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Abstract

Computing systems are becoming increasingly varied in terms of computing and

networking capabilities. A given application may often need to be deployed in di-

verse scenarios. Additionally, a software needs to evolve continuously, sometimes in

disparate directions, to suit a diverse portfolio of user requirements.

However, given an application defined for one scenario, it may not be possible to

simply refactor the application for a direct reuse or an easy adaptation to another

scenario. The application itself may need to be redesigned to enable such flexibility.

Hence a pertinent problem is - How do we design and implement a software system

such that it has a lesser compulsion to be redesigned, and has a greater flexibility to

adaptation?

In this thesis we propose a novel way of constructing such applications - wherein

an application is built using Breakable Objects or BoBs. BoBs are similar to the

traditional objects or components, but have the property that they can be readily

broken into sub-objects or sub-components. As such, BoBs naturally form the building

blocks for flexible application architectures. We term this architecture as BODA

- Breakable Object Driven Architecture. We claim that: (i) BODA provides an

architecturally robust mechanism for flexible fine grained reuse, and (ii) BODA greatly

facilitates automatic application translations for various deployment scenarios.

We apply BODA in the context of object-oriented programming systems. We

present a programming model for BoBs in Java called JavaBoB. JavaBoB is a subset

of Java language specification, and contains some small extensions to the present lan-

guage. We also present mechanisms by which BoBs can be composed, decomposed and

used in an application. Furthermore, the BODA process is illustrated and evaluated

in the thesis using three main case-studies and some distilled-data from similar other

application experiences .
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The sort of poetry I seek resides in

objects man can’t touch.

E.M. Forster

Chapter 1

Introduction

Software systems need to evolve continuously - to incorporate a new user require-

ment, to address a new application concern, to adapt to a new environment, or simply

to improve the architecture and implementation of existing systems [Leh98]. Flexibil-

ity is an important software quality and is determined by the capability of a software

to respond to a new requirement. IEEE Standard Glossary of Software Engineering

Terminology (IEEE Std. 610.12-1990) defines flexibility as:

Flexibility is the ease with which a system or component can be modified for use

in applications or environments other than those for which it was specifically

designed.

To facilitate easy adaptation to a new requirement, it is important to design a

software in a manner that at a later stage, it is easy to disassemble or separate

the given software implementation into smaller components [Par85]. These con-

stituent components then become the units for required modification, replacement

and(or)recomposition. Modifications to these reusable artifacts can be - black-box,

white-box or glass-box [Koj06]. In the black-box reuse, the component is reused un-

changed. In white-box reuse, the component is modified to fit the target product.

Glass-box reuse allows for inspection of implementation of the component, but the

resumable component itself is not modified.

In traditional object-oriented systems, classes/objects1 are considered as the units

of composition and decomposition. In its most basic form an object is composed

primitively from methods and fields. Additionally, mechanisms like inheritance and

aggregation, allow for its glass box and black-box reuse respectively.

1Since, objects are instantiations of classes, the terms object and class are used interchangibly in

this discussion.
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However, there are situations, as we show in the following example, where it makes

good sense not to consider objects as atomic units (In Chapter 2 of this thesis, we

provide a more detailed discussion on this issue). Instead, it is desirable to extract

a sub-functionality from an object and consider this sub-functionality as a separate

artifact for reuse and adaptation.

There are few difficulties, though, that might arise when we consider the reuse of

sub-functionality of an object:

• Traditional composition mechanisms might compose an object in a manner that

it is difficult to separate out its sub-functionality.

• We need mechanisms to:

– extract the sub-functionality from an object, and

– reuse the sub-functionality as a unit for composition and modification .

The motivating example in the following section highlights some of these issues.

1.1 Motivating Example

Distributed systems have grown from having nodes with uniform computing and

communication capabilities, to having nodes with widely varying capabilities. The

underlying communication networks also have become more complex and heteroge-

neous in nature. The same application may need to be run in different deployment

scenarios 2. But an application designed for one scenario may not be amenable to

direct redeployment in another scenario. It may require significant modifications in

terms of structuring and placement of its components [MR02].

Consider, for example, an e-mail client application (Figure 1.1). One may access

email in a variety of scenarios, such as using a desktop on a LAN or using a PDA on

a 3G network. We may want different versions of the application to cater to different

modes of operation, such as

(i) Online mode in which the messages are kept on a server and a (thin)client

manipulates them remotely using an appropriate interface,

(ii)Offline mode in which the (thick)client fetches the messages to the local machine

and the messages are deleted from the server, and

2Different deployment scenarios arise as result of difference in: number of processing nodes in-

volved; underlying network characteristics; communication, processing, power capabilities of nodes

etc.
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Figure 1.1: E-mail application

(iii) Disconnected mode in which the (medium-sized)client fetches the messages to

the local machine and the messages are also retained at the server.

Although the functionality of the application essentially remains the same, the

amount of functionality that is implemented at the server or the client varies, depend-

ing upon the mode. Our experience with e-mail applications (icemail, jwma, pooka,

popmail 3) has shown us that refactoring an existing e-mail application to operate

in different modes is extremely difficult. For example, in an email implementation

(Figure 1.2), the Store class may be fully on the client or server, or even server in all

the three modes. However, the Folder class may have its functionality partitioned

between client and server for online and disconnected modes. For the offline-mode, it

may be only on the client. Hence we need to automatically refactor the Folder class

for transforming the application from one mode into another.

Part

IMAP Folder

BodyPart

<<abstract>>
Folder

#folder

Multipart

Service

Store
<<abstract>>

MimeMessage

javax.mail
���
���
���

���
���
���

���
���
���

���
���
���

Message
<<abstract>>Login

AddressBook

Client GUI

FolderImpl

MessageImpl

Preferences

#store

<<interface>>

Figure 1.2: E-mail implementation model

3java-source.net/open-source/mail-clients/
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To enable automatic refactoring of Folder, we need it in a form that can be eas-

ily partitioned into sub-entities. But traditional objects are not always suitable for such

partitioning. Consider for example, the folder class implementation, JwmaFolderImpl

(Figure 1.3), as done in a real-life application, viz., jwma WebMail. Corresponding

source snippet of this class are shown in the Listing 1.1. Implementation features of

jwmaFolderImp class like multiple interface inheritance, and embedded functional-

ity in form of enclosed objects (m Folder) make the functionality partitioning of this

class very difficult. We discuss this further in detail in Chapter 2.

This points out to the fact that we need to reformulate and also perhaps redesign

our entity, jwmaFolder, in a way so as to make it more amenable to such function-

ality refactorings.

We shall use this example as an illustrating example in the rest of the thesis. It

also forms one of our case-studies in Chapter 8. In the next section, we state our

problem statement.

Listing 1.1: Source snippet of Folder implementation in Jwma

public class JwmaFolderImpl implements JwmaFolder, JwmaTrashInfo, JwmaInboxInfo {

//associat ions

protected JwmaStoreImpl m_Store;

protected Folder m_Folder;

// instance a t t r i bu t e s

protected JwmaFolderList m_Subfolders;

protected JwmaMessageInfoListImpl m_MessageInfoList;

protected JwmaMessage m_ActualMessage;

. . .

public int[] getReadMessages()

throws JwmaException {

. . .

try {

m_Folder.open(Folder.READ_ONLY);

Message[] messages = m_Folder.getMessages();

. . .

}

}

. . .

public static JwmaFolderImpl createJwmaFolderImpl(JwmaStoreImpl store, String fullname)

throws JwmaException {

JwmaFolderImpl folder = new JwmaFolderImpl(store.getFolder(fullname), store);

folder.prepare();

return folder;

}

. . .

}
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1.2 Problem Statement

Software systems evolution is inevitable [Leh98]. Software reuse is considered to

be an important approach to manage evolutions. It is the process of creating software

system from existing software rather than building software systems from scratch

[Kru92]. An application adaptation, A→ A
′

, might require some refactoring[Fow99]

or even a redesign as a pre-step for adaptation (Figure 1.4). Hence, for effective reuse,

we need to design and implement a software application in a manner that it has a

greater flexibility for direct adaptation and there is lesser need to redesign or refactor.

A A/

Aσ
Refactor

Redesign

Adapt

Adapt

Figure 1.4: Application adaptation

With this background, we state our broad problem as:

Design and implement a software such that, given an application designed

for one scenario4 , we can easily adapt the application ( through automatic

transformations) to a new scenario.

We believe that, for achieving the above, it is imperative to have (or design)

the software base in form such that it can be easily and effectively decomposed into

optimally-grained reusable components. Object-oriented and component-oriented pro-

gramming approaches are a step in that direction. However, the granularity of reuse

is fixed : an object in the first case, and a component in the latter case.

It is desirable to have an approach that allows for the part functionality of an

object or a component to be utilized in an optimal and flexible manner.

Now, we state the more specific problem that we are trying to address:

Design and implement an object-oriented software such that when the soft-

ware base is decomposed into constituent objects, the functionality of some

select objects is further factorable.

4Here scenario is used in a much more generic sense; scenario = a feature, a requirement, a

use-case, or a deployment set-up
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Furthermore, we should be able to factor these select objects in a manner

that:

• units of desired granularity levels can be created,

• the units can be easily extracted, and

• the units are reusable (i.e. they can be modified, replaced, and recom-

posed)

1.3 Solution Outline

We propose the concept of Breakable Object (or BoB in short), as one effective

solution to the above problem.

A BoB is similar to an object in an object-oriented system, but has a simplified

structure to allow easy refactoring of its functionality. It is factored on the basis of

interface methods, resulting in split-fragments which are themselves objects. An added

construct, together, is used to denote the methods that are designated inseparable by

the designer of the BoB.

A BoB can be factored in a flexible manner, depending upon the application’s

factoring requirements. The splits or fragments in turn become new artifacts for a

finer-grained reuse.

1.4 This Thesis

1.4.1 Goal

The aim of our work is two fold:

1. To thoroughly explore the notion of Breakable Object (BoB).

2. To provide automatic tools and language mechanisms for usage of breakable

objects in object-oriented softwares. Particularly, we look at two aspects of this

usage:

(a) Refactoring: In this, we consider the BoB based program transformations

which are behavior-preserving.

(b) Extensibility and Composition: In this, we consider the usage of BoBs

which enhances the functionality of a given application.



8 CHAPTER 1. Introduction

1.4.2 Contributions of the Thesis

This thesis contributes in the following ways:

1. The Concepts of Breakable Object ( BoB ): Herein, we identify the need of

viewing and treating some of the application objects or components, as factorable

units instead of atomic or rigid units. We highlight various software architectural

situations where it is imperative or useful to have such a flexibility.

2. BODA (Breakable Object Driven Architecture): We layout the process

of constructing applications using BoBs.

3. Programming Model for Breakable Objects in Java - JavaBoB:. We

devise a programming model for BoBs. This is a mostly as subset and a minor

extension of Java programming language. There is added construct together

to designate inseparable methods and few compositional operators for BoB class

compositions. We also exclude some features of Java language, such as reflection,

that hinder easy breakability of a BoB.

4. Automated refactoring of BoBs - Splitting and Merging of BoBs,

Client reorganization techniques: A software implemented using BoBs un-

dergoes large scale source code level transformations whenever adaptation to a

new deployment scenario is required. We provide algorithms and implementation

for these automated refactorings in the form of splitting and merging engines.

5. ASM Models and Proofs: We extend the definition of contextual equivalence

and introduce a new notion of extended contextual equivalence. We also de-

velop a methodology for proving extended contextual equivalence in programs.

We use the formal execution semantics of JavaBoB provided by Abstract State

Machine(ASM) models to prove that the transformations by splitting and the

client-reorganization algorithm are valid.

6. BoB Composition Mechanisms: We extend the basic operations of Split and

Merge to lay the foundations for BoB compositions mechanisms. We illustrate

how operations like Add, Subtract and Replace allow a systematic and easy

composition of a BoB from other BoBs or BoB split-fragments.

7. Applicability of BoBs: We identify areas where BoBs can be employed. We

provide three case studies to illustrate the usage of BoBs in application partition-

ing and application product families scenarios. Lastly, we also provide guidelines

for designing effective and useful BoBs.
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1.5 Organization of the Thesis

The remainder of the thesis is organized as follows:

In Chapter 2 we provide the additional motivations for BoBs and discuss these

in the background of related works. We discuss the features of BoB in more detail in

Chapter 3. Once an application has been developed using BoBs, we can more readily

refactor the application for various deployment configurations. Also a BoB-based

application design facilitates fine grained evolution of applications. In the latter part

of Chapter 3 , we highlight the BoB Driven Architecture (BODA) process. Chapter

4 specifies the programming model for BoBs in Java. In Chapter 5, we show how a

splitting engine performs compile-time refactoring of a BoB-based program for various

deployment configurations. The engine takes as input the BoB-based program along

with a Split-Configuration (which specifies the lines along which the BoBs are to

be split) and produces a scenario-specific Java program as the output. We use the

distributed e-mail application outlined above as an illustrative example. Chapter 6

provides the equivalence proofs for split and non-split versions of the program.

In Chapter 7, we present how the BoBs splits can be merged together, and how

BoBs can be deployed in the distributed scenarios. We also describe the implementa-

tions of our splitting and merging engines. In Chapter 8, we present the case-study

of a multi-mode e-mail client that highlights the scenarios in which BoB can be em-

ployed and the methodology of implementing an application using BODA. We also

demonstrate how BoBs help to reduce the application size when such a requirement

is critical, e.g. in a small-devices. In Chapter 9 of this thesis, we build a formal

model for BoBs and discuss BoB composition mechanisms. Chapter 10 presents ad-

ditional case-studies using both BoB composition mechanisms and different aspects of

BODA. Chapter 11 we compare BoBs and BODA with the related works. We also

discuss the new paradigm that BoBs introduce to the design of distributed systems

and compare it to the other distributed design paradigms. We conclude our discussion

and indicate the future directions and possibilities that our work with BoBs create in

Chapter 12.

Appendix A, presents a formal definition of BoB class based on JavaBoB specifi-

cations and Appendix B, contains the Abstract State Machine based execution rules

for JavaBoB. Appendix C lists the publications related to this thesis work.





