
Problem Based Learning Tool as a Plug-in for
Moodle

A Thesis

Submitted in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Souman Mandal

Roll No: 09305066

under the guidance of

Prof. Sridhar Iyer

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

Mumbai

June, 2011

Dissertation Approval Certificate

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay

The dissertation entitled “Problem Based Learning Tool as a Plug-in for Moodle”, submitted
by Souman Mandal (Roll No: 09305066) is approved for the degree of Master of Technology
in Computer Science and Engineering from Indian Institute of Technology, Bombay.

Prof. Sridhar Iyer
CSE, IIT Bombay

Supervisor

Prof. Sahana Murthy
CDEEP, IIT Bombay
Internal Examiner

Prof. Vijay Raisinghani
HoD, NMIMS

External Examiner

Prof. Girish Saraph
EE, IIT Bombay

Chairperson

Place: IIT Bombay, Mumbai
Date: 28th June, 2011

iii

Declaration

I declare that this written submission represents my ideas in my own words and where others
ideas or words have been included, I have adequately cited and referenced the original sources.
I also declare that I have adhered to all principles of academic honesty and integrity and have
not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I un-
derstand that any violation of the above will be cause for disciplinary action by the Institute and
can also evoke penal action from the sources which have thus not been properly cited or from
whom proper permission has not been taken when needed.

Souman Mandal
(09305066)

Date: 28th June, 2011

v

Acknowledgement

I take this opportunity to express my sincere gratitude towards my guide Prof. Sridhar Iyer
for his constant support, motivation and guidance. Without his deep insight into this domain
and his valuable time for this project, it would not have been possible for me to move ahead
properly. He has been remarkable in his attempt to keep me motivated in this project and has
always tried to improve me with proper feedback.

I would like to express my indebtedness towards Prof. Sahana Murthy for her suggestions
and invaluable support throughout the project.

I would like to thank my friends Neelamadhav G and Vijay Kumar for their constant feed-
back and motivation regarding this project.

I would like to thank each and every one who helped me throughout my work.

Souman Mandal
(09305066)

vii

Abstract

Problem Based Learning (PBL) is a student centric teaching-learning strategy. In PBL students
solve a problem or problems in a group to achieve the learning objectives(LO). Many research
have shown that PBL is a very effective instructional strategy, particularly for the educational
field like Medical and Engineering, where students need to apply their knowledge to solve real
life problems. But the implementation of PBL is time-consuming and sometimes student and
facilitator both find it hard to begin with. Assessment, communication, judgement of student
progress are also difficult part for successful outcome in a PBL course. So a well-structured
platform is required to support the whole process of a PBL course. Existing Learning Man-
agement Systems (LMS) or Course Management System (CMS) like Moodle can be used to
manage PBL courses, but these LMSs are very general. So to get more effective results a tool
developed based on the pedagogical philosophy of PBL is needed. As these LMSs are highly
used by the universities, schools, other organizations and some of the existing features of these
LMSs can be reused, it is better to build the PBL tool as an add-on for an existing LMS. Thus,
to support PBL we have developed a plug-in for Moodle as an activity module. For assessment
purpose another module named Rubrics is created. In this report different features of existing
LMSs has been explored, different steps of PBL has been described, internal structure and fea-
tures of Moodle are depicted. We also proposed a system which can support each of the steps
of PBL and finally we described the user documentation and developer documentation of the
PBL and Rubrics module.

ix

Contents

1 Introduction 1

2 Problem Based Learning 3
2.1 Pedagogy behind PBL . 3
2.2 Steps of PBL . 4
2.3 Role of Teacher in PBL . 6
2.4 Advantages of PBL . 6
2.5 Disadvantages of PBL . 7
2.6 Challenges in PBL . 7
2.7 How technology can help? . 7

3 Moodle and other LMSs 9
3.1 Different features of LMSs . 9
3.2 Moodle . 10
3.3 Comparative study . 10

4 Related Works 11

5 Proposed System 13
5.1 User characteristic . 13
5.2 Operating Environment . 13
5.3 Users of the system . 13

6 Functional Requirements 17
6.1 Group Formation . 18

6.1.1 Automatic Group Formation . 18
6.1.2 Manual Group Formation . 18
6.1.3 View Group . 19
6.1.4 Group Permission . 19
6.1.5 View Members . 19
6.1.6 Change Group . 19

6.2 Facilitator Allocation . 19

xi

6.2.1 Assign Facilitator . 19
6.2.2 View Facilitator . 20
6.2.3 Groups I’m Facilitating . 20
6.2.4 Change Facilitator . 20

6.3 Problem Presentation . 20
6.3.1 Problem Definition . 20
6.3.2 View Problem . 21
6.3.3 View Problem . 21
6.3.4 Edit Problem . 21
6.3.5 Comment on the problem statement 21

6.4 Discussion . 21
6.4.1 Add Discussion . 21
6.4.2 Chat . 22
6.4.3 Rate . 22

6.5 Identification of RLF . 22
6.5.1 Define RLFs . 22
6.5.2 Comment on RLF . 22
6.5.3 Edit RLF . 23
6.5.4 View RLF . 23

6.6 Resource Sharing . 23
6.6.1 Share Resource . 23
6.6.2 My Folder . 23
6.6.3 View Shared Resources . 24
6.6.4 Search Resources . 24
6.6.5 Rate Resource . 24

6.7 Propose Solution . 24
6.7.1 Solution Proposal . 24
6.7.2 Another Solution Proposal . 25
6.7.3 View Proposals . 25
6.7.4 Comment on Proposal . 25

6.8 Submit Solution . 25
6.8.1 Submission Guideline . 25
6.8.2 View Submission Guideline . 25
6.8.3 Edit Submission Guideline . 26
6.8.4 Submission Deadline . 26
6.8.5 Submit Solution . 26
6.8.6 View/Edit Submission . 26
6.8.7 View Submission . 26

6.9 Evaluation . 27

6.9.1 Create self-evaluation form . 27
6.9.2 Create peer evaluation form . 27
6.9.3 Create Rubric . 27
6.9.4 Self Evaluate . 27
6.9.5 Submit the self-evaluation form . 27
6.9.6 Peer Evaluate . 28
6.9.7 Choose Peer . 28
6.9.8 Submit the peer evaluation form . 28

6.10 Recent Activity . 28
6.10.1 Recent Activities . 28
6.10.2 Recent Activities . 28
6.10.3 Show full history . 29
6.10.4 Show history of a particular member 29

6.11 Report . 29
6.11.1 Result of self-evaluation . 29
6.11.2 Result of peer-evaluation . 29
6.11.3 Report of a individual . 30

6.12 How new module will help better? . 30

7 Features of Moodle to be used 33

8 Moodle Internals 39
8.1 Basic Structure . 39

8.1.1 Library Functions . 40
8.1.2 Blocks and Modules . 41
8.1.3 Moodle QuickForm . 41
8.1.4 Configuration . 42
8.1.5 Moodle XMLDB editor . 43
8.1.6 Using the XMLDB editor . 43

8.2 Database Structure of Moodle . 45
8.3 Access Control . 46
8.4 Development of a new Activity module . 48

9 Rubric Module 51
9.1 User Documentation . 51
9.2 Database Structure . 52
9.3 Development Documentation . 55

9.3.1 Authorization . 57
9.3.2 Functional Logic . 58
9.3.3 Database Layer . 60

9.4 Challenges . 60
9.4.1 Moodle Structure . 60
9.4.2 Moodle Form . 61

9.5 Future Work . 61

10 PBL Module 63
10.1 User Documentation . 63

10.1.1 Group Formation . 63
10.1.2 Facilitator Allocation . 64
10.1.3 Problem Presentation . 64
10.1.4 Identification of RLF . 64
10.1.5 Discussion . 66
10.1.6 Resource Sharing . 68
10.1.7 Solution Proposal . 69
10.1.8 Solution Submission . 69
10.1.9 Evaluation . 70
10.1.10 Other features . 71

10.2 Database Structure . 72
10.3 Development Documentation . 74

10.3.1 Authorization . 74
10.3.2 Functional Logic . 76
10.3.3 Database layer . 80

10.4 Challenges . 80
10.4.1 Moodle Structure . 80
10.4.2 Include others activity module inside the PBL module 80
10.4.3 File Up-loader . 82

10.5 Future Work . 82

11 Conclusion 85

List of Figures

2.1 PBL process . 5

2.2 Peer review result . 8

5.1 PBL activity module in Moodle . 14

5.2 Add PBL activity module in Moodle . 15

6.1 Overview of PBL process . 18

7.1 Grouping in Moodle . 34

7.2 Roles in Moodle . 34

7.3 Resource sharing in Moodle . 35

7.4 Recent Activity in Moodle . 36

7.5 Shared resources by student X . 37

8.1 Use of XMLDB editor to edit Moodle database 44

8.2 Use of XMLDB editor to edit Moodle database 45

8.3 Moodle Contexts[26] . 46

8.4 Add an activity inside course . 49

8.5 Directory structure for an activity module in Moodle 49

9.1 Rubric details and different customization options 53

9.2 Rubric form . 53

9.3 Rubric submission form . 54

9.4 Overall response . 54

9.5 Individual response . 54

9.6 Dependency and Process Flow . 55

9.7 Different development layers . 57

10.1 Group Creation . 64

10.2 Problem Presentation . 65

10.3 PBL homepage of the students after problem presentation 65

10.4 PBL homepage of the teachers after problem presentation 66

10.5 Addition of RLF . 66

xv

10.6 RLF in PBL homepage . 67
10.7 View of the RLF Electric Circuit . 67
10.8 Different type of discussions . 67
10.9 Teacher’s and student’s view of the discussions 68
10.10File Sharing links . 68
10.11File Sharing links . 69
10.12Solution Proposal . 69
10.13Solutions as shown in the PBL homepage . 70
10.14Link to the report of the groups . 70
10.15Report of Group A . 71
10.16Report of User 3 . 71
10.17Hierarchy of course, activity and blocks in Moodle 80

List of Tables

3.1 Different features of LMSs . 9

5.1 Different Users of the system . 15

8.1 Purpose of different files in an activity module in Moodle 50

9.1 Example Rubric[33] . 52
9.2 Structure of mdl rubrics table . 55
9.3 Structure of mdl rubrics form table . 56
9.4 Structure of mdl rubric record table . 56
9.5 Structure of mdl rubrics user record table 56

10.1 Structure of table mdl pbl . 72
10.2 Structure of table mdl pbl rlf . 73
10.3 Structure of table mdl pbl rlf user . 73
10.4 Structure of table mdl pbl discuss . 73
10.5 Structure of table mdl pbl forum . 73
10.6 Structure of table mdl pbl solution . 74
10.7 Structure of table mdl pbl groups . 74
10.8 Structure of table mdl pbl groups members 74

xvii

Acronyms and Abbreviations

• PBL : Problem Based Learning

• LMS : Learning Management System

• CMS : Course Management System

• RLF : Relevant Learning Facts

• LO : Learning Objective

• API : Application Programming Interface

• GUI : Graphical User Interface

xix

Definitions

• PBL: Problem based learning is a student-centered instructional strategy where student
solve problem working collaboratively in a group.

• Blended Learning: Blended learning is combination of traditional face-to-face learning
and on-line learning using some technology.

• LMS: It is a software tool, which helps to deliver course content, manage courses.

• RLF: RLF are the learning facts which are necessary to know to solve the problem given
in a PBL course.

xxi

Chapter 1

Introduction

Popularity and implementation of distance learning is increasing rapidly. Only The Open Uni-
versity,UK which offers most of its courses as distance learning course alone, has more than
168,850 registered students[6]. In US in 2006, more than 96 percent of the largest colleges
offered on-line courses[8]. This two data clearly shows that distance learning is widely used
now-a-days. In distance learning, people can study by their own pace, learning is not restricted
by time and distance; means people don’t need to stay at the university campus, they can study in
the time they feel comfortable. So distance-learning has some advantages. To support distance
education use of technology is must. A large number of course management system(CMS) or
learning management system(LMS) softwares are there. This softwares mainly helps to manage
courses, deliver course contents, conducting on-line exam etc. Now if we want to implement
a PBL course in distance learning environment, a PBL module or tool which support the steps
of PBL in more structured way than existing LMSs and address the implementation difficulties
of PBL, then it will be helpful. Here supporting a step means, providing the infrastructure, so
that user can easily do his/her task in that step. Like, problem presentation by the facilitator, is
one of the steps in PBL. So, the tool can support this step by providing a HTML editor to help
the teacher to publish the problem statement. Now this tool will help to execute a PBL courses
offered in distance learning environment. For this the tool need to be complete; means it should
have some support for each step of PBL. Now the questions are, how to develop the tool, what
features will the tool have, how teacher or student will get benefited using this tool etc.

The tool to support PBL has been developed as a plug-in for the learning management
system Moodle. There are two basic reasons behind this, one is the popularity of Moodle and
the other is the features which Moodle already provide. There is a module named Project in
Moodle[2], which was created to support projects student carry-out in a course but it doesn’t
go with the pedagogical philosophy of PBL. There are examples of courses which have been
carried out with the help of Moodle[20], but some of them complained that carrying out a PBL
course is difficult and time consuming, tracking progress is difficult etc.

The rest of the report is organized as follows. What is Problem Based Learning is described

in chapter 2. A comparative study among the different LMSs and why Moodle is better is written
in chapter 3. Related works about developing systems to support PBL is described in chapter
4. Proposed system is described in chapter 5 and 6. Integration plan is stated in chapter 7 and
chapter 8 is about the Moodle internal structure and features, developer documentation and user
documentation of the rubrics module is in chapter 9, description of developer documentation
and user documentation of the PBL module in chapter 10 and finally the conclusion is in chapter
11.

2

Chapter 2

Problem Based Learning

Problem based learning (PBL) has been used in higher education for a long time. As a model
PBL was developed for the medical education in the early 1970’s. It was implemented first in
McMaster University, Canada[10].

2.1 Pedagogy behind PBL

Generally here in India and in most of the world up-to 12th standard we are taught in traditional
directed teaching methodology. Even in graduate level the scenario is almost the same. But
cognitive science research in education shows that student constructs their knowledge by their
own, they do not take it in as it is delivered directly. Some time we learn better while working
in a group by peer teaching and it also helps improve the communication skills. So a student
can remember and apply their knowledge better if the learning is student centric, collaborative
and discovery based. For education like medical, engineering, business administration, problem
solving skill is highly required as students have to apply their knowledge directly to solve real-
life problems. But traditional teaching method doesn’t provide that platform. To keep-up with
the rapidly changing world of engineering and medical science another skill is also very much
required, i.e. learning how to learn.

Now Problem Based Learning is a student-centric teaching methodology in which student
solve one or more problem (preferably real-world) in a small group and teacher works as a
facilitator. So problem based learning promotes “active, constructive, contextual, co-operative,

and goal-directed learning” [16]. Various studies shows that implementation of PBL principle
has positive effect on student learning process as well as learning outcomes. In the paper Effects
of problem-based learning: a meta-analysis[9], authors reviewed 43 articles, which are about
empherical study of problem based learning, and they concluded that “there is a robust positive

effect from PBL on the skill of the students”

3

2.2 Steps of PBL

Though there are some variations in implementation of PBL in different courses (Like: in some
implementation there are different roles given to the students with in a group as Student, Chair-
person, Speaker etc[15], where in other implementation there were no such division), the steps
in the process of PBL are almost the same. In the papers [10] and [13] authors recommended six
steps for PBL. Schmidt and Moust proposed seven-jump approach, which are basically guide-
lines for students activity in PBL. Now if we count the steps, starting from group formation and
facilitator allocation to evaluation by the facilitator then the following 12 steps are commonly
followed steps in PBL.

1. Students are divided into groups

2. One facilitator is assigned to each group

3. Facilitator presents the problem to the groups

4. Student discuss among themselves and with the facilitator to have a better understanding
about the problem

5. Students identify what relevant fact they already know and what they need to know to
solve the problem

6. Student/facilitator search/share/evaluate resources which can be useful to learn about the
problem domain

7. Student reads(books, documents, shared resources) /learns(can be done by doing some
experiments) to gain knowledge about the problem domain

8. Students propose solutions and discuss different aspect of it with-in the group

9. Ultimately they come up with the best solution they can think

10. Each group present the solution

11. Student self-evaluate themselves, and peer evaluate others in the group

12. Teacher does the final evaluation

Here step 4 to step 8 can be repeated according to the need of the group and the problem. This
12 steps include all the steps recommended in[10, 13] and student will be able to follow the
seven-jump approach. To validate this, we can compare this twelve steps with the, six steps
recommended by Terry Barrett in the paper Understanding Problem-Based Learning[10]. This
steps are,

4

Figure 2.1: PBL process

1. First students are presented with a problem.

2. Students discusses the problem in a small group PBL tutorial. They clarify the facts of
the case. They define what the problem is. They brainstorm ideas based on the prior
knowledge. They identify what they need to learn to work on the problem, what they do
not know (learning issues). They reason through the problem. They specify an action
plan for working on the problem.

3. Students engage in independent study on their learning issues outside the tutorial. This
can include: library, databases, the web, resource people and observations.

4. They come back to the PBL tutorial(s) sharing information, peer teaching and working
together on the problem.

5. They present their solution to the problem.

6. They review what they have learned from working on the problem. All who participated
in the process engage in self, peer and tutor review of the PBL process and reflections on
each person’s contribution to that process.

In this six steps it is assumed that first two steps of the twelve steps described in this paper are
already executed. Step 2 of the six contain, step 4 and 5 of the twelve steps. Step 6 and 7 in
twelve steps approach are same as step 3. In the same way other steps of this six are same with
the rest of the twelve steps.

Now automatically the question comes that why we need break some of the six steps and
makes it a twelve steps process. The answer is, this break up will ease the task of technical im-
plementation of tool to support a for PBL process. Like for example if we take step 2 of six step

5

process, then discussion and keeping record of different learning objective can be implemented
using two different modules. So it is divided into step 4 and 5 in the twelve steps method.

2.3 Role of Teacher in PBL

In PBL role of teachers is different from the traditional teaching method. Teachers in PBL act
like facilitators. They will stimulate the student in their constructive experience. They offer
the resources, cases, courses and teach the way of gaining resources, collecting and analysing
data [23]. But they never directly give the way to the solution using the knowledge they have on
the domain of that particular problem. To challenge the learner’s thinking they might constantly
ask: “Do you know what that means?”, “What are the implications of that?”, “Is there any-

thing else?”. So in this way facilitator increase the creative thinking of the student. In problem
based learning the teacher act like a catalyst or enzyme [3].

S + TK → SK + TK

S + K → SK

T

Here S denotes Student, T denotes Teacher and K stands for Knowledge.

2.4 Advantages of PBL

There are many examples of implementation of PBL in courses. Most of them shows that PBL
is better teaching methodology than traditional teaching[18, 21, 20, 15, 11]. Learning through
problem solving is more effective than memory based learning.

• Problem-solving and Research skills: Student develop the skill “how to learn” and
skill of critical thinking[14]. Student also develops the skill of self-directed learning.

• Motivation: As the problems are real world problems and PBL has more motivational
appeal than traditional methods[15].

• Social skill: Student also adopt themselves in a team-working environment which is very
much vital to work in professional organizations.

• Effective: Now when comes the situation where students have to apply their previous
knowledge, student taught in PBL methodology, apply it better.

6

2.5 Disadvantages of PBL

• High teacher-student ratio: If the teacher-student ratio is low then large tutorial group
need to be formed. In a large group it will be difficult for the facilitator to facilitate
the group, track performance of individual student. So PBL require high teacher-student
ratio.

• Cost: As implementation of PBL course require more time than traditional methods,
if teacher is new to PBL then he might need training, students need access to different
documents, infrastructure for discussion etc, PBL is a costly process.

• Effect on Knowledge: According to[9] in PBL course students gained slightly less

knowledge than traditional teaching methodology, though they remember more of ac-

quired knowledge.

2.6 Challenges in PBL

• Different: PBL is a different than traditional methods, so if students are never taught in
PBL method they find it hard to switch[16, 18].

• Assessment: Traditional assessment do a little in PBL[25]. Most student feel insecure
in PBL if traditional assessment is followed[24]. PBL is a process based approach than
product based. So the teacher should not judge based on only the final report, rather
should evaluate a student based on participation and contribution throughout the whole
PBL course.

• Free Riders: Free riders is a term used in PBL, to indicate students who doesn’t con-
tribute in the group. Tracking these students is a challenge in PBL.

• Time Consuming: Teacher need to do lots of extra work in PBL, beside the subjective
support to the student. Works Like group formation, tracking the progress of the group,
determining strategy for self, peer evaluation and process the result of peer and self eval-
uation etc.

• Communication: In PBL student work in group, so generally lots of communication
happens. So proper communication tools are required.

2.7 How technology can help?

Now technology can help for each of the challenges described in the last section. For example
let’s take the task of peer and self-assessment. So if we do the task manually then, this steps
followed are:

7

Figure 2.2: Peer review result

• Facilitator creates the forms, using some software or pen and paper.

• Then have to print it and share it with the students.

• After that students give the feedback.

• Then if the facilitator wants to find out peer feedback result for a particular student, he
needs to find all the form belong to that particular student.

• Then the facilitator have to process feedback from each peer for each question.

This effort can be easily reduce by creating a web interface, where teacher can create the rubrics
and students will be able to give feedback and submit the rubrics. Processing of the forms can
be done automatically. So, if students have already given the feedback, then the teacher will be
able to see feedback for a particular student for each question. Figure 2.2 shows a demo peer
feedback result of student X, where the rubric contains 5 question and for each question there
is rating from 1 to 5.

Details of how technology can help, specifically in the context of the proposed system is
given in section 6 after the proposed system is described.

8

Chapter 3

Moodle and other LMSs

There are many open source and proprietary LMSs available. Moodle, aTutor, Claroline,
Dokeos, HotChalk, CCNet, Blackboard Learning System, Angel, Sakai, JoomlaLMS are some
of the examples.

3.1 Different features of LMSs

Now, without using any LMS, universities around the globe has run courses for years, so now-
a-days why there is so much of use of Learning management system. The answer is the features
an LMS provide. Table 3.1 shows the different features, generally one LMS have.

Feature Description
Communication For communication different tools are provided in a LMS. Like, for

announcement news forum, synchronous communication forum, wiki,
blog and for asynchronous communication blog etc.

Publishing/sharing
documents

Most of the LMS provide easy interface to publish and share document
in different format. User can use the inbuild HTML editor to create
content.

Calendar This feature helps user to keep track of what is going on and upcoming
events in the course. So basically it helps to manage the course

On-line Exam LMSs can be used for online exams. Generally LMSs support different
question pattern, like: multiple, numerical, short essay etc.

Table 3.1: Different features of LMSs

So using this features teacher can manage their course better and can save time.

9

3.2 Moodle

Moodle is an open-source e-learning tool. The project to build Moodle was, started on ’90 s and
Moodle 1.0 was released on August 20, 2002. It was created by Martin Dougiamas, at Curtin
University in Perth, Australia. The term Moodle is an abbreviation of Modular Object-Oriented

Learning Environment. Among the open-source LMSs, Moodle is being used by a large number
of users and it is having more features, compared to some other LMSs[7]. Moodle have almost
50,000 registered sites and more than 36 million of users of [4]. Moodle has support for more
than 90 languages and there are almost 270 people[4] worldwide working on the development
and translation of Moodle. The Moodle community is also very active.

It is possible to add new modules in Moodle. There are almost 650 plug-ins already
available[4], and it is possible to develop plug-ins for Moodle for different purpose. Like a
developer can create a new activity module, block, question type etc.

3.3 Comparative study

In the paper Why Moodle[7] authors have done a comparative study among Moodle 1.8, Black-
board Learning System (V.7), ANGEL Learning Management Suite (7.1), eCollege, Claroline
1.6, Dokeos 2.1.1 and Sakai 2.3.1. Authors have compared on both technical and usability fea-
tures of these tools. Among 40 different usability features authors find that Moodle 1.8 and
Sakai 2.3.1 are the most complete ones, both of them having support for 38 features out of 40.
Claroline is the weakest one having only 32 of 40 features. Though Sakai and Moodle having
support for same number of features, Moodle is better when documentation, security, support
etc are taken into consideration.

10

Chapter 4

Related Works

To support PBL different tools have been developed. Some of them are developed to support a
particular step of PBL(like web-based evaluation[12]), others support multiple aspect of PBL.

• In Moodle there is a plug-in Project Based learning Module. But it has only 5 steps

– Brainstorm

– Signup

– Submit

– Schedule

– Assessment

This plug-in was mainly developed to manage general student projects, where students
need to submit some file(.HTML) at the end of the project. So it was not developed based
on the pedagogy of PBL.

• In the paper Supporting Collaborative, Problem-Based Learning Through Information

System Technology[17] authors describe and analyze a system called CoMMIT(Collab-
orative Multimedia Instructional Tool-kit). The authors have implemented this WWW
based software to in a PBL course to evaluate its performance. There are three module
of this software, Authoring, Instructor-support and student module. Authoring module

is basically a graphical language, which enable the user to graphically connect different
documents as a precedence graph. Where to study about a document student should have
knowledge about the precedence nodes of the document. Instructor-support module pro-
duce some graphs or other kind of data to help instructor to monitor and evaluate groups.
Student module allows the student to access the documents in a controlled manner. So
that they always reads the prerequisites before any document. It also allows the student
to take general notes.

This system helps the facilitator and student in some of the steps in PBL. So this is not a
complete system. This is also a standalone system.

11

• In another paper Designing Web-based Interactive Learning Environments for Problem-

based Learning[22] authors describe a system named INDIE. It is a web-based learning
environment. It provides an authoring tool and a form based learning authoring tool and
a run-time engine. This web-based learning environment provides, a welcome interface

showing problem definition, reference interface where documents relevant to problem
domain can be found, an experiment interface where students can simulate their exper-
iments, a feedback interface where teacher can provide feedback and a report interface

where student can write the report for the problem or experiment.

This is also a standalone system. It does not support collaborative learning.

• In the paper Tools and strategies for improving PBL laboratory courses with a high

student-to-Faculty ratio[19] authors developed multiple tools to support administration
and teaching-learning. Automated web-based student enrolment, Laboratory slot man-
agement, Student survey management are different tool to ease the task of administration.
For teaching-learning authors developed tools for student progress management, e-mail
based communication, plagiarism and cheating detection etc.

Now the tools which authors have developed are all independent; means they are not been
incorporated in a single software package. So if we want to use them we need to install
each of them individually. Support for collaborative work is also less.

12

Chapter 5

Proposed System

The proposed system will help the instructors to run their PBL courses in both distance learning
and blended learning environment. It will be integrated with Moodle as a plug-in. So it need
to be developed by following the rules, methods and technology which are necessary to build
a plug-in for Moodle. Moodle is mostly used to manage different type of courses. Here a
teacher can add different activities as part of their course, like: quiz, wiki, assignments, survey.
Students need to carry-out these activities. PBL module will also be one type of activity, which
will come under the Add an activity... button. Figure 5.1 and 5.2 shows how in Moodle PBL
module will be integrated.

5.1 User characteristic

Both teacher and students must be familiarized with basic handling of computer, internet brows-
ing to use this new PBL module.

5.2 Operating Environment

This module will be developed using PHP, HTML, MySQL, JavaScript and CSS. So this mod-
ule will run on different operating environments, which support these technologies and where
Moodle runs.

5.3 Users of the system

In this system there are three different types of users, Teacher, Facilitator and Student. Their
roles are defined in the Table 5.3

13

Figure 5.1: PBL activity module in Moodle

14

Figure 5.2: Add PBL activity module in Moodle

User Role
Teacher Teacher is the person who is the instructor for the course, where PBL

activity can be added. Teacher will be able to see the activities of all
the groups. Teacher can do all the activity, which a facilitator can do.
In addition to that teacher will be to do two task. First one is dividing
students in groups and the other one is allocation of facilitator for the
groups.

Facilitator Facilitator is the person who facilitates one or more than one group,
in a PBL course. A teacher can also be a facilitator. Facilitator will
be able to assign task and see all the activities of the groups he/she is
facilitating.

Student Student is one, who is attending the course where PBL is an activity,
and has been assigned as a member of some group. Student will be able
to communicate and see the activities of others in his/her group and do
tasks to complete the PBL course.

Table 5.1: Different Users of the system

15

16

Chapter 6

Functional Requirements

In this chapter we described the different functionalities of a tool, which can support all the
steps of Problem Based Learning. This PBL module will be an activity within a Moodle course.
This activity will have several sub-activities.

1. Group Formation

2. Facilitator Allocation

3. Problem Presentation

4. Discussion

5. Identification of Relevant Learning Facts(RLF)

6. Resource sharing

7. Propose Solution

8. Submit Solution

9. Evaluation

Besides this sub-activities there will be some sub-modules also.

• Summary

• Recent Activity

The System is described in the following format. Each subsection heading is one feature. User,
is the person who can use the feature. In Description the feature is described. Dependency,
is the prerequisite work need to be done, before a user can use this feature, and Rating define
whether the feature is an essential one or optional.

17

Figure 6.1: Overview of PBL process

6.1 Group Formation

6.1.1 Automatic Group Formation

User: Teacher
Description: Teacher will give either the number of the groups or the number of members
with-in a group and it will create the groups automatically. This automatic group formation can
be done randomly, or taking into account some constrain like: alphabetical order of name, or in
a online course, common-time which is most suitable for the students to work together.
Dependency: All the students and faculty has registered in the Moodle course in which PBL is
an activity.
Rating: Essential

6.1.2 Manual Group Formation

User: Teacher
Description: Teacher will be able to form groups of any size ≤ total number of student in the
course, with any member ≤ total number of student in the course.
Dependency: All the students and faculty has registered in the Moodle course in which PBL is
a activity.
Rating: Essential

18

6.1.3 View Group

User: Teacher
Description: Should be able to view who are the members of which group. Student will be able
to see the information of other group only if Teacher has enabled the option to see the details of
other group’s info.
Dependency: After group allocation is done.
Rating: Essential

6.1.4 Group Permission

User: Teacher
Description: Should be able to set permission whether a student can see the activity of other
group or not.
Dependency: After group allocation is done.
Rating: Optional

6.1.5 View Members

User: Student
Description: Should be able to view who are the members of his/her group.
Dependency: After group allocation is done.
Rating: Essential

6.1.6 Change Group

User: Teacher
Description: Using this the teacher should be able to change the group formation, remove a
student from the group, add a new student or swap students.
Dependency: After group allocation is done.
Rating: Optional

6.2 Facilitator Allocation

6.2.1 Assign Facilitator

User: Teacher
Description: For each group at-least one facilitator should be allocated. One can be facilitator
for more than one group.

19

Dependency: This step need to be executed after the group allocation is over.
Rating: Essential

6.2.2 View Facilitator

User: Student
Description: Should be able to view the facilitator assigned to his group.
Dependency: After facilitator allocation is done.
Rating: Essential

6.2.3 Groups I’m Facilitating

User: Facilitator
Description: Should be able to view which group or groups he is facilitating.
Dependency: After facilitator allocation is done.
Rating: Essential

6.2.4 Change Facilitator

User: Facilitator
Description: Should be able to change facilitator for a group.
Dependency: After facilitator allocation is done.
Rating: Optional

6.3 Problem Presentation

6.3.1 Problem Definition

User: Facilitator
Description: Should be able to present a problem to each group. Facilitator can present the
same problem to all the groups or can present different problems to different groups.

• Facilitator should be able to present the problem in different ways. Facilitator should be
able to submit a text, with which facilitator can add different multimedia file video, audio,
PPT , Document files, animation etc.
Rating: Essential

• Video conferencing with the group to present the problem.
Rating: Optional

Dependency: After facilitator allocation step done.

20

6.3.2 View Problem

User: Facilitator
Description: Should be able to view the problem they have posted.
Dependency: After the problem presentation done.
Rating: Essential

6.3.3 View Problem

User: Student
Description: Should be able to view the problem assigned to them.
Dependency: After the problem presentation is done.
Rating: Essential

6.3.4 Edit Problem

User: Facilitator
Description: Should be able to edit the problem definition they have presented.
Dependency: After they have presented the problem.
Rating: Essential

6.3.5 Comment on the problem statement

User: Student/Facilitator
Description: Should be able to post question/doubt related to the problem statement, and the
answer to this doubts.
Dependency: Problem presentation is done.
Rating: Essential

6.4 Discussion

6.4.1 Add Discussion

User: Facilitator
Description: Facilitator will be able to add discussion when ever needed. Discussions will
be mainly of two types: Asynchronous and Synchronous. For asynchronous discussion there
will options like: Forum, Wiki etc. For Synchronous discussion there will be option for, text-
chat, audio-chat, video-chat, whiteboard. Options for forum, wiki, text-chat is essential. Other
options are not essential.

21

Dependency: After facilitator allocation is done.
Rating: Essential

6.4.2 Chat

User: Student/Facilitator
Description: Students can chat with the on-line group members and facilitator. Facilitator can
chat with the on-line members of the groups he/she is facilitating.
Dependency: After facilitator allocation is done.
Rating: Essential

6.4.3 Rate

User: Facilitator/Student
Description: Facilitator will be able to rate the questions or reply given by students in a forum.
Students will also can rate replies given by other group member. This rating will be in a scale
of 1-5.
Dependency: After a question is asked or replies given in a forum.
Rating: Essential

6.5 Identification of RLF

6.5.1 Define RLFs

User: Student
Description: Student should be able to document different RLFs which are needed to solve the
problem. For this, one interface should be provided such that they should be able to list what
they already know and what need to know to solve the problem.
Dependency: Problem presentation is done.
Rating: Essential

6.5.2 Comment on RLF

User: Facilitator/student
Description: Should be able to post comments on the student RLFs.
Dependency: After Identification of RLF is done.
Rating: Optional

22

6.5.3 Edit RLF

User: Student
Description: Should be able to change the RLFs.
Dependency: After identification of RLF is done.
Rating: Essential

6.5.4 View RLF

User: Facilitator/Student
Description: Facilitator should be able to view the RLFs of the members of the group of which
he is the facilitator. Student should be able to view his and all other’s (who are in the same
group) RLF.
Dependency: After identification of RLFs.
Rating: Essential

6.6 Resource Sharing

6.6.1 Share Resource

User: Facilitator/Student
Description: Facilitator should be able to share resources with a particular group or all the
groups he is facilitating. Student should be able to share resources with the group and the
facilitator. These resources can be any multimedia file, like: picture, PDF file, video, audio,
.doc, text, etc or it can be a link to some web document, or can be a name of a book also. A
shared document might help to know about some of the RLF. So, for the document there should
be a facility to mark which RLF it will help to learn. Whenever facilitator shares a document a
pop-up window will come asking him to mark RLFs. This list of RLF will be the union of the
list of identified RLF by each individual in the group. In the same pop-up window there should
be an option in which owner would be able to give description of the resource.
Dependency: After RLF identification is done.
Rating: Essential

6.6.2 My Folder

User: Facilitator/Student
Description: Should be able to store and manage all the document user has shared or want to
share or for his own study/reference.
Dependency: This should be the same as the Moodle Files module.
Rating: Optional

23

6.6.3 View Shared Resources

User: Facilitator/Student
Description: Should be able to view all the resources user has shared and with whom.
Dependency: After RLF identification is done.
Rating: Optional

6.6.4 Search Resources

User: Facilitator/Student
Description: This will produce result using the document descriptions, RLFs marked for the
documents, or texts (if the document has text in it like: .txt, PDF, html etc) of the shared
documents.
Dependency: After Resource Sharing is done.
Rating: Optional

6.6.5 Rate Resource

User: Facilitator/Student
Description: Facilitator will be able to rate the resources shared by students and him/her. Stu-
dents will be able to rate the resources shared by other group members and facilitator.
Dependency: After some resource is shared.
Rating: Essential

6.7 Propose Solution

6.7.1 Solution Proposal

User: Student
Description: Student should be able to propose a solution to the problem and share it with the
group members and facilitator will also be able to view the solution.

• Student should be able to present the problem in different ways. Student should be able to
submit a text, or a weblink, with which he can add different multimedia file video, audio,
PPT, Document files, animation etc.
Rating: Essential

• Video conferencing with the group to present the problem.
Rating: Optional

• Audio conferencing with the group to present the problem.
Rating: Optional

24

Dependency: After the problem presentation is done.

6.7.2 Another Solution Proposal

User: Student
Description: Student should be able to propose more than one solution to the problem.
Dependency: After one solution is proposed.
Rating: Essential

6.7.3 View Proposals

User: Student/Facilitator
Description: Student should be able to view the proposed solution by the other members of the
group. Facilitator should be able to view the proposed solution by the members of the groups
which he is facilitating.
Dependency: After the problem definition is done.
Rating: Essential

6.7.4 Comment on Proposal

User: Student/Facilitator
Description: User should be able to post comment about the proposed solutions by others/own.
Dependency:After solution proposal is done.
Rating: Optional

6.8 Submit Solution

6.8.1 Submission Guideline

User: Facilitator
Description: Facilitator should provide a text guide line for submission of the solution. Facili-
tator can specify the format of the submission, like final report format, how many files etc.
Dependency: After problem presentation is done.
Rating: Optional

6.8.2 View Submission Guideline

User: Student
Description: Student will be able to view the submission guideline using this feature.

25

Dependency: After submission guideline is specified.
Rating: Optional

6.8.3 Edit Submission Guideline

User: Facilitator
Description: Facilitator will be able to edit the submission guideline.
Dependency: After submission guideline is specified.
Rating: Optional

6.8.4 Submission Deadline

User: Facilitator
Description: Facilitator will specify the submission deadline.
Dependency: After submission guideline is specified.
Rating: Optional

6.8.5 Submit Solution

User: Student
Description: Student will submit the solution in the specified format, as mentioned by the
facilitator. There will be one final submission for the group. Final submission may contain
multiple files.
Dependency: If submission guideline is there then, after submission guideline is specified or
after the problem presentation
Rating: Essential

6.8.6 View/Edit Submission

User: Student
Description: Student can edit their submission until the deadline passes.
Dependency: After submission guideline is specified.
Rating: Essential

6.8.7 View Submission

User: Facilitator
Description: Facilitator should be able to see and download all the submitted document by the
group/groups he/she is facilitating.
Dependency: After students submit their solution.
Rating: Essential

26

6.9 Evaluation

6.9.1 Create self-evaluation form

User: Facilitator
Description: Facilitator will be able to create self evaluation form using this feature. This form
will be a rubric.
Dependency: Any time after problem presentation
Rating: Essential

6.9.2 Create peer evaluation form

User: Facilitator
Description: Facilitator will be able to create peer evaluation form using this feature. This form
will be a rubric.
Dependency: Any-time after problem presentation
Rating: Essential

6.9.3 Create Rubric

User: Facilitator
Description: It will ask for the title of the rubric. Then number of columns and rows of the
rubric. Then a table will be created. Facilitator will be able to edit the title of the column.
Then can define criteria according to each row and column. This feature will be used after the
facilitator selects to create the self/peer evaluation form.
Dependency: After the problem is presented.
Rating: Essential

6.9.4 Self Evaluate

User: Student
Description: Student will be able to access the self-evaluation form created by the facilitator.
Dependency: Creation of self-evaluation form is done.
Rating: Essential

6.9.5 Submit the self-evaluation form

User: Student
Description: Student will be able to submit the self-evaluation form. This can be done for only
one time.

27

Dependency: Creation of self-evaluation form is done.
Rating: Essential

6.9.6 Peer Evaluate

User: Student
Description: Student will be able to access the self-evaluation form created by the facilitator
Dependency: Creation of peer evaluation form is done.
Rating: Essential

6.9.7 Choose Peer

User: Student
Description: Student will choose a peer whom he wants to evaluate.
Dependency: Creation of peer evaluation form is done.
Rating: Essential

6.9.8 Submit the peer evaluation form

User: Student
Description: Student will be able to submit the peer evaluation form for a particular peer. For
one peer this can be done for one time only.
Dependency: Choose peer is done.
Rating: Essential

6.10 Recent Activity

6.10.1 Recent Activities

User: Facilitator
Description: This link will show the summary of the recent activities done by the students in
the group the facilitator facilitating.
Dependency: After Facilitator allocation is done.
Rating: Essential

6.10.2 Recent Activities

User: Student
Description: In the PBL homepage of the student there will be summary about the updates of
the recent activities of the group will be displayed. Some comparative data will also be shown

28

in the homepage, like:
Avg. resources shared by the individual group member are : X

Resource shared by you are : Y

Avg. rating of the discussion of the individual group member is : M

Avg. rating of your discussion is : N

Dependency: After grouping is done.
Rating: Optional

6.10.3 Show full history

User: Facilitator
Description: This will enable the user to view the whole history of the activities done by
different person in the course.
Dependency: After facilitator allocation is done.
Rating: Optional

6.10.4 Show history of a particular member

User: Facilitator
Description: Facilitator will be able to choose one particular group member and then see the
activities done by that member in past.
Dependency: After facilitator allocation is done.
Rating: Essential

6.11 Report

6.11.1 Result of self-evaluation

User: Facilitator
Description: Facilitator will be able to see the result of the self evaluation.
Dependency: Self-evaluation is done by the student.
Rating: Essential

6.11.2 Result of peer-evaluation

User: Facilitator
Description: Facilitator will be able to see the result of peer evaluation. Facilitator will be able
to see the average peer rating of the group, of a particular student, individual rating of all the
other students for a particular student.

29

Dependency: Peer-evaluation is done by the students.
Rating: Essential

6.11.3 Report of a individual

User: Facilitator
Description: Facilitator will choose a particular student in the group to see his report. In the
report answer of the following will be there in the report. Let the student is S

Avg. number of documents shared by the group are : X

Number of documents shared by S are : Y

Avg rating of the documents shared by the group : M

Avg. rating of the documents shared by user S : N

Dependency: After facilitator allocation is done.
Rating: Essential

6.12 How new module will help better?

• There are some basic advantages of using computer added system for PBL. If we use
computer support, then we can use the different multimedia functionality computer can
support. In most of the cases the problem in PBL is a complex one, so while describing
the problem facilitator can use animation, video, audio if required. Sometimes students
also get motivated if multimedia is used.

• Developing the tool as a plug-in for Moodle is also have some advantages. In the insti-
tutions Moodle is generally used in the following manner, there is one central server for
Moodle and one administrator who manages Moodle. Now if the administrator installs
a new feature then all the teachers can use it. So basically teacher do not need to worry
about the management, and once a plug-in is installed every instructor can use it in any
course. Against this, if there is one standalone system, then either we need to use some
other central server for that system, or install it in a particular system for a particular
course. This increases the implementation difficulty.

• If a PBL course is offered in distance learning then use of technology tools or LMS is
must to manage and deliver the course.

Now the proposed system has some particular features which help the instructor and student in
a PBL course.

• Collaboration: In the proposed system there will be support for collaboration. Like:
student can share documents with each other, can communicate in different way, list the
learning objectives etc.

30

• Evaluation: As there will be support for on-line survey it will save time, compared to
traditional off-line survey. It will also help the instructor to evaluate the contribution and
participation of each individual for the whole PBL course by producing report.

• Tracking: Using this tool teacher can view recent activities and activity report of the
groups he/she is facilitating as described in the previous sections. Viewing this updates,
teacher will be able to decide, whether the group is working or not. This feature will also
help to find out the free-riders.

• Communication: Besides the tools which Moodle provide for communication, white-
board and audio-video conferencing are some desired feature of this tool. So these fea-
tures will help in more effective communication, specially for distance learning.

Along with these advantages, this tool will be complete, means it will help in each step
of PBL. In [16] authors discussed that poor understanding of the principle of PBL and
“misguided attempts to make the approach more efficient” can have negative effect. This
tool might be helpful in this case. Because it will show an interface for both teacher and
student, so that they can decide what to do in the current step and what is the next step.

31

32

Chapter 7

Features of Moodle to be used

In this chapter, for each of the functional requirement of the system what features of Moodle
can be used and what new features need to be implemented or how the existing features need
to be updated is described. Under each functional requirement there are two bullets. First one
describe the features of Moodle can be use to support the requirement and second one describes
the new features to be added or extension of already existing feature, which are required. Some
time features described in the second bullet is a optional feature not a essential one.

Group Formation

• Moodle has support to create group. Teacher can create different group automatically or
manually. In automatic group formation, teacher need to choose either number of groups
or number of students per group and based on what criteria the groups will be formed.
There are four criteria, Randomly , Alphabetically by first name, last name, Alphabetically

by last name, first name, Alphabetically by ID number. In manual grouping, teacher
need give the group name, then select the members of that group. Figure 7.1, shows the
interface to manage groups in Moodle.

• The new feature could be the fifth criteria in automatic grouping. That is taking timing
preference of the students into account.

Facilitator Allocation

• In Moodle we can define different roles based on the permission given to that particu-
lar role. So based on our requirement permission can be given to the Facilitator role.
Figure 7.2 shows Moodle interface to create new role.

• The permission for the role of facilitator need to be define and association of a facilitator
and groups he is facilitating need to be done.

Problem Definition

33

Figure 7.1: Grouping in Moodle

Figure 7.2: Roles in Moodle

34

Figure 7.3: Resource sharing in Moodle

• There is a HTML, editor in Moodle, wiki or Forum. Facilitator can use this feature to
present/publish the problem definition.

• A video-conferencing feature can be added, so it can be used while presenting the prob-
lem.

Communication

• For communication Moodle have different features. For synchronous communication,
text-chat feature is there. For asynchronous communication, forum, messaging can be
used.

• Addition to the features white-board, audio-video chat feature can be added for better
communication.

Identification of RLF

• Currently there is no feature to record and further process the RLF in Moodle.

• New database fields and interface to list or records the RLF need to be created.

Resource Sharing

• In Moodle teacher can share different type of resources. Resource can be a file or a folder.
There are options Compose a text page, Compose a web page, Link to a file or web site,

Display a directory and Add an IMS Content Package. These features will be used to
share resource in the PBL tool. Figure 7.3 shows the options for type of resources teacher
can share in Moodle.

• There is no support for file or folder sharing for student in the standard Moodle software.
But plug-ins[5] available which enables file-sharing facility for students. So for PBL
module, either we need to use some existing plug-in or reuse the code of existing plug in,
so that student can also share resources. There is also a need for associating the RLF with
the shared files.

35

Figure 7.4: Recent Activity in Moodle

Propose Solution

• In Moodle support of Forum is there. So, student can propose their solutions in a forum
as text (Different files or link can also be attached), so that other will be able to post
comment on this, or students can upload files in if teacher creates an assignment activity.

• Some better way to publishing and managing the proposed solution is needed.

Submit Solution

• In Moodle teacher can add activity, where student need to upload files. So if the final
solution is files to be submitted. This feature can be used.

• There need to be a feature, using which a group can present their solution. For this support
for audio or video conferencing is needed.

Evaluation

• Moodle provides a feature to grade a submitted assignment. This can be used to give
grade final solution.

• Standard Moodle does not provide the feature to create or process rubrics. But rubric is a
necessary feature for self and peer assessment. So this feature needs to be implemented.

Recent Activity

• Moodle provide the feature, so that the user can see the recent activities happened in the
course.

• For PBL we need to filter these activities which are specific to the group and relevant to
PBL process.

Report

36

Figure 7.5: Shared resources by student X

• Moodle provide the feature to see the report of the all the activity in the course.

• To judge the participation or contribution of a student using the report provided by Moodle
is difficult. This report must be filtered, and comparative report, which will basically show
the comparison of the participation and contribution of a particular student, with others
in the group. If the report is graphical, then it might help teacher to understand better.
Figure 7.5, is a demo diagram. It is showing the comparative contribution for resource
sharing of student X.

37

38

Chapter 8

Moodle Internals

In this chapter we describe the internal directory structure, database structure, access control
implementation of Moodle. It is important for a developer to know about all these before start
developing any new module or block. We have used some terms while describing the Moodle
internals, these terms need to be explained, before we proceed. $HOME is the parent directory,
where Moodle is installed. Course Homepage is the first page we get when we click on the
link to a course inside Moodle. Module Homepage is the first page we get when we click on
the link of a module in the course homepage. Now all the description of Moodle here is for
the Moodle version 1.9.x, some of the features may be implemented in some other way in the
different versions of Moodle.

8.1 Basic Structure

Moodle is an open-source Learning Management System(LMS). In Moodle we can create dif-
ferent format of courses, like:

• Weekly

• Topics

• Social

• LAMS course

• SCORM

Inside a course we can have different features. Most of these features are provided by some
Activity module, like Assignment, Forum, Quiz or some Block module, like Recent Activity,
Latest News, People etc. We can extend the features in Moodle in many ways. The two most
useful ways to extend the functionalities are adding new Activity module or Block module. If
we add an activity module then, it will come under the Add an activity 8.4 drop-down box in

39

the course homepage. A newly added block will come in the Blocks, Add drop-down box in the
course homepage.

The library functions are defined in the files inside the $HOME/lib directory. Some of
the library functions are important and used frequently. This functions are defined in the file
weblib.php, moodlelib.php, dmllib.php and accesslib.php.

8.1.1 Library Functions

• All the function to update, insert, delete database entries in Moodle are defined in the
$HOME/lib/dmllib.php file. For example the function

– delete records($table, $field1, $value1, $field2, $value2, $field3, $value3)

is used to delete records from a database table. Here $table is the name of the table from
where we want to delete record/records. $field1 is the first field to check and $value1 the
value field1 must have. Same applies for $field2, $value2 and $field3, $value3. In this
particular function, only the $table parameter is mandatory, others are optional.

• General purpose Moodle functions are defined in the $HOME/lib/moodlelib.php. For
example the function

– required param($parname, $type)

returns a particular value for the parameter named $parname, taken from POST or GET
method. If the parameter does not exist then an error is thrown. Here $parname is the
name of the parameter and $type is the type of the parameter.

• Library of functions for web output are defined in the $HOME/lib/weblib.php file. For
example the function

– print header ($title, $heading, $navigation, $focus, $meta, $cache, $button, $menu,
$usexml, $bodytags, $return)

prints a standard header in the page, where it is being called.

• To control access functions are defined in the $HOME/lib/accesslib.php file. For example
the function

– has capability($capability, $context, $userid, $doanything)

checks whether a user has the capability with regards to the context. Here $capability is
the capability name, $context is the context of the access, $userid is the id of the user and
if $doanything is false then it gets ignored, otherwise it will check for the permission.

40

8.1.2 Blocks and Modules

In Moodle all the blocks are defined inside the $HOME/block directory. All the activity modules
are defined inside $HOME/mod directory. Files which are required to show a course and add
or delete a particular module in a course are defined inside the $HOME/course directory. If we
see the course homepage, then $HOME/course/view.php is shown. If we try to add a particular
module or resource then we will be redirected to $HOME/course/modedit.php. Now when ever
in a course(course type is week) we try to add a particular module, 5 variables are passed using
the GET method to the $HOME/course/modedit.php. These are add, type, course, section,
return. Here add, is the name of the module we wanted to add, type is the type of the module,
course is the course id, section is the section number where we wanted to add the module and
depending upon the return value, Moodle decides where to redirect after adding the module. To
update, move, delete a module Moodle use $HOME/course/mod.php file.

8.1.3 Moodle QuickForm

Moodle use the HTML form extension QuickForm for easy definition, process and validation
of form. We can explain, how Moodle use the QuickForm using one example. The code given
below is the code for the form which we used to take the input for RLFs in the PBL module.
Lets call this RLF form.

1 c l a s s r l f f o r m e x t e n d s moodleform {
2 f u n c t i o n d e f i n i t i o n () {
3 g l o b a l $COURSE ;
4 $mform = & $ t h i s−> fo rm ;
5 $mform−>addElement (’ h e a d e r ’ , ’ g e n e r a l ’ , g e t s t r i n g (’ g e n e r a l ’ , ’

form ’)) ;
6 $mform−>addElement (’ t e x t ’ , ’ name ’ , g e t s t r i n g (’ r l f n a m e ’ , ’ p b l ’)

, array (’ s i z e ’=> ’ 64 ’)) ;
7 $mform−>s e t T y p e (’ name ’ , PARAM TEXT) ;
8 $mform−>addRule (’ name ’ , ’ Th i s i s a r e q u i r e d e l e m e n t ’ , ’ r e q u i r e d

’ , n u l l , ’ c l i e n t ’) ;
9 $mform−>addElement (’ t e x t ’ , ’ l i n k ’ , g e t s t r i n g (’ r l f l i n k ’ , ’ p b l ’)

, array (’ s i z e ’=> ’ 64 ’)) ;
10 $mform−>addElement (’ h id de n ’ , ’ u s e r i d ’) ;
11
12 $ t h i s−>a d d a c t i o n b u t t o n s ($ c a n c e l = f a l s e) ;
13 }
14 }

In this RLF form, we define a class rlf form which is an extension of the moodleform class.
Now this moodleform is the base class for the QuickForm. Whenever we write a form using
the QuickForm extension, we need to use this moodleform as the base class. There are different
type of functions define in the newly created rlf form class. To add any element in the form we

41

can call the addElement() function. For example here we have used the

• addElement(’text’, ’name’, get string(’rlfname’, ’pbl’), array(’size’⇒’64’))

function, ’text’ is the type of the element, ’name’ is the name of the element. Using the
get string() function we fetch the text which will be shown before this text element from the
local language file. For the PBL module the local language file is located in the $HOME/mod-

/pbl/lang/en utf8 directory and the name of the file is same as the module, pbl.php. The last
argument, array() is to restrict the size of the textbox. In this rlf form we have added three
elements.

Now for each element we add, we can put different constrain using the addRule() function.
For example here we have used,

• addRule(’name’, ’This is a required element’, ’required’, null, ’client’)

Here ’name’ is the name for the element we want to add rule. The second element is the message
user will get, if he do not fulfill the constrains. Third element is the type of constrain, which is
required here. The forth element is for extra rule and the fifth element decides where the form
validation will take place. So for this form RLF name is a required element, user can not left it
blank.

To set the default value for a particular element we need to use the setDefault() function.
The prototype of this function is given below.

• setDefault(element name, value)

Here element name is the name of the element we want to set a default value, and value is the
value we want to set as default.

To add the standard action button for the form we need to use the add action buttons()
function. To display this particular form we need to create an object of the class rlf form, and
call the display function of the class. So, let the object name is rlf Form, then we will call
rlf Form→display() function. Instead of writing addRule() function, the alternate is to write a
function inside the class named validation(), to validate the data.

8.1.4 Configuration

Inside the $HOME folder we can find the Moodle configuration file, config.php. In this con-
figuration file all the configuration settings regarding the database and different configuration
variables are stored. Among these variables, three variables are used frequently while develop-
ing the PBL and the rubrics module. These are,

• $CFG→wwwroot: Root web address for Moodle.

• $CFG→dirroot: Root directory address for Moodle.

• $CFG→dataroot: Root data directory address for Moodle.

42

8.1.5 Moodle XMLDB editor

The XMLDB editor helps to set up the database tables of Moodle, by creating the .xml files.
This editor basically serves two purposes.

1. Moodle supports different databases, like: MySQL, PosgreSQL etc. So depending upon
the database, code to update the database will be different. Now to update different
databases developer need to write different code. This redundancy of writing different
code can be avoided using the XMLDB editor.

2. Updating database using the XMLDB editor is easy and this editor also automatically
updates the install.xml file.

8.1.6 Using the XMLDB editor

If we want to add a new filed in some table of Moodle database, we can do it using the XMLDB
editor provided in Moodle. All we have to do, is to follow the steps defined below,

1. Log into Moodle site as Administrator

2. Go to the left-bottom link Miscellaneous as shown in figure 8.1(a).

3. Click on the link XMLDB editor as shown in figure 8.1(b).

4. Load the database and click on edit as shown in figure 8.1(c).

5. Now we have to select the particular table we want to update or if required we can add
new table also. We can do this using the interface shown in figure 8.1(d).

6. After selecting a table we can edit (add new filed, delete, edit a filed etc) it. The interface
is shown in figure 8.1(e).

7. Now if we select to add a new field or edit a existing one we will get the interface shown
in figure 8.1(f).

8. To update the database we have to get the PHP code. We can get it by clicking on the link
View PHP Code as shown in figure 8.2(a).

9. After the step 8, we have to copy-paste the code shown in figure 8.2(b) in the update.php
file.

43

(a) Click on Miscellaneous link (b) Then select the XMLDB editor

(c) Now load the database needed to be edited (d) Select the particular database table

(e) Edit the selected table using this interface (f) Graphic interface to edit a particular field in the ta-
ble

Figure 8.1: Use of XMLDB editor to edit Moodle database

44

(a) Click on view PHP code to get the PHP code
to update the database

(b) Now we need to copy-paste this code in update.php
file of the module

Figure 8.2: Use of XMLDB editor to edit Moodle database

8.2 Database Structure of Moodle

Moodle database is well structured. After installation, the 1.9.10 version of Moodle will create
about 210 database tables. We will not discuss all the database structure of Moodle. But before
creating an activity module it is important to know about some tables of Moodle database.

• Different information regarding the courses are stored mdl course table.

• For each module there is one table named mdl modulename which stores the information
regarding a particular module. It stores information like, the instance number of a module,
name, introduction etc.

• There is one table called mdl course modules which stores information about all the mod-
ules we can add in a Moodle courses. The value of the id field of a record in this table
is unique across different courses. So Moodle use this id to uniquely identify a particular
course module.

• There are two tables named mdl blocks and mdl modules which maps the block names
and module names to number(ID).

• The mdl groups stores the group names, id of the groups and the course number to which
the groups belong. The mdl groups members store which user is member of which group.

• Different role information in Moodle is store in the mdl roles table. Role capabilities are
stored in mdl role capabilities table.

• Information regarding the users, like user name, id, passwords are stored in the mdl user

table.

• Log of the activity in Moodle also stored in the database, in the mdl log table.

45

Figure 8.3: Moodle Contexts[26]

8.3 Access Control

Moodle control the access of a user depending upon the role he has been assigned. In a partic-
ular context, each user is assigned a particular role in Moodle. Moodle has different types of
context. These are

• System (no parent)

• Front page (parent = system)

• Course category (parent = parent category or system)

• Course (parent = category or system)

• Module (parent = course or system)

• Block (parent = course or system)

• User (parent = system)

In Moodle context has certain hierarchy as shown in Figure 8.3. Capabilities assigned at a lower
context level will always override a higher context level. For example if a user is assigned the
role of Teacher for a particular forum (here context level is Module) and he is assigned the role
of Student in the context of course, then in that particular forum Student role permissions of the
user will be overwritten by the role permissions of Teacher.

Moodle comes with 7 predefined roles. These are,

• Administrator

• Course creator

• Teacher

• Non-editing teacher

46

• Student

• Guest

• Authenticated user

Customize roles can be created in Moodle by the Administrator. Administrator can create the
customized role, using the interface provided by the link below.

• $CFG→wwwroot/admin/roles/manage.php?action=add

To assign different permissions for different role, in a particular activity module we need to
define capabilities in the local /db/access.php file. Once we defined the capabilities, we can
control access by calling the has capability ($capability, $contextid, $kill) function.

We can get the $contextid by the function call get context instance(CONTEXT OPTION,

$cm→id). Here option can be any of the context defined previously. $cm is the course object
and $cm→id is the id of the course.

How to define the capabilities in the local access.php file, can be explained using one ex-
ample. For the PBL activity module we define the capability add discussion in the following
way.

1 ’mod / p b l : a d d d i s c u s s i o n ’ => array (
2 ’ c a p t y p e ’ => ’ w r i t e ’ ,
3 ’ c o n t e x t l e v e l ’ => CONTEXT MODULE,
4 ’ l e g a c y ’ => array (
5 ’ t e a c h e r ’ => CAP ALLOW,
6 ’ e d i t i n g t e a c h e r ’ => CAP ALLOW,
7 ’ admin ’ => CAP ALLOW
8)
9)

Here captype can be either read or write, contextlevel is the level of context for which we want
to define the capability. For example CONTEXT MODULE or CONTEXT COURSE. There are
four types of permission[32] we can give to a particular role. These are

• CAP ALLOW: If this the permission of a particular role, then has capability() function
will return true.

• CAP PREVENT: With this permission, users of a particular role will not have the capa-
bility, even though, users of the same role were allowed this capability in a higher context.

• CAP PROHIBIT: If the permission for a particular role is CAP PROHIBIT, then permis-
sion of the users of this particular role is completely prohibited and can NOT be overrid-
den at any lower context.

47

• CAP INHERIT: When the permission is CAP INHERIT, the capability will be inherited
from the higher context.

If we change the permission the it only takes effect after we increase the version number of
the module and after the next login from the user. Developer can define string for a capability
in the file /lang/en utf8/modulename.php file. If no permission is defined, then the capability
permission is inherited from a context that is higher than the current context. We can use
require capability() function instead of has capability() function. It returns true only if both
the combining has capability() with require course login() returns true.

8.4 Development of a new Activity module

In Moodle teachers can add activity modules inside a course(as shown in figure 8.4). Using
activity modules teachers can create different tasks and students need to carry-out those tasks.
The most common way to extend the functionalities of Moodle as learning environment is to
create a new activity module. Now to create a new activity module we have to follow some
steps.

• First of all we need to install Moodle in the machine, where we want to start developing
the new module.

• Now let the module name is rubrics. Then a directory named rubrics need to be created
inside $HOME/mod directory. Here $HOME is the home folder where Moodle software
package has been installed. Inside this rubrics directory we have to create the directory
structure as shown below figure 8.5. There is a template named NEWMODULE already
given in Moodle web site, using which we can start building the new module. Before we
start adding code to the template, we need to replace all the file name from NEWMOD-

ULE to rubrics and all the word named NEWMODULE inside the files with rubrics.

• After the previous step done, if we go to the administration notification page, it will ask
for the permission of the user to made necessary changes to install the new module rubric.

• We need to design the database structure of the module. After designing the database
structure, the database needs to be created using the XMLDB editor.

• Now again we have to go to the administration notification page to make the necessary
changes in the database structure.

• Table 8.4 lists all the necessary files which are needed to create a new activity module in
Moodle and the purpose of each file.

• All the function we write for this specific module should be written in the local lib.php

file.

48

Figure 8.4: Add an activity inside course

Figure 8.5: Directory structure for an activity module in Moodle

• While inside a course if we try to add the newly created module, then we will be redirected
to $HOME/course/modedit.php file. Now this page shows a form which is defined in the
local mod form.php file. So according to the need of our module we need to customize
this form in the local mod form.php file.

• view.php is the homepage of this particular module.

• Before adding any functionalities in the view.php file or some other file, we should write
the access control capabilities in the local db/access.php file, then use these capabilities
to restrict the access of different roles.

• Every time we update the structure of the database we need to update the version number
in the version.php file and write the update function in the update.php.

49

Rubrics Module
File Name Purpose

index.php List all instances of the functionality the module pro-
vides in a course.

lib.php This file contains all the functions which are needed
to integrate the module with Moodle and all the other
functions which are required to implement the module
logic.

mod form.php The structure of the form which an instructor gets
when he select to add a new activity of a particular
module, is defined in this file. The same page is dis-
played when teacher selects to edit the activity.

styles.php CSS specific to the rubric module is defined in this
file

version.php This file contains the current version number of the
module. Whenever we make changes to database we
need to update the version number of the module in
this file

view.php When a user select an already created activity, he is
directed to this page.

icon.gif This is the icon of the module
db/access.php This file contain all the capability definition. This

capabilities will be used to restrict the access of the
users.

db/install.xml In this file all the database tables are defined in xml
format

db/update.php Whenever we need to update the database we need to
paste proper php code generated by Moodle XMLDB
editor in this file.

lang/en ut8/help/rubrics.php Some variables which we use in the new module is
defined in this file

lang/en ut8/help/rubrics/index.html This lists all the help files for the module
lang/en ut8/help/rubrics/mods.html The main functionality of the module is described in

this file

Table 8.1: Purpose of different files in an activity module in Moodle

50

Chapter 9

Rubric Module

Rubric is an assessment tool. Rubrics are generally used to assess quality or quantity of work,
behavior or learning. Though rubrics is an widely used tool, there is no activity module available
for easy creation and use of rubric inside Moodle. For the PBL module, rubric is an important
part of assessment. So, we have developed a rubric activity module for Moodle. In this chapter
we will describe, how this rubric module works and how we have developed the module.

9.1 User Documentation

A standard rubric contain three type of elements, Criteria, Rating scale and Rating scale defini-

tion. Criteria are assessed through the rubric. Different rating scale are used to rate a particular
criteria and for each scale there will be a systematic guideline i.e. rating scale definition. In
a good rubric, rating levels should be comprehensive and distinct. In table 9.1 we show an ex-
ample rubric. Where there are three criteria we are assessing and for each criteria four rating

scales has been defined.

Using the Rubric module user can create three different types of rubric. These are,

• Peer evaluation: These type of rubrics are used to assess the peer students.

• Self evaluation: These type of rubrics are used for self assessment.

• Questionnaire: These types of rubrics can be used to create questionnaire and view the
response.

Now for each type of rubric, in broad scene there are three stages of usability. Creation of

rubric, Submission of the rubric and Viewing the result.

• In the creation of rubric stage teacher need to choose the type, number of rows and
number of columns of the rubric as shown in Figure 9.1. Then fill up the rubric form
shown in Figure 9.2.

51

Rubric of Rubric
Criteria 1 Unacceptable 2 Acceptable 3 Good/Solid 4 Exemplary
Clarity of
criteria

Criteria being
assessed are
unclear, inap-
propriate and/or
have significant
overlap

Criteria being
assessed can be
identified, but
are not clearly
differentiated

Criteria being
assessed are
clear, appropriate
and distinct

Each criteria is
distinct, clearly
delineated and
fully appropriate
for the assign-
ment(s)/course

Distinction
between
Levels

Little/no distinc-
tion can be made
between levels of
achievement

Some distinction
between levels is
made, but is not
totally clear

Distinction be-
tween levels is
apparent

Each level is
distinct and pro-
gresses in a clear
and logical order

Reliability
of Scoring

Cross-scoring
among faculty
and/or students
often results
in significant
differences

Cross-scoring by
faculty and/or
students occa-
sionally produces
inconsistent
results

There is general
agreement be-
tween different
scorers when
using the rubric

Cross-scoring
of assignments
using rubric re-
sults in consistent
agreement among
scorers

Table 9.1: Example Rubric[33]

• After the teacher created the rubrics, user can submit the rubric (Figure 9.3). If the
rubric is of type peer evaluation, then while submitting user have to choose for whom
(destination user) he wants to submit the rubrics. In the case of self evaluation and
Questionnaire user don’t need to select a destination user.

• Now for peer evaluation and self evaluation type of rubrics, to see the result user need
to select a particular user for whom he wants to see the result. In case of Questionnaire
there are two options to view the result. First one is overall response, where user can view
the consolidated response from all the users. Other one is Individual Response where user
can select a particular individual to view his response.

The process flow and dependency is shown in figure 9.6.

9.2 Database Structure

There are four database tables in the Rubric Module. These are

• mdl rubrics : It stores the information regarding the rubric, like name, introduction. It
also stores settings of the rubric like type of the rubric, numbers of row and numbers of
column etc.

• mdl rubrics form : This table store the information about the form of a particular rubric.
Like name of the criteria, different rating levels and rating level definitions.

52

Figure 9.1: Rubric details and different customization options

Figure 9.2: Rubric form

53

Figure 9.3: Rubric submission form

Figure 9.4: Overall response

Figure 9.5: Individual response

54

Figure 9.6: Dependency and Process Flow

• mdl rubrics user record : If a user submit a rubric, records are stored in this particular
table.

• mdl rubric record : This table is to check if a user has submitted a particular rubric or
not.

mdl rubrics
column name Type Purpose
id bigint(10) Auto incremental ID of the table
course bigint(10) ID of the course
name varchar(255) Name of the rubric
introformat smallint(4) Introduction format of the rubric
intro mediumtext Introduction of the rubric
timecreated bigint(10) Creation time of the rubric
rowno smallint(4) Number of rows in the rubric
timemodified bigint(10) Last modification time of the rubric
columnno smallint(4) Number of column
type mediumtext Type of the rubric (self/peer/question)

Table 9.2: Structure of mdl rubrics table

9.3 Development Documentation

Development of a rubric module has been done in a modular layered approach. Which is shown
in Figure 9.7. As Moodle is used by students, there is always chance of plagiarism, so access

55

mdl rubrics form
Column name Type Purpose
id bigint(10) Auto incremental ID of the table
value mediumtext This field will contain the text for all the

items in the rubrics form
name mediumtext Name of the particular filed in the rubrics

form
courseid bigint(10) ID of the course
columnid bigint(10) Column number
rrowid bigint(10) Row number
moduleid bigint(10) ID of the rubrics module

Table 9.3: Structure of mdl rubrics form table

mdl rubric record
column name Type Purpose
id bigint(10) Auto incremental ID of the table
texts mediumtext It contains both the source & destination user-

name
moduleid bigint(10) It is the module id of the rubrics

Table 9.4: Structure of mdl rubric record table

mdl rubrics user record
Column name Type Purpose
id bigint(10) Auto incremental ID of the table
rubrics id varchar(255) Id of the rubrics module
row name mediumtext Name of the criteria in a particular row
value text Name/Rating for the criteria
src user varchar(255) Source user name
dst user varchar(255) Destination User name
courseid bigint(10) ID of the course

Table 9.5: Structure of mdl rubrics user record table

control is a very important issue. User should be able to view some thing or access database
only after authorization checking. So for this module authorization layer is the outer most
layers. Now, we should not give the user to create a logically wrong database, or to delete some
data without proper verification of logic. So logic layer sits in between the authorization and
database layer. This approach is not applicable always, sometimes we can only determine the
functional logic after accessing database. But, if not required database should only be accessed
after checking the functional logic.

56

Figure 9.7: Different development layers

9.3.1 Authorization

In rubrics module we check for authorization in two different ways.

• Using already defined API by Moodle

• Using the access control function in local access.php file

To view any of the file in the rubric module user need to be logged in. To check if the user
is logged in or not, we use the require login() function defined in the lib/moodlelib.php file.

• require login($courseorid, $autologinguest, $cm, $setwantsurltome)

– $courseorid: It is the course module or id of the current course

– $autologinguest: If it is set, and user is not logged in then he will be logged in as
guest

– $cm: Course module object

– $setwantsurltome: True, if we want to set the $SESSION→wantsurl variable.

This require login() function checks whether the current user is logged in and is allowed to
be in the particular course to view this particular course module. If user is not logged in then he
will be redirected to the Moodle log-in page. If $courseorid is given and the user is not enrolled
in that particular course then he will be redirected to the course enrolment page. If $cm is given
and the module is hidden, then it will not be shown in the course homepage if the current user
role is not teacher.

Now the local access control capabilities are defined in the local /db/access.php file. For
this rubric module we have defined five capabilities. These are,

1. viewrubric: It is to authorize user to view the rubric.

2. editrubric: It is to authorize user to edit the rubric.

3. viewoptions: It is to authorize user to view different options in rubric homepage.

57

4. viewresults: It is to authorize user to view the results.

5. viewselfresponse: It is to authorize user to view self response.

To check for the capability we have used the (has capability(‘capability name’, $context) func-
tion.

We can also check the role of currently logged in user using the already defined functions
by Moodle. For example isteacher() function is to determine if the currently logged in teacher
is a teacher or not, isstudent() checks if the user is a student or not. This functions are defined
in $HOME/lib/deprecatedlib.php file.

9.3.2 Functional Logic

The functional logic can be described with respect to the different stages of rubric. There are
three stages regarding the use of rubric. These are creation of rubric, submission of the rubric

and view the result.

Creation of Rubric:

In the course homepage, if a user selects to add a rubric from the Add an activity (Figure 8.4)
menu, then we will be redirected to the page $HOME/course/modedit.php. In this page we
will see a form, which is coded in the local mod form.php file. In this file we declare a
class mod rubrics mod form which extends the class moodleform mod. The class moodle-

form mod is defined in the $HOME/course/moodleform mod.php file. For easy creation, pro-
cessing and validation Moodle use Quickform, which is extension of HTML form. In the
mod rubrics mod form class we define five important element about a particular rubric instance.

1. name: It is of type text. It will be saved as the name of the rubric.

2. intro: It is of type htmleditor. It will be saved as the introduction of the rubric in HTML
format.

3. rowno: It is of type select. User can choose a value from 1 to 100, using this select
drop-down box. It will be saved as the number of rows in the rubric.

4. columnno: It is of type select. User can choose a value from 1 to 10, using this select
drop-down box. It will be saved as the number of columns in the rubric.

5. type: It is of type select. It will be saved as the type(self/peer/question) of the rubric.

To create, update or delete a rubric all the functions are defined in the local lib.php file. These
function are,

• rubrics add instance($rubrics): Here $rubric is the object from the form in mod form.php.

58

• rubrics update instance($rubrics): Here $rubric is a object.

• rubrics delete instance($id): Here $id is the id of the rubric, which we want to delete.

Now after creation of a new instance of rubric module, user can fill up the rubric form
(Figure 9.2) to create the rubric. This rubric form is created according to the number of rows
and columns given by the user, while creating the instance of rubric module. Now if the user
saves the form, all the data regarding the form will be stored in the mdl rubrics form table in
the database. Each element of the form will be any of these three types,

1. level definition

2. criteria name

3. rating

We can identify each item in the rubric form uniquely by the course ID, module ID, row number,
column number and criteria name.

Submission of Rubric:

In this phase, depending on the type(self/peer/question) of the rubric we need to show either
only the rubric form, or the list of the user along with the rubric form. To show the list of
users(only of role ‘student’), we used the functions described below.

• get role users($student role→id, $context): Here $student role→id is the id of role
named student as defined in the mdl roles table in Moodle, $context is the context of
the module.

To show the rubric form, we use another function defined in the local lib.php file,

• show rubric form($courseid,$moduleid): Here $courseid is the ID of the current course,
and $moduleid is the ID of the current rubric module.

Now when user submit a rubric, records will be stored in the rubrics record table. Along with
the criteria name and rating, depending upon the type of the rubric either only the source user-
name(questionnaire type of rubric) or both the source user-name and destination user-name(peer
and self type rubric) will be stored in the mdl rubrics user record table in the database.

View Result:

To view the result homepage we used the function,

• show rubric result($courseid,$moduleid): Here $courseid is the ID of the current course,
and $moduleid is the ID of the current rubric module.

Now if the user wants to check the result for a particular user then from the table mdl rubric record

we check if any record for that particular user is available or not. If available, then from the
mdl rubrics user record we fetch the record and print it, else we print an error message.

59

9.3.3 Database Layer

For the rubrics module all the database access are done using the library functions defined by
Moodle. The functions which we have used are

• get records($table, $field, $value): This function is used to get the records from the table
$table, where $filed1 is having the value $value1 and so on. $fields and $values are the
optional fields.

• get record($table, $field1, $value1, $field2, $value2, $field3, $value3): This functions
works the same way as get records(), except it fetches only a single row from the $table.

• insert record($table, $dataobject): This function is used to insert the object $dataobject

into the table named $table.

• update record($table, $dataobject): This function updates the record of the table $table,
having the same id as of $dataobject→id.

• count records($table, $field1, $value1, $field2, $value2, $field3, $value3): This function
is used to get the number of records matches in the table $table, where $filed1 is having
the value $value1 and so on. For this function, $field1, $value1, $field2, $value2, $field3,
$value3 are the optional arguments.

• delete records($table, $field1, $value1, $field2, $value2, $field3, $value3): This func-
tion used to delete records from the table named $table. Other argument works same as
the previous function.

All these functions are defined in the $HOME/lib/dmllib.php file.

9.4 Challenges

The main challenge to develop this particular module is to know the structure of Moodle and
different API’s of Moodle.

9.4.1 Moodle Structure

The basic installation of Moodle 1.9.x will create almost 6500 files in the local directory. The li-
brary files which are used frequently, like moodlelib.php, weblib.php, accesslib.php each having
more than 5000 lines of code. Therefore, Moodle is a large software, and initially it takes time
to figure out how a particular feature is working internally. Other than this, before developing
a module we need to know basic databases structure of Moodle, how access is controlled in

Moodle, how the XMLDB editor works, about the directory structure of a activity module, how

the Moodle quick-form extension works etc.

60

9.4.2 Moodle Form

Moodle use the HTML form extension Quickform for easy development, validation and pro-
cessing of forms. So while coding inside Moodle, if we want to use forms it’s better to use
the quickform extensio. The form to add a particular instance of rubrics module as shown in
Figure 9.1, is populated using the Moodle’s quickform extension. But one drawback of this
quickform is that input in the tabular format is not directly supported. However while creation
of rubric, for the user it would be more user friendly if he can give the input in a table to fill up
the rubric form as shown in Figure 9.2. Initially the rubric form was coded using the quickform
of Moodle. But as the GUI was not much user friendly, latter we have change the code and use
normal HTML form and wrote the validation functions.

9.5 Future Work

There are some modification and extra features need to be added in the rubrics module.

• There should be detailed options for the teacher if they want to show the result to the
students or not depending on the type of the rubric.

• There should be an option to classify the rubric into categories depending upon the type
of the rating. The type of the rating can be of two types numeric and text. If the rating is
numeric, then in the result we will be able to show different analysis of the ratings.

• Now if teacher is willing to use the rubric as an summative assessment, then the rubric
module need to integrate with the grade module of Moodle.

• This module should be compatible with groups. So if the rubric type is Peer then user can
only evaluate members of the group.

61

62

Chapter 10

PBL Module

The PBL module has been developed to support all the steps (described in section 2.2) of Prob-
lem Based Learning in a better way than the existing Moodle. This PBL module will help to
execute Problem Based Learning in both distance learning and blended learning scenario. This
module has been developed as an activity module in Moodle. It works for Moodle 1.9.X version.
Now in this module, there are different sub-activities we can add to have all the functionalities.
These are, discussion, RLF, solution, submission, file and rubric. Discussion can be of three
type, chat, wiki, forum. Among these sub-activities of PBL chat[28], wiki[27], forum[29] are
the activity module for Moodle and these features comes with default Moodle package. For
the submission module we have used the assignment[31] module of Moodle. For the file sub-
activity we have used the a block plug-in named File-Manager[30]. The rubrics sub-activity
in PBL module is also an activity module of Moodle, but it is does not come with the stan-
dard package, we have developed it. RLF and submission are not activity module, they are
specifically developed to be used in this PBL module.

10.1 User Documentation

For the PBL module we will discuss the different features with respect to the different steps of
PBL. Before using the PBL module, some course level settings are required. Like global search

need to be enabled and course level group setting should be separate group, the course should
be of weekly type, the rubric module and the File-Manager block needed to be installed along
with the standard Moodle package. Now in section 2.2 we described the different steps of PBL.
The first step is group formation.

10.1.1 Group Formation

For the PBL module, we use the Moodle’s grouping feature. The groups are created at the
course level and the same groups are used in the PBL module. So before setting up the PBL
module teacher need to create the groups. The group creation interface is shown in figure 10.1.

63

Figure 10.1: Group Creation

10.1.2 Facilitator Allocation

While creating the groups, we can make a particular teacher as the part of the group. Now
the teacher who is a part of the group is the facilitator of that particular group. There can be
multiple facilitators for a particular group and a facilitator can facilitate multiple groups.

10.1.3 Problem Presentation

After the group creation and facilitator allocation steps are done, teachers can create a new PBL
activity in the Moodle course. While adding the PBL activity, teacher will get the option to write
the PBL name, and the Problem definition. Figure 10.2 shows the interface where user can insert
different details of PBL activity. In the Figure 10.2 user is creating a PBL activity named Wiring

a home PBL. This name and problem definition will be shown in the PBL homepage, after user
saves it.

10.1.4 Identification of RLF

After the problem presentation done, group members can create a list of Relevant Learning

Facts(RLF). User will find a link in the PBL homepage, i.e. Add RLF (figure 10.6). If a user
clicks on this links he/she will be redirected to a page, where user can save the name of the RLF
and description for the RLF. Now after creating the RLF it will be shown in the PBL homepage.
If the currently logged-in user has added a particular RLF, then he will get the option to delete
it. User can mark a particular RLF as known or unknown, and in the PBL homepage RLFs are
shown in two category: Unknown and Known. For example, let the RLF is Electrical Circuit,

64

Figure 10.2: Problem Presentation

Figure 10.3: PBL homepage of the students after problem presentation

65

Figure 10.4: PBL homepage of the teachers after problem presentation

Figure 10.5: Addition of RLF

then figure 10.5 shows the interface to add RLF . Figure 10.6 shows how RLFs are shown in the
PBL homepage as Known and Unknown category and the link to Add RLF. Now After adding
the RLF, if we click on the link in the PBL homepage, we can view the name, description of the
RLF as shown in figure 10.7.

10.1.5 Discussion

To discuss the doubts regarding the problem definition, there is a forum associated with the
problem definition of the PBL. Only teacher has the permission to create and update this fo-
rum and after creation, both teacher and student can use the forum. Along with the forum to
discuss doubts regarding the problem definition, teacher can any time add three types of discus-
sion(shown in figure 10.8) in the PBL module.

66

Figure 10.6: RLF in PBL homepage

Figure 10.7: View of the RLF Electric Circuit

Figure 10.8: Different type of discussions

67

Figure 10.9: Teacher’s and student’s view of the discussions

Figure 10.10: File Sharing links

These are

• Chat: User can send text messages to the on-line friends.

• Forum: Forum can be used as the tool for asynchronous communication.

• Wiki: Using the wiki members of group can collaboratively create documents.

After adding a discussion by the teacher, both the teacher and student can use it. Teacher
can update and delete discussions. The teacher’s view and the student’s view of the discussions
in the PBL homepage is shown in figure 10.9.

10.1.6 Resource Sharing

User of the PBL module can share resources by uploading file and share them with others using
the File Manager block. There are two places (shown in figure 10.10) where user can upload
files, first is the My Files and the second is the Group X Files, where Group X is the name of
the group, in which user is a member. Now if the user upload the files or folders in Group X
Files, then all the members of the group can use those files. But if the files are uploaded in My
Files, then only the logged-in user can view those files. But user can share any file with anyone
else in the course if he wants to, as shown in figure 10.11.

68

Figure 10.11: File Sharing links

Figure 10.12: Solution Proposal

10.1.7 Solution Proposal

In this PBL module a particular user can propose upto 5 solutions in a PBL activity. To add
a solution user needs to click on the side navigation link solution. Let for the Wiring a home

PBL, let the User can wants to propose a solution for the wiring diagram. Then he can click on
the solution link, to get the interface as shown in figure 10.12. Here user can give a description
of the solution and can attach a file with it. After user submits the proposal, it will be shown in
the PBL homepage. Once a user proposes a solution all the members of the group can view it.
User can delete his/her proposal at any time.

10.1.8 Solution Submission

Teacher can create the solution submission link in the PBL module. There are four different
types of submission possible.

69

Figure 10.13: Solutions as shown in the PBL homepage

Figure 10.14: Link to the report of the groups

These are

• Upload a single file: User can upload a single file.

• Advanced uploading of files: User can submit multiple files. It also allows students to
type a message alongside their submission and returning a file as feedback.

• Online text: Students type the solution directly into Moodle, teachers can provide inline
feedback.

• Offline Activity: Teachers provide a description and due date for an assignment outside
of Moodle. A grade and feedback can be recorded in Moodle.

Students can submit the final solution, after the teacher creates the submission link.

10.1.9 Evaluation

For evaluation of PBL, peer evaluation and self evaluation are important. This can be easily
done using the rubrics module. Using this module teacher can create different types of rubric.
To help with the evaluation process, teacher can view a report for the PBL. There are two options
to view the report. These are report of the individual and report of overall group. Teacher will
have the links to view the overall report of the groups, he facilitate. In the Wiring a home

PBL, teacher user1 facilitate 2 groups, so he can view the report of this two groups, as shown
in figure 10.14. Figure 10.15 shows the report of the Group A in the Wiring a home PBL.
Figure 10.16 shows the report of the user 3 for the Wiring a home PBL in Group A.

70

Figure 10.15: Report of Group A

Figure 10.16: Report of User 3

10.1.10 Other features

The other features in the PBL module are search, View profile and View participants.

• Using the search feature user can search globally in the course.

• Using view profile user can view his/her profile and edit the profile.

• Using the View participants link user can view the profile of the other members in the
group. There is a option to send message to the other user after user click on the profile
of a particular user.

71

10.2 Database Structure

There are eight different database tables created for the PBL module. These are,

• mdl pbl: This table stores the general information and settings of a PBL modules. Gen-
eral information like PBL name, introduction, creation-time, settings like the type of the
PBL are stored.

• mdl pbl discuss: This table will store the information regarding the different discussion
module we add inside the PBL module.

• mdl pbl forum: It stores the information regarding the forum, created to discuss the
doubts related to the problem definition.

• mdl pbl rlf: Stores the information regarding the RLFs of PBL modules.

• mdl pbl rlf user: Stores the information if a user mark the RLF as read.

• mdl pbl solution: Stores the information regarding the different solution provided by the
students.

• mdl pbl groups: It will store the names of the PBL groups and their ID.

• mdl pbl groups members: It will store to which PBL group a particular user belongs
to.

mdl pbl
column name Type Purpose
id bigint(10) Auto incremental ID of the table
course bigint(10) ID of the course
name varchar(255) Name of the PBL
intro mediumtext Introduction of the PBL
introformat smallint(4) Format of introduction
timecreated bigint(10) Time-stamp when the PBL module was cre-

ated
timemodified bigint(10) Time-stamp when the PBL module was

modified last
pbltype mediumtext Type of the PBL

Table 10.1: Structure of table mdl pbl

72

mdl pbl rlf
column name Type Purpose
id bigint(10) Auto incremental ID of the table
usrid bigint(20) Who submitted the RLF
moduleid bigint(10) ID of the PBL
courseid bigint(10) ID of the course
groupid bigint(10) ID of the group, user belongs to
description mediumtext Description of the RLF

Table 10.2: Structure of table mdl pbl rlf

mdl pbl rlf user
column name Type Purpose
id bigint(10) Auto incremental ID of the table
rlfid bigint(10) ID of the RLF
userid bigint(10) ID of the user

Table 10.3: Structure of table mdl pbl rlf user

mdl pbl discuss
column name Type Purpose
id bigint(10) Auto incremental ID of the table
type text Type of different discussion
pblid bigint(10) ID of the PBL module
userid bigint(10) ID of the user who created it
courseid bigint(10) ID of the course
groupid bigint(10) ID of the group of the PBL
moduleid bigint(10) ID of the discussion module
instanceid bigint(10) Instance number of the discussion module

Table 10.4: Structure of table mdl pbl discuss

mdl pbl forum
column name Type Purpose
id bigint(10) Auto incremental ID of the table
forumid int(8) ID of the forum associated with the PBL

module
courseid int(8) ID of the course
pblid int(8) ID of the PBL
instanceid bigint(10) Instance number of the forum module

Table 10.5: Structure of table mdl pbl forum

73

mdl pbl solution
column name Type Purpose
id bigint(10) Auto incremental ID of the table
name mediumtext Name of the solution
definition mediumtext Description of the solution
file location text Location where the associated file will be

stored
courseid bigint(10) Id of the course
pblid bigint(10) Id of the PBL module
userid bigint(10) Id of the user who posted the solution
file name text Name of the File

Table 10.6: Structure of table mdl pbl solution

mdl pbl groups
column name Type Purpose
id bigint(10) Auto incremental ID of the table
name mediumtext Name of the group
pblid bigint(10) ID of the PBL
courseid bigint(10) ID of the course

Table 10.7: Structure of table mdl pbl groups

mdl pbl groups members
column name Type Purpose
id bigint(10) Auto incremental ID of the table
userid bigint(10) ID of the user
groupid bigint(10) ID of the group user belongs to

Table 10.8: Structure of table mdl pbl groups members

10.3 Development Documentation

Development of this PBL module is also done in the same modular approach (discussed in sec-
tion 9.3) as rubric module. For this module also access control is an important issue. So among
the different layers authorization layer is the top most layer. Functional logic is implemented
in between the authorization and database layer.

10.3.1 Authorization

For the PBL module we check for the authentication in two different ways,

• Using functions defined in the Moodle libraries

• using the access capability defined in the local db/access.php file

74

Locally defined permissions are used to check if the user is authorized to do something in the
current PBL module. To check the permission of a user in any higher context level than the
current PBL module, we used the already defined functions in Moodle. Library function which
are used in this particular module are,

• require login(): This function is used to check if the current user is logged in and has the
required capability to be in the course.

• isstudent(): This function returns true if the role of the current user is student.

• isteacher(): This function returns true if the role of the current user is teacher.

• has capability(): This function is used to check if the user have a particular capability in
a particular context.

The local capabilities are defined in the db/access.php file. This permissions are used in the
has capability ($capability, $context, $userid) function to restrict the access of the current user.
Here $context is the context of the PBL module. $userid is only required, if we want to check
permission of some user other than the user who is currently logged in. $capability names
specific to this PBL module are listed below.

• view: It is to authorize users to view the PBL.

• createforum: This will authorize the user to create the forum to discuss the doubts re-
garding the problem definition.

• editRLF: This is to authorize user to give permission to edit the RLFs.

• addRLF: This is to authorize user to add RLFs.

• add discussion: To add discussion user need this permission.

• view discussion: To view discussion user need this permission.

• edit discussion: This permission will authorize user to edit the discussions.

• edit resources: This permission will authorize user to update the settings of the file man-
ager.

• add resources: This is to authorize the user to add, delete, update or share resources with
others.

• view solution: This permission is required to view the solution proposed in the PBL
activity.

• delete solution: This is to authorize the user to delete a solution.

75

• view rubric: To view rubrics user need this permission

• submit: To submit the final solution user need this permission.

• view report: To view the report of the PBL activity user need this permissions.

• edit group: To edit the group settings user require this permission.

• add rubric: To add rubric in the PBL activity user require this permission.

• add submission: User can add final submission link if they have this permission.

• view recent update: To view the recent updates user required this permission.

10.3.2 Functional Logic

Now, we can describe the functional logic with respect to the features implemented to support
different stages of PBL. Among the different stages, group formation and facilitator allocation

steps are done at the course level, with the help of the features provided by Moodle. After this
two steps complete, the next step is Problem presentation.

Problem Presentation

To present the problem user need to add a PBL activity module inside a Moodle course. While
adding the PBL activity from the Add a activity dropdown menu, user will be redirected to the
page $HOME/course/modedit.php. In this page we will see a form, which is coded in the local
mod form.php file. This form contains four important elements of a PBL activity. Thses are,

• course: It is the ID of the current course.

• name: It will be stored as the name of the PBL.

• intro: It will be stored as the problem definition of the PBL.

• pbltype: It is the type of the PBL. It can be any of the four given below (Currently we are
not using this categorization in the PBL module, we are using the course level grouping
feature),

– Individual Project: In this type of PBL, students individually work on the problem.

– Teacher Created Group: In this type of PBL teacher create the groups of PBL.

– Student Created Group: In this type of PBL students create the groups by their own.

After we fill up the form and save it, records get stored in two different database tables. These
are mdl course modules and the mdl pbl. Once we have added this module we can update or
delete it. All the functions to add, update or delete the modules are defined in the local lib.php

files. These are

76

• pbl add instance($pbl): Here $pbl is an object containing all the data to add a new row
in mdl pbl table.

• pbl update instance($pbl): This function updates a PBL instance and $pbl is an object
as defined above.

• pbl delete instance($id): This functions a PBL instance, having a ID equals to $id.

Identification of RLF

For the RLF, basically there are three features, add a RLF, marking RLF as known/unknown

and view RLF. To add a RLF user needs to fill-up the form, defined in the local add rlf.php

file. As user, fill up the form and submit it, records are get stored in the mod pbl pbl rlf table.
To identify, with which PBL instance a particular RLF belongs, we save the course ID and the
PBL ID along with the details in the mdl pbl rlf table. When the user mark a particular RLF as
the known, we insert a row in the mdl pbl rlf user table. This table keeps the maping of userid

with the rlfid. When a user mark a already known RLF to unknown, then the entry from the
mdl pbl rlf user table is deleted.

Now while showing the RLFs in the course homepage, we just check if that RLF belongs
to this PBL instance or not. Then to provide the delete button we check if the current user
has added the RLF or not. To categorize the RLFs into known and unknown we check the
mdl rlf user table. If we find an entry in the table, with the current user ID and the RLFID, we
show that RLF in the known category, otherwise in the unknown category.

Discussion

There are two ways we can add discussions in the PBL module. First one is the forum associated
with the problem definition and the other one is the different types of discussion teacher can add
inside the PBL discussion block. Now all this discussions (chat, forum, wiki) are the activity
module of Moodle. We can add all these module inside a course. So the most secure way
to add this module inside the PBL module is to use the same functions, which are used to
add this module inside the course and keep a track so that we can identify which discussion
modules belong to PBL activity. Now all the functions to add this module are called from the
$HOME/course/modedit.php file. So we created a file with the same name inside the local pbl
folder. The code in the file is almost same as the $HOME/course/modedit.php. The difference
is that we have called the functions to update either the mdl discuss(for the forum associated
with problem definition) or mdl forum (other discussions) table inside the local modedit.php

file. This entry in the pbl database table will associate the modules with the PBL activity. The
two functions, we used to update the database tables are,

• update pbl discuss($courseid,$pblid,$type,$userid,$moduletype): This function insert
data into the mdl discuss table. Here $courseid is the id of the course, $pblid is the

77

id of the PBL, $type is the name of the module we want to add, $userid is the id of the
current user and $moduletype is the type of the module we want to add.

• update pbl forum($courseid,$pblid): This function is used to create the forum associated
with the problem definition. It adds an entry in the mdl forum table. Here $courseid is
the id of the course, $pblid is the id of the PBL.

Now as all these discussion modules are designed to use only inside course, if we add one it
will be shown in the course homepage. But we don’t want to show it in the course homepage,
as we want to use this discussion modules totally as sub-module of the PBL activity.

In a weekly type course, a particular module is added in a particular section. Let the max-
imum number of the section in the course is x. Now if we insert these modules some section
having value > x, then modules won’t be visible in the course homepage. So in the $HOME/-

mod/pbl/modedit.php file we find out the maximum number of section for the course, and added
the module in a section, having number > x.

Resource Sharing

To share the resources we used the File Manager[30] block. This block provide the functional-
ities to have a My Folder to store the file for personal use. The other option to upload the files
into group X files (here group x is the name of the group, to which the user belong). So, to use
the File-Manager plug-in we created the hyper-link to the MyFolder and group x files using the
user-ID and the group id, to which the currently logged in user belongs in the PBL homepage.

Solution Proposal

To propose a solution user needs to fill-up details of the form coded in the local save solution.php

file. User can give the solution name, description of the solution and can attach a file with it. To
handle the file we have used the Moodle library functions.

• To save the file we used the save files($destination directory) method defined in the
$HOME/lib/formslib.php file. This method saves the file associated with the form. Here
$destination directory is the directory where this file is going to be saved. Now to dis-
criminate among the different solution files, we need to initialize the $destination directory

variable accordingly. Here we initialized this variable as $CFG→dataroot/$courseid/pbl/-
-$moduleid/$userid/solution/$solutionid.

– $CFG→dataroot is address of the Moodle root data directory.

– $courseid is the ID of the course

– $moduleid is the id of the PBL module

– $userid is id of the user who is proposing the solution

78

– $solutionid is the id of the solution

Combining all these elements, in this particular order generate a unique position for a
particular solution. Details of the solutions are stored in the mdl pbl solution table.

• Now to view the file associated with the solution we used the send file($path, $filename,
$lifetime) function. Where $path is the directory where the file is, $filename is the name
of the file and $lifetime is the time, the file will be there in cache.

• While deleting a particular solution, the record of that particular solution gets deleted
from the mdl pbl solution table and to delete the associated file we used the function
fulldelete($filelocation), where $filelocation is the location of the file we want to delete.

Both the fulldelete() and send file() are defined in the $HOME/lib/filelib.php file.

Solution Submission

For the solution submission we have used the assignment module[31] of Moodle. We used the
same procedure of adding this module as sub-module of PBL as addition of the discussion mod-
ules, which we already have described in subsection Discussion. Creation of new submission
will add a new row to the mdl discuss table.

Evaluation

For evaluation, we can add different types of rubric. Now as the rubric is also an activity module
in Moodle, we handled the addition of rubrics in the same way as the addition of different
discussion module.

Now to support in the evaluation there is a feature to generate Report. Now to generate
report about the PBL activity, we need to process data from many tables. To get the overall
report of a group, we first find out the members of the group, then we accumulate data for all
the user. The tables which are accessed to generate the report are,

• groups members: To access the information about the members of the groups.

• pbl rlf : To get the number of total RLFs proposed by the members of the group.

• pbl solution: To get the number of the solutions proposed in the PBL by the group.

• pbl discuss: To get the numbers of discussions added in the PBL by the group.

• forum discussions: To get the number of discussion topics in the forums in the PBL by
the group.

• forum posts: To get the number of posts in the forum.

79

Figure 10.17: Hierarchy of course, activity and blocks in Moodle

• chat messages: To get the number of chat messages passed in the PBL by the group.

To get the individual records we use the same tables, to extract the numbers using the user’s id
for whom we want to see the report.

10.3.3 Database layer

For the database layer in the PBL module we used all the functions we have used to implement
rubrics module’s database layer. In addition to the functions described in the section 9.3.3, we
have used the

• record exists($table, $field1, $value1, $field2, $value2, $field3, $value3): This function
returns true, if some record exists in the table named $table, where $filed1 is having the
value $value1 and so on. For this function $field1, $value1, $field2, $value2, $field3,
$value3 are the optional arguments.

All these functions are defined in the $HOME/lib/dmllib.php file.

10.4 Challenges

10.4.1 Moodle Structure

The basic installation of Moodle 1.9.x will create almost 6500 files in the local directory. The
library files which are used frequently, like moodlelib.php, weblib.php, accesslib.php each hav-
ing more than 5000 lines of code. Therefore, Moodle is large software, and initially it takes time
to figure out how a particular feature is working internally. Other than this, before developing
a module we need to know basic databases structure of Moodle, how access is controlled in

Moodle, how the XMLDB editor works, about the directory structure of a activity module, how

the Moodle quick-form extension works etc.

10.4.2 Include others activity module inside the PBL module

In Moodle course, activity module and blocks have a hierarchy (Figure 10.17). So we can easily
add a block or an activity module inside a course, using the APIs already defined in the library

80

files of Moodle. But we cannot add a block inside another block, same applies for activity
module. But for the PBL module we need to use some of the blocks and activity modules of
Moodle. For example the

• Forum

• Chat

• Wiki

• Participants

• Assignment

modules/blocks are necessary for the PBL module. Now, we can achieve this by updating the
database tables, which gets updated while we add a particular module inside a course. Generally
two database tables of Moodle gets updated while we add a module inside a course. These are
mdl course modules and mdl $module, $module is the name of the module we want to add.

But this is too tricky to modify these two tables directly. Because mainly of two reasons.
First, we may add invalid data into the tables as we are not using proper API, and the second is
structure of the tables of different activity module is different. So we need to write a function
for each module. So this solution is not a practical one.

The second solution is to use the same APIs, which are used to add modules inside a course.
Now to add a module inside a course the steps are stated below.

• Choose the particular activity module in the drop-down box Add an activity... inside the
course homepage.

• From course homepage user will be redirected to course/modedit.php

• User have to fill up the form shown in the course/modedit.php file and submit

So, if we can update the mdl pbl discuss table, along with the other tables which gets updated
when we submit the form in the course/modedit.php, then we would be able to track which
activity modules are associated with the PBL module. Hence, we have to add code inside
the course/modedit.php file. But adding code directly in the $HOME/course/modedit.php is
not a good idea. Because, we are modifying core Moodle files and this will always update
the mdl pbl discuss table, even if we add the new activity module for the course not for the
PBL module. So we declare a modedit.php file inside the PBL module and inserted our code
to update the mdl pbl discuss. Now whenever user adds a particular module inside the PBL
module, user will be redirected to the $HOME/mod/PBL/modedit.php file.

The method stated above is successful one. We could have achieved the same, by just
updating the table mdl PBL discuss, while we try to add a module inside PBL and then redirect
to course/modedit.php. But if then the user cancel the module addition, there is no way to roll
back the update happen in the mdl PBL discuss table.

81

10.4.3 File Up-loader

Moodle 1.9.x and the previous versions do not have any feature, such that the students can
upload files whenever they want and maintain a MyFolder. But file upload facility for student
is a well desired feature for the PBL module. So either we had to write a block which will have
all the desired features to manage files else we need to use some plug-in of Moodle. In Moodle
there are few file management plug-in available, like File manager, Repository File Manager,
Users Upload Hack etc. So we needed to test all these plug-ins and find out which one suits
best for the PBL module. So among these plug-ins we found-out that, the File Manager blocks
suits most for PBL, as this has the feature to manage files in group level.

10.5 Future Work

• Currently there are only two types of role in the PBL module, Teacher and Student. But
there should be a third role as proposed in the chapter 6, i.e. Facilitator. Permission of
facilitator, will be in between the permission of teacher and student. A user of role teacher
exclusively will be able to create PBL activities and assign facilitator in a particular PBL
activity for a group. A facilitator will have the similar permissions like the teacher in a
PBL activity, where he is assigned as a facilitator.

• Currently grouping is done at the course level and there is no option such that students
can create the group of their own choice. Hence, grouping should be done at the PBL
activity level and option should be provided so that students will be able to create the
groups. Currently it is not mandatory to create the groups before problem presentation.
But creating group must be made mandatory before the teacher can present the problem.

• For communication and discussion currently user can use chat, forum or wiki. But for bet-
ter communication audio/video chat, conferencing, whiteboard features should be added.

• The sub-activity and sub-modules in the PBL modules are not well structured. It is im-
portant to give them some similar structure like the block or activity in Moodle, so that
developers can easily extend the features and add new functionalities.

• As described in the chapter 6, recent activity module feature need to be developed. This
will help teacher to keep track with the progress of the group.

• In the current PBL module file sharing feature is implemented in the course level, so user
can gain access to the files from anywhere in the course. This file sharing feature need to
be implemented at the PBL activity level.

• Currently we have implemented many functionality directly in file where we need that,
where we could have written functions in the lib.php file to achieve the same action. This

82

will make the code more modular.

• In the current version of PBL module if the user tries to delete any sub-module, like RLF,
solution no warning is shown, but it is a desired functionality.

• Rating feature for the solutions proposed, forum posts, RLF documented and file shared
should be there.

83

84

Chapter 11

Conclusion

We have developed two activity modules as the part of this project. One is the PBL module and
the other is the rubrics module. The PBL module is a complete tool to support PBL, as it has
feature using which users of PBL can carry-out all the steps described in section 2. So it can
be used in distance learning scenario as well as in blended-learning environment. The rubrics

module has been developed for easy creation and processing of well known assessment tool
rubric. Now, testing the usability of the PBL module is the main task remains. For usability
test some controlled experiment need to be done. Controlled experiment can be designed in the
following manner. In a course there will be two PBL activities, one will be carried out using
only Moodle and other one will be carried out using this new PBL module in Moodle. Then
by the comparing the student’s performance, effort needed from instructor to carry-out PBL
activity in both the cases etc. Questioner can also be created to get the feedback from both the
faculty and students.

Building these tools as plug-in for the learning management system Moodle had some ad-
vantages, like we can use already developed features (forum, wiki) in Moodle. But initially it
took plenty of time, understanding how Moodle works and if we want to add a functionality
how to do it. For the PBL module, we divided the problem based learning process into different
steps and for each step we developed some functionalities. This way the development has been
done in a modular approach.

85

86

Bibliography

[1] http://docs.moodle.org/20/en/File.

[2] http://moodle.org/mod/data/view.php?d=13&rid=107&filter=1.

[3] http://www.kem.edu/dept/METC/PBL%20Ramnarayan.pdf.

[4] http://moodle.org/.

[5] http://moodle.org/mod/forum/discuss.php?d=43776.

[6] The Higher Education Statistics Agency. http://www.hesa.ac.uk/.

[7] A. Al-Ajlan and H. Zedan. Why Moodle. In Future Trends of Distributed Computing

Systems, 2008. FTDCS’08. 12th IEEE International Workshop on, pages 58–64. IEEE,
2008.

[8] I.E. Allen and J. Seaman. Making the grade: Online education in the United States, 2006.
Needham, MA: Sloan Consortium, 2006.

[9] Means B, Toyama Y, Murphy R, Bakia M, and Jones K. Evaluation of evidence-based
practices in online learning: A meta-analysis and review of online learning studies. Aug,
2009.

[10] T. Barrett. Understanding Problem-Based Learning.

[11] D.R. Brodeur, P.W. Young, and K.B. Blair. Problem-based learning in aerospace engineer-
ing education. In Proceedings of the 2002 American Society for Engineering Education

Annual Conference and Exposition, Montreal, Canada, pages 16–19. Citeseer, 2002.

[12] J. Chen, M. Lee, H. Lee, Y. Wang, L. Lin, and J. Yang. An online evaluation of problem-
based learning (PBL) in Chung Shan Medical University, Taiwan-a pilot study. ANNALS-

ACADEMY OF MEDICINE SINGAPORE, 35(9):624, 2006.

[13] A. Ellis, L. Carswell, A. Bernat, D. Deveaux, P. Frison, V. Meisalo, J. Meyer, U. Nulden,
J. Rugelj, and J. Tarhio. Resources, tools, and techniques for problem based learning in

87

http://docs.moodle.org/20/en/File
http://moodle.org/mod/data/view.php?d=13&rid=107&filter=1
http://www.kem.edu/dept/METC/PBL%20Ramnarayan.pdf
http://moodle.org/
http://moodle.org/mod/forum/discuss.php?d=43776
http://www.hesa.ac.uk/

computing. In Working Group reports of the 3rd annual SIGCSE/SIGCUE ITiCSE con-

ference on Integrating technology into computer science education, pages 41–56. ACM,
1998.

[14] Rosenthal H Gallagher S.A., Stepien W.J. The effects of problem-based learning on prob-
lem solving. Gifted Child Quarterly, 36(4):195–200, 1992.

[15] R. Garcia-Robles, S. Vicente-Diaz, and A. Linares-Barranco. An eLearning Standard
Approach for Supporting PBL in Computer Engineering. Education, IEEE Transactions

on, 52(3):328–339, 2009.

[16] H.G. SCHMIDT J.H.C. MOUST, H.J.M. VAN BERKEL. Signs of erosion: Reflections
on three decades of problem-based learning at maastricht university. Higher Education,
50(4):665–683, Oct, 2005.

[17] G.E. Lautenbacher, J.D. Campbell, B.B. Sorrows, and D.E. Mahling. Supporting collab-
orative, problem-based learning through information system technology. In Frontiers in

Education Conference, 1997. 27th Annual Conference.’Teaching and Learning in an Era

of Change’. Proceedings., volume 3, pages 1252–1256. IEEE, 2002.

[18] N. Linge and D. Parsons. Problem-based learning as an effective tool for teaching com-
puter network design. Education, IEEE Transactions on, 49(1):5–10, 2006.

[19] J. Macı́as-Guarasa, R. San-Segundo, J.M. Montero, J. Ferreiros, and R. Córdoba. Tools
and strategies for improving PBL laboratory courses with a high student-to-Faculty ratio.
In Frontiers in Education, 2005. FIE’05. Proceedings 35th Annual Conference, pages
F2C–7. IEEE, 2006.

[20] M. Qiu and L. Chen. A Problem-Based Learning Approach to Teaching an Advanced Soft-
ware Engineering Course. In 2010 Second International Workshop on Education Technol-

ogy and Computer Science, pages 252–255. IEEE, 2010.

[21] I. Richardson and Y. Delaney. Problem Based Learning in the Software Engineering Class-
room. In Software Engineering Education and Training, 2009. CSEET’09. 22nd Confer-

ence on, pages 174–181. IEEE, 2009.

[22] C.K. Riesbeck. Designing Web-Based Interactive Learning Environments for Problem-
Based Learning. In Proceedings of the Fifth IEEE International Conference on Advanced

Learning Technologies, pages 333–337. IEEE Computer Society, 2005.

[23] Gu Yue-Sheng Wang Jian-Ping, Gao Guo-Hong. Building up problem-based learning
platform based on j2ee. Education Technology and Computer Science, 2009. ETCS ’09.

First International Workshop on, 2:614–616, Mar, 2009.

88

[24] R. Waters and M. McCracken. Assessment and evaluation in problem-based learning. In
Frontiers in Education Conference, 1997. 27th Annual Conference.’Teaching and Learn-

ing in an Era of Change’. Proceedings., volume 2, pages 689–693. IEEE, 2002.

[25] J. Zumbach, D. Kumpf, and S.C. Koch. Using multimedia to enhance problem-based
learning in elementary school. Information technology in childhood education annual,
25:37, 2004.

[26] http://docs.moodle.org/20/en/Context.

[27] http://docs.moodle.org/20/en/Wiki_module.

[28] http://docs.moodle.org/20/en/Chat_module.

[29] http://docs.moodle.org/20/en/Forum.

[30] http://docs.moodle.org/20/en/File_manager_block.

[31] http://docs.moodle.org/20/en/Assignment_module.

[32] http://docs.moodle.org/dev/Roles#Context.

[33] http://www.csub.edu/TLC/options/resources/handouts/Rubric_

Packet_Jan06.pdf.

89

http://docs.moodle.org/20/en/Context
http://docs.moodle.org/20/en/Wiki_module
http://docs.moodle.org/20/en/Chat_module
http://docs.moodle.org/20/en/Forum
http://docs.moodle.org/20/en/File_manager_block
http://docs.moodle.org/20/en/Assignment_module
http://docs.moodle.org/dev/Roles#Context
http://www.csub.edu/TLC/options/resources/handouts/Rubric_Packet_Jan06.pdf
http://www.csub.edu/TLC/options/resources/handouts/Rubric_Packet_Jan06.pdf

	Introduction
	Problem Based Learning
	Pedagogy behind PBL
	Steps of PBL
	Role of Teacher in PBL
	Advantages of PBL
	Disadvantages of PBL
	Challenges in PBL
	How technology can help?

	Moodle and other LMSs
	Different features of LMSs
	Moodle
	Comparative study

	Related Works
	Proposed System
	User characteristic
	Operating Environment
	Users of the system

	Functional Requirements
	Group Formation
	Automatic Group Formation
	Manual Group Formation
	View Group
	Group Permission
	View Members
	Change Group

	Facilitator Allocation
	Assign Facilitator
	View Facilitator
	Groups I'm Facilitating
	Change Facilitator

	Problem Presentation
	Problem Definition
	View Problem
	View Problem
	Edit Problem
	Comment on the problem statement

	Discussion
	Add Discussion
	Chat
	Rate

	Identification of RLF
	Define RLFs
	Comment on RLF
	Edit RLF
	View RLF

	Resource Sharing
	Share Resource
	My Folder
	View Shared Resources
	Search Resources
	Rate Resource

	Propose Solution
	Solution Proposal
	Another Solution Proposal
	View Proposals
	Comment on Proposal

	Submit Solution
	Submission Guideline
	View Submission Guideline
	Edit Submission Guideline
	Submission Deadline
	Submit Solution
	View/Edit Submission
	View Submission

	Evaluation
	Create self-evaluation form
	Create peer evaluation form
	Create Rubric
	Self Evaluate
	Submit the self-evaluation form
	Peer Evaluate
	Choose Peer
	Submit the peer evaluation form

	Recent Activity
	Recent Activities
	Recent Activities
	Show full history
	Show history of a particular member

	Report
	Result of self-evaluation
	Result of peer-evaluation
	Report of a individual

	How new module will help better?

	Features of Moodle to be used
	Moodle Internals
	Basic Structure
	Library Functions
	Blocks and Modules
	Moodle QuickForm
	Configuration
	Moodle XMLDB editor
	Using the XMLDB editor

	Database Structure of Moodle
	Access Control
	Development of a new Activity module

	Rubric Module
	User Documentation
	Database Structure
	Development Documentation
	Authorization
	Functional Logic
	Database Layer

	Challenges
	Moodle Structure
	Moodle Form

	Future Work

	PBL Module
	User Documentation
	Group Formation
	Facilitator Allocation
	Problem Presentation
	Identification of RLF
	Discussion
	Resource Sharing
	Solution Proposal
	Solution Submission
	Evaluation
	Other features

	Database Structure
	Development Documentation
	Authorization
	Functional Logic
	Database layer

	Challenges
	Moodle Structure
	Include others activity module inside the PBL module
	File Up-loader

	Future Work

	Conclusion

