Performance Evaluation of *WiFiRe* using OPNET

Venkat Reddy

Under the guidance of:

Prof. Sridhar Iyer and Prof. Varsha Apte

Dept. of CSE (KReSIT)

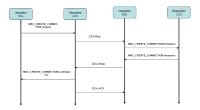
July 16, 2007

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Goal

Goal

- Building WiFiRe model in OPNET.
- Finding minimum slot length to support VoIP and Video services.
- Finding maximum number of users system can support.
- Analyzing queuing delay, end to end MAC delay and throughput for different types of flows with different slot lengths.


・ロット (母) ・ ヨ) ・ ・ ヨ)

Protocol Phases MAC Services

WiFiRe overview

Protocol Phases

- Network entry and initialization
 - Ranging
 - Registration
- Connection management and Data transport
 - Connection creation using DSA and DSC
 - Connection release using DSD

Figure: Connection Setup

A B F A B F

Protocol Phases MAC Services

MAC Services

- UGS: Designed to support real-time flows, such as VoIP.
- rtPS: Designed to support real-time flows that generate variable size data packets on a periodic basis, such as MPEG video.
- nrtPS: Designed to support non real-time flows those require variable size data grant slots on a regular basis, such as high bandwidth FTP.
- Best Effort: The intent of the Best Effort (BE) service is to provide efficient service to best effort traffic. These flows served in contention slots.

Classifier Connection Admission Control Round Robin slot scheduling

WiFiRe model block diagram

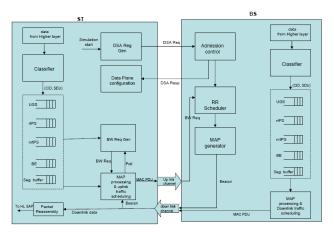


Figure: WiFiRe model block diagram

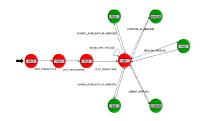
・ロ・ ・ 四・ ・ 回・ ・ 回・

Classifier Connection Admission Control Round Robin slot scheduling

WiFiRe model modules

- Classifier
- DSA Req Generator
- Admission Control
- Round Robin slot Scheduler
- MAP processing and traffic scheduling
- Packet segmentation and Reassembly

Process Models


- Common MAC process model
- BS control child process
- ST control child process

A (10) + A (10) +

Classifier Connection Admission Control Round Robin slot scheduling

Common MAC process functionalities

- Packet classification
- constructing MAC frames
- segmentation and reassembly.
- Beacon processing

Figure: Common MAC process

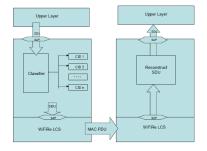
< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > <

Classifier Connection Admission Control Round Robin slot scheduling

BS control child process functionalities

- Admission control
- Scheduling admitted connections and MAP generation
- Polling and Bandwidth grant
- Activation of admitted service flows

ST control child process functionalities


- DSA-Req generation
- DSA-Resp process

A (10) + A (10) +

Classifier Connection Admission Control Round Robin slot scheduling

Classifier

- Set of matching criteria's
- Protocol specific criteria, ex: destination IP, Source IP etc.
- Finds CID using service class name and destination MAC address.

Figure: IP classifier

・ロ・ ・ 四・ ・ 回・ ・ 回・

Classifier Connection Admission Control Round Robin slot scheduling

Classifier setup

Attribute	Value	Service Class Name
Match Property	IP ToS	Gold
Match Condition	Equals	Silver
Match Value	Interactive Voice (6)	Bronze
		Platinum
Details Promote	QK Qancel	
Details Elomote		

Figure: IP classifier setup in opnet WiFiRe model

6.0	ibute	Value	
	ibute		-
	name	WiFiRe Config	
() ⊦	model	WiMAX_Config	
② ± Contention Parameters		()	
ŧ	MAC Parameters	()	
? E	MAC Service Class Definitions	()	
	rows	4	
	i row 0		
1	- Service Class Name	Gold	
۲	-Scheduling Type	UGS	
0 0 0 0	- Maximum Sustained Traffic Rate (35000	
0	Minimum Reserved Traffic Rate (b	25000	
0	Maximum Traffic Burst (bytes)	70	
0	- Traffic Priority	Not Used	
	Max Latency	5.0	
	Poling Interval	0.01	

Figure: UGS parameters

Classifier Connection Admission Control Round Robin slot scheduling

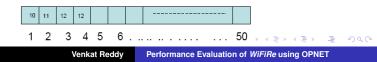
Connection Admission Control

- Admit UGS with maximum sustained traffic rate
- Admit rtPS and nrtPS with minimum reserved rate.
- If it is rtPS or nrtPS flow Then Add Polling overhead.
- Add WiFiRe MAC overhead and PHY overhead to requested rate.
- If available bandwidth is more than requested bandwidth, then BS will admit the flow and sends response.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Classifier Connection Admission Control Round Robin slot scheduling

Round Robin slot scheduling


- Allocate Polling slots to rtPS and nrtPS flows
- Allocate slots to UGS flows.
- For rtPS and nrtPS
 - If requested bandwidth is less than admitted then
 - Allocate requested number of slots
 - otherwise, allocate admitted number of slots
- Allocate remaining slots to BE flows
- Mark remaining slots as contention slots

A (1) > A (2) > A (2) > A

Classifier Connection Admission Control Round Robin slot scheduling

Beacon processing and Traffic Scheduling

- Scan through DL-MAP and UL-MAP
- If CID in particular slot is my CID, then
- extract one segment from connection segment buffer, if there are any pending packets in segmentation buffer.
- otherwise, extract new packet from connection packet buffer.
- Then Construct MAC PDU and schedule it for transmission.

Classifier Connection Admission Control Round Robin slot scheduling

Goals

- Building WiFiRe model in OPNET.
- Finding minimum slot length to support VoIP and Video services.
- Finding maximum number of users system can support.
- Analyzing queuing delay, end to end MAC delay and throughput for different types of flows with different slot lengths.

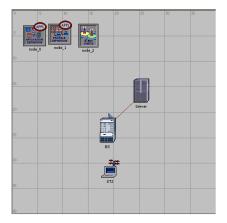
VoIP user Scenario Video user Scenario FTP user Scenario

S.No	Parameter	value
1	Frequency Channel	2.4 GHz
2	Bandwidth	22 MHz
3	Data Rate	11 Mbps
4	Frame Duration	10 ms
5	Symbols per frame	220000
6	Symbol duration	.045µs
7	Scheduling Algorithm	Round Robin

Table: Common parameters for all experiments

VolP user Scenario Video user Scenario FTP user Scenario

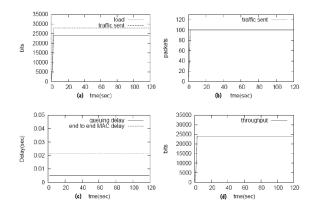
VoIP user Scenario


UGS Service flow parameters

S.No	Parameter	value
1	Service Class Name	UGS
2	Maximum traffic rate	24 Kbps
3	Minimum traffic rate	24 Kbps
4	Max latency	4 seconds
5	Polling Interval	NA

Table: UGS service flow parameters

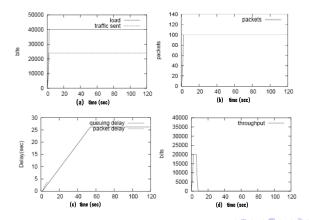
VolP user Scenario Video user Scenario FTP user Scenario


Simulation Setup

Venkat Reddy Performance Evaluation of WiFiRe using OPNET

VoIP user Scenario Video user Scenario FTP user Scenario

UGS statistics with slot size 32 μs and VoIP application with G 729 codec, 20 ms sampling rate and 8 kbps coding rate.

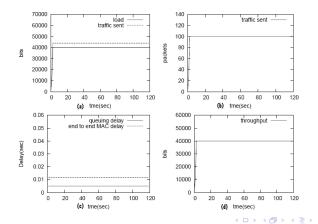

Venkat Reddy Performance Evaluation of WiFiRe using OPNET

VolP user Scenario Video user Scenario FTP user Scenario

- With above VoIP configuration, load at MAC layer is 24kbps.
- VoIP SDU at MAC layer is 60 bytes with above VoIP configuration.
- This 60 bytes payload is segmented into two packets and served in two frames.
- So service rate is equal to arrival rate, Hence queuing delay and end to end MAC delay are constant shown in Figure (c).
- ► From this experiment, we observed that, one 32µs slot is suitable for VoIP applications with above configuration.

VoIP user Scenario Video user Scenario FTP user Scenario

UGS statistics with slot length 32μ s and VoIP application with G729 codec, sampling rate 10 ms and 8 kbps coding rate.


Venkat Reddy Performance Evaluation of WiFiRe using OPNET

VolP user Scenario Video user Scenario FTP user Scenario

- With above VoIP configuration, load at MAC layer is 40kbps.
- VoIP SDU at MAC layer is 50 bytes, so source MAC will segment it and sends in two frames.
- So ST is sending 50(payload) + 10(MAC header) in 20 ms (two frames), means ST is sending at 24kbps.
- service rate is less than arrival rate, So queuing delay and end to end MAC delay started increasing shown in Figure (c).
- After some time, end to end MAC delay exceeds max latency for all packets, so destination MAC will drop all those packets. So throughput is dropped to zero shown in Figure (d).
- From this experiment, we observed that, one 32µs slot is not suitable for voip applications with above configuration.

VoIP user Scenario Video user Scenario FTP user Scenario

UGS statistics with slot size 40 μs and VoIP application with G729 codec, 10 ms sampling rate and 8 kbps coding rate.

Venkat Reddy Performance Evaluation of WiFiRe using OPNET

VolP user Scenario Video user Scenario FTP user Scenario

- With above VoIP configuration, load at MAC layer is 40kbps.
- In one 40µs slot, ST can send 55bytes in one frame, means ST can send at 44kbps shown in Figure (a)
- So service rate is equal to arrival rate, So queuing delay and end to end MAC delay are constant shown in Figure (c).
- From this experiment, we observed that, one 40µs slot is suitable for voip applications with above configuration.

VoIP user Scenario Video user Scenario FTP user Scenario

Video user Scenario

rtPS Service flow parameters

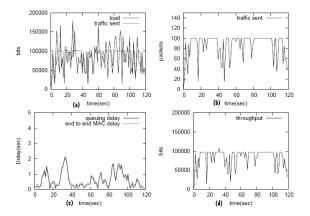

S.No	Parameter	value
1	Service Class Name	rtPS
2	Max Sustained traffic rate	100 Kbps
3	Min reserved traffic rate	90 Kbps
4	Max latency	8 Secs
5	Polling Interval	80 msecs

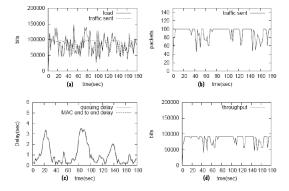
Table: rtPS service flow parameters

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

VoIP user Scenario Video user Scenario FTP user Scenario

rtPS statistics with slot size 32μ s.

Venkat Reddy Performance Evaluation of WiFiRe using OPNET


VoIP user Scenario Video user Scenario FTP user Scenario

- ST can send ((32 × 10⁻⁶) × (11 × 10⁶)) × 3 bits in one frame with three 32µs data slots.
- So ST can send traffic at = ((32×10⁻⁶)×(11×10⁶))×3 10×10⁻³ = 105 kbps. This can be observed in Figure (a)
- Queuing delay and end to end MAC delay is not exceeding maximum latency 8 seconds shown in Figure (c).
- So no packets are dropped by destination MAC, Hence throughput equal to load shown in Figure(d).
- From This experiment, we observed that, three 32µs slots are required to support Video applications with above configurations.

(日) (圖) (E) (E) (E)

VoIP user Scenario Video user Scenario FTP user Scenario

rtPS statistics with slot size 45μ s.

VoIP user Scenario Video user Scenario FTP user Scenario

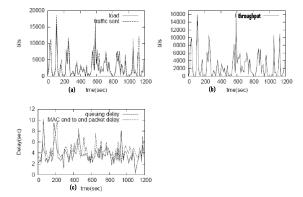
rtPS statistics with slot size 45μ s.

- Figure (c) shows that, queuing delay and end to end MAC delay is increased compared to previous experiment.
- With 45μ s, 90 kbps needs two data slots.
- ► MAC can send ((45 × 10⁻⁶) × (11 × 10⁶)) × 2 bits in one frame with two data slots. Then traffic sent per second = ((45×10⁻⁶)×(11×10⁶))×2/(10×10⁻³) = 99 kbps.
- In previous experiment, with three 32µs ST can send traffic at 105 kbps.
- So service rate in this experiment is less than previous experiment, hence delays are increased.
- Even though ST is requested 90 kbps, BS is allocating 99 kbps. Because BS will allocate bandwidth in terms of slots.

(a) < (a) < (b) < (b)

VoIP user Scenario Video user Scenario FTP user Scenario

FTP user Scenario

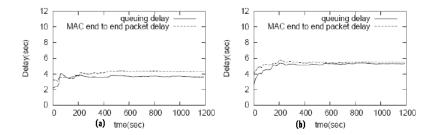

nrtPS Service flow parameters

S.No	Parameter	value
1	Service Class Name	nrtPS
2	Max Sustained traffic rate	20 Kbps
3	Min reserved traffic rate	10 Kbps
4	Max latency	10 Sec
5	Polling Interval	2 sec

Table: nrtPS service flow parameters

VoIP user Scenario Video user Scenario FTP user Scenario

nrtPS statistics with slot size 32 μs and with 2 seconds polling interval.


VoIP user Scenario Video user Scenario FTP user Scenario

- ST can send ((32 × 10⁻⁶) × (11 × 10⁶)) bits in one frame with one 32µs slot.
- So ST can send traffic at = $\frac{((32 \times 10^{-6}) \times (11 \times 10^{6}))}{10 \times 10^{-3}} = 35$ kbps.
- Queuing delay and end to end MAC delay are greater than 2 seconds, because polling interval is 2 seconds shown in Figure (c).
- There are more variations in queuing delay and end to end MAC delay, because of more variations in load.
- end to end MAC delay is not exceeding maximum latency 10 seconds, So no packets dropped by destination MAC, So throughput is equal to load shown in Figure(b).
- From these results, it has been observed that, one 32µs slot is sufficient to support FTP applications.

(日)

VoIP user Scenario Video user Scenario FTP user Scenario

nrtPS queuing and end to end MAC delay comparison with slot size 32μ s for different polling intervals

Conclusion

- Extensive simulation results shown that 32 µs slot length is suitable to provide voice services with G729 codec, with 20 ms sampling rate and 8 kbps coding rate. However rtPS flows need more than one slot.
- 40µs length slot is required to support Voice applications with G729 codec, with 10 ms sampling rate and 8 kbps coding rate
- If slot size is small, then MAC overhead will be increased due to segmentation. If slot size is large, then the packet will be delivered quickly to the destination MAC. Suppose if slot size is equal to SDU size + mac_header_size, then source MAC will deliver entire MAC PDU in one slot. So no additional segmentation overhead is incurred.

▲母 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ● ● ● ● ●

Conclusion

- Increasing slot length will decrease the maximum number of admitted connections.
- The above simulation results also shows the model validness.
- ► We don't have any conclusive results for multiple STs.

Future extension

- Physical layer effects needs to be added to the model.
- Changing existing static DSA Req procedure such that, ST sends DSA Req when MAC receives first data packet belongs to some service type.
- Dynamic Service Deletion Req needs to be added to the model.
- With present slot scheduling algorithm, there are chances of bandwidth wastage, as bandwidth assignment is in terms of slots. As described above, even though if ST has requested less than one slot per frame, BS will still allocate one slot for it. We can save bandwidth by allocating bandwidth in symbols per frame, like
 - < CID, number_of_symbols_allocated > instead of
 - < CID, number_of_slots >.

(日本)(日本)(日本)(日本)

Thank you !

Venkat Reddy Performance Evaluation of WiFiRe using OPNET

Theoretical Maximum number of rtPS users:

- Requested rate with MAC overhead is, rate × (avg packet size+ MAC header size avg packet size)
 = 90 Kbps × 1500+5/1500 = 90.3 Kbps
 rate in symbols per second is rate × 1/(number of bits per symbol×coding rate)
 = 90.3 Kbps× 1/(1×1/2) = 180.6 × 10³ sps
- Number of symbols required per frame = rate sps × frame duration

=180.6 $\times 10^3 \times 10 \times 10^{-3}$ = 1800

Number of symbols per slot is, <u>slot duration</u> symbol duration

 $=\frac{32}{.045}=711$ symbols

 Number of symbols needed for WiFiRe PHY overhead (96µs) is,

- PHY overhead duration symbol duration = $\frac{96}{045}$ =2133 symbols
- Total number of symbols required is, sum of the PHY overhead and number of symbols requested

= 2133+1800 = 3933

Convert symbols per frame into number of slots per frame

number symbols required per frame

number of symbols p
=
$$\frac{3933}{711} = 6$$

- Then Maximum number of connections per frame is
 - $\frac{\text{total symbols per frame}}{\text{number of symbols requested}} \times \text{number of parallel tx}$

$$\frac{220000}{3933} \times 2 = 111$$

Theoretical Maximum number of UGS users:

- Requested rate with MAC overhead is, rate × (avg packet size+ MAC header size avg packet size)
 = 24 Kbps × 50+5/50 = 26.4 Kbps
 rate in symbols per second is rate × 1/(number of bits per symbol × coding rate)
 = 26.4 Kbps × 1/(1×1/2) = 52.8 × 10³ sps
- Number of symbols required per frame = rate sps × frame duration
 - =52.8 $\times 10^{3} \times 10 \times 10^{-3}$ = 528
- Number of symbols per slot is, <u>slot duration</u> symbol duration
 - $=\frac{32}{.045}=711$ symbols
- Number of symbols needed for WiFiRe PHY overhead (96µs) is,

PHY overhead duration symbol duration = $\frac{96}{045}$ =2133 symbols

- Total number of symbols required is, sum of the PHY overhead and number of symbols requested = 2133+528 = 2661
 - Convert symbols per frame into number of
- Convert symbols per frame into number of slots per frame
 - number symbols required per frame
 - number of symbols per slot
 - $=\frac{2661}{711}$ = 4, means one data slot and 3 PHY slots.
- Then Maximum number of connections per frame is
 - $\frac{\text{total symbols per frame}}{\text{number of symbols requested}} \times \text{number of parallel tx}$

•
$$\frac{220000}{2661} \times 2 = 165$$