Most of the problems of education are

problems of motivation.

Jean-Jacques Rousseau

Chapter 2

Motivation and Background

In this chapter, we first show through three software engineering problems, the

need of composition and decomposition at class/object fragment level. We start our

discussion from a larger context and then focus on the object breakability requirements

and issues. In the rest of the chapter we discuss the the background contexts where

Breakable Objects would prove to be useful. These are techniques for application

partitioning and multidimensional separation of concerns, application designs which

support change, and mechanisms which provide variability in software product lines.

Finally, we summarize the three motivation scenarios.

First the motivational scenarios:

2.1 Motivation-I: Functionality Partitioning

Distributed systems have grown from having nodes with uniform computing and

communication capabilities, to having nodes with widely varying capabilities. The un-

derlying communication networks also have become more complex and heterogeneous

in nature.

The same application may need to be run in different deployment scenarios1. For

example, as discussed in the previous chapter, one may access email in a variety of

scenarios, such as using a desktop on a LAN or using a PDA on a 3G network. But

an application designed for one scenario may not be amenable to direct redeployment

in another scenario. It may require significant modifications in terms of structuring

and placement of its components [MR02]

1The term scenario here has been used in the context of deployment scenarios Different deployment

scenarios arise as result of difference in: number of processing nodes involved; underlying network

characteristics; communication, processing, power capabilities of nodes etc.

11
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Ideally, given an application designed for one scenario, one should be able to au-

tomate these modifications i.e., one should be able to generate applications for a new

scenario through an automated refactoring process[Men04]. However, this is extremely

difficult in practice for the following reasons:

(i) Functionality partitioning: This involves apportioning application functional-

ity into component sub-sets suitable for redeployment in new scenarios. This

implies satisfying the functional constraints of the applications[Til02], i.e. mak-

ing a component available at a physical location where it is required. It also

includes satisfying the resource constraints of application components [MR04],

e.g., CPU requirements of a component, number of run-time threads required to

execute the component, sizes of communication events etc.

(ii) Component distribution: This involves distributing an application’s compo-

nent across different nodes and making them work as distributed components.

This might involve modifying application’s source code, application’s binaries

prior to execution components, or manipulating application’s execution through

run-time interventions [Hun98].

(iii) Environmental heterogeneity This involves dealing with differences in envi-

ronments encountered due to hardware and software constraints on the target

environment, e.g., CPU speed, link characteristics, battery power, available sys-

tem software, operating systems, run time libraries etc. [MR04].

Of these, component distribution and environmental heterogeneity (points (ii) and

(iii)) have been areas of active research for quite some time. For example, compo-

nent heterogeneity may be addressed by having similar run-time environments on

all the nodes and component distribution may be addressed by having a middleware

framework for translating between local and remote references. However, functional-

ity partitioning of application (point (i)) remains an important problem, which still

requires much attention.

In order to achieve and possibly automate (i), the main requirement is:

Application functionality needs to be cleanly separated such that the components

can be grouped into deployment-specific subsets.

This is hard to achieve in practice as we may not be able to draw clean lines

of separation through an application. Some functionality may span across multiple

components, or a single component may include parts of multiple functionality. This

was illustrated by the example in the introduction Chapter 1.
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JwmaTransportImpl

-log: Logger = Logger.getLogger(JwmaTransportImpl.class)

-m_Transport: Transport

-m_URLName: URLName

<<create>>-JwmaTransportImpl(trans: Transport, auth: JwmaAuthenticator)

+sendMessage(msg: Message)

+createJwmaTransportImpl(trans: Transport, auth: JwmaAuthenticator): JwmaTransportImpl

JwmaFolder

<<interface>>

JwmaFolderImpl

-log: Logger = Logger.getLogger(JwmaFolderImpl.class)

#m_Name: String

#m_Path: String

#m_Type: int

#m_OnlineCounting: boolean

#m_DraftProfile: FetchProfile

<<create>>-JwmaFolderImpl(f: Folder)

<<create>>-JwmaFolderImpl(f: Folder, store: JwmaStoreImpl)

+getName(): String

-setName(name: String)

+getPath(): String

-setPath(path: String)

+getType(): int

-setType(type: int)

+isType(type: int): boolean

+isSubscribed(): boolean

+setSubscribed(b: boolean)

+getFolder(): Folder

+isOnlineCounting(): boolean

+setOnlineCounting(b: boolean)

+addIfSubfolder(folder: JwmaFolderImpl)

+removeIfSubfolder(path: String)

+removeIfSubfolder(folders: String)

+isSubfolder(folder: String, possiblesubfolder: String): boolean

+listSubfolders(type: int): JwmaFolder

+listSubfolders(): JwmaFolder

+listSubfolders(type: int, subscribