivered rates at clients compared to the best delivered rates computed using

find opt rates I. Suppose r1, r2, . . . , rm are the optimal delivered rates at the m clients com-

puted using find opt rates I. Suppose v1
1, v

1
2, . . . , v

1
m are the delivered rates when q transcoders

are placed in one way, v2
1, v

2
2, . . . , v

2
m are the delivered rates when q transcoders are placed a sec-

ond way, etc., our objective is to seek a placement which delivers best possible rates to clients,

i.e., we want to select that placement i, such that Σ(rk − vi
k) is minimum. We ask the following

questions:

1. Is it sufficient to consider only the nodes in O for optimal placement of a given number

of transcoders?

2. Under what conditions is it necessary to consider nodes that are not in O?

3. When it is not sufficient to consider only the nodes in O, how can we identify the addi-

tional nodes that must be considered?

We find answers to these questions in the sections that follow.

6.3.1 Insufficiency of considering only nodes in the optimal set

In this section, we explore the first question and prove that when the number of available

transcoders for deployment is less than |O|, it is not sufficient to consider only nodes in O

to provide the best possible delivered rates at clients.

Lemma 6.1:

Consider the optimal set O as determined by algorithm find min transcoders. If the number of

available transcoders for deployment is less than |O|, then it is not sufficient to consider only

nodes in O to provide the best possible delivered rates at clients.

Proof: By contradiction

With reference to Figure 6.3, let {R1, R2, . . . Rk} ∈ O andRa /∈ O. Let us assume that it is suf-

ficient to consider the nodes in O for placing a given number of transcoders. Let r1, r2, . . . rm

be the best delivered rates at C1, C2, . . . Cm. Let rmin = min(r1, r2, ., rm). Consider the case

when each subtree rooted at R1, R2, . . . Rk has at least one client having delivered rate rmin. To

105

l
i

R

R 1 Rk

C1 C j
Ck

Cm

a

Figure 6.3: Redundancy in transcoders at relay nodes

place q transcoders where q < |O|, a subset of R1, R2, . . . Rk has to be chosen. But, in order

to serve all the clients without loss, rmin must flow through the shared link li when there are no

transcoders at some nodes inR1, R2, . . . Rk. Hence all clients get only rmin; Note that this is the

rate the clients would get if there are no transcoders in any of the nodes inR1, R2, . . . Rk. Thus,

no improvement can be realized in the delivered rates at the clients by considering a subset of

R1, R2, . . . Rk. However, by placing a transcoder at Ra and placing a transcoder at one of the

nodesRi, Rj, . . . Rk, rates better than rmin can be delivered to one or more clients served by the

chosen node. Thus, it is not sufficient to consider only the nodes in O for placing transcoders

when the number of available transcoders is less than |O|. 2

From Lemma 6.1, we can infer that the nodes which are considered redundant during the

detrmination of O may become useful when a limited number of transcoders has to be placed

such that the delivered rates to clients is maximized. Thus, we have answered the first question

raised in the previous section: It is not sufficient to consider only the nodes in optimal set to

find optimal placement for a limited number of transcoders.

In order to answer the next two questions, we introduce super nodes in the next section.

We start with the properties of super nodes; this provides the insight that is useful to develop an

algorithm to identify the super nodes.

6.3.2 Super nodes and their properties

As defined at the beginning of this chapter, any common ancestor (other than S) to two or more

nodes in the optimal set that does not have a transcoder is a super node. We will now take a

closer look at super nodes and list their properties.

106

R

RR

R
R

a

i j

k

C
i

C C

l m
CnCC

j k

C C qp

l

Figure 6.4: Identifying a super node

Consider Figure 6.4. Given this network and client requirements, we run find min transcoders.

Nodes Ri, Rk, and Rl ∈ O. Nodes Ra and Rj are the super nodes.

• By default, all nodes in the network have S as their common ancestor. However, S is not

considered to be a super node.

• A super node is not in O. In our example, Nodes Ra and Rj are not in O.

• A super node can serve clients at various levels. In Figure 6.4, Ra serves client Ci (say,

at level d), clients Cj and Ck (at level d+1) and clients Cl, Cm, Cn, Cp, and Cq (at level

d+2).

• Enabling only a super node with transcoder – when there are zero or more transcoders

at the subtree roots served by the super node – may not provide any improvement in the

delivered rates of the clients. In the example in Figure 6.4, having a transcoder at Ra does

not serve any purpose when Ri, Rk and Rl do not have transcoders. Thus, in this example

if there is only one available transcoder, it does not provide any benefit to the CSP as no

improvement in delivered rates at clients can be achieved by this transcoder.

• A super node gives rise to dependant set D when each subtree served by the super node

has at least one client having a delivered rate = min(ri), where ris are the delivered rates

at the clients served by the super node. We define a dependant set as follows:

D is a dependant set having nodes Ri, Rk, . . . Rl where Ri, Rk, . . . Rl ∈ O such that no

107

improvement in the delivered rates at clients is achieved unless transcoders are placed at

all Ris ∈ D.

Using the insights developed from the above properties of super nodes and the dependant

set, we develop an algorithm to identify the super nodes. Then, we find the optimal placement

for q transcoders by considering the nodes in U instead of considering all the nodes in E . In

the next section, we present an example to illustrate these concepts and motivate the reasoning

underlying the algorithm for finding the super nodes.

6.3.3 Identifying super nodes: An illustrative example

We present two scenarios (same subtree with some link bandwidths changed) in Figure 6.5.

The link numbers and actual stream rate that flows through each link are marked in the figure.

Nodes 4, 5, and 6 have transcoders, i.e., 4,5,6 ∈ O. Since each of these nodes serve at least

one client having delivered rate 384 kbps and the stream flowing through link 1 is encoded at

384 kbps, there is no need for a transcoder at node 2 (as decided by find min transcoders which

comes up with the optimal placement). Suppose we are given two transcoders; our objective

is to place the transcoders at nodes to provide optimal rates at the clients. We need to find the

actual stream rates that can flow through the links to provide loss-free delivered rates to clients.

1. Case (i): Considering the optimal set {4,5,6}, to place two transcoders, the following

combinations are possible: {4,5},{4,6}, and {5,6}. Note that the chosen combination

determines the maximum stream rate that can flow through the shared link 1 in order to

serve all the clients without loss.

• If {4,5} is chosen, the maximum stream rate that can flow through the shared link 1

is given by: min(delivered rates at clients 12, 13, 14 served by node 6 that does not

have a transcoder) = 256 kbps.

In this case, 256 kbps flows through links 1, 2, 3, and 4. With transcoder at node 4,

client 8 gets 128 kbps; with transcoder at node 5, client 11 gets 192 kbps; all other

clients get 256 kbps;

• If {4,6} is chosen, the maximum stream rate that can flow through the shared link 1

is given by: min(delivered rates at clients 10, and 11 served by node 5 that does not

have a transcoder) = 192 kbps.

108

1

384

2

384 3

384

4

384

128 384
384 192 256 384 384

4 5 6
7

8
9 10 11 12 13

8 9 10 11 12 13

2

14

1

384

2

384 3

384

4

384

128 384
384 256 384

4 5 6
7

8
9 11 12 13

8 9 10 11 12 13

2

14

10
128 128

(i)

(ii)

Figure 6.5: Example to illustrate the role of super nodes

In this case, 192 kbps flows through links 1, 2, 3, and 4. With transcoder at node 4,

client 8 gets 128 kbps; transcoder at node 5 is not used as both clients 10 and 11 get

192 kbps; all other clients get 192 kbps;

• If {5,6} is chosen, the maximum stream rate that can flow through the shared link

1 is given by: min(delivered rates at clients 8, and 9 served by node 4 that does not

have a transcoder) = 128 kbps.

In this case, 128 kbps flows through links 1, 2, 3, and 4. In this case both the

transcoders at 5 and 6 are not used as the delivered rates at clients is 128 kbps;

Thus, the best combination is {4,5}with the total delivered rates across clients being 1600

kbps. However, this is not the optimal combination that provides most improvement in

delivered rates across all the clients, when all eligible nodes are considered for transcoder

placement. Suppose node 2 is added to the optimal set; consider the combination {2,6}.

In this case, 384 kbps flows through link 1 and 4. 128 kbps flows through link 2, 192

kbps through link 3. The delivered rates at clients 8 and 9 are 128 kbps; 10 and 11 are

192 kbps, client 12 gets 256 kbps and clients 13 and 14 get 384 kbps. Total delivered

109

rates across clients is 1664 kbps.

Hence, by considering the parent node 2 along with O, the optimal placement can be

found.

2. Case (ii): Suppose the stream rates flowing through links 10 and 12 are 128 kbps. Since

each of the nodes 4, 5, and 6 serve a client having a delivered rate of 128 kbps, choos-

ing any two of these nodes does not improve the delivered rates for any client. Nodes

{4,5,6} form a dependant set. Here again, by including the parent node 2 in U and plac-

ing transcoders at nodes 2 and 6 optimal delivered rates at clients can be provided.

Node 2 is the super node. Note that when there are no super nodes in the network, U = O. In

case (ii), D = {4,5,6}; i.e., nodes 4, 5, and 6 belong to the dependant set, as no improvement in

delivered rates is possible by placing transcoders in any subset of these nodes.

6.3.4 Algorithm to identify super nodes

Using the properties of super nodes, we develop the algorithm find super nodes as given in

Figure 6.6 to identify the super nodes. Let R be the set of super nodes. These nodes are added

to the optimal set. The resulting set of nodes is the useful set, U .

U = O ∪R.

Thus, we have answered the three questions raised at the beginning of this section.

• We have proved that it is not sufficient to consider only the nodes in U for optimal place-

ment of a given number of transcoders.

• When there are instances of super nodes in the network, we need to include these nodes

in the useful set to find optimal placement for q transcoders, where q < |O|.

• We identify the super nodes using the algorithm find super nodes presented in Figure 6.6.

Based on the discussions thus far, we next develop algorithms that use the eligible set or the

useful set, to find the placement for q transcoders. We analyze the savings in computational

time in finding the optimal placement when we use the useful set instead of the eligible set and

the property of U in the next section.

110

Input:

optim nodes: Boolean vector that indicates nodes

that are in the optimal set

num optim nodes: number of nodes in the optimal set

% following global variable is used by the algorithm %

numnodes

Output:

super node list: Vector having node ids of the super nodes

Function find super nodes (num optim nodes, optim nodes)

for n = 1:num optim nodes % for every node in the optimal set %

current node = optim node[n];

[num ancestors, ancestors] = find ancestor(current node);

% find ancestors up to the source %

for m = 1: num ancestors

transcoder present = is transcoder(ancestors[m]);

% check if ancestor has a transcoder %

if transcoder present = 0

% if ancestor does not have a transcoder,

add it to the ancestor list %

ancestor list[n] = ancestors[m];

end

end

end

for each entry in ancestor list

if another entry for the same ancestor

add the ancestor to super node list

end

end

Figure 6.6: Algorithm: find super nodes

111

Input:

num trans: constant indicating the number of transcoders available

num unodes: constant indicating number of nodes in the useful set

u nodes list: vector of size numnodes with useful nodes indicated

num enodes: constant indicating number of nodes in the eligible set

e nodes list: vector of size numnodes with eligible nodes indicated

option considered: variable to indicate option to consider, E or U

% the following global variables are used by the algorithms %

numnodes, trans info

Output:

trans placement: vector indicating optimal placement for num trans

transcoders

deli rates: vector with delivered rates at the clients for the optimal

placement

n combns: constant indicating number of combinations considered for the

option considered

Figure 6.7: Variables used in find opt placement

6.4 Optimal algorithms

We have two options that find the optimal placement of q transcoders, q < |O|. In the first one,

given the eligible nodes in the network, all the combinations of q nodes from this eligible set are

considered to find the combination that delivers the maximum rates at the clients. In the second

option, only nodes from the useful set are considered. Algorithm find opt placement finds the

optimal placement for q transcoders by using either the eligible set or the useful set based on

the value of the input, option considered.

We present the variables used in algorithm find opt placement in Figure 6.7. Outline

of the algorithm find opt placement is presented in Figure 6.8. For the ease of understand-

ing, we refer to the algorithm as find opt placement E when the eligible set is considered and

find opt placement U when the useful set is considered. We present experiments to compare

the performance of find opt placement E and find opt placement U in the next section.

112

With transcoder only at S, run find opt rates I to

find the base deli rates at clients

if num trans == 1

% when only one transcoder is available %

for each node in useful set

place a transcoder and find the delivered rates at clients;

find the node that maximizes the improvement in delivered rate

compared to the base deli rates

end

return trans placement, deli rates

else

% when multiple transcoders are available %

if option considered == 1

max num combns = (factorial(E)/ factorial(n) factorial(E-n));

else

max num combns = (factorial(U)/ factorial(n) factorial(U-n));

end

for count = 1: max num combns

for each combination of nodes

find delivered rates at the clients

for each client find the improvement compared to the

base delivered rates

choose combination that provides maximum improvement

new transinfo = chosen placement of transcoders

end

trans placement = new tarnsinfo;

deli rates = delivered rates with new transinfo;

num combns = combinations considered;

end

end

Figure 6.8: Algorithm find opt placement

113

6.4.1 Comparison of find opt placement E and find opt placement U

In this section, we present the experiments that compare the performance of the two optimal

placement algorithms: find opt placement E and find opt placement U. Given that both algo-

rithms find the optimal placement for a given number of transcoders, we use the number of

combinations considered and CPU time taken as the performance parameters.

Set-up: In all the experiments presented in this chapter, the following parameters remain

the same:

(i) Playout duration T is set to 1 hour and (ii) The minimum rate requirement of all clients is

set to 128 kbps, and (iii) Without loss of generality, queuing delays and propagation delays are

set to zero.

Experiments: We consider 40 random topologies having 15-40 nodes, with randomly cho-

sen link bandwidths between 128–768 kbps and client δ requirements between 300-3600 sec-

onds. Consider a specific value of transcoders to be placed q, where q < |O|. We observed

that opt placement U selects the same combination of nodes for transcoder placement as the

optimal placement chosen by opt placement E for each run with the given q. We present a

comparison of number of combinations considered by the two placement algorithms and CPU

time for convergence of these algorithms.

Results: Figures 6.9 and 6.10 present the comparisons for topologies having 20-25 nodes

and 35-40 nodes respectively. Topology index is plotted on the x-axis, number of combinations

along the primary Y-axis, and CPU time along the secondary Y-axis. Comparison of the number

of combinations considered is plotted as a bar chart while the CPU time taken for convergence

of the algorithms is plotted as a line chart. As seen from these graphs, by using the useful set

instead of the eligible set, the number of combinations considered, hence the CPU time taken

by the algorithm, is significantly reduced.

6.5 Property of useful set U

As demonstrated in the last chapter in Section 5.3.2, the average delivered rates across all clients

is a monotonically increasing function of the number of deployed transcoders fromO, when the

transcoders are enabled one by one top-down from the source. In this chapter, we refine this

claim given the notion of super nodes.

Claim 6.1: It is sufficient to consider all possible combinations of nodes in the useful set U , for

114

Figure 6.9: Comparison of optimal algorithms(20-25 nodes)

Figure 6.10: Comparison of optimal algorithms(35-40 nodes)

115

optimal placement of q transcoders, where q < |O|.

To prove:

The union of super nodes and O contains all the nodes that can contribute to any improvement

in the delivered rates of clients.

Proof:

Super nodes are a subset of nodes which are considered redundant by algorithm find min transcoders

discussed in Chaper 5. We examine the redundancy rules (Refer to Section 5.2, in Chapter 5)

to ensure that the super nodes list includes all nodes which may contribute to increase in the

average delivered rates, when transcoders are incrementally placed.

• As proven in Lemma 5.1, adding any node from a string to the set of super nodes would

not contribute to any improvement in the delivered rate of any client.

• When clients in a subtree are equi-deliverable rate clients, no improvement in delivered

rates can be realized by enabling additional transcoders in that subtree, as proven by

Lemma 5.3.

• Considering Corollary 5.2, the root node which is redundant when finding the optimal set

of transcoders required to deliver the best delivered rates to clients becomes a candidate

for placement of transcoder, when the transcoders are limited to q < |O|.

Thus, the only nodes that need to be considered, in addition to the nodes in O, are the super

nodes, identified as redundant by Corollary 5.2. Hence, by considering all possible combina-

tions from U , optimal placement for q transcoders can be found. 2

As a corollary, it is clear that if there are no super nodes in the network, then it is sufficient to

consider just the nodes in O for optimal placement of q transcoders, where q < |O|.

Complexity of opt placement U

The number of unique combinations to be considered by find opt placement U is given by: U

q

 =
U !

q!(U − q)!
(6.2)

When the network is large and U , the number of nodes in U is large, since the complexity of

algorithm opt placement U is exponential, it is necessary to develop other approaches of lower

116

complexity but with effective placement decisions. We present two such algorithms in the next

section.

6.6 Lower complexity alternatives: Greedy algorithms

The question addressed in this section can be stated as: Given a limited number of transcoders,

where can each of these be inserted (among the useful nodes) in turn such that the gain – in

terms of improved delivered rates across all clients – from each inserted transcoder is maxi-

mized? Algorithm findplacement Max gain, presented next, answers this question; Maximum

gain refers to the modus operandi of the algorithm: it adds transcoders one at a time to the

nodes in the useful set such that at each step, the improvement in delivered rates at clients is

maximum.

The question above can also be posed as: Given transcoders at all the useful nodes, which of

these transcoders can be removed (to use just the given number of transcoders) such that the

loss – in terms of decreased delivered rates across all clients – from each removed transcoder

is minimized? Algorithm findplacement Min loss answers this question; Minimum loss refers

to removing transcoders one at a time, from the useful set that would have least impact on the

delivered rates at the clients.

6.6.1 Max-gain algorithm

Let q be the number of transcoders to be placed. Given U ,

1. Start with no transcoders (other than S) and find the delivered rates at clients.

2. Place first transcoder at each node in U one at a time and find the delivered rates at clients

for each of these additions. Choose the option that maximizes the gain from the addition

of a transcoder at the chosen location. Remove the node selected for placement from the

useful node list. Reduce q by one.

3. While q is positive, with the chosen placement, repeat step 2 for the next transcoder plac-

ing it at each useful node. Note that for each round of selection, the delivered rates with

the placement in the previous round would be used for comparison to find the additional

gain.

117

Algorithm findplacement Max gain is given in Figure 6.11.

6.6.2 Min-loss algorithm

Steps in the algorithm are listed below:

Let q be the number of transcoders to be placed. Given U ,

1. Start with transcoders at all nodes in U . Find the delivered rates at clients.

2. Remove transcoders one at a time and find the delivered rates at clients for each of

these removals. Choose that transcoder that minimizes the loss from the removal of the

transcoder at the chosen location. Remove the node from the useful node list. Reduce q

by one.

3. While q is positive, with the chosen placement, repeat step 2 for the next transcoder,

removing it from each remaining useful nodes. Note that for each round of selection,

the delivered rates with the placement in the previous round would be used to find the

cumulative minimal loss.

Algorithm findplacement Min loss is given in Figure 6.12.

6.6.3 Performance of greedy algorithms

Having established that opt placement U is equivalent to opt placement E with improved effi-

ciency, we set opt placement U as our base optimal algorithm. Our objective is to understand

the following:

• for a given network topology and client requirements, how do the greedy algorithms

perform in comparison with the optimal algorithm?

• to place q transcoders where q < |O|, how can the CSP choose the appropriate algorithm?

Comparison with opt placement U

We now study the performance of the two greedy algorithms as compared with the optimal

algorithm.

118

Input:

num trans: number of transcoders that need to be placed

useful nodes: Boolean vector indicating nodes that are in the U-set

% the following global variables are used by the algorithm %

linkinfo, pathinfo, clients, numclients, numnodes

Output:

transinfo: Boolean vector that indicates nodes having transcoders

function findplacement Max gain (num trans, useful nodes);

Initialize transinfo with only one transcoder at source;

[base act rates, base deli rates] = find opt rates I (transinfo)

% find optimal delivered rates at clients with ST option %

maxgain = 0;

for n = 1 : num trans

for m = 2 : numnodes

current transinfo = transinfo;

if node[m] is in useful nodes

enable transcoder at node[m] in current transinfo;

[act rates, deli rates] =

find opt rates I (current transinfo);

gain = 0;

for k = 1 : numclients

gain = gain +

(deli rates at clients[k]- base deli rates at clients [k]);

end %find improvement in delivered rates across all clients%

if gain is greater than maxgain

maxgain = gain;

chosen node = node;

end

end

end

remove chosen node from useful nodes;

enable transcoder at the chosen node in transinfo;

base deli rates = deli rates;

end

Figure 6.11: Algorithm: findplacement Max gain

119

Input:

num trans: number of transcoders that need to be placed

useful nodes: Boolean vector that indicates nodes that are in the U-set

% the following global variables are used by the algorithm %

linkinfo, pathinfo, clients, numclients, numnodes

Output:

transinfo: Boolean vector that indicates nodes having transcoders

function findplacement Min loss (num trans, useful nodes)

Initialize transinfo with transcoders at all nodes in useful nodes;

[base act rates, base deli rates] = find opt rates I (transinfo)

% find optimal delivered rates at clients with AT placement option %

minloss = 0;

for n = 1 : num trans

for m = 2 : numnodes

current transinfo = transinfo;

if node [m] is in useful nodes

disable transcoder at node[m] in current transinfo;

[act rates, deli rates] =

find opt rates I (current transinfo);

loss = 0;

for k = 1 : numclients

loss = loss +

(base deli rates at client[k]- deli rates at client[k]);

end % find decrease in delivered rates across all clients %

if loss is less than minloss

minloss = loss;

chosen node = node;

end

end

end

remove chosen node from useful nodes;

disable transcoder at the chosen node in transinfo;

base deli rates = deli rates;

end

Figure 6.12: Algorithm: findplacement Min loss

120

Set-up: In these experiments, we use the following metrics to compare their performances: (i)

average delivered rates at the clients (ii) number of clients affected by the chosen placement:

these are the clients, each of which has suffered a reduction in its delivered rate, and (iii) CPU

time for the algorithm to converge.

Experiments: As discussed in Section 6.4, since the complexity of opt placement U is exponen-

tial, when the number of useful nodes increases, the number of combinations to be considered

for optimal placement of q transcoders explodes. Hence we consider small networks having

40–100 nodes. We find the optimal set and any super nodes, to find the useful set. For all values

of q where q > 1 and q <= |O|, we run opt placement U and the two greedy algorithms. As

an example, we present the result from a topology having 100 nodes with 12 nodes in optimal

set and two super nodes.

Results:

• Starting with q = 2, we run opt placement U and the two greedy algorithms for each q

value up to |O|. The average delivered rates at the clients for each algorithm is found.

The first graph in Figure 6.13 plots the average delivered rates for each algorithm. As

seen from this figure, both the greedy algorithms perform close to the optimal algorithm.

• When the greedy algorithms are used, the second graph in Figure 6.13 depicts the num-

ber of clients for which the delivered rates is less than the delivered rates if the optimal

placement were chosen. As seen in this graph, the average delivered rates for the two

greedy algorithms are very close, even though different nodes are chosen for placement

of transcoders. However, based on the nodes chosen, delivered rates at specific clients

can be affected and the number of affected client can differ for these two algorithms.

This is an important observation, as a CSP can choose an algorithm based on the service

guarantees it has agreed to with specific clients.

• The next parameter we are concerned about is the time taken by the algorithms to find

the placement. As shown in the third graph in Figure 6.13, the time of convergence

for opt placement U is bell-shaped. Considering the difference in the scale of time of

convergence for opt placement U as compared with the greedy algorithms, we have used

two Y axes: the primary Y-axis (to the left) is calibrated according to the time scale of

opt placement U and the secondary Y-axis (to the right) is calibrated according to the

time scale of the greedy algorithms.

121

Figure 6.13: Performance of greedy algorithms

122

– opt placement U can be used when the number of transcoders to be placed falls

at either end of q. For very small values of q or very large values, the number of

combinations considered is not too large. In such cases, optimal placement can be

found using opt placement U.

– When the number of combinations to be considered is beyond a threshold (can be

set by the CSP), one of the greedy algorithms is used.

– As seen from the third graph in Figure 6.13, when q < |O| /2, findplacement Max gain

is preferred as it takes less time than findplacement Min loss.

– When q > |O| /2, findplacement Min loss converges faster as it starts with transcoders

at all the nodes in U and needs to remove fewer transcoders to find the placement.

Next, we consider 20 topologies having 150-300 nodes with link bandwidths randomly

chosen from 192-1024 kbps. All clients’ minimum rate requirements are set to 128 kbps.

Their delay tolerance values are randomly assigned from 30-3600 seconds. For each

topology first we set the number of transcoders to be placed = |O| /4. The top two

graphs in Figure 6.14 depict the average delivered rates at the clients and the CPU time

taken by the two greedy algorithms.

The bottom two graphs in Figure 6.14 depict the average delivered rates at the clients and

the CPU time taken by the two greedy algorithms, when the number of transcoders to be

placed = |O| × 3/4.

As also seen from these graphs, the findplacement Max gain works efficiently when few

transcoders are to be placed and findplacement Min loss works efficiently when q > |O|

/2 transcoders are to be placed.

6.7 Conclusions

In the previous chapter, we explained how the CSP servicing clients as in a distance education

application, can find the minimum number of transcoders required to provide the best delivered

rates to clients. This provides the upper bound on the investment required for the transcoders.

As discussed in the conclusions section of Chapter 4, by providing various classes of service

for different premiums, a CSP catering to a set of subscribed clients can enhance its revenue.

123

Figure 6.14: Efficiency of greedy algorithms

When the available resources are constrained, a CSP needs to answer the following question: If

the number of transcoders q is constrained such that q < |O|, where should the transcoders be

placed such that the clients can be serviced with the best rates? Note that this is an important

question to answer as it helps the CSP in: (i) making deployment choices for a specific number

of transcoders and (ii) using the transcoders efficiently to improve the delivered rates at clients

maximally. We have discussed this problem in this section, providing optimal solutions as well

as greedy alternatives with lower complexity. This analysis is also useful for a CSP to ensure

various classes of service (say, Platinum, Gold, and Silver memberships) guaranteed to the

clients, even when the number of resources are constrained. While such an analysis based on

the business model of the CSP is beyond the scope of this thesis, the analysis and algorithms

provided in this chapter can be used in conjunction with the CSP’s cost-revenue model, to make

informed choices regarding investment and placement of resources.

124

Chapter 7

Solutions for scheduled streaming when

link bandwidths vary

7.1 Introduction

In the previous chapters we presented solutions for finding (i) the optimal delivered rates at

clients, (ii) the optimal placement for transcoders to achieve optimal delivered rates at clients,

and (iii) the optimal placement of transcoders, when there is a constraint on the number of

transcoders – for the scheduled streaming case when the bandwidths are assumed to be static

for the duration of the session. The assumption that bandwidth remains constant over an interval

is likely to hold better for shorter length time intervals. This motivates the work described in

this chapter.

With respect to the solution context presented in Figure 1.2 in Chapter 1, typically the

CSP’s distribution network is provisioned; however, the provisioned bandwidth on links in the

distribution network may vary with time. Even though links in the access network are typically

un-provisioned, a CSP can get information on the type of connectivity a client is subscribed

to and may be able to estimate the available bandwidths on the links in the access network.

Hence, in a subscription based network, it is possible for the CSP to estimate the available

bandwidth over time intervals that make up the session duration. We term the intervals over

which bandwidths are expected to be stable as prediction intervals.

In this chapter, we analyze the scheduled streaming scenario when the available band-

widths on the links from the source to the clients remain constant over prediction intervals

spanning the session duration. Preliminary work on this topic is presented in [27]. We have

125

borrowed the notion of break point while finding the stream rates through the links from this

work. The following model is assumed for the analysis presented:

1. Predicted bandwidths on the network links are available at S for prediction intervals span-

ning the session duration. These values are constant over the duration of the prediction

interval. The session duration is divided into prediction intervals of equal duration.

2. The delay tolerance values specified by the clients are multiples of the length of the pre-

diction interval. This assumption simplifies the exposition of the algorithms; otherwise

this assumption is not essential.

3. An adaptive layering encoder is available at S that encodes the stream into appropriate

number of layers to best serve the clients.

Our objective is to efficiently utilize the delay tolerance of clients and the bandwidth on

the links in their paths, to provide loss-free delivered rates at the clients over each prediction

interval. The following questions define the scope of the problem:

1. Given the client requirements and link bandwidths predicted over the session duration,

how can we find the delivered rates at clients over each prediction interval leveraging

their delay tolerance?

2. How can the available bandwidth on prediction intervals spanning the session duration be

effectively utilized to improve the delivered rates at clients?

3. If the network provides more precise bandwidth estimates for the links at the beginning

of every prediction interval, how can these estimates be used to revise the delivered rates

at the clients?

Before we proceed to answer these questions, we precisely define some of the terms used

in this chapter in addition to the terms defined in Chapter 2. We then discuss the flow of data

through the links and list some assumptions made in the analysis that follows.

7.1.1 Additional definitions and assumptions

As defined earlier, T is the playout duration of the content. Let C1, C2, . . . Cm be the clients

having delay tolerance values δ1, δ2, . . . δm. Session duration over which predicted bandwidths

are assumed to be known is: (T + max (δi)).

126

The following additional terms and assumptions are used in this chapter.

Definitions

Prediction Interval (PI): Time intervals over which bandwidths are predicted on a given link.

Prediction interval is denoted by P j
i , where i denotes the link index and j denotes the interval

index.

Prediction Interval Duration: The duration of a prediction interval is defined as the prediction

interval duration, denoted by P .

Number of prediction intervals: Number of prediction intervals depends upon the time du-

ration considered and the prediction interval duration. For example, the term (Session dura-

tion/Prediction interval duration) determines the number of prediction intervals in a session.

(Playout duration/Prediction interval duration) determines the number of prediction intervals

in the playout duration. This is denoted by P .

Predicted bandwidths: Bandwidths are predicted on each link li in the multicast tree for pre-

diction intervals spanning the session duration. Predicted bandwidth of P j
i is denoted by bji .

Available data capacity: Given the predicted bandwidths on a link li over the session duration,

available data capacity is the total amount of data that can flow through li (without loss) from the

start time of the session t0 up to the end of a given prediction interval. Available data capacity

on li up to a prediction interval j is denoted by: Aj
i .

Required data capacity: Given the encoded rate of a stream that flows through a link li over

the prediction intervals spanning the playout duration, required data capacity is the maximum

amount of data that will flow through li from the start time of the session t0 up to the end of

a given prediction interval, in order to provide loss-free playout at the client. Required data

capacity on li up to a prediction interval j is denoted by: Dj
i .

Break point: For a given link li, in order for the data to be flowing without any loss, for every

prediction interval j, Dj
i <= Aj

i . Else, a break-point is said to occur at the beginning of the

prediction interval Pj
i . This break point indicates that the encoded rate of the stream up to that

prediction interval can not be supported without loss.

Sent data capacity: Given the encoded rate of a stream that flows through a link li over the

prediction intervals spanning the playout duration, sent data capacity is the amount of data that

127

actually flows through li from the start time of the session t0 up to the end of a given prediction

interval. Sent data capacity on li up to a prediction interval j is denoted by: Sj
i .

Active period of a link: According to Theorem 4.1, when a link is shared, the minimum of

delay tolerance values of the clients sharing that link determines the upper bound for the stream

rate that can flow through that link, in order to serve all the clients without loss. The time

duration over which data flows through a link such that the delay tolerance constraints of the

clients having the link in their paths are honored is termed the active period of that link. The

active period of a link is given by: (T +min (δk)), where δks are the delay tolerance values of

the clients having the link in their paths.

Under-utilization of a link: Consider a link li. Let Aj
i be the available data capacity and Sj

i be

the sent data capacity on li up to P j
i . Consider the case when Aj

i is greater than Sj
i ; We refer to

such a situation as under-utilization of li or simply say that the link is under-utilized.

Before we present the assumptions, we illustrate some of the definitions discussed above

and discuss the flow of data through the links.

Illustration of flow of data through the links

We illustrate the flow of data in Figure 7.1 taking a simple topology and considering the path

from source S to client C1.

With reference to Figure 7.1, let T = 5 prediction intervals and (max(δk)) where δks are

the delay tolerance values of the clients, be 2 prediction intervals; Hence, the session duration

spans 7 prediction intervals. Let the prediction interval duration be P . Consider client C1.

Links l1 and l2 are in the path of C1 from S. Since l1 is a shared link, its active period is given

by: (5+ min(2, 1)) = 6 prediction intervals. Active period of l2 is 7 prediction intervals. We

trace the flow of data to Ca when r1
1, r

2
1, . . . r

5
1 are the stream rates generated by S over T .

• Data sent from S over the first prediction interval is: S1
1 = r1

1 ∗ P .

Data sent from S over the first 2 prediction intervals is: S2
1 = (r1

1 +r2
1) ∗ P .

Hence, total data sent from S over T = Sent data capacity = S5
1 = (r1

1 + r2
1 . . . + r5

1) ∗ P .

• Delay tolerance of C1 is 2 prediction intervals. Hence, Playout at C1 must start at the

beginning of third prediction interval and end at the seventh interval. Note that the total

amount of data played out at C1 over T is S5
1 . This amount of data needs to flow through

l1 over 6 prediction intervals and l2 over 7 prediction intervals.

128

C 2

S

l 1

l 2 l 3

C 1

R
C1

1

1b
6

1b
1

2b
7

2b.... , l1

l2

5

1r

2

1b
3

1b
4

1b
5

1bl 1

l 1
Active period of : 6 prediction intervals

l 2

l 2

1

2b 2

2b
3

2b
4

2b
5

2b
6

2b
7

2b

1

1b

1

1r
2

1r
3

1r
4

1r
5

1r

1

1r
2

1r
3

1r
4

1r

1

1r

2

1r

3

1r

4

1r

5

1r

1

1r

2

1r

4

1r

3

1r

5

1r

1

1r 2

1r
3

1r
4

1r
5

1rC1

Session duration: 7 prediction intervals

Playout duration: 5 prediction intervals

Delay tolerance of client 1 = 2 prediction intervals

Delay tolerance of client 2 = 1 prediction interval

: loss−free delivered rates at

across PIs spanning the

playout duration.

and: Predicted bandwidths on

over their active periods

1 2 3 4 5 6 7

Prediction interval

Rates delivered over playout duration

Stream rates generated over playout duration

S

Active period of : 7 prediction intervals

Figure 7.1: Flow of data over prediction intervals spanning session duration

129

• Available data on l1 over the first prediction interval is: A1
1 = b11 ∗ P .

Available data on l1 over the first 2 prediction intervals is: A2
1 = (b11 + b21) ∗ P .

Hence, total data available over the active period of l1 = Available data capacity = A6
1 =

(b11 + b21 . . . + b61) ∗ P

• Required data on l1 up to the second prediction interval is: D2
1 = r1

1 ∗ P .

Required data on l1 up to the third prediction interval is: D3
1 = (r1

1 + r2
1) ∗ P .

Hence, total data required over the active period of l1 = Required data capacity = D6
1 =

S5
1 = (r1

1 + r2
1 . . . + r5

1) ∗ P .

Similarly, considering that the active period of l2 is 7 prediction intervals, l2 must support

total required data S5
1 over 7 prediction intervals such that the playout at C1 is loss-free.

Flow of data through the links

Generalizing the above illustration, the steps that trace the flow of data from the source S to a

client Ca over the session duration are discussed below.

• The content stream generated at S spans the playout duration T . Suppose there are P

prediction intervals in T . Note that the data is sent from S over P intervals at rates rj
a,

where j = 1, 2, . . . P . Total data sent through a link li in Cas path up to j intervals is

given by:

∀j, j = 1, 2, . . . , P, Sj
i =

j∑
k=1

rk
a ∗ P

• The duration over which data can flow through each link is equal to its active period.

Consider a link li. Suppose the active period of li is (P + d). Let bji s be the predicted

bandwidths on link li where j = 1, 2, . . . (P + d).

The total amount of available data, that can flow through li without loss is given by:

∀j, j = 1, 2, . . . , (P + d), Aj
i =

j∑
k=1

bki ∗ P

• The total amount of data that is required to flow through li over its active period is given

by SP
i = (r1

a + r2
a + . . . + rP

a) ∗ P . Suppose the number of prediction intervals in the δ

value considered to compute the active period is d, playout at Ca starts in the (d + 1)th

130

prediction interval and ends at (d+P) intervals. In other words, data at rate r1
a can reach

Ca by the end of dth interval. Thus, data required to flow through li over jth interval is

given by:

∀j, j = 1, 2, . . . , (P + d), Dj
i = 0 if j <= d

=
j∑

k=1

rk
a ∗ P otherwise;

For the stream to flow through li loss-free, the following condition must hold:

∀j, j = 1, 2, . . . , (P + d), Aj
i >= Dj

i .

• Consider client Ca. Playout at the client starts at (t0 + δa). The delivered rate at Ca over

each prediction interval spanning T is atmost rj
a.

Note that in finding the available data capacity, required data capacity and sent data capacity

we multiply the rate with the duration of the prediction interval which cancels out in the final

rate calculation. Henceforth, we do not explicitly use the prediction interval duration in our

calculations and illustrations.

Assumptions

We make the following assumptions in the analysis presented in this chapter:

• Prediction intervals are of constant and equal duration.

Length of prediction intervals spanning the session duration is chosen to be a fraction of

T .

• Predicted bandwidth over a prediction interval remain constant over that prediction in-

terval.

• A prediction module that accurately predicts link bandwidths over prediction intervals is

available.

We assume a feedback based bandwidth prediction mechanism such as the one used in

the loss-based rate adaptation scheme described in [43].

131

• A source-driven layer encoder adapts the layers for each prediction interval to match the

delivered rates at the clients.

• Bandwidth estimates received at the beginning of each prediction interval are accurate.

We briefly outline the solution strategies used to find the loss-free delivered rates at the clients

in the next section.

7.1.2 Overview of solution approaches

To find the loss-free delivered rates at the clients over each prediction interval, firstly, we de-

velop a solution by formulating it as an optimization problem. Given the complexity of this

approach, we then explore practical alternatives.

Algorithms required to find the delivered rates at clients over each prediction interval depend

on the nature of bandwidth variation.

• When the variations are very small, where we can assume available bandwidths to be

static over the session duration, we use the following simple solution: for each link, find

the minimum of the predicted bandwidths over prediction intervals spanning its active

period. Assume this to be the available bandwidth on the link for all the prediction inter-

vals in its active period. Now we can apply the algorithm find opt rates I developed in

Chapter 4 for the static case to find the delivered rates at the clients. Note that when fluc-

tuations in bandwidths across prediction intervals are high, such a solution would grossly

underutilize the links.

• For a given link, when the average of the predicted bandwidths over the session duration

captures the variations in the available bandwidth, we can use the average bandwidth as

the available bandwidth on the link for all the prediction intervals spanning the session

duration. In this case, algorithm find opt rates I developed for the static case can be used

to find the delivered rates at the clients. However, when fluctuations occur such that the

average underutilizes the link or does not sustain the predicted bandwidth, this method

would result in lossy transmission.

• Given that the bandwidth remains constant over each prediction interval, another solution

would be to consider each prediction interval in isolation. The multicast tree is considered

with the predicted bandwidths for each prediction interval and algorithm find opt rates I

132

is applied to find the delivered rates at clients over that prediction interval. In this interval-

by-interval algorithm, we divide the δ value of a client equally across the prediction

intervals spanning the playout duration and find the bandwidth of the weakest link in the

client’s path for each prediction interval.

When the same link in a client’s path remains the weakest link across all prediction in-

tervals, and the bandwidth on that link varies very little, this solution would work. When

the weakest link in the path of a given client in one prediction interval has high band-

width in another interval, the link can support a higher encoding rate. This possibility

is not exploited by this solution. Even when the same link remains the weakest link in

a client’s path across all prediction intervals, this solution does not guarantee loss-free

playout when the bandwidth of the weakest link fluctuates randomly.

• To ensure efficient utilization of the available bandwidth on each link when the fluctua-

tions cannot be characterized into any of the above three special cases, we need a solution

which accounts for the changes in the available bandwidth from one prediction interval to

another over the session duration. We propose a link-by-link algorithm where each link is

considered in isolation to find the maximum loss-free rate that can flow through the link

for each prediction interval spanning the session duration. The shared link constraint is

then applied to each link to find the actual rates that can flow through it.

In this solution, delivered rates at the clients are determined considering the stream rates

flowing through the links in their paths over each prediction interval. This solution utilizes

the fluctuating bandwidths on every link in the network to maximize the delivered rates

at the clients.

In all the solutions discussed thus far, we assumed that the predicted bandwidths for each link

over the session duration are available up front, at the beginning of the session.

As the last step, we relax this assumption.

• We consider the case where re-estimated bandwidth is available at the beginning of each

prediction interval for each link.

• Based on whether the new estimate is lower or higher than the estimate available at the

beginning of the session, we adjust the stream rates flowing through a given link and

re-compute the delivered rates at the clients.

133

to static case

Differnce between

lowest and highest

values of predicted

bandwidths is high

find_opt_rates_I occur in the beginning

approach

Interval−by−interval
find_opt_rates_I

for each PI
randomly over PIs

* bandwidths vary

* any link can be

weakest link in a PI

Link−by−link

approach

Link−by−link
approach

Adjusted

over session duration

at the beginning of PI,

find_delivered_rates

find_adjusted_link_stream_rates

bandwidth variation

Average value captures

when predicted b/ws

vary randomly

when predicted b/ws

vary randomly

−−

−−

Approach Method Suitable scenarios Unsuitable scenarios

for each link

find sustainable stream rate

considering revised estimate

over session duration

find sustainable stream rate

for each link

min(predicted b/ws)

link b/w =

for each PI

find_base_stream_rate

find_link_stream_rates

find_delivered_rates

Algorithm/s used

Converting

link bandwidth =

When the same link

avg(predicted bandwidths)

link bandwidth =

predicted bandwidth

 bandwidth variations

are small and

find_opt_rates_I

infrequent

remains the weakest

link

* High bandwidths

bandwidths are clustered

* high and low

Figure 7.2: Overview of the solution approaches

• Assuming a robust prediction module that estimates available bandwidths that are very

close to the actual available bandwidths at the beginning of each prediction interval, this

algorithm can be expected to adjust the delivered rates at the clients over each prediction

interval such that the available bandwidth is maximally utilized.

An overview of the solution approaches is presented in Figure 7.2. When the predicted band-

widths vary, the rate at which the contents are encoded needs to be adapted. Note that based

on the fluctuations in the available bandwidth on a given link, the stream rate supported by the

link can go up or down. Layer encoders can be used for adapting the rate at which the contents

are served. Layering is a well researched mechanism with the adaptation initiated either from

the receiver or the source [25][47]. In our solutions we assume a source-driven layer encoder as

discussed in [2], that adapts the layers for each prediction interval to match the delivered rates

at the clients.

Before we discuss the solution approaches in detail, we present a running example that is used

to illustrate the various solution approaches.

134

1

2

3 4

5 6

2
C C

C 1

3

Figure 7.3: Example to illustrate solution approaches

Number of nodes N = 7;

Number of links L = 6;

Number of clients C = 3;

Playout duration T = 100 seconds;

Prediction interval duration P = 20 seconds;

Delay tolerance δ1 of C1 = 20 seconds;

Delay tolerance δ2 of C2 = 40 seconds;

Delay tolerance δ3 of C3 = 20 seconds;

Number of prediction intervals N =

(T + max (δi)) /P = = 140/20 = 7;

Figure 7.4: Example: Network and application parameters

Link Bandwidths over prediction intervals

1 2 3 4 5 6 7

Link1 384 384 384 256 448 512 512

Link2 128 256 448 512 256 128 384

Link3 256 128 128 192 128 256 128

Link4 384 384 320 192 320 128 128

Link5 128 192 128 384 128 128 192

Link6 384 256 384 128 192 256 192

Table 7.1: Example: Predicted bandwidths over the session duration

135

7.1.3 Example used to illustrate solution approaches

Consider a network as shown in Figure 7.3 with parameters as given in Figure 7.4. Predicted

bandwidths over the seven prediction intervals spanning the session duration are given in Table

7.1. We will be referring to this example while discussing the various solutions in the sections

that follow.

7.2 Optimization-based approach

In this section, we formulate the problem of finding the loss-free delivered rates at the clients

as an optimization problem. Recall that the playout duration and clients’ delay tolerance values

are assumed to be multiples of the prediction interval duration.

Design variables: Stream Rates rn flowing through links ln for the playout duration T .

Objective function: Maximize delivered rates at the clients over each prediction interval span-

ning the playout duration. Delivered rate at a client depends on the encoded rate of the stream

flowing through the last link in its path; i.e., for each prediction interval, for the last link in each

client’s path, the rate that flows through the link should be as close to the base encoding rate

(maximum stream rate) as possible. This is written as:

Minimize ∀k, k = 1, 2, . . . m,
∑

P (Γ− rk
l)2, where Γ is the base encoding rate and rk

l is the

rate flowing through the last link ll for each client k over each prediction interval in P .

Constraints:

• Rate constraint: This constraint ensures that the stream rate flowing across any link li in

the network at any prediction interval j ∈ P is bounded by Γwhich is the highest possible

stream rate. We represent this constraint as:

rj
i <= Γ, ∀i, i = 1, 2, . . . n, ∀j, j = 1, 2, . . . P .

• Layer constraint: This constraint captures the property of layering, i.e., the stream rates

flowing through two consecutive links must be such that the stream rate through the first

link is greater than or equal to the rate flowing through the next one. Suppose rj
i−1 and rj

i

are the stream rates flowing through two consecutive links li−1 and li for a given prediction

interval j where j ∈ {1, 2, . . . P}. This constraint is denoted as:

rj
i−1 >= rj

i , ∀i, i = 1, 2, . . . n, ∀j, j = 1, 2, . . . P .

We summarize the optimization function and the above two constraints in Figure 7.5.

136

Objective function: Minimize ∀k, k = 1, 2, . . .m,
∑

P (Γ− rk
l)2,

where Γ is the base encoding rate and rjk
l is the rate flowing through the last link ll

for each client k over each prediction interval j in P .

Constraints:

Rate constraint: rj
i <= Γ, ∀i, i = 1, 2, . . . n, ∀j, j = 1, 2, . . . P ,

where n is the number of links in the multicast tree and P is the number of prediction intervals

in the session duration.

Transcoder constraint:rj
i−1 >= rj

i , ∀i, i = 1, 2, . . . n, ∀j, j = 1, 2, . . . P .

Delay tolerance constraint: The two parts of this constraint are presented in

Figure 7.6 and Figure 7.7.

Figure 7.5: Optimization formulation

• Delay tolerance constraint: There are two parts to this constraint:

1. Constraints for loss-free transmission over a link: Considering each link over pre-

diction intervals spanning its active period, the following two conditions must hold:

(a) For a given link at the end of its active period, buffer (at the node sending the

stream through the link) should be empty. This constraint function is presented

in Figure 7.6.

(b) At any prediction interval over the active period of a link, the available data ca-

pacity should be less than or equal to the required data capacity. This constraint

function is presented in Figure 7.7.

2. Constraint for loss-free transmission to a client: Considering each client over each

prediction interval spanning the playout duration, the following condition must hold:

For a given client, for each prediction interval over the playout duration, for each

link in its path, the available data capacity should be less than or equal to the required

data capacity. This constraint function is also presented in Figure 7.7.

We implemented the optimization function in Matlab and ran it for the example in Figure 7.3.

The resulting stream rates through the links are given in Table 7.2 and the delivered rate at the

clients are presented in Table 7.3.

137

Constraint function used in the optimization approach:

Input: Stream rates x, through links over playout duration

Global variables used:

TRANSPREDINT: Number of prediction intervals in Playout duration

PRED INT DURATION: Duration of each prediction interval

Vector map: vector that provides the starting values for rates that

correspond to each link

numclients, pathinfo

Output:

Equality and inequality constraints that ensure loss-free playout

/* ceq constraints are equality constraints which enforce

the condition that at the end of the active period, buffers

must be empty */

for each link L

find active period;

buffer = 0;

curr row = vector map(L,1);

for each prediction interval PI spanning its active period

pred bw = pred table(L, P);

if PI is less than or equal to TRANSPREDINT

buffer = buffer + stream rate x;

end

if buffer is greater than pred bw

buffer = buffer pred bw;

else

buffer=0;

end

end

ceq(L,1) = buffer ;

end

Figure 7.6: Part 1: Constraints arising from delay-tolerance requirements

138

for each link L

avail data capacity = 0;

req data capacity = 0;

additional intervals = active period - playout duration;

for each prediction interval PI spanning its active period

avail data capacity = avail data capacity + pred table(L, P);

if PI is greater than additional intervals

req data capacity = req data capacity + stream rate x;

end

end

c(L,1) = req data capacity - avail data capacity ;

/* These inequality constraints enforce the condition that

req data capacity is less than or equal to avail data capacity

for prediction intervals spanning the active period of a link*/

end

start point = numlinks;

for each client C

for each link L in Cs path

avail data capacity = 0;

req data capacity = 0;

for each prediction interval PI spanning its active period

avail data capacity = avail data capacity + pred table(L, P);

if PI is greater than additional intervals in active period

req data capacity = req data capacity + stream rate x;

end

end

c((start point + L),1)

= req data capacity - avail data capacity;

/* These inequality constraints enforce the condition that

req data capacity is less than or equal to avail data capacity

for prediction intervals spanning the active period for links

in the path of a client*/

end

end

Figure 7.7: Part 2: Constraints arising from delay-tolerance requirements

139

Link Stream rates for each prediction interval

1 2 3 4 5

Link1 493.71 300.43 449.40 271.95 350.29

Link2 491.52 276.41 387.51 269.35 302.6

Link3 255.9 219.91 208.38 207.11 196.6

Link4 491.52 276.41 387.51 269.35 302.6

Link5 212.99 219.91 208.38 207.11 196.6

Link6 214.01 219.91 208.38 207.11 196.6

Table 7.2: Stream rates through links over session duration (for topology of Figure 7.3)

PI Delivered rates

C1 C2 C3

1 491.52 212.99 214.01

2 276.41 219.91.12 219.91

3 387.51 208.38 208.38

4 269.35 207.11 207.11

5 302.6 196.6 196.6

Average 345.58 208.99 209.2

Table 7.3: Using optimization function: delivered rates for clients in Figure 7.3

140

Complexity of the optimization formulation

The design variables are the stream rates flowing through the links over the playout duration.

Given the upper and lower bounds for the stream rates that can flow through the links, suppose

there are v possible values, the optimizer needs to consider at least (vn×P) combinations to find

the loss-free rates that can flow through the links. As discussed, the stream can flow through

each link over its active period. Note that the active period of any link has at least P intervals.

Let pa be the average number of active periods for the links in the network. Thus, the constraints

applied to the rates flowing through the links are in the order of (n×pa) and constraints applied

to the rates delivered at the clients are in the order of (m×na), where na is the average number

of links in a client’s path. The exponential search space of this approach renders it impractical

to apply it to a network with hundreds of links each of which can take values from a wide range

of bandwidth values over each prediction interval.

In the following sections, we present several algorithms starting with some simple ones.

Some of the insights gained from the simple solutions are used to devise solutions that use the

link bandwidths efficiently to provide enhanced rates to the clients. We use a running example

to illustrate each of the solutions presented.

7.3 Methods that use the scheduled streaming, static band-

width formulations

Given that for every link, predicted bandwidths over the session duration are known, we con-

sider the following algorithms:

7.3.1 Using the minimum predicted bandwidth

In this solution, for each link we choose the lowest value of the predicted bandwidth across all

prediction intervals and assume this to be the available bandwidth on the link for the session

duration. We outline the algorithm below:

For each link in the network

Find the minimum bandwidth across all prediction intervals

spanning the session duration.

% This bandwidth is guaranteed to be available on the link

141

throughout the session duration. Thus, we have a static

topology with known link bandwidths. %

end

Run algorithm find_opt_rates_I to find the delivered rates

at the clients with AT option for transcoder placement.

When the link bandwidths fluctuate very little, this easy to implement algorithm would work

well. We now quantify very little fluctuations, when this naive algorithm can be used:

Consider a link li having a bandwidth bi. Suppose rb is the rate at which the base layer

of the stream is encoded. Suppose a minimum of g additional bits are required if another

enhancement layer is to be generated. Note that when bi fluctuates between rb and (rb + g/100)

kbps, these fluctuations are not significant as no additional layer can be generated. We term

this a near-static case. In such a case, even though bi is varying, we can use min(bi) as the

available bandwidth on li across all prediction intervals and apply the simple algorithm.

When the difference between the highest and lowest values of bandwidth over the predic-

tion intervals spanning the session duration is high, this method grossly underutilizes the links,

delivering the stream encoded at low rates, compromising quality, as shown in the illustrative

example discussed below.

Illustration: using minimum bandwidth

Considering the predicted bandwidths as given in Table 7.1, bandwidths available on the links

are:

Link 1: 256 kbps;

Link 2 - Link 6: 128 kbps.

Using algorithm find opt rates I we find the delivered rates at the clients: C1 : 153.6 kbps;

C2 : 153.6 kbps; C3 : 153.6 kbps; Note that the links are under-utilized over most prediction

intervals.

7.3.2 Using the average predicted bandwidth

Another simple solution is to find the delivered rates at clients using the average of the available

bandwidth on each link and assume this average value to be the link bandwidth for the session

142

jl jl

jn jn

jl

Ca

jr

jr jr

jr

jr

ir

kr

lr

ir jr kr l)r jr

(i)

(ii) (iii)

max(=

Figure 7.8: Instances of links

duration. By assigning the average rate to each link for the session duration, we can use the

algorithms developed for the static case to find the delivered rates at the clients.

The first step in computing the average predicted bandwidth on a link is to find the appro-

priate value of δi to be used for determining the number of prediction intervals considered in

the computation.

Choosing appropriate value of δi

Consider a link lj . lj can be a link directly connected to a client or it can be in the path of one or

more clients as shown in Figure 7.8. In either case, the upper bound on the stream rate through

lj is calculated by Theorem 4.1 as: bi ∗ (1 + (δp/T), where δp = min(δk), δks are the delay

tolerance values of Ck, k = 1, 2, . . . m, having lj in their path. When bandwidths are predicted,

in order to provide loss-free transmission to clients over all the prediction intervals spanning

the playout duration, it is necessary that the lowest delay tolerance value of the clients sharing

a link is considered for calculating the sent data capacity over the active period of the link.

Thus, for each link in the multicast tree, we choose the minimum of the delay tolerance

values of the clients having the link in their paths and use this extra time to accumulate data.

Illustration: using average predicted bandwidth

We use the same example as shown in Figure 7.3 to illustrate this solution.

The average bandwidths available on the links are given below:

Link 1: 394.7 kbps;

143

Link 2: 288 kbps;

Link 3: 181.3 kbps;

Link 4: 288 kbps;

Link 5: 182.85 kbps;

Link 6: 266.7 kbps;

Using these as the static bandwidths available for the session duration, we run algorithm find opt rates I

to determine the optimal delivered rates at the clients: C1 gets 345.6 kbps while C2 and C3 get

217.56 kbps.

When the average bandwidth captures the variation in the predicted bandwidths on a link over

its active period, it can be used as the static available bandwidth across all prediction intervals.

However, the following two situations can arise:

1. the average may fail to capture under-utilization of the link bandwidths in some intervals;

this will lead to lossy transmission as the average rate cannot be supported during other

intervals having less bandwidth. Such a situation arises when bandwidths in consecutive

intervals are much higher than the average rate.

2. the average may fail to capture the shortage of bandwidth at a prediction interval to sup-

port the average rate. Such a situation arises when bandwidths in consecutive intervals

are much less than the average.

We illustrate the above two cases as well as a case when the average bandwidth works, taking

three instances of predicted bandwidths on a given link, say link 2. We will consider 6 prediction

intervals to calculate the average for this link as this link is shared between all the three clients.

Predicted bandwidths on link 2:

• Case 1: 128, 256, 448, 512, 256, 128 over prediction intervals 1, 2, 3, 4, 5, and 6 respec-

tively as given in Table 7.1.

• Case 2: 512, 128, 256, 448, 256, 128 over prediction intervals 1, 2, 3, 4, 5, and 6 respec-

tively.

• Case 3: 128, 256, 128, 256, 448, 512 over prediction intervals 1, 2, 3, 4, 5, and 6 respec-

tively.

144

PI Stream Predicted Data sent Data buffered Available data Required data

rate b/w capacity(Aj
i) capacity(Dj

i)

1 345.6 128 128 217.6 128 0

2 345.6 256 (217.6 + 38.4) 307.2 384 345.6

3 345.6 448 (307.2 + 140.8) 204.8 832 691.2

4 345.6 512 (204.8 + 307.2) 38.4 1344 1036.8

5 345.6 256 (38.4 + 217.6) 128 1600 1382.4

6 0 128 128 0 1728 1728

Table 7.4: Case:1

PI Stream rate Predicted b/w Data sent Data buffered Aj
i Dj

i

1 345.6 512 345.6 0 345.6(UU) 0

2 345.6 128 128 217.6 473.6 345.6

3 345.6 256 (217.6 + 38.4) 307.2 729.6 691.2

4 345.6 448 (307.2 + 140.8) 204.8 1177.6 1036.8

5 345.6 256 (204.8 + 51.2) 294.4 1433.6 1382.4

6 0 128 128 166.4 1561.6 1728

Table 7.5: Case:2 – UU indicates Under-Utilization of the link

The average rate is the same in all three cases, 288 kbps. This rate is assumed to be

available on the link for the session duration. Thus, using Theorem 4.2, the stream rate that

flows through the link is computed as: (288+(288∗20/100)) = 345.6 kbps. A stream encoded

at 345.6 kbps flowing over 5 prediction intervals needs to be supported without loss by this link

over 6 prediction intervals. We present the flow of the stream for the three cases in Tables 7.4,

7.5, and 7.6.

Note that the maximum amount of data that can flow through an outgoing link from a

given node nj at each prediction interval is bounded by the predicted bandwidth on the link for

that prediction interval. Any additional data is buffered at nj . The stream is sent encoded at

the average rate over prediction intervals spanning the playout duration. At every prediction

interval, any data in the buffer is sent first before considering data from the stream for that

prediction interval. (We indicate this in the data sent column in the Tables 7.4, 7.5, and 7.6).

• In the first case, 345.6 kbps is supported without any loss by the links as Aj
i >= Dj

i ,

145

PI Stream rate Predicted b/w Data sent Data buffered Aj
i Dj

i

1 345.6 128 128 217.6 128 0

2 345.6 256 (217.6 + 38.4) 307.2 384 345.6

3 345.6 128 128 (179.2 + 345.6) 512 (BP) 691.2

= 524.6

4 345.6 256 256 (268.8 + 345.6) 768 1036.8

= 614.4

5 345.6 448 448 (166.4 + 345.6) 1216 1382.4

= 512

6 0 512 512 0 1728 1728

Table 7.6: Case:3 – BP indicates a Break Point

at every prediction interval j and the available bandwidths on the link are utilized prop-

erly. Note that the algorithm is simple to implement and uses the available bandwidth

efficiently in this case.

• In the second case, the links are under-utilized in the first prediction interval. This leads

to lossy transmission at the end of the playout as the available bandwidth on the link is not

adequate to send all the buffered data. In our example at the end of the playout, 166.4 kbps

of data remains in the buffer. When a link is under-utilized at a prediction interval, the

available bandwidth at a later prediction interval falls short of what is needed to support

the buffered data. In this case, the average rate fails to capture the high availability of

bandwidth in the initial prediction interval.

• In the third case, a break-point is detected at the beginning of the third prediction interval

where the required data capacity 691.2 kbps exceeds available data capacity 512 kbps.

From the beginning of the second prediction interval (when the playout starts at a client

having this link in its path) the link needs to support the stream at 345.6 kbps in order to

provide loss-free playout at the client. In this case, the available bandwidth is not enough

to support this average rate in the third prediction interval.

Thus, when the nature of bandwidth variation over the prediction intervals is random, this

method does not guarantee loss-free transmission, as the average rate does not capture the fluctu-

ations in the bandwidth. This solution may result in lossy transmission, due to under-utilization

146

of links or inadequate bandwidths on links to support the stream encoded at the average rate.

While the above results are obvious, we have presented the example for completeness. Also,

these insights are applied to (in the second step of) the link-by-link algorithm to find the base

stream rate, which is discussed in Section 7.5.1.

7.4 An interval-by-interval solution

As we have established in our analysis in the previous chapters, the extra time available due to

the client specified delay tolerance can be leveraged to enhance the delivered rates at the clients.

In the two solutions discussed thus far, the extra time available for collecting data is spread

across all the prediction intervals. However, we did not pay attention to the bandwidth available

on the weakest link in each prediction interval. We propose a solution that considers each

prediction interval as an instance of the static bandwidth case; the weakest link bandwidth for

each prediction interval is considered to find the delivered rates at the clients for that prediction

interval.

We start with Theorem 4.1 discussed in Chapter 4, to understand the implication of pre-

diction intervals while using the algorithm developed for the static bandwidth case. We present

the theorem again for ease of understanding:

Theorem 4.1: li having bandwidth bi is a link in the path of one or more clientsC1, C2, . . . Cm.

ri, the maximum stream rate that can flow through li, is given by bi ∗ (1 + (δp/T)), where

δp = min(δk), δks are the delay tolerance values of Cks, k = 1, 2, . . . m. i.e.,

rmax
i = bi ∗ (1 + (δp/T)) (7.1)

The above expression is the same as Equation 4.4, which is derived for the case when the

link bandwidths remain constant over the session duration; this is equivalent to having only one

prediction interval spanning the playout duration T .

In the interval-by-interval solution, we consider each prediction interval spanning the play-

out duration as a static instance of the multicast tree. As we have seen, to find the delivered rates

at the clients when link bandwidths are static, we use algorithm find opt rates I. The basis of

this algorithm is to find the maximum stream rate that can flow through each link in the multi-

cast tree. To find the maximum stream rate through a given link, we use Theorem 4.1, which in

turn uses the bandwidth of the link considered and the clients- delay tolerance values that have

147

the link in their path. Hence, to use algorithm find opt rates I over each prediction interval

spanning the playout duration, we need to determine the following:

• Delay tolerance of each client for each prediction interval spanning the playout dura-

tion. We divide the delay tolerance of each client equally across the prediction intervals

spanning the playout duration; ∀k, k = 1, 2, . . . m, δj
k = δk/P , ∀j, j = 1, 2, . . . P .

• Bandwidth available on the link considered and the time duration over which the band-

width remains constant; We set the period over which the bandwidth remains constant to

the prediction interval duration, P .

Since the predicted bandwidth remains constant over each prediction interval, equation 4.4 is

applied to link li having bandwidth bi over a given prediction interval j as:

r
j(max)
i = bji ∗ (1 + ((δp/P)/P)) (7.2)

Similarly, in the equation for maximum deliverable rate at a client (Theorem 4.2, Chap-

ter 4), values of delta and prediction interval duration as derived above, are used. Using the

modified equations in find opt rates I along with the AT option for transcoder placement, the

delivered rates at the clients for each prediction interval are found. Note that all the data struc-

tures and global variables used in algorithm find opt rates I are used by the interval-by-interval

algorithm. These are presented in Figures 4.10 and 4.8 in Chapter 4.

The interval-by-interval algorithm referred to as I-by-I algorithm is outlined in Figure 7.9.

Illustration of I-by-I algorithm

With reference to the example in Figure 7.3 and the predicted bandwidths given in Table 7.1,

we calculate the delivered rates at the clients treating each prediction interval as an instance

of static case using algorithm find opt rates I. Prediction interval duration used is 20 seconds.

The δ values of the clients are applied equally across prediction intervals spanning the playout

duration:

delta applied for C1 = (20/5) = 4 seconds.

delta applied for C2 = (40/5) = 8 seconds.

delta applied for C3 = (20/5) = 4 seconds.

148

Output:

delivered rates [i,j]: delivered rate of a client

i over prediction interval j.

Use AT option for transcoder placement;

for each PI

read the predicted bandwidths into matrix M,

representing the topology;

for each client C i

delta applied =

delta of C i/number of PIs in playout duration;

end

duration_for_delta = prediction interval duration;

[stream rates, opt deli rates] = find opt rates I(transinfo);

delivered rates(:, PI) = opt deli rates;

end

Figure 7.9: I-by-I algorithm

The delivered rates calculated for each prediction interval using algorithm find opt rates I is

given in Table 7.7.

A critique of the interval-by-interval solution

Advantages: This solution where each prediction interval is considered in isolation to find the

delivered rates at the clients may work well in certain practical scenarios. For example, in a

distance education application where a CSP has a provisioned distribution network, bottleneck

links occur in the access network; typically such bottlenecks occur at the last link to the client.

In such cases, it can be assumed that the same link remains the weakest link in a client’s path;

in addition, when the link bandwidths vary very little over the prediction intervals spanning the

session duration, the interval-by-interval algorithm can be used to find the delivered rates at the

clients.

Disadvantages: However, there are two major shortcomings in this solution which limit appli-

cation of this algorithm to scenarios where link bandwidths vary randomly: (i) consideration of

each prediction interval in isolation and (ii) lack of consideration of the predicted bandwidths

149

PI Delivered rates

C1 C2 C3

1 133.12 133.12 133.12

2 266.14 133.12 133.12

3 322.8 133.12 133.12

4 199.68 199.68 133.12

5 266.24 133.12 133.12

Average 237.6 146.4 133.1

Table 7.7: Interval-by-interval solution: delivered rates

over all intervals spanning the active period of a link.

Given these shortcomings of the I-by-I algorithm, we need a solution that exploits both

the delay tolerance and the available bandwidth across prediction intervals. We propose such a

solution in the next section.

7.5 A link-by-link solution

This solution finds the maximum loss-free rate supported by each link for each prediction inter-

val by considering the bandwidths available on each link over its active period; thus it implicitly

considers the fact that the weakest link in a client’s path in one prediction interval may not be

the weakest link in another prediction interval. By using the buffering capability at the nodes,

this algorithm finds the stream rate that utilizes the available bandwidth on each link effectively.

With reference to Figure 7.1, consider a link li. Suppose the active period of li is (P + 1).

Let the predicted bandwidths on li be bji , where j = 1, 2, . . . (P + 1). The maximum data rate

that can flow through li is given by:

dmax
i =

(P+1)∑
j=1

bji × P (7.3)

This data rate is delivered across li over P prediction intervals. Thus, the maximum stream

rate that can be supported by li without loss is given by:

rmax
i = dmax

i /(P ∗ P) (7.4)

The overall link-by-link algorithm referred to as L-by-L algorithm is presented in the next

section.

150

7.5.1 Steps in the L-by-L algorithm

The first step is to find the stream rate that can be supported without loss by each link over

its active period. For a given link, we start with the maximum stream rate calculated using

Equation 7.4. As discussed in Section 7.1, the following constraints for loss-free transmission

over a link must hold:

1. For a given link at the end of its active period, buffer should be empty. This condition

ensures that there is no loss of data due to underutilization of the available link band-

width as illustrated in Section 7.3.2 in the example presented in Table 7.5. Algorithm

find base stream rate presented in Figure 7.14, finds the stream rate that ensures that the

link is not under-utilized over its active period.

2. At any prediction interval P j
i over the active period of a link li, the available data capacity

should be less than or equal to the sent data capacity, i.e., Aj
i <= Sj

i .

Using the base stream rate as the start rate, the loss-free stream rate that flows through

the link for each prediction interval over its active period is found using Algorithm

find link stream rates presented in Figure 7.16. This step uses the insight from the anal-

ysis in Section 7.3.2 as shown in the example presented in Table 7.6.

Having found the loss-free stream rates, rP
i that can flow through a link li over each pre-

diction interval P spanning the playout duration, the next step is to find the delivered rates at

the clients considering the links in the path of each client.

The stream rate that can be delivered at any client Ck for each prediction interval P, is given by:

rmax
ck

= min(rP
i),∀li ∈ p(Ck) (7.5)

Algorithm find delivered rate presented in Figure 7.17 considers the links in a given

client’s path and finds the loss free rate delivered at the client over prediction intervals spanning

the playout duration.

The overall L-by-L algorithm is presented in Figure 7.10. Before we discuss the three

labeled components of the overall algorithm in detail in Sections 8.1, 8.2, and 8.3, we present a

comparative study of the I-by-I and L-by-L algorithms.

151

for each link L

find active period of L;

7.6.1. find base stream rate;

% this function finds the stream rate ensuring that the link

is not under-utilized at any prediction interval. Using

function find rate it computes the maximum stream rate

and uses it as the initial value. %

7.6.2. find link stream rate;

% this function returns the stream rates that can flow

through a given link ensuring that the stream rates are

sustained without loss over the session duration. %

end

for each client C

7.6.3. find delivered rate;

% this function finds the delivered rate at a client

given the stream rates that can flow through the

links in the client’s path %

end

Figure 7.10: L-by-L algorithm

152

Figure 7.11: Comparison of L-by-L and I-by-I algorithms

7.5.2 Comparison of L-by-L and I-by-I algorithms

To understand the disadvantages of the I-by-I algorithm and to motivate the need for the L-by-L

algorithm, we present comparison of these two algorithms, considering two cases: (i) when the

weakest link in a client’s path changes every prediction interval and (ii) when the same link

remains the weakest link in a client’s path for the session duration.

When the weakest link changes from one prediction interval to another

In the I-by-I algorithm, we consider each prediction interval in isolation. In the L-by-L algo-

rithm which is discussed in the next section, we consider each link across all prediction intervals

over its active period to find the stream rates that the link can support over the playout duration.

We present the delivered rates as computed by the two algorithms in Figure 7.11. When the

link bandwidths are randomly varying, we find that L-by-L algorithm always outperforms the

I-by-I algorithm. This is because the I-by-I algorithm does not take into account the fact that

a link which is the weakest in a client’s path in one interval may have high bandwidth in a

subsequent interval and hence can support a higher rate. Thus, this algorithm makes poor use

of the available bandwidth.

When the weakest link remains constant over the prediction intervals

From our argument above it seems that when the weakest link remains the same, the I-by-I

algorithm must work fine. However, this need not be true. Note that the algorithm considers the

predicted bandwidths over prediction intervals spanning the playout duration, while the stream

actually flows through the link over its active period. The loss-free stream rate through a link

153

R1R1

R 2

C 2

4

S

3

1

2

C 1

Figure 7.12: Example: Shortcoming of I-by-I

depends on the available bandwidths on the link over its active period. Since, the algorithm

does not consider this fact, the following two situations may arise:

1. The algorithm may compute delivered rates which can not be delivered without loss.

2. The algorithm may underestimate the loss-free delivered rates at the clients.

We illustrate these two situations with a simple example. Consider the topology as shown

in Figure 7.12. Link 2 is the weakest link across all prediction intervals spanning the session

duration. There are 14 prediction intervals in the session duration and 10 in the playout dura-

tion. Active period of Link 2 spans 12 prediction intervals. We consider two estimates for the

predicted bandwidths on link 2. The estimates differ only in prediction intervals 11 1nd 12 as

shown below:

Estimate 1: 272, 240, 208, 176, 208, 176, 272, 240, 272, 240, 208, 176;

Estimate 2: 272, 240, 208, 176, 208, 176, 272, 240, 272, 240, 336, 304;

Average delivered rates:

I-by-I algorithm:

Estimate 1: 276.48; Estimate 2: 276.48.

L-by-L algorithm:

Estimate 1: 268.44; Estimate 2: 294.4.

For both estimates the average delivered rates computed by the I-by-I algorithm is 276.8 kbps.

This is because the algorithm considers prediction intervals spanning the playout duration (10

intervals), ignoring the bandwidth in the additional two intervals which are available for sending

154

the data. When the bandwidth in these prediction intervals is low, the algorithm overestimates

the delivered rates, which leads to lossy transmission; when the available bandwidth in the

additional prediction intervals (in the active period of the link) is high, the algorithm under-

estimates the delivered rates at the clients. Note that, in contrast the results from the L-by-L

algorithm, discussed in detail in the next section, for the two cases are: 268.44 kbps and 294.4

kbps respectively.

7.6 Details of the L-by-L algorithm

In this section, we consider each step of the overall L-by-L algorithm presented in Figure 7.10.

We discuss the algorithm for each step and illustrate the step using the topology presented in

Figure 7.3.

7.6.1 Determining base stream rate for a link

In this step, our objective is to find a base stream rate which does not lead to loss of data due

to under-utilization of link bandwidths, as explained in the example presented in Table 7.5.

Note that for a given link, data is collected over its active period. However, the data is always

consumed over the playout duration, which is constant for all clients. Thus, by dividing the total

rate over the active period by the number of prediction intervals in the playout duration, we find

the maximum stream rate that can be supported by the link, as given by Equation 7.4. This is

used as an initial estimate of the base stream rate, start rate.

Consider a link li having (P + d) prediction intervals over its active period. To ensure that

the start rate can be sustained without loss across P , we use the steps presented below. Note

that by reducing the predicted rate at each iteration, we find the start rate that even though un-

derutilizes the link, ensures that the data can be sent without loss across all prediction intervals

spanning the active period of the link.

————————————————————————–

compute start rate for link li;

For every prediction interval j ∈ active period of li

find sent data capacity Sj
i , using start rate as the stream rate

find available data capacity Aj
i , using the predicted bandwidths

if Aj
i > Sj

i

155

Input:

linkid: index of link considered

start point: Prediction interval from where the average needs to

be calculated

num PI: number of prediction intervals considered

delta: number of prediction intervals for collecting additional data

% the following global variables are used by the algorithms %

pred table: matrix with predicted bandwidths for

the session duration

Figure 7.13: Input and global variables used in L-by-L algorithm

bandwidth predicted for interval j = start rate;

recompute start rate;

j = 1;

end

end

base stream rate = start rate;

—————————————————————————-

The input and global variables that are common to the functions discussed in the next three

sections are given in Figure 7.13.

Function find base stream rate uses function find rate that returns a scalar value of the start

rate for a given link, calculated from the start point up to the number of prediction inter-

vals given as input. Function find rate takes the same input and global variables as function

find base stream rate. These functions are presented in Figures 7.14 and 7.15 respectively.

Illustration of algorithm find base stream rate

With reference to the predicted bandwidths in Table 7.1, let us consider Link 4 to illustrate this

step. The δ value used for this link is 20 seconds, i.e. one prediction interval. Hence data that is

156

Additional global variable used:

TRANS INT: Number of prediction intervals in the transmission

duration.

Output:

stream rate: base stream rate for a given link

the start point upto the number of prediction intervals.

function find base stream rate

(link id, start point, num pred intervals, delta);

under utilized == 1;

while under utilized == 1

available data = 0; data to be sent = 0; counter = 0;

start rate = find rate

(link id, start point, num pred intervals, delta);

stream rate = start rate;

for PI = 1: TRANS INT

counter = counter + 1;

curr pred rate = pred table(link id, PI);

available data = available data + curr pred rate;

data to be sent = data to be sent + stream rate;

if available data is less than or equal to data to be sent

if counter == TRANS INT when no under-utilized link

under utilized = 0;

end

else when under-utilization of a link is detected

pred table(link id, PI) = start rate;

break;

end

end

end

Figure 7.14: Algorithm: find base stream rate

157

output: start rate: scalar value of stream rate given the number of

prediction intervals over which data is collected and

consumed

find rate (link id, start point, num pred intervals, delta)

counter = 0;

cum data = 0;

for i = start point: (start point + num pred intervals 1)

counter = counter + 1;

curr bw = pred table(link id, i);

cum data = cum data + curr bw;

end

num intervals considered = counter - delta;

start rate = cum data/num intervals considered;

Figure 7.15: Algorithm: find rate

available over 6 prediction intervals are consumed over 5 intervals; the start rate computed is:

345.6 kbps.

For the first interval, Aj
i = 384 ∗ 20 and Sj

i = 345.6 ∗ 20. Link 4 would be under-utilized

in the first interval itself. Hence, the predicted bandwidth of Link 4 is reduced to 345.6 kbps

in the first prediction interval. The new start rate is computed as: 337.92 kbps. The process

is repeated till predicted bandwidth of Link 4 is such that the buffer is empty at the end of the

sixth prediction interval.

This process is repeated for all the prediction intervals spanning the session duration over

which the link is active. For Link 4, when a start rate of 320 kbps is used (note that the predicted

bandwidth on the link for the first and second intervals are reset to 320 kbps during computa-

tion), we find the condition for the base stream rate is satisfied. Thus, the base stream rate for

Link 4 is 320 kbps.

Base stream rates computed for all the links for the example presented in Figure 7.3 over

the session duration are: Link1: 473.6 kbps; Link2: 345.6 kbps; Link3: 208 kbps; Link4: 320

kbps; Link5: 256 kbps; Link6: 284 kbps.

158

7.6.2 Determining stream rates through links

For each link li, given a base stream rate, we need to verify that the base stream rate can be

sustained by li across all prediction intervals over its active period. In this section, we discuss

the algorithm find link stream rates that finds the stream rates delivered across li without loss

over the prediction intervals spanning its active period.

1. For each link li, we find the base stream rate using function find base stream rate that

ensures that the link is not under-utilized over any prediction interval. The current rate

is set to the base stream rate. The variables avail data vol, req data vol and break point

are initialized to zero.

2. We need to check whether the current rate can be sustained by the link over all the pre-

diction intervals spanning its active period without loss. When Aj
i < Dj

i at a prediction

interval j, the current rate can not be supported without loss. As discussed, we term the

beginning of a prediction interval for which such a situation occurs as the break point.

When a break point is detected, the following steps are taken:

(a) The stream rate is calculated up to the break point using function find rate. This is

the actual stream rate flowing through the link up to the break point.

(b) Current rate is recalculated considering the available bandwidth over the remaining

prediction intervals.

(c) start point is set to the next prediction interval; δ is set to zero; pred int considered

is set to the appropriate value; break point is set to one. The algorithm starts another

iteration.

3. When the condition that Aj
i >= Dj

i is satisfied up to the last prediction interval in the

active period of the link, the current rate is assigned to stream rates of all the remaining

prediction intervals and the loop terminates.

The algorithm is presented in Figure 7.16.

Illustration of determining stream rate through a link

We take link 1 in the example presented in Figure 7.3 to illustrate this step. Note that the con-

stant multiplication factor of 20 seconds, the prediction interval duration, is not explicitly shown

159

Additional global variable used:

base st rates: vector of base stream rates as calculated by

the function find base stream rates

Output:

st rates: Vector of stream rates flowing through the link

function find link stream rates(linkid, start point, num PI, delta);

last PI = 0; st rates = base st rates(linkid, 1);

while last PI == 0

avail data vol = 0; req data vol = 0; counter = 0; break point = 0;

while break point == 0

For PI = 1: num PI

counter = counter + 1;

link bandwidth = pred table[counter];

avail data vol = avail data vol + link bandwidth;

if counter is greater than delta

% after collecting data for delta %

req data vol = req data vol + current rate

if req data vol is greater than avail data vol

% when the rate can not be sustained %

current rate = find rate(....);

for interval = (start point + delta) to counter

st rates[interval] = current rate

end % find the rate for the intervals up to break-point %

if the last PI is reached

break point = 1; last PI = 1;

else start from the next PI with,

num delta = 0; curr rate = find rate(..); break point = 1;

end

else

if last PI is reached

assign curr rate to stream rates for all intervals;

end

break point = 1; last PI = 1;

end

end

end

end

end

Figure 7.16: Algorithm: find link stream rates160

PI Predicted bandwidth Available data Required data effective stream

capacity capacity rate

1 384 384 0 0

2 384 768 473.6 469.3

3 384 1152 947.2 469.3

4 256 1408 1420.8 469.3

5 448 1856(448) (480) 448

6 512 2368 (512) (512) 512

Table 7.8: Stream rates through link 1

in Available data capacity and Required data capacity, as this factor cancels out in the calcu-

lation of the rate. Since link 1 is shared between all the three clients, minimum of their delay

tolerance values (20 seconds) is the additional time available for sending data; i.e., the active

period of link 1 has 6 prediction intervals. Available data capacity for 6 prediction intervals is

calculated using predicted bandwidths from Table 7.8. This provides the maximum amount of

data that can be delivered without loss over 5 prediction intervals spanning the playout dura-

tion T . Hence the maximum stream rate supported by Link 1 is 473.6 kbps over 5 prediction

intervals. Start rate is initialized to this value and algorithm find base stream rate is invoked.

Since there is no under-utilization of the link, 473.6 kbps is returned as the base stream rate by

algorithm find base stream rate. Steps in algorithm find link stream rates are presented below.

Interpretation of values in Table 7.8 showing stream rates through link 1

Base stream rate as determined by find_base_stream_rate is

473.6 kbps.

At PI 4, break-point detected as

required data capacity (1420.8) > available data capacity (1408);

Stream rate recomputed for first 3 PIs:

= (1408/3)

= 469.3 kbps

Note that all the accumulated data is consumed in this period;

The above steps are repeated with PI 5 as the starting point.

161

Link Stream rates over prediction interval

1 2 3 4 5

Link1 469.3 469.3 469.3 448 512

Link2 345.6 345.6 345.6 345.6 345.6

Link3 208 208 208 208 208

Link4 320 320 320 320 320

Link5 256 256 256 256 256

Link6 284 284 284 284 284

Table 7.9: Stream rates through links over session duration

Base stream rate across remaining PIs spanning

the active period of the link

= Total available data capacity / number of remaining PIs

= (448+512)/2

= 480 kbps

At PI 5, break-point detected as

required data capacity (480) > available data capacity (448);

Stream rate recomputed over only one prediction interval,

viz., PI 5, is 448 kbps.

Iterating one more time,

Base stream rate across remaining PIs spanning playout duration

= Total available data capacity / number of remaining PIs

= (512/1)

= 512 kbps

Thus 512 kbps is chosen as the stream rate for the last PI

in the active period of Link 1.

--

Similarly the stream rates are calculated for each link in the network. Note that for Link 5 which

is only in the path of C2, 40 seconds – two prediction intervals – is used in the computation of

the stream rate.

Table 7.9 lists the stream rates over T computed for each link in the network.

162

% the following global variables are used by the algorithm %

linkinfo, pathinfo, clients, numlinks, numclients

Input:

stream_rates: matrix with stream rates flowing through each link over

each prediction interval spanning the playout duration.

Output:

delivered rates: vector of stream rate delivered at the clients

for each client C

for each prediction interval P

% traverse path from source to client %

for each link L in its path

if first link in client’s path

min rate = stream_rates(C,P);

else

min rate = min(min rate, stream_rates(C,P));

end

end

delivered rates [C, P] = min rate

end

end

Figure 7.17: Algorithm: find delivered rates

7.6.3 Determining the loss-free delivered rate at clients

Given the stream rates that can flow through the links in the multicast tree, the next step is to

find the delivered rates at the clients. The maximum amount of data that can flow into a client

over each prediction interval spanning the playout duration depends on the maximum loss free

rate supported by the links in its path over each of these prediction intervals. Hence, by finding

the minimum of the stream rates that can flow through the links in each client’s path over a

prediction interval, we find the loss-free delivered rate at the client for that prediction interval.

The algorithm for this step is presented in Figure 7.17.

163

Client id Links in path max. loss-free data

capacity supported

1 L1, L2, L4 1728*20

2 L1, L2, L3, L5 1088*20

3 L1, L2, L3, L6 1088*20

Table 7.10: Maximum loss-free data supported by links in clients’ path

PI Delivered rates

C1 C2 C3

1 320 208 208

2 320 208 208

3 320 208 208

4 320 208 208

5 320 208 208

Average 320 208 208

Table 7.11: Link-by-link algorithm: delivered rates

Illustration of determining delivered rates at clients

Given the predicted bandwidth as in Figure 7.3, the maximum available bandwidths on each

link for transmitting data are:

Link 1: 2368*20; Link 2: 1728*20; Link 3: 1088*20;

Link 4: 1728*20; Link 5: 1280*20; Link 6: 1600*20

Now, we consider the links in the path of each client and find the amount of data that

can flow into the client without loss. This is presented in Table 7.10. Note that the lowest rate

supported by any link in a client’s path over a prediction interval determines the upper bound

for the delivered rate for that client over that prediction interval.

With reference to the example in Figure 7.3, the delivered rates at the clients are computed and

presented in Table 7.11.

164

7.6.4 Delivered rates: L-by-L algorithm vs. optimization formulation

From our discussion thus far, it is clear the optimization function discussed in Section 7.1 and

the L-by-L algorithm have the same objective; the same constraints are applied in both to find

the loss-free delivered at the clients. For the example we considered for illustrating the solution

approaches, we compare the results of the optimization function as presented in Table 7.3 and

the L-by-L algorithm as presented in Table 7.11. The average delivered rates at clients C1, C2,

and C3 are: 345.6 kbps, 209 kbps, and 209 kbps using the optimization function as compared

with 320 kbps, 208 kbps, and 208 kbps using the L-by-L algorithm. We present a detailed

evaluation in Section 7.7.

The higher average using the optimization function results from the fact that the optimiza-

tion function considers every possible valid value to find the maximum stream rate that can flow

through the links over each prediction interval spanning the session duration. In the L-by-L al-

gorithm, we have used a heuristic that starts with a constant stream rate across all prediction

intervals; this stream rate is adjusted at each prediction interval to ensure loss-free playout over

T . Also, this algorithm considers discrete intervals for calculating the break point. While the

L-by-L algorithm does not guarantee optimal delivered rates at the clients, as shown later, com-

putation time of this algorithm renders it practical for finding loss-free delivered rates at clients

in a multicast tree having hundreds of nodes.

Computation time of the algorithms

In this section, we estimate the computation time required for the algorithms and their order

of complexity. As discussed in Section 7.2, the optimization function has exponential time

complexity which renders it impractical for use with networks having hundreds of nodes.

Let there be L links, C clients in the multicast tree, and D be the number of levels. Let I

be the number of prediction intervals in the session duration and P be the number of prediction

intervals in the playout duration T .

The link-by-link algorithm involves the following steps:

1. find base stream rate: This step involves O(I2×L) computations as algorithm find base stream rate

iterates over the prediction intervals spanning the active period of each link, till it finds

the stream rate that is sustained by the link across all prediction intervals. Note that I is

the upper bound on the number of prediction intervals in the active period of a link.

165

2. find the stream rate through each link for each prediction interval over its active period:

This step involves finding the sustainable rate over the active period of the link; the num-

ber of computations is of O(I × L).

3. find the delivered rate at each client considering the links in its path. This involvesD × C

computations (which is > L). This step is repeated for each prediction interval spanning

the playout duration T and involves O(I × L) computations.

Thus, the total number of computations required for the link-by-link algorithm is: O(LI2).

From the above discussion, we claim the following two advantages of the L-by-L algorithm

over the optimization formulation:

1. By starting with the base stream rate that remains constant across the prediction intervals

spanning T , the search space to find the loss-free delivered rates is reduced. While the

solution may not be optimal, it is close to optimal in cases where the maximum stream

rate captures the fluctuations in the available bandwidth of links in the network.

2. Comparing the delivered rates at the clients using the optimization function to the L-by-L

algorithm, while the average delivered rates are higher with the optimization function, the

delivered rates at the clients vary significantly over the prediction intervals; this results

in variation in the quality of reception at the clients. In contrast, our heuristic finds loss-

free stream rates that do not vary much over the prediction intervals as we use discrete

intervals. This is desirable from the point of view of a client.

In the next section, we analyze the performance of the link-by-link algorithm as compared with

the optimization function.

7.7 Experimental evaluation of the L-by-L algorithm

In this section, we experimentally evaluate the performance of the link-by-link algorithm com-

paring it with the optimization function. (The reader is referred to Section 7.5.5 for a discussion

on complexity comparison). We consider the following two parameters: (i) average delivered

rates at the clients and (ii) computation time of the algorithms. As discussed, considering the

exponential time complexity of the optimization formulation, we present results for a topology

166

Figure 7.18: Comparison of Optimal and L-by-L algorithms

with 10 nodes and 4 clients as shown in Figure 7.18, selecting link bandwidths from a uniform

distribution of bandwidth values which are multiples of 64 ranging from 144 kbps to 1024 kbps.

From Figure 7.18, we find that the average delivered rates computed by the L-by-L algo-

rithm is less than that computed by the optimal algorithm on average by 2.64%. As seen from

the graph even for a small topology having 10 nodes, for 7 out of 22 runs, (about 32%) the

optimization function did not converge even after having taken about 1200 times the time taken

by the L-by-L algorithm.

Having established that L-by-L algorithm finds the loss-free delivered rates close to the

optimal rates, we now consider the impact of the following parameters on the performance of

this algorithm:

• Parameter1: Number of prediction intervals: To study the impact of this parameter, we

double the number of prediction intervals while keeping the predicted bandwidths the

same for every two intervals; Note that we have doubled the prediction intervals, without

changing the predicted bandwidth values over the session duration. We then increase the

number of prediction intervals to 4 times the original number while keeping the predicted

bandwidths same for every 4 intervals. Our objective is to study the impact of number of

prediction intervals on (i) average delivered rates at the clients and (ii) CPU time taken

by the algorithm to compute the delivered rates at the clients.

We consider 20 topologies each having 100 nodes. In case 1 there are 7 prediction inter-

vals. Each link is randomly assigned a bandwidth value. In case 2, we split each predic-

tion interval into two, with each new prediction interval having the same bandwidth as the

original prediction interval. In Case 3, we double the number of prediction intervals one

167

more time; compared with case 1, now we have 4 prediction intervals for one prediction

interval; however, the predicted bandwidth for all the 4 prediction intervals are the same

as in the single prediction interval in Case 1. We calculated the average delivered rates at

the clients for each case for the 20 topologies and observed that even though the number

of prediction intervals has increased, as the predicted bandwidths over these split inter-

vals did not change, the average delivered rates as determined by the algorithm remained

almost the same.

The CPU time for the algorithm to determine the delivered rates at the clients, are com-

pared for the three cases in Figure 7.19. Topology index is plotted along the X-axis. In

order for the data points to be within range for comparison, we have plotted the CPU time

in logarithmic scale on the Y-axis, sorted by the values of Case 1 in ascending order. Note

that the values for Case 2 and Case 3 follow a similar pattern to Case 1. Reasoning for

the increase in CPU time is as follows:

– L-by-L algorithm first finds the base stream rate. If the predicted bandwidth in an

interval is such that the link is under-utilized, the algorithm iterates till the base

stream rate is found. When the number of prediction intervals is doubled, the link is

under-utilized over two prediction intervals, requiring base stream rate computations

over two prediction intervals. Similarly, when the number of prediction intervals is

increased by four times, base stream rate computation over four prediction intervals

require iterations.

– Next step in the L-by-L algorithm is to find the link stream rates. This involves

determining loss-free rates that can flow through a link over its active period. The

dynamics of break point changes when the number of prediction intervals is in-

creased. The extra iterations required, add to the CPU time. Also, note that these

differences may manifest as small differences in the delivered rates at the clients.

• Parameter 2: Fluctuations in bandwidth: Here we examine the impact of small varia-

tions in bandwidth in two consecutive intervals while the total bandwidth across the two

intervals remains the same. Let ε be the constant by which bandwidth is fluctuating. We

consider 20 topologies having 100 nodes. In Case 1, there are 7 prediction intervals.

In Case 2, each prediction interval is split into two intervals with same bandwidth. Let

b1, b2, . . . , b14 be the bandwidths on a link over 14 prediction intervals. In Case 3, for each

168

Figure 7.19: Effect of increasing number of prediction intervals on CPU time

pair of intervals, b1, b2, we assign: b1 = b1 − ε and b2 = b2 + ε. In Case 4, for each pair

of intervals, b1, b2, we assign: b1 = b1 + ε and b2 = b2 − ε. We chose a value of 32 for ε

for these experiments.

In Figure 7.20, average delivered rates for each topology is plotted. Again, we find the

average delivered rates are almost the same, as the total bandwidth available over two

prediction intervals in Case 3 and Case 4 are the same as the total bandwidth available

over two prediction intervals in Case 2, and the bandwidth available over each prediction

interval in Case 1.

Figure 7.21 depicts the effect of fluctuating bandwidth on CPU time. We have some

interesting results here. When the number of prediction intervals is doubled as in Case

2, the CPU time increases. In Case 3, when we reduce the bandwidth in one interval and

increase the bandwidth by the same amount in the next prediction interval, for every pair

of prediction intervals, we find that the CPU time is almost the same as Case 2. However,

when we reverse this pattern, adding to bandwidth and reducing bandwidth by the same

amount for every pair of intervals, as in Case 4, we find that the algorithm converges very

fast, performing more like Case 1. This again can be explained as in the previous case

when the number of prediction intervals vary: Both algorithms find base stream rate and

find link stream rates would converge faster in Case 4.

These experiments are helpful in determining the number of prediction intervals based on the

knowledge of variability of bandwidth over the session duration.

Having established that the L-by-L algorithm effectively handles the varying bandwidth

case, we explore a more realistic variation of this algorithm in the next section, motivated by the

169

Figure 7.20: Effect of bandwidth fluctuation on average delivered rates

Figure 7.21: Effect of bandwidth fluctuation on CPU time

170

question: suppose we can get an updated estimate of the available bandwidth on the links for

each prediction interval at the beginning of the prediction interval, how can we adjust the stream

rate such that the bandwidth is maximally utilized while ensuring loss-free transmission?

7.8 Adjusting stream rates based on refined estimates of avail-

able bandwidth

Using algorithm find delivered rates, we find the delivered rates at the clients for each predic-

tion interval. Note that we assumed the predicted bandwidths to be known apriori and that the

prediction module accurately estimates the link bandwidths for the entire session duration. If

there are j prediction intervals spanning the session duration, we assumed a model having look-

ahead of n prediction intervals. We refer to this estimate of bandwidths as the advance estimate,

where we assume that the bandwidth over each prediction interval = estimated bandwidth for

that interval.

In this section, we relax this assumption and present an algorithm that adjusts the stream

rate based on look-ahead of 1 prediction interval at the beginning of each prediction interval.

Suppose at the beginning of every prediction interval, we receive an estimate for the bandwidths

available on each link for the next prediction interval. Note that this estimate, termed refined

estimate, could be the same, higher, or lower than the predicted bandwidth for a given prediction

interval on a link as per the advance estimate. However, to ensure that the adjusted rate does

not fall below the minimum required rate of clients, we assume that the revised estimate does

not fluctuate more than a defined constant.

The following are the steps in this algorithm:

1. Let A1 be the advance estimate of predicted bandwidths available at the beginning of the

session. Algorithm find link stream rates is used to find the stream rates supported by

the links for each prediction interval.

2. For each link, the algorithm starts with the stream rate calculated in step 1. At the be-

ginning of the second prediction interval, let F1 be the refined estimate of the predicted

bandwidths on the links.

3. Using the refined estimate, if the bandwidth available at a prediction interval (after send-

ing any data in the buffer) is: (i) higher than the original available bandwidth using the

171

advance estimate, increase the stream rate by the difference, the upper bound on the

stream rate being the base encoding rate. (ii) lower than the original available bandwidth

using the advance estimate, decrease the stream rate by the difference.

This model is more realistic when the stream rate is adjusted based on the available bandwidth

on a link, predicted for one prediction interval at a time at the beginning of that prediction

interval. Note that we assume a feedback based bandwidth prediction mechanism such as the

one used in [43]. We present the algorithm find adjusted stream rates in Figure 7.22.

We illustrate the intuition behind the proposed algorithm through an example in the next section.

7.8.1 Example to illustrate algorithm find adjusted stream rates

We use the same example as shown in Figure 7.3. The predicted bandwidths as per the static

estimate are given in Table 7.1. Consider Link 1.

We find the stream rates through Link 1 using the advance estimate. As explained before,

we find the stream rates that can flow this link over the playout duration as: 469.3 kbps in the

first 3 prediction intervals and 448 and 512 kbps in the 4th and 5th prediction intervals of the

playout duration.

The predicted bandwidth for the first prediction interval is taken to be the same as the

advance estimate. Starting with second prediction interval, at the beginning of every interval a

refined estimate is received for the available bandwidth on Link 1.

In every prediction interval, any data in the buffer is sent first; the remaining predicted

bandwidth is available for sending data from that prediction interval.

• Using the advance estimate, the stream rates that can flow through the link are calculated

using find link stream rates at the beginning of the first prediction interval. No adjust-

ment would be required in this prediction interval.

• Starting with the second interval, revised estimate is received at the beginning of every

prediction interval. After sending any buffered data from the previous interval, the band-

width available for sending data from that interval is calculated as: (predicted bandwidth

- buffered data) for both the advance estimate and the revised estimate.

• The difference in bandwidth available for sending data from that interval with the two

estimates is calculated. If this difference is negative, the pre-calculated stream rate is re-

172

Additional global variables used:

estimate1: static estimate of predicted bandwidths on the links

for prediction intervals spanning the session duration

estimate2: refined estimate of available bandwidth on a given link

over a given prediction interval.

Output:

st rates: Vector with adjusted stream rates

function find adjusted stream rates(linkid, start point, num PI, delta);

for each link L

st rates = find link stream rates(linkid, start point, num PI, delta);

data buffered1 = 0;

data buffered2 = 0;

for each prediction interval PI in the active period of the link

stream rate = st rates[L, PI]; pred bw1 = estimate1[L,PI];

curr stream sent1 = (pred bw1 - data buffered1);

data sent1 = (data buffered1 + curr stream sent1);

data buffered1 = (stream rate - data sent1);

pred bw2 = estimate2[L,PI];

curr stream sent2 = (pred bw2 - data buffered2);

data sent2 = (data buffered2 + curr stream sent2);

data buffered2 = (stream rate - data sent2);

if current stream sent2 is less than current stream sent1

deficit = (current stream sent1 - current stream sent2);

stream rate = stream rate - deficit;

st rates[L, PI] = stream rate;

data buffered2 = (stream rate - data sent2);

elseif current stream sent2 is greater than current stream sent1

if current stream sent2 is greater than BASEENCODINGRATE

st rates[L, PI] = BASEENCODINGRATE;

else

st rates[L, PI] = (stream rate + data sent2);

end

data buffered2 = 0;

end

end

end

Figure 7.22: Algorithm: find adjusted stream rates
173

PI Calc. Estimate Pred. avail.b/w Diff. Adjusted Data Data

st.rate b/w in interval b/w st. rate sent buff.

1 469.3 Advance 384 384 384 85.3

Revised 384 384 384 85.3

2 469.3 Advance 384 298.7 298.7 170.6

Revised 320 234.7 64 (-) 405.3 234.7 170.6

3 469.3 Advance 384 213.4 213.4 255.9

Revised 256 85.4 128 (-) 341.3 85.4 255.9

4 448 Advance 256 0 0 448

Revised 448 192 192 (+) 512 192 320

5 512 Advance 448 0 0 512

Revised 448 128 128 (+) 512 128 384

6 0 Advance 512 512 512 0

a Revised 384 384 384 384 0

b Revised 448 448 384 (link under-utilized) 384 0

c Revised 256 256 256 (buffer not cleared) 256 128

Table 7.12: Adjusting stream rates through link 1

duced by the difference; if the difference is positive, the stream rate is increased, bounded

by the base encoding rate.

The dynamics of this example is presented in Table 7.12. The revised estimate of the last

prediction interval can not be adjusted and hence based on the remaining data in the buffer, the

stream rate for the last interval is decided. With reference to 7.12, we consider three cases for

the sixth prediction interval. In case (a), the revised estimate is equal to the data in the buffer

and the stream encoded at 384 kbps can flow through the link. In case (b), the revised estimate

is higher than the data in the buffer. In this case the link is under-utilized. In case (c), the revised

estimate 256 kbps falls short of the data in the buffer, 384 kbps. As discussed before, since the

link bandwidths are varying, we use layer encoder as the resource to provide each client with

its delivered rate. The last case is handled by the layer encoder such that layers which add up to

bandwidth less than or equal to the revised estimate flows through the link.

Suppose the stream is encoded such that 128 kbps is the base layer and 128 kbps is the

first enhancement layer, and 128 kbps is the second enhancement layer. In case (a) and case (b)

174

all three layers flow through Link 1. In case (c) only the base layer and first enhancement layers

flow through Link 1. Note that by appropriately designing the layers, loss-free transmission

can be achieved across all prediction intervals spanning the playout duration. We discuss the

layering mechanism that can be used in conjunction with the L-by-L algorithms in the next

section.

7.9 Layering mechanism used

A layer encoder compresses multimedia data into one or more streams having different priori-

ties. Base layer is the layer with highest priority that contains the most important footprint of the

contents. Clients at the least need this layer to receive a meaningful playout. The layer encoder

also generates additional layers called enhancement layers which can be used in conjunction

with the base layer to refine the reception quality of the contents. There are two different ap-

proaches to adapt the encoding rate of the contents using layering: (i) receiver-driven algorithms

and (ii) sender-driven algorithms. In the first approach, the source sends the base and enhance-

ment layers as different streams through the network. Based on the availability of bandwidth,

receivers initiate adding or pruning of layers. In the source-driven approach, the source sends

the base layer and enhancement layers in one flow, with appropriate priority marking. With the

help of network congestion control mechanisms (such as feedback from the network nodes) lay-

ers are dropped to serve the clients with appropriate rates. We refer the reader to Section 2.4.3

in Chapter 2 for a detailed discussion of the layering mechanisms. In this section we discuss

the layering mechanism as it applies to our solution approaches.

7.9.1 Source-driven layering mechanism

In our solution approaches discussed so far, we assume a layer encoder at the source. When

the predicted bandwidths over the session duration are known apriori, using our algorithm,

the delivered rates at the clients over each prediction interval can be calculated. Note that the

client delay tolerance values are used to find the stream rates that can flow through the links

and the delivered rates at the clients. Source sends the stream starting in the first prediction

interval for intervals spanning the playout duration. However, data flows through links over

prediction intervals spanning the active period of the link using buffers. Hence it is not possible

to dynamically change the rates at which layers are encoded. Based on the delivered rates at

175

Client Delivered rates over prediction interval

1 2 3 4 5

C1 405.3 405.3 405.3 448 448

C2 384 384 384 384 384

C3 384 384 396.8 384 396.8

Table 7.13: Example to illustrate layering mechanism

the clients over the prediction intervals spanning its playout duration, the encoding rates for

the base and enhancement layers are decided. Note that in our model the source is capable of

dropping some layers or generating additional layers based on the delivered rates at clients over

prediction intervals spanning the playout duration.

Illustration of the layering mechanism used

In our example, given the delivered rates at the clients as presented in Table 7.11, the following

could be the choice of rates of the layers:

Base layer: 208 kbps

I enhancement layer: 112 kbps

Note that in this simple example, the source generates the base and the first enhancement layers

for all the prediction intervals. Client C1 gets the base and first enhancement layers for all the

prediction intervals whereas clients C2 and C3 get only the base layer.

To understand the layering mechanism required to serve the clients maximally, we consider

another set of predicted bandwidths for the same topology and determine the delivered rates at

the clients which are presented in Table 7.13. In this case the following could be the choice for

the layers:

Base layer: 384 kbps

I enhancement layer: 12.8 kbps

II enhancement layer: 8.5 kbps

III enhancement layer: 42.7 kbps

In the first 3 prediction intervals, source generates the base layer and the two enhancement lay-

ers. Client C1 gets all the three layers whereas client C2 receives only the base layer; client C3

receives the base layer in the first two prediction intervals, receives the base and first enhance-

176

ment layers in the third prediction interval. In prediction intervals 4 and 5, all four layers are

generated at the source; C1 gets all the layers in prediction intervals 4 and 5; C2 gets the base

layer; C3 gets the base layer in prediction interval 4 and base and first enhancement layers in

prediction interval 5. In this case, the source created an additional enhancement layer in PI 4;

however, the base layer and other enhancement layers remained the same.

7.10 Conclusions

In this section, we presented solutions to find the delivered rates at the clients when the link

bandwidths vary over the session duration. In a Closed User Group (CUG) model where clients

subscribe to the service, a CSP has knowledge to predict the available bandwidths over the

session duration. In such a model, we assume that the session duration is divided into prediction

intervals of equal duration over which the bandwidths remain constant. We start our analysis

with simple solutions, converting the problem to a static bandwidth model. An interesting

simple solution is presented by the I-by-I algorithm which may be useful in practical scenarios

where the client’s link to the network is always the weakest link. We then propose a L-by-

L algorithm where each link is considered and the loss-free delivered rates at the clients are

determined. To capture the effect of small variations in available bandwidth, we present a

solution that adjusts the stream rates flowing through the links at every prediction interval based

on feedback from the network on the available bandwidth on each link at the beginning of

every prediction interval. Using the layering mechanism and assuming that the feedback based

prediction would be very close to the actual available bandwidth on the links, we can guarantee

loss-free transmission to the clients.

177

Chapter 8

Solutions for on-demand streaming when

link bandwidths are static

8.1 Introduction

In the previous chapters, we considered synchronous streaming, where streaming of a given

content is prescheduled and starts at time t0 for all clients. In this chapter, we consider on-

demand streaming which has the following characteristics: A client Ci requests for contents at

any time ti specifying its requirements: a minimum acceptable rate γmin
i and delay tolerance δi,

time it is willing to wait for the transmission to start while staying connected. Streaming from

the source S can start only when links in the path from S to Ci are free. Note that playout of the

contents encoded at least at γmin
i must start at time (ti + δi), for Ci to be successfully serviced.

As we discussed in Chapter 1, we focus on a CSP’s distribution network comprising of

a proxy server serving as a source for clients over a multicast tree. When clients request for

the same content over a period of time, the objective of the CSP would be to service as many

clients as possible. Placement of streaming servers with caching capability at appropriate nodes

in the network, to service future requests for the same contents, is a common technique used to

achieve this.

With reference to Figure 1.2, the CSP’s distribution network is typically highly provi-

sioned. Let us consider a link li having bandwidth bi in the distribution network. When S is

streaming the contents encoded at a rate rk, for a client Ci, maximum rate that flows through

links in Ci’s path in the distribution network is rk. When bi > > rk, li is under-utilized. If an-

other client Cj , which shares li with Ci, requests for the same content before Ci’s transmission

178

is over, it is not admitted if li is not free or if its minimum rate requirement can not be fulfilled

when li becomes free. Note that by using all the available bandwidth on li, it can be freed at an

earlier time such that Cj may also be serviced.

Based on this observation, we propose a Hybrid Streaming Mechanism (HSM) where a

client’s request triggers the selection of an intermediate node as a streaming point (SP) to which

multimedia contents are dynamically transferred from S, and this streaming point streams the

contents to the client. Transferred contents are temporarily cached at the streaming point to

service future requests for the same content. HSM helps a Content Service Provider’s objective

of satisfying as many client requests as possible and providing enhanced delivered rates at

clients leveraging their delay tolerance.

In this chapter, we have included just a formal analysis of the problem and a solution for it.

Simulation studies of the solution were conducted as part of the M. Tech. thesis of Mr. Annanda

th. Rath and reported in [32].

Before we pose the questions that we address in this chapter, we present some definitions

and assumptions in addition to the ones presented in Chapter 1.

8.1.1 Additional definitions and assumptions

Streaming server: A streaming server is capable of sending the stream at the exact rate at

which it is encoded. We assume that the streaming server is also capable of transcoding a given

stream to a given lower encoding rate.

Data transfer mechanism: Data transfer mechanism refers to the following mechanism which

is assumed to be available at S: multimedia data is packetized into chunks such that packets are

transferred without any loss across links having high bandwidth from S to a node ni.

Pure Streaming Mechanism (PSM): Mechanism where the only streaming server in the CSP’s

distribution network is placed at source S.

Hybrid Streaming Mechanism (HSM): A mechanism that combines a data transfer mecha-

nism up to a node nk and streaming from nk to a client Ci such that the stream is transmitted

loss-free from S to Ci.

Streaming Point (SP): Streaming point refers to a chosen relay node at which the streaming

179

server is placed. Streaming point is denoted by SPi, where i is the index of the streaming point.

Region nodes: With reference to Figure 1.2 in Chapter 1, region nodes Gis are the relay nodes

that are the edge nodes in the distribution network of the CSP. These nodes connect the distri-

bution network to the access network.

For the analysis presented in this chapter, we assume that all client requests arrive at the region

node serving that client. When the region node finds the requested contents in its own cache

(if it is a streaming point) or at a upstream relay node, it triggers transmission to the client if

the links to the client are free; else it transfers control to S for initiating appropriate action.

Architecture of the nodes to support HSM is presented in Chapter 2.

Caching enabled streaming server: While sending out a stream encoded at a given rate, if a

streaming server also stores the contents in a cache which has a fixed validity time, the streaming

server is said to be caching enabled.

Time To Live of the Content (TTL): Time To Live of the Content (TTL) is the duration for

which the contents in the cache is valid. TTL is initialized when a given content is streamed

from the streaming server and updated every time the content is accessed from the cache. Simple

strategies with minimal overhead can be chosen to define and update TTL.

Observation period: A time interval over which client request arrivals are monitored is referred

to as the observation period.

Start of streaming session: For a given client Ci, the time tsi when transmission starts from S

is the start of the streaming session.

Note that tsi is later than the start of connection ti, when links in p(Ci) are busy; When the links

from S to Ci are free when Ci connects, tsi is equal to ti. Also, tsi is earlier than the start of

playout at Ci. Note that if tsi is greater than (ti + δi), Ci can not be serviced as its requirement

is violated.

The definitions related to connection, session, and playout from Chapter 2 are relevant to the

discussion presented in this chapter.

We address the following questions in this chapter: In a streaming scenario where link band-

widths are static and client requirements are known, given client request arrivals for a specific

content over an observation period,

• Where should the streaming server be placed to service the maximum number of clients?

180

• At what rates will the content be delivered to clients admitted for service over the obser-

vation period?

• How will the performance of the hybrid streaming mechanism compare with the pure

streaming mechanism?

8.1.2 Solution approach

As discussed, when a streaming server is placed at S, it sends out data at the encoded rate.

Given a highly provisioned link li (having bandwidth greater than the base encoding rate Γ)

from S, when S streams the contents, the link is underutilized and occupied for the playout

duration T of the stream. If li is shared by other clients requesting for the stream at a later time,

the following possibilities occur based on the available bandwidth bi on li:

• when bi is much greater than Γ multiple streams can be simultaneously supported by li.

Note that if more than one link are shared by the clients, all the links should have enough

bandwidth to support multiple streams.

• when bi > Γ such that bi is not big enough to support multiple streams, some of the

available bandwidth is wasted. In such a case requests have to wait till the shared link is

freed.

Thus, instead of streaming from S, which allows the data to flow through the link encoded at the

stream rate, a data transfer mechanism can be used; such a mechanism transports the contents to

a network node closer to the client termed streaming point, utilizing the available bandwidth on

the link effectively, freeing the link faster. Contents are streamed from the streaming point. This

facilitates servicing more clients. We use this logic in developing an algorithm for servicing on-

demand requests from clients for the same content over an observation period. By allowing

temporary caching at the streaming point, we can increase the number of clients serviced when

they request for the same contents in the future. Thus, the algorithm involves the following two

steps:

1. Choosing an appropriate streaming point

2. Finding the number of clients serviced and the delivered rates at the clients

181

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

1

R1

R 2

1 C C C

384

768

832

448

2

3 192

4

448

5

384
256 128

6 7 8 9

1 2

C

G G G

2
43

3

S

Figure 8.1: Example to illustrate HSM

In our solution, we use streaming servers with transcoding capability as the resource.

Before we discuss the solution approach, we present an example to illustrate the intuition behind

the algorithm.

8.1.3 Example to illustrate the intuition behind the algorithm

Consider a simple multicast tree as shown in Figure 8.1. S is streaming contents to clients C1,

C2, C3, and C4, connected through links 1 to 9, with bandwidths in kbps as indicated in Figure

8.1. R1, R2 are the relay nodes andG1, G2 are the region nodes in the path of clients C1, . . . C4.

The base encoding rate of the file is 512 kbps and the duration of the playout is 1 hour. Let C1

request for the file at time t = 0. Let C2 request for the same content at time t = 15. Let the

delay tolerance values be δ1 = 30 minutes and δ2 = 1 hr. Let the minimum rate requirement for

both the clients be 256 kbps. Our objective is to serve both the clients, C1 and C2. We consider

the following scenarios to understand the intuition behind the algorithm:

• Case 1: Using PSM: Streaming server only at S: At t = 0, C1 requests for the content.

Weakest link in C1’s path is 384 kbps. Given that δ1 is 30 minutes, maximum deliverable

rate at C1 is 512 kbps as calculated by Theorem 4.2. S streams the contents at 512 kbps.

Links 1 and 2 are underutilized. These two links are occupied for 1 hr., the playout

duration of the steam.

C2 requests for the same content at t = 15 minutes. Figure 8.2 illustrates the sequence

182

t=15 t=30 t=75 t=90t=60 t=135t=0

t = 0: C1 connects; C1’s transmission starts

t = 135: Playout at C2 ends

t = 90: Playout at C1 ends

t=75: Playout at C2 starts

t = 60: Links 1 and 2 are freed; C2’s transmission can begin

t = 30: Playout at C1 begins

t=15: C2 connects

Figure 8.2: Case 1: Streaming server at S

t=15 t=75 t=90t=60 t=135t=0

t=40

t = 0: C1 connects; C1’s transmission starts

t=15: C2 connects

t = 30: Playout at C1 begins

t = 135: Playout at C2 ends

t = 90: Playout at C1 ends

t=75: Playout at C2 starts

t=40: Links 1 and 2 are freed; C2’s transmission begins

Figure 8.3: Case 2: Data server at S and streaming server at R2

of events. Given that δ2 is 60 minutes, C2’s playout starts at t = 75 minutes and ends at

t = 135 minutes. Note that links 1 and 2 are busy till t = 60 minutes. Thus, C2 effectively

has a delay tolerance value of 15 minutes. Since the weakest link bandwidth in C2’s path

is 192 kbps, maximum deliverable rate at C2 is 240 kbps as calculated by Theorem 4.2,

given the effective delay tolerance value of 15 minutes. Since C2 needs a minimum of

256 kbps encoded stream, C2’s request can not be satisfied.

• Case 2: Using HSM: Data server at S and streaming server at R2: In this case, the

streaming server is located at R2 and the content is sent across links 1 and 2 as data

packets. Note that in this case, data can be transferred from S to R2 at a data rate of

768 kbps. Let the base encoding rate of the file, Γ be 512 kbps and the duration of the

playout, T be 2 hours. As stated in Chapter 2, we assume that the file size is a function of

183

its encoded rate, and playout duration T ; thus, the maximum file size is given by: Γ ×

T × 3600 kb. It takes 30 minutes to transfer the data encoded at 384 kbps to R2 and 40

minutes if the data is encoded at 512 kbps. Since C1’s request arrived first, it is serviced

at 512 kbps and links 1 and 2 are freed at t = 40. Figure 8.3 illustrates the sequence of

events.

Given that δ2 is 60 minutes, 35 minutes are available for C2, when links 1 and 2 are

free for transmission. The maximum deliverable rate at C2 is 304 kbps as calculated by

Theorem 4.2. Note that this rate is higher than C2’s minimum required rate. Hence both

the clients can be serviced.

• Using HSM with caching: Data server at S and streaming server at R2 with caching

capability: We consider scenario 2; Let the contents be cached at R2 till the Time To Live

of the Contents (TTL = say, the playout duration). C2 requests for the same contents at

t = 15 minutes. Stream encoded at 512 kbps is cached at R2 for 15 minutes (from t = 0

to t = 15). Hence C2 can be serviced directly from R2. Note that in this example given

that δ2 is 60 minutes, C2, can be serviced at 384 kbps as calculated by Theorem 1. Hence,

R2 transcodes the stream from 512 kbps to 384 kbps to serve C2.

Thus, by choosing an appropriate relay node for placement of the streaming server with a simple

caching mechanism, client requests can be serviced efficiently.

8.2 Analysis of network properties

We consider a streaming scenario where link bandwidths are static and client requirements are

known; client request arrivals for a specific content over an observation period are given. We

need to address the following question: how does a CSP decide on a streaming server placement

strategy to service maximum number of clients?

To answer this question, we analyze the properties of the network which are relevant in

deciding the placement for streaming servers.

8.2.1 Expression for time to transfer data

Lemma 8.1

Consider S connected to node n through m consecutive links l1, l2, . . . lm. Let b1, b2, . . . bm, be

184

the bandwidths available on these links, each of which is greater than the base encoding rate Γ

The time required to transfer the file of size Z from S to node n at the end of link lm, ignoring

transmission and propagation delays, is given by:

T = Z/min(b1, b2, . . . bn) (8.1)

Proof:

We use induction to derive equation 8.1.

• Base case: Let l1 be a link connecting S to node n1. Let b1 be the bandwidth available on

l1, where b1 > > Γ. T1, the time to transfer file of size Z from S to n1 is given by:

T1 = Z/ b1

as trivially, min(b1) = b1.

• Hypothesis: Consider a path made up of links l1, l2, . . . lm connecting S to node n hav-

ing bandwidths b1, b2, . . . bm which are greater than Γ. Let min(b1, b2, . . . bm) = bmin.

Equation 8.1 holds for these consecutive links.

• To prove: We need to prove that Equation 8.1 also holds for links l1, l2, . . . lm+1 up to

node n+ 1 having bandwidths b1, b2, . . . bm+1.

We have one additional link having bandwidth bm+1. If bm+1 is greater than or equal to

bmin, equation 8.1 is not affected. Let bm+1 is less than bmin. Suppose bmin is used as

the rate to transfer the packets, data will be lost over link lm+1 as its bandwidth is not

adequate to support the data rate. Hence, to guarantee loss-free transfer of the contents to

node n+ 1, min(b1, b2, . . . bm) = bm+1 has to be chosen as the data transfer rate.

Thus, when there arem consecutive links having bandwidths greater than Γ, the maximum

data that can be transferred without any loss is bounded by min(b1, b2, . . . bm). 2

Using equation 8.1, we can find the time required to transfer the contents across consecu-

tive links having high bandwidths.

8.2.2 Options for streaming server placement

When a client Ci requests for contents, equation 8.1 is used to find the time it takes to transfer

the contents from S to the streaming point in the path of Ci. With reference to the Figure 1.2 in

185

Chapter 1, we present an observation to decide on the placement of streaming server when the

CSP’s distribution network is highly provisioned.

Lemma 8.2

Given a client Cj requesting for a file encoded at Γ kbps at region node Gi. For all links li from

S to region node Gi, if all bi > > Γplacing streaming server at Gi is sufficient.

Proof:

Let Cj be a client having Gi in its path. Let n1, n2, . . . nm be the nodes in the path from S to

Gi. Let l1, l2, . . . lm+1 be the links in the path from S to Gi having bandwidths b1, b2, . . . bm+1.

By equation 8.1, min(b1, b2, . . . bm+1) is the rate at which the data can be transferred from S to

Gi. Any node in the path to Gi is a candidate for placement of the streaming server. However,

given that that Gi serves multiple clients from that region, it is sufficient to place the streaming

server at Gi. 2

Corollary 8.1

When all links in the distribution network are highly provisioned it is sufficient to place stream-

ing servers at all the region nodes.

Proof:

Extending Lemma 8.2, when every link in the distribution network is > > Γ, contents can

be transferred to the region nodes earlier by using the data transfer mechanism, compared to

streaming from S. In the latter case, all the links in the distribution network would be underuti-

lized. Since all client requests are processed at the region nodes, trivially it is sufficient to place

streaming servers at all the region nodes. 2

Now we consider the case when links in the distribution network are provisioned but there is

no guarantee that all links in the distribution network are > > Γ. To develop thumb rules for

the placement of streaming servers, we need an understanding of the occurrence of the weakest

link in the path of a client, as the weakest link determines the maximum deliverable rate at a

client, as determined by Theorem 4.2.

Lemma 8.3

Let bmin be the bandwidth of the weakest link in the path of a client Cj in the distribution net-

186

work. Let rj be the maximum deliverable stream rate at Cj calculated using Theorem 4.2. If rj

<= bmin, the weakest link in Cj’s path occurs in the access network, when δj > 0.

Proof:

By Theorem 4.2, if the weakest link in the path of Cj occurs in the distribution network bmin

has to be< rj when δj > 0. Hence the weakest link inCj’s path occurs in the access network. 2

Lemma 8.4

Let bmin be the bandwidth of the weakest link in the path of a client Ck in the distribution

network. Let rk be the maximum deliverable stream rate at Ck calculated using Theorem 4.2.

If rk > bmin, the weakest link in Ck’s path may occur in the distribution network, when δk > 0.

Proof:

Let bw be the weakest link in the path of Cj .

• Suppose bw < bmin. This implies that the weakest link occurs in the access network as

bmin is the weakest link in the distribution network. By Theorem 4.2, rk depends on bw

and δk. For large values of δk, rk can be >= bmin. In this case, when rk > bmin, bmin is

not the weakest link in Ck’s path.

• Now we consider the case when bw = bmin. By Theorem 4.2, rj > bmin when δj > 0. In

this case, when rk > bmin, bmin is the weakest link in Ck’s path. Hence if rj > bmin, the

weakest link in Cj’s path may occur in the distribution network, when δj > 0. 2

Based on the above lemmas, we come up with the following thumb rules for the placement of

streaming servers:

1. When rj <= bmin, a stream encoded at rj traverses links in the distribution network with-

out introducing any delay. Hence any node in the distribution network can be a candidate

for placement of streaming server. However, we need to choose a node that would serve

maximum number of future requests for the same content (from the cache valid until TTL

at the chosen node). The node having most outgoing links in the distribution network in

the path of Cj , is a suitable candidate.

2. When rj > bmin, bmin is a candidate for the weakest link inCj’s path. When the streaming

server is placed at the node at the end of bmin, future requests for the same content can

be served without incurring delays due to bmin, which may be the weakest link in these

clients’ paths.

187

In our algorithm, a simple cache management policy with very little overhead is used

based on the client arrival patterns. TTL is initialized when a given content is streamed from

the streaming server and updated every time the content is accessed from the cache.

We present algorithm find max clients which uses the lemmas and thumb rules discussed above

to find the number of serviced clients when they request for the same contents over a given

period of time.

8.3 Algorithm: find max clients

Algorithm find max clients takes the following parameters as input: (i) network topology with

static link bandwidths, (ii) client requirements, and (iii) client request arrivals over an obser-

vation period. The following stream characteristics as defined in Chapter 1 are used: base

encoding rate Γand playout duration of the stream T . The algorithm finds the number of ser-

viced clients and the rates delivered to these clients. It invokes the appropriate streaming server

option based on the thumb rules to maximize the utilization of available bandwidth in the distri-

bution network to service the maximum number of clients. The schematic for the algorithm is

presented in Figure 8.4. Note that the data structures and global variables as defined in Figure

4.10 are used in these algorithms also.

We present algorithms place streaming server and find max clients in Figures 8.5 and 8.6 re-

spectively. While the algorithms deal with the basic case where all clients request for the same

content, the algorithms can be extended for multiple contents by including an identifier for the

content.

Performance analysis and results of simulations are presented in [32]. Performance of HSM

depends on the following factors: (i) network topology and link bandwidths, and (ii) clients’

requirements. We used 50 topologies termed as Group 1 having high link bandwidths from

source to region node. The bandwidths are chosen randomly from the range (256 Kbps - 768

Kbps). The next 50 topologies termed as Group 2 had low bandwidth (weak links) in the

distribution network, from source to region node. The bandwidths are chosen randomly from

the range (128 Kbps - 256 Kbps). We observe that for Group 1 topologies HSM is a better

scheme as the available bandwidth can be better utilized with this mechanism. For Group 2

topologies since links from the source to the region nodes have low bandwidths, using the data

188

Is first

client?

No

in cache?
Is content

place_streaming_server

YesYes

No

serviced?

* stream from cache

* update TTLC

* stream from source

remaining time

at rate based on

No

* start data transfer from
source to streaming point

* update TTLC

* increment number of serviced

 clients

while arriving client

* reject request

Yes

find_max_clients

* number of serviced

*delivered rates at

clients

clients

* placement of streaming server

Client requirements

over observation period

Network parameters

Client request arrivals

can
the client be

Figure 8.4: Schematic of find max clients

189

Input:

client id: unique identifier for the first client in a subtree

requesting for a given content

% the following global variables are used by the algorithm

linkinfo, pathinfo, numclients, numlinks, numnodes, clients,

BASEENCODINGRATE, TRANSDURATION

Output:

Streaming point: id of the relay node chosen as streaming point

cli deli rate: delivered rate at the client

function place streaming server(client id)

Calculate the maximum deliverable rate r i for the given client C i;

% Theorem 4.2 is used %

if r i is less than r min, the minimum rate required by C i

reject request

else

if for each link in the path of C i

Find b min, the bandwidth of weakest link in the

client’s path from source to region node

if r i is less than or equal to b min

streaming point = relay node with maximum number of

outgoing links

else

streaming point = relay node at the end of link with b min

as its bandwidth

end

end

cli deli rate = r i;

Figure 8.5: Algorithm: place streaming server

190

Input:

client arrivals: client request arrivals over an observation period

Output:

num serviced clients: number of serviced clients

deli rates: rates delivered at clients

function find max client (client arrivals)

num serviced client = 0;

for each arriving client

if this is the first client in that subtree

place streaming server

% returns the streaming server node and the

rate delivered at the first client (refer to Figure 8.5) %

deli rates = maximum deliverable rate at client

% calculated using Theorem 4.2 %

Increment num serviced client;

elseif the links are busy

if content available in cache

start streaming from the streaming server

Increment num serviced client;

update TTL;

deli rates = maximum deliverable rate at client

% considering path of client from the streaming point %

elseif constraints can be satisfied when the links become free

deli rates = maximum deliverable rate at client

% considering the remaining delta of client,

when the link becomes free %

Increment num serviced client;

else

reject request

end

end

end

Figure 8.6: Algorithm: find max clients

191

transfer mechanism does not provide any advantage, as the time for transferring the content is

the same even when the streaming server is placed at the source. The only advantage of HSM

is that by choosing a streaming point appropriately, requests from clients for the same content

can be serviced from the cached contents. Thus, we observe only marginal improvement in the

number of clients serviced with such topologies. We refer the reader to the publication [33] that

resulted from this work for details.

8.4 Conclusions

In this chapter, we dealt with the on-demand requests that arrive over a specified period. A

Content Service Provider (CSP) catering to the needs of clients dispersed around the world on

a subscription based model, may receive requests for the same content over a period of time.

Distance education is an example, where each lecture for a given course can be accessed by

the students enrolled for the course over a specified period. By deploying steaming servers at

appropriate nodes, on-demand requests for contents can be serviced efficiently. Note that the

proposed algorithm ensures efficient utilization of available bandwidth in the CSP’s distribution

network in addition to leveraging the client’s delay tolerance for enhancing the delivered rates

at the clients.

192

Chapter 9

Buffer management issues: when a client

device is memory constrained

9.1 Introduction

In the previous sections, we discussed the various algorithms for finding the delivered rates

at clients and placement of resources to achieve those rates: (i) when the link bandwidths are

static and (ii) when the link bandwidths are varying, but predicted over short intervals. Given

that mobile devices are increasingly used as full-fledged computers running voice and video

applications at the client end, as the concluding part of this thesis, we discuss the applicability

of our algorithms to delay-tolerant applications where client devices are memory constrained.

In Chapter 2, we pointed out that in the node architectures required to support delay-

tolerant multimedia applications all nodes require buffers. In all our analysis so far, we have

assumed buffers at nodes to be unconstrained resources. Given the context of our work, while

it is reasonable to assume that the nodes that are within the distribution network of the CSP

would have enough memory to support required buffers, the assumption may not hold for client

devices. In this chapter, we first look at the size of buffers required at the nodes and the factors

that affect the size of buffers required at a client.

Recall that there are three types of nodes in the multicast tree: (i) Source, (ii) Relay,

and (iii) Client. We first present a discussion on the size of buffer required at a relay node,

considering the flow of data through the node. Since data flows into the source’s buffers from

its disks in a similar way, the same analysis holds for the source node also. Considering a client

node, there are two factors that affect the size of buffer required at a client:

193

• Bandwidth of the last link to the client: depending on the bandwidth available at the last

link to a client, buffers can be located at a relay node when the client device is memory-

constrained.

• Delay tolerance of the client: delay tolerance of the client determines the start time for

the playout at the client; thus, the amount of data to be buffered at a client and the time

that the data remains in the buffer, both depend on the delay tolerance of the client.

We find that when the delay tolerance value goes beyond a threshold value, entire content

may be buffered at a client. This is equivalent to downloading the content at the client. We

analyze the implication of such a scenario, which can be leveraged to admit more clients by

changing the schedule for the transmission.

9.2 Size of buffer required at a source/relay node

With reference to Figure 3.10 in Chapter 2, the source node buffers data when the bandwidth of

a outgoing link is less than the encoded rate of the stream required to serve the clients having

the link in their path. This is similar to buffering at a relay node as we explain below.

Consider a node ni. Let li be the incoming link and lj be the outgoing link of ni, having

bandwidths bpi and bpj where p = 1, 2, . . . P , where P is the number of prediction intervals in the

active period of li. P will be 1 in the case when the bandwidth is static over the active period of

li. Note that size of buffer at ni depends on the data that flows through li over its active period.

Let P be the duration of each prediction interval.

At a given prediction interval the maximum amount of data that can flow into ni is deter-

mined by the bandwidth available on li. The maximum amount of data that can flow out of ni

depends on the bandwidth available on lj . Thus the maximum buffer size at ni is given by the

expression:

Bmax
ni =

∑
p∈(1,P)

max((bpi − b
p
j), 0)× P (9.1)

Equation 9.1 also gives the size of buffer required at the source node. Note that the source

encodes/transcodes the stream to the highest delivered rate for any client in each of its subtrees

and sends the appropriately encoded stream through each of its outgoing link. With reference

to Equation 9.1, for each stream sent out by the source, bpi s represent the encoded rates of

194

R1R1

R 2

C 2

4

S

256

384

3

512
128

1

2

C 1

Figure 9.1: Example to illustrate use of buffers

the stream sent over each prediction interval and bpjs represent the bandwidths available on the

outgoing link from the source over each prediction interval.

At a client node the buffer size depends on the arrival rate of the data and the delay toler-

ance of the client. As discussed, arriving data is buffered at the client till the start of the playout.

Before we discuss the size of buffer required at a client node, we present a simple example to

illustrate the flow of data and the use of buffers at the client nodes.

9.3 Buffer requirement at a client node: An illustrative ex-

ample

Source S is streaming contents to clients C1 and C2 connected through links 1 to 4, with band-

widths in kbps as indicated in Figure 9.1. Let the base encoding rate of the contents, Γ, be 512

kbps and the duration of the playout, T be 1 hour. We assume the same minimum rate require-

ment for both clients: a minimum rate of 128 kbps. Let δ1 = 1/2 hr. and δ2 = 1 hr. Let us

consider the buffers required for delivering optimal rates to C1 and C2.

• Applying algorithm find opt rates I, the rates delivered at C1 and C2 are: r1 = 384 kbps

and r2 = 256 kbps, respectively. Since the highest rate delivered at either of the clients is

384 kbps, S, transcodes the stream to 384 kbps. It buffers 128 kbps and sends 256 kbps

on l1. Size of buffer required at S is 128× 3600 kb.

• Considering C1, its optimal delivered rate r1 = 384 kbps. Playout at C1 begins 1/2 hr.

after S starts streaming. Hence, stream encoded at 384 kbps needs to be buffered for 1/2

195

hr. at C1. Since links l2 and l3 have enough bandwidth to support the stream, instead of

C1 buffering (256 × 1800) kb of data, the data can be buffered at either of relay nodes

R1 or R2. However, if the buffer is maintained at R1 no data will flow to R2 for 1/2 hr.

which will starve C2 for this period. If the buffer is maintained at R2, both the following

objectives can be achieved: (i) no buffering is required at C1; this is desirable when C1 is

memory constrained. (ii) data received at R2 can be delivered at the appropriate rate to

C2 using a transcoder at R2.

• Considering C2, its delivered rate r2 = 256 kbps. Note that the last link is the weakest

link in this case. Hence buffering at R2 does not help. In this case, memory required for

buffering at C2 = 128× 3600 kb.

From the above example we can infer the following:

1. When the last link to the client supports the optimal delivered rate at a client, buffers

can be moved to an upstream relay node. For example, when the client is a memory

constrained wireless device, it is necessary that the link from the base station has adequate

bandwidth to support the optimal delivered rate. In such a case the buffers are managed

at the base station.

2. When the last link is the weakest link in the client’s path, it is necessary that adequate

buffers are available at the client to support playout at the optimal rate. In the worst case,

the entire content is buffered at the client. In the above example, even though C2’s last

link is constrained, when δ2 = 3 hrs., the stream can be delivered at 512 kbps; however,

3/4th of the content has to be buffered at C2, as the playout begins only 3 hrs. after

transmission begins.

According to Theorem 4.1, the maximum stream rate and hence the delivered rate at a

client depends on the δ values of the clients sharing links with it. Let us consider the case when

none of the shared links is the weakest link in any of the sharing clients paths; we refer to this

scenario in the rest of this chapter as no sharing link constraint. When there is no sharing link

constraint, given a high enough value of δ, any client should be able to receive the stream at the

best possible quality, Γ, irrespective of the bandwidth of the weakest link in its path. When the

last link in a client Ci’s path has enough bandwidth to support its delivered rate, contents can be

buffered at the previous node ni in its path which may serve multiple clients. Note that if ri =

196

Γ and ni has transcoding capability, it can serve all the clients just in time without the overhead

of buffers at every client.

We formalize these insights in the next section.

9.4 Observations related to buffer management at client nodes

As stated before, a Content Service Provider’s (CSP) goal is to maximize the utilization of the

available resources to best serve its clients. In practical scenarios, even when the relay nodes

may not be buffer constrained, we may have a client device that has very limited capacity to

buffer data.

When buffer at a given node is a constrained resource, it is prudent to utilize the available

buffers at other nodes. This is especially true when memory constrained client devices are

connected to nodes with large storage. In this section, we first examine some basic properties

to find the buffer size required at a client, for a given δ value. We then analyze the effect of

different δ value on the size of buffer required at the client.

9.4.1 Observations on buffer size at a client for a given δ value

Consider a client Cj having a delay tolerance value δj . Size of the buffer required at Cj depends

on the bandwidth of the last link that terminates at Cj . We consider the following cases to

understand the implication of buffer size for Cj:

1. when the last link to the client is the weakest link and the bandwidth on this link is less

than Γ.

2. when the last link to the client is the weakest link and the bandwidth on this link is greater

than or equal to Γ.

3. when the last link to the client supports the delivered rate at the client.

4. when the last link does not support the delivered rate at the client.

Consider a client Cj having link lk as the last link in its path and δj as its delay tolerance. Let

bk be the bandwidth of lk and bw be the bandwidth of the weakest link in Cj’s path. As always,

Γ is the base encoding rate and T is the playout duration of the stream.

We refer the reader to Figure 9.2 for all the derivations in this section.

197

l k
bk

C j

l k

bk

bw

Ci

Ci

l k

Ci

− Last link in the path of

− Bandwidth on

δ − Delay tolerance of

− Playout duration of stream

j

α

Τ

− Base encoding rate of stream

− Bandwidth on weakest link in path of

Figure 9.2: Illustration used for derivations

Property 9.1:

Let bw < Γ. If bw = bk, Cj must have a minimum buffer capacity of: bk × δj to buffer the data

till the start of playout.

Proof:

When δj > 0, rj , delivered rate at Cj , is greater than bw. Since bw = bk, rj can not be supported

by the last link lk. Hence buffering is required at Cj till δj to provide loss-free playout at Cj .

Since the bits flow across lk at bk kbps, a buffer of minimum capacity bk×δj is required at Cj . 2

Property 9.2:

With reference to Figure 9.2, consider client Cj . If bw >= Γ, the stream encoded at Γ needs to

be buffered at the client. The buffer size is given by: Γ ×δj .

Proof:

When the bandwidth of the weakest link in the path of Cj is greater than or equal to Γ, the

stream can flow across the path from S to Cj without any delay. In other words, the playout at

Γ can immediately start at Cj . When δj > 0, playout at Cj can begin only after δj . Hence it

is necessary to buffer the data at the client. Since the data is buffered for δj and the stream is

encoded at Γthe buffer size required is: Γ ×δj . 2

Property 9.3:

With reference to Figure 9.2, consider client Cj . Let node nk−1 be the last node in its path. If

rj <= bk, it is sufficient for node nk−1 to have a minimum buffer capacity given by: (bw × δj)

to buffer the data till the start of playout.

198

Proof:

rj , delivered rate at Cj , is less than bk (i.e., bk > bw). Hence rj can flow through lk without in-

troducing any delay. However, the playout at Cj begins only after δj . Hence the data is buffered

at node nk−1 till δj when the stream is transmitted to Cj in real time. Since the data is flowing

at bw which is stored for δj , the size of the buffer required at nk−1 = bw × δj . 2

Property 9.4:

With reference to Figure 9.2, consider client Cj . Let node nk−1 be the last node in its path. If

rj > bk, two cases arise: (i) lk is the weakest link in Cj’s path and (ii) lk is not the weakest link

in Cj’s path. Let bw be the bandwidth of the weakest link in Cjs path. In either case, the buffer

size required is: bw ×δj and the buffer has to be located at the client.

Proof:

Since bw is the weakest link in Cj’s path and δj is the delay tolerance value, the extra data that

can be delivered to Cj , that needs buffering is: bw ×δj . We will consider the two cases:

• Case (i): When lk is the weakest link in Cj’s path; bk = bw. To provide loss-free playout

at Cj , data needs to flow at bw. Hence the buffer has to be located at the client.

• Case (ii): When lk is not the weakest link in Cjs path; bk > bw. In this case, even

though lk can support bk, the rate at which data is flowing is determined by bw. Hence, the

maximum rate at which data flows through lk is bw. Note that data needs to flow through

lk for (T +δj). Hence, buffer of size bw ×δj is required at Cj . 2

We summarize the above observations below:

• Placement of buffer:

if rj <= bk, buffer can be placed at node nk−1

else buffer has to be placed at Cj

• Buffer size required:

if bw > Γ, buffer size = Γ ×δj
else buffer size = bw × δj

In our discussion thus far, we considered the buffer size for a given δ value of a client. Since

the buffer size depends on the value of δ, we now discuss the dynamics of buffers for different δ

values. When there is no sharing link constraint, by increasing the δ value of a client, delivered

199

rate at that client can be improved. However, beyond a certain δ value, when the delivered rate

at the client is Γ, no further improvement in delivered rate can be achieved. We denote this

δ value by: δ̂j . We explore the dynamics of buffers and its implication when the δ value is

gradually increased to δ̂j and beyond, in the next section.

9.4.2 Effect of δ value on buffer size

We consider the following:

• When there is no sharing link constraint, find the value of δj , δ̂j , for which Cj can have

the stream delivered at Γ.

• What happens when δj > δ̂j?

• What is the worst case buffer requirement for delivering stream encoded at Γ to Cj?

When the delivered rate at a client is not constrained by any other client’s delay tolerance

value, its delivered rate can be improved by increasing its delay tolerance value. However, in-

creasing the clients δ value beyond a certain value, does not contribute to any improvement in

its delivered rate, when its delivered rate is already equal to Γ. Playout at the client can start

after δ; hence the client needs to buffer the data till the start of the playout. Suppose δ of a

client is very large such that all contents are buffered at the client; in such a case there is no

data flowing across the links when playout starts at the client. In other words, when all the data

has been downloaded at a client, the links in the client’s path may go into a dormant mode,

where even though the streaming session is still on, there is no data flowing through the links.

In this section, our objective is to understand this dynamics. Note that such an analysis is very

important to make decisions on scheduling sessions such that all the resources are utilized for

the maximum benefit of the CSP.

Property 9.5:

With reference to Figure 9.2, consider client Cj . None of the shared links in the path of Cj is the

weakest link for any of the other sharing clients. Suppose Cj needs service at the best possible

stream rate Γ, i.e., rj = Γ. Let us denote the delay tolerance value of Cj that delivers stream

encoded at Γ by δ̂j . δ̂j is given by the expression:

200

δ̂j = 0 if bw ≥ Γ

= T ∗ ((Γ/bw)− 1) otherwise; (9.2)

Proof:

This property follows from Theorem 4.2. When bandwidth of the weakest link in Cj’s path is

greater than or equal to Γthis rate can be delivered immediately, i.e., at zero delay tolerance. In

order to deliver Γ to Cj when its weakest link bandwidth is less than Γwe derive the expression

for δ̂j , from Equation 4.5, substituting Γ for the deliverable rate rj and rearranging. 2

Equation 9.2 gives the value δ̂j that Cj needs to wait for if it needs the stream encoded

at the best possible rate Γgiven the weakest link bandwidth bw in its path. δ̂j defines the time

when the playout starts at Cj . Note that at this time, optimal amount of buffers are used to

service Cj with a stream encoded at Γ without any loss. For δj values greater than δ̂j , the rate

can not be improved. But, more data is buffered as the playout can start only after the specified

δj value. Thus, as δj value increases beyond δ̂j , the mechanism moves away from streaming

toward downloading the content. At certain value of δj , the mechanism converges to a complete

download. The next observation explores this transition.

Property 9.6:

With reference to Figure 9.2, consider client Cj . Suppose Cj needs service at the best possible

stream rate Γ and bw < Γ. By Property 9.5, δ̂j = T ∗ ((Γ / bw)− 1).

When Cj specifies delay tolerance δj where δj = δ̂j + T , the delivery mechanism converges to

a complete download mechanism.

Proof:

When bw = Γ, playout at Cj can start immediately as during T , bits are pipelined to be played

out. When bw < Γ, (Γ −bw) bits are buffered over a period δ̂j such that playout over T can be

sustained without any loss. In other words, bits are flowing in while streaming is in progress

between δ̂j and (δ̂j +T). When δj = δ̂j +T , all the data is buffered as the playout can start only

after δj . Thus, at δj = δ̂j +T , the mechanism converges to a complete download of the content.

2

201

To summarize, we have the following claims from the analysis presented in this section:

• a positive δ value improves the delivered rate at a client when the bandwidth of the weak-

est link in its path is less than Γ.

• the nature of the last link in the path of a client as compared with the delivered rate at the

client determines whether buffers can be located at the preceding node.

• δ̂j defines the maximum value of δj for a client Cj when buffers are deployed to provide

Cj with the best possible deliverable rate Γ. When δj takes values between δ̂j and (δ̂j +T),

additional buffering takes place, with the mechanism moving from streaming to partial

downloading to complete downloading at (δ̂j + T).

• When δj takes values greater than (δ̂j + T), it is equivalent to complete download and

play back at a convenient time. In this case while part of δj is utilized to provide the

client with the best possible rate, the entire content is stored at the client for a time (δj−

(δ̂j + T)).

We present an example when the weakest link bandwidth in a client’s path varies, to illustrate

the following: (i) value of δ̂j , (ii) amount of data buffered, (iii) start and end time for the playout

at the client, and (iv) amount of data buffered when δj = (δ̂j + T).

Example to illustrate observations

Let the base encoding rate of the contents, Γ, be 512 kbps and the duration of the playout, T

be 1 hour. We consider a simple string topology with source S serving a single client Cj . For

different values of the weakest link bandwidth, we find the value of delay tolerance δ̂j , for which

Cj can get the stream delivered at Γusing Equation 9.2.

Table 9.1 illustrates for each case, the buffer requirement, start time for the playout, and

end time of the playout. The last column in the table shows that when the client’s δj = δ̂j + T ,

data is completely downloaded for each case.

9.5 Leveraging residual delay tolerance

From the discussion presented in the previous section, note that when many clients in a multicast

session have δ values greater than their δ̂ values, the original stream can be rescheduled without

202

Case Weakest link δ̂j Data in Playout Playout data in buffer

b/w (bw) (hrs.) buffer start time end time if δj = δ̂j + T

1 128 3 (3/4)th content (t0 + 3)hrs. (t0 + 4)hrs. 512× 3600

2 64 7 (7/8)th content (t0 + 7)hrs. (t0 + 8)hrs. 512× 3600

3 256 1 (1/2) content (t0 + 1)hr. (t0 + 2)hrs. 512× 3600

4 384 1/3 (1/4)th content (t0 + 1/3)hr. (t0 + 4/3)hrs. 512× 3600

Table 9.1: Example to illustrate buffer requirements

compromising the delivered rates at these clients. We introduce the notion of residual delay

tolerance and analyze admission control and scheduling issues in this section.

The question posed is: How can we optimize the use of buffers to deliver rates to clients such

that more clients can be serviced over additional sessions, to maximize the overall benefit for

the CSP?

Consider a client Cj . Let δj be the delay tolerance specified by Cj . Let δj > δ̂j , the

maximum delay tolerance value for buffer size when the stream is delivered to Cj at Γ. We term

the difference (δj − δ̂j) as the residual delay tolerance, δ̂R
j .

Note that clients’ positive δ̂R values define the time over which data is stored in the buffers.

During this time no data is flowing through the links in the clients’ paths and no data is flowing

out of the buffers. In other words, the buffers remain frozen for the period of δ̂R which leads

to inefficient use of the buffers. One way to exploit δ̂R values of the client is to reschedule the

streaming to start from the source at a later time.

We first consider the case where all clients in a subtree rooted at S have positive residual

delay tolerance values. Let t0 be the time at which a synchronous stream is scheduled. Let

C1, C2, . . . Cn be the clients in a subtree Λ rooted at S , having residual delay tolerance values

δ̂R
1 , δ̂R

2 , . . . δ̂R
n . Let δ̂R

min = min(δ̂R
1 , δ̂R

2 , . . . δ̂R
n).

Note that when every client has a positive δ̂R value, the transmission can be postponed to

t1 = (t0+ δ̂R
min) without affecting the delivered rates at the clients. A value t1 = (t0+ β) can

also be chosen where β > δ̂R
min such that the minimum rate requirement of all the clients are

met. Note that β defines the time by which the start of streaming can be postponed without

violating any of the admitted client requirements. While δ̂R
min and β define the bounds for the

rescheduled start time for transmission, note that any value in between δ̂R
min and β is valid. In

order to choose an appropriate value for t1, we propose a scheme based on pricing in the next

203

section.

9.5.1 Rescheduling session: An illustration

A CSP has a business model based on the service it provides to its clients. While such a business

model and issues related to pricing based on the quality of service provided to clients are beyond

the scope of this thesis, to understand the issues related to scheduling the streaming sessions, we

present a simple example. Suppose various price points for the enhanced rate at a client (above

its minimum required rate) are defined by the CSP. Let pmax be the price paid by the clients

when all of them receive the stream at Γ. Let pavg be the average price paid by the clients.

Suppose the CSP has admitted m clients all having a positive δ̂R value. We consider the

two options: postpone the streaming session by (i) δ̂R
min = min(δ̂R

1 , δ̂
R
2 , . . . , δ̂

R
n), where all

clients get the stream at Γ (ii) β, where all clients get at the least their minimum required rate

γmin
i . These options are explained below:

Option 1:

• Let t1 = (t0 + δ̂min); every client gets the stream at the best possible rate Γ. Thus, the

revenue earned from existing clients is: m× pmax.

• Based on the arrival schedule more clients may join the transmission in the additional

time δ̂R
min. Let k be the number of additional clients joining the transmission. The revenue

earned from the new clients is: k × pavg.

• Total revenue earned is given by the expression:

(m× pmax) + (k × pavg).

Option 2:

• Let t1 = (t0 + β) such that β is the maximum time the streaming can be postponed

without violating minimum rate requirements of any admitted clients.

• Revenue earned from existing clients is: m× pavg;

• Based on the arrival schedule more clients may join the transmission in the additional

time β. Let l be the number of additional clients joining the transmission.

• Total revenue earned is given by the expression:

(m× pavg) + (l × pavg).

204

Note that in the first option while all clients are provided with the best possible quality, there is

less time to admit new clients as compared with the second option; Comparing the revenue, one

of the options can be recommended.

In the case when only some clients have positive δ̂R values, relationship between arrival

distribution, price points, and start time of transmission have to be considered to decide whether

rescheduling the transmission is beneficial.

9.6 Conclusions

In this chapter, we analyzed buffer sizes required to support delay tolerant multimedia applica-

tions. Given the bandwidth of the weakest link in a client’s path, we found the value of delay

tolerance that would deliver the stream at the base encoding rate at the client, when there is

no shared link constraint imposed by other clients. We also found that beyond this value of δ,

while the delivered rate can not be improved, the stream has to be stored at the client, as playout

at the client can start only after δ. This property led us to define residual delay tolerance, the

time when links in the path of a client are not utilized. We have suggested ways to leverage this

residual delay tolerance to enhance revenues for the CSP through rescheduling the session. The

insights gained from this chapter are very interesting from a business point of view; these ideas

can be further developed to aid business analysis to understand the impact of costs vs. revenue.

205

Chapter 10

Conclusions and future work

In this chapter, we first summarize our contributions and then present a schematic for a tool,

bringing together the algorithms presented in this thesis. Such a tool would aid a CSP to make

decisions on resource allocation, deployment, service packages, and quality of service. We

conclude with suggestions for future work in this area.

10.1 Summary of contributions

In this thesis, we have identified multimedia applications which we have termed delay-tolerant

applications; in these applications, delivering the content with acceptable quality at the specified

time is given more importance than delivering the contents as soon as possible. Given the nature

of the contents in these applications (which are relevant for a period of time), it makes lots of

sense to use the delay tolerance of clients to improve the quality of reception at the clients.

This idea is especially useful to the current CDN scenario, where bandwidth bottlenecks

occur along the path to a client; even when the CSP provisions links in its distribution network,

the last-mile problem persists.

Thus, our first contribution in this thesis is the idea of delay-tolerant applications. Hav-

ing identified applications that fit the profile of delay-tolerant applications, we have explored

various properties of such applications, given the context and parameters that affect such appli-

cations. We have also presented the architecture of nodes required to support such applications.

We identified three parameters that define the characteristics of the delay-tolerant appli-

cations: (i) service type: scheduled streaming, on-demand streaming, (ii) bandwidth: static,

varying, and (iii) resource used: transcoders, layer encoders, streaming servers. Using com-

206

binations of these parameters, we identified four distinct problem areas. We then identified

sub-problems under the first three problem areas, to define the scope of the issues we set to

address in this thesis. We have not studied the fourth combination, (on-demand streaming, vari-

able bandwidth) in this thesis. However, analysis and algorithms we have developed for the

other three cases can be used as building blocks to solve the problems in this area.

In this thesis, we have also proposed the node architectures required to support delay-

tolerant multimedia applications. In all our analysis, we have assumed buffers at nodes to be

unconstrained resources. Given the context of our work, while it is reasonable to assume that

the nodes that are within the distribution network of the CSP would have enough memory to

support required buffers, the assumption may not hold for client devices. Considering a client

node, there are two factors that affect the size of buffer required at a client: (i) Bandwidth of

the last link to the client: depending on the bandwidth available at the last link to a client,

buffers can be located at a relay node when the client device is memory-constrained. (ii) Delay

tolerance of the client: delay tolerance of the client determines the start time for the playout at

the client; thus, the amount of data to be buffered at a client and the time that the data remains

in the buffer, both depend on the delay tolerance of the client.

When the last link to the client supports the optimal delivered rate at a client, buffers can

be moved to an upstream relay node. For example, when the client is a memory constrained

wireless device, it is necessary that the link from the base station has adequate bandwidth to

support the optimal delivered rate. In such a case the buffers are managed at the base station.

We derived the expression for the delay tolerance value of a client required to deliver the

stream encoded at the best possible rate to the client, given the bandwidth of the weakest link

in its path. We analyzed the impact of delay tolerance on the buffer size at the client and found

that beyond certain value of delay tolerance, data for the entire session is buffered at the client

and the data remains stored at the client node till the start of playout. When the last link is the

weakest link in the client’s path, it is necessary that adequate buffers are available at the client to

support playout at the optimal rate. In the worst case, the entire content is buffered at the client.

If client device is memory constrained, such scenarios pose problems. We leave the in-depth

analysis of delay-tolerant applications on wireless enabled client devices to future work.

We summarize the contributions made by this thesis below:

In a scheduled streaming application where link bandwidths remain stable over the session

duration, our analysis and algorithms can be readily used by a CSP to make decisions on:

207

• Quality of service provided to clients: based on the availability of transcoders at relay

nodes, optimal rates delivered to clients can be determined.

• Number of transcoders required to provide the best quality of service across clients: By

eliminating redundancy in placement of transcoders, the optimal number of transcoders

required for delivering best rates to clients can be determined.

• Placement for a given number of transcoders: With limited resources, maximize the

quality of service across all clients.

While developing these algorithms, we have also come up with some interesting properties

of the delay-tolerant applications. The concept of equi-deliverable rates is interesting in that,

even when different values of δ are specified by clients in a subtree, if their maximum deliv-

erable rates are the same, their delivered rates are also the same. In such a situation, only one

transcoder is required at the root of the subtree serving the equi-deliverable rates clients. Even

when link bandwidths vary over the session duration, the CSP can find the loss-free delivered

rates at the clients and serve the clients with appropriate rates using a layering mechanism.

Our analysis for the on-demand streaming case when link bandwidths are static is relevant

to many streaming solutions where popular contents are accessed on-demand. The idea of

combining a data transfer mechanism with the streaming mechanism that maximizes the use

of the provisioned bandwidth is extremely useful from a CSP’s perspective to serve as many

clients possible even in the presence of bandwidth constrained links in the network.

In the next section, we bring together all our algorithms, to develop schematic for a set of

tools, to aid a CSP.

10.2 Schematic for CSP tools

We present the schematic in 10.1 having the following components:

• TOPRATES: finds the delivered rates at the clients for a given set of network parameters,

client requirements, and resource placement.

• TOPPLACEMENT: Using TOPRATES to find the delivered rates at the clients for differ-

ent resource placement, finds the best placement for a given set of resources.

208

• TOPREVENUE: Given a choice of schedules based on client requirements and price

points for the service provided, finds the option that maximizes the revenue for the CSP.

Using TOPRATES and TOPPLACEMENT, along with the investment specifications,

finds option that maximizes revenue for CSP.

In this thesis, we started with the simple case when all link bandwidths are static to un-

derstand the impact of various parameters on the delivered rates at the clients; we also devised

algorithms to find the resources required for providing best possible playout at the clients and

algorithms for best placement of resources when the resources are limited. Then we relaxed the

assumption of static bandwidths to include variability in bandwidth over prediction intervals

spanning the session duration. We devised algorithms that would find the loss-free delivered

rates at the clients when bandwidths are varying. We also presented a formal analysis of the

on-demand streaming case when bandwidths are static.

In summary, we have developed and implemented the algorithms that can be used by

TOPRATES and TOPPLACEMENT. We have also provided the analysis and outline for build-

ing TOPREVENUE. Since layering algorithms are readily available we have assumed that

given the delivered rates at the clients and their minimum required rates, a layering module

would generate the appropriate number of layers. We have developed algorithms for the var-

ious sub-problems identified and demonstrated their usefulness in aiding a CSP to administer

delay-tolerant multimedia applications.

10.3 Future work

Our work has shown that multimedia applications with soft deadlines can be serviced efficiently

by leveraging client delay tolerance. We have laid the foundation for research in this interesting

area which holds lots of potential for disseminating high quality multimedia data even in the

presence of bandwidth bottlenecks. Building a CSP tool, implementing a test-bed for evaluation

of the proposed algorithms, refining algorithms to include random arrival of clients (where the

topology may also change dynamically) are some of the interesting problems to be solved.

In the Video-on-Demand(VoD) scenario, the following problems pose interesting chal-

lenges: (i) handling new requests during a scheduled streaming session and (ii) handling multi-

ple servers with independant or partially overlapping contents. We discuss these briefly below:

209

T
R

A

N

S

C

O

D

E

R

L

A

Y

E

R

E

C

N

O

D

E

R

* Topology

* Bandwidths over Prediction Intervals(PIs)
spanning session duration

* Client requirements

Transcoder

Layer Encoder

* find number of serviced clients

* find delivered rates at clients

find_max_clients()

Service type

On−demand

Scheduled

TOPRATES

* Delivered rates at clients

* Stream rates through links

varyingstatic

Resource

used

* delivered rates at clients for

given resource option

Client arrivals

over observation period

Bandwidth

Predicted

static/
varying

static

* find number of serviced

clients

find_deli_rates()

TOPPLACEMENT

* Given a number of transcoders

Transcoder placement module

* Find minimum transcoders

required to deliver best rates
find_min_transcoders()

find placement option

* Find number of layers

Layering module

and their encoded rates

Price points

Investment

specifications

* Find session schedule

* Find investment option

Quality of service module

Resource planning module

that maximizes revenue

that maximizes revenue

TOPREVENUE

find_placement_minloss()
find_placement_maxgain()

find_opt_placement()

Parameters

Figure 10.1: Schematic for tools to aid a CSP

210

1. In the existing literature, several techniques such as patching, stream merging etc.[14]

are proposed to handle new client requests that arrive during the course of a scheduled

streaming session. These techniques assume multiple channels from the source to get the

initially missed part of the stream. Such techniques can be implemented in delay-tolerant

applications also, if additional channels from the source to the client can be established.

2. In our on demand streaming model, we assume that caches live for a certain duration and

hence can be used to serve clients with requests for the same content. Thus the caches

play the role of a server, from where contents can be streamed to clients. Given this,

we believe that the multiple server case can be reduced to the multiple caches case. In a

similar vein, techniques used to retrieve content segmented and stored at multiple servers

can be used with streaming points that cache partially overlapping contents.

The on-demand streaming, varying bandwidths case needs to be studied in depth. Extending

our analysis for scheduled streaming when bandwidths are varying, to the Hybrid Streaming

Mechanism, this case can be handled.

While we have analyzed buffer management issues when the client is device is memory -

constrained, we have left the in-depth analysis of running delay-tolerant applications on wireless

devices for future work. We introduced the notion of residual delay tolerance to determine

whether the business model for the CSP can be improved by rescheduling the streaming session.

This concept can help a CSP during the planning, scheduling, and admission control phases. We

leave the in depth treatment of these issues dealing with the business model of the CSP to future

research with the focus on business management issues.

In the declarative networking frameworks discussed in [11] [12], semantic data tagging

is used to provide content level information to data streams flowing through a network. Such

a framework can be leveraged to provide nodes with information on the content adaptation

required in our delay-tolerant applications which assume in-built intelligence at every network

node. Exploring the options and possibilities of extending such frameworks to facilitate the

implementation of our proposed algorithms is another interesting angle for further research.

211

Bibliography

[1] C.C. Aggarwal, M.S. Squillante, J.L. Wolf, P.S. Yu, J. Sethuraman, Optimizing Profits in

the Broadcast Delivery of Multimedia Products, Fifth International workshop on Multi-

media Information Systems, October 1999.

[2] C. Albuquerque, B. J. Vickers, T. Suda, Source-adaptive Multilayered Multicast Algo-

rithms for Real-time Video Distribution, IEEE/ACM Transactions on Networking, pp.

720-733, 2000.

[3] C. Albuquerque, B.J. Vickers, T. Suda, Multicast Flow Control with Explicit Rate Feed-

back for Adaptive Real-Time Video Services, SPIE Performance and Control of Network

Systems, November 1998.

[4] Akamai: The business Internet

http://www.akamai.com/

[5] J.C. Bolot, T. Turletti, I.Wakeman, Scalable Feedback Control for Multicast Video Distri-

bution in the Internet. Proceedings of ACM SIGCOMM, pages 58-67, August 1994.

[6] M. Castro, M. B. Jones, A-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang, A. Wol-

man, An Evaluation of Scalable Application-level Multicast Built Using Peer-to-peer

Overlays, IEEE Infocom, 2003.

[7] http://www.willas-array.com/prod/products/directory/pdf/vweb/ExplorerII.pdf

[8] Geography of Cyberspace Directory

http://www.cybergeography.org/

[9] A.Henig, D. Raz, Efficient Management of Transcoding and Multicasting Multimedia

Streams, Integrated Network Management, 9th IFIP/IEEE International Symposium on,

2005.

212

[10] H. Kanakia, P. P. Mishra , A. Reibman, An Adaptive Congestion Control Scheme for Real-

Time Packet Video Transport, IEEE/ACM Transactions on Networking, Vol.3, Issue 6, pp.

671-682, 1995.

[11] S. B. Kodeswaran, A. Joshi, Content and Context Aware Networking Using Semantic

Tagging, International Workshop on Semantics Enabled Networks and Services, pp.77,

2006.

[12] S. B. Kodeswaran, O. V. Ratsimor, F. Perich, A. Joshi, Utilizing Semantic Tags for Policy

Based Networking, IEEE Globecom 2007, Internet Protocol Symposium, pp. 1954-1958,

2007.

[13] P. Krishnan, D. Raz, Y. Shavitt, The Cache Location Problem, IEEE/ACM Transactions

on Networking, Vol. 8, No. 5, October 2000.

[14] S. Krithivasan, Mechanisms for Effective and Efficient Dissemination of Multimedia,

Technical report, September 2004.

www.it.iitb.ac.in/s̃aras/Papers

[15] S. Krithivasan, S. Iyer, To Beam or to Stream: Satellite-based vs. Streaming-based Infras-

tructure for Distance Education, Edmedia, June 2004.

[16] S. Krithivasan, S.Iyer, Enhancing Quality of Service by Exploiting Delay Tolerance in

Multimedia Applications, ACM Multimedia, Nov. 2005.

[17] S. Krithivasan, S. Iyer, Strategies for Efficient Streaming in Delay-tolerant Multimedia

Applications, Proceedings of the Eighth IEEE International Symposium on Multimedia,

pp. 419-426, December 2006.

[18] J. Kurose, K. Ross, Computer Networking: A Top Down Approach Featuring the Internet,

Addison Wesley, 2003.

[19] http://en.wikipedia.org/wiki/Last mile

[20] T.V. Lakshman, P.P. Mishra, K.K. Ramakrishnan, Transporting Compressed Video over

ATM Networks with Explicit Rate Feedback Control, Proceedings of IEEE Infocom, 1997.

[21] J. Liu, B. Li, Adaptive Video Multicast over the Internet, IEEE Multimedia, January-

March 2003.

213

[22] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma , S. Lim, A Survey and Comparison of Peer-

to-Peer Overlay Network Schemes, IEEE communications survey and tutorial, March

2004.

[23] A. Mahanti, On-Demand Media Streaming on the Internet: Trends and Issues, Compre-

hensive Examination Paper, Department of Computer Science, College of Arts and Sci-

ence, University of Saskatchewan, December 2001.

[24] http://www.mathtools.net/MATLAB/index.html

[25] S. McCanne, V. Jacobson, M. Vetterli, Receiver-Driven Layered Multicast, Proceedings

of ACM SIGCOMM, pp. 117-130, August 1996.

[26] The MPEG Homepage

http://www.chiariglione.org/mpeg/

[27] L. Patil, Video Transmission Over Varying Bandwidth Links, M.Tech. Project, Department

of Computer Science, IIT Bombay, 2006.

[28] P. Paul, S. V. Raghavan, Survey of Multicast Routing Algorithms and Protocols, Proceed-

ings of the 15th International Conference on Computer Communication, pp. 902-926,

2002.

[29] S. Paul, X. Li, M. Ammar, Layered Video Multicast with Retransmissions (LVMR): Eval-

uation of Hierarchical Rate Control, Proceedings of IEEE Infocom, April 1998.

[30] A. Pentland, R. Fletcher, A. Hasson, DakNet: Rethinking Connectivity in Developing

Nations, Computer, vol.37, no.1, pp.4-9, January 2004.

[31] M. Ramalho, Intra- and Inter-Domain Multicast Routing Protocols: A Survey and Taxon-

omy, IEEE communications, Surveys and Tutorials, 2000.

http://www.comsoc.org/livepubs/surveys/public/1q00issue/ramalho.html

[32] A. Th. Rath, HSM: A Hybrid Streaming Mechanism for Delay-Tolerant Multimedia Ap-

plications, M.Tech. Project, Department of Computer Science, IIT Bombay, 2006.

[33] A. Th. Rath, S. Krithivasan, S. Iyer, HSM: A Hybrid Streaming Mechanism for Delay-

tolerant Multimedia Applications, MoMM 2006, December 2006.

214

[34] www.mobilitypr.com/clients/files/RGB DBM press release 06112007.doc

[35] RTP, Real-time Transport Protocol

www.cs.columbia.edu/ hgs/rtp

[36] RTSP, Real-time Streaming Protocol

www.cs.columbia.edu/ hgs/rtsp

[37] SearchNetworking.com

http://searchnetworking.techtarget.com/sDefinition/0,,sid7 gci1252357,00.html

[38] Y. Shang, M. P.J. Fromherz, T. Hogg, Complexity of Continuous, 3-SAT-like Constraint

Satisfaction Problems, IJCAI-01 Workshop on Stochastic Search Algorithms, Aug. 2001.

[39] B. Shen, S-J Lee, S. Basu, Streaming Media Caching with Transcoding-Enabled Prox-

ies, Proceedings of the 6th IASTED International Conference on Internet and Multimedia

Systems and Applications, August 2002.

[40] B. Shen, S-J. Lee, Transcoding-enabled Caching Proxy for Video Delivery in Hetero-

geneous Network Environments, Proceedings of Internet and Multimedia Systems and

Applications, pp. 360-365, 2002.

[41] B. Shen, S-J Lee, S. Basu, Caching Strategies in Transcoding-Enabled Proxy Systems for

Streaming Media Distribution Networks, Proceedings of IEEE Transactions on multime-

dia, vol.6, no.2, April 2004.

[42] B. Shen, and S. Roy, A Very Fast Video Special Resolution Reduction Transcoder,

Proceedings of International Conference on Acoustics Speech and Signal Processing

(ICASSP), May 2002.

[43] D. Sisalem, H. Schulzrinne, The Loss-Delay Based Adjustment Algorithm: A TCP-

friendly Adaptation Scheme, NOSSDAV, July 1998.

[44] http://en.wikipedia.org/wiki/Tree data structure

[45] X. Tang, J. Xu, Replica Placement for QoS-Aware Content Distribution, IEEE INFOCOM,

2004.

215

[46] B. Vandalore, W. Feng, R. Jain, and S. Fahmy, A Survey of Application Layer Techniques

for Adaptive Streaming of Multimedia, Journal of Real-time systems, 2000.

[47] B. J. Vickers, M. Lee, T. Suda., Feedback Control Mechanisms for Real-Time Multipoint

Video Services, IEEE Journal on Selected Areas in Communications, vol.15, no.3, April

1997.

[48] B.J. Vickers, C. Albuquerque, T. Suda, Adaptive Multicast of Multi-Layered Video: Rate-

Based and Credit-Based Approaches, Proceedings of IEEE Infocom, April 1998.

[49] L. Visciano, J. Crowcroft, TCP-like Congestion Control for Layered Multicast Data Trans-

fer, Proceedings of IEEE Infocom, April 1998.

[50] J. Wang, A Survey of Web Caching Schemes for the Internet, Cornell Network Research

Group, 2001.

[51] X. Wang, and H. Schulzrinne, Comparison of Adaptive Internet Multimedia Applications,

Invited paper, Special issue on distributed processing for controlling telecommunications

systems, June 1999.

[52] F. Warthman, Delay-Tolerant Networks(DTNs), A Tutorial,DTN Research Group Internet

Draft, March 2003.

www.ipnsig.org/reports/DTN Tutorial11.pdf

216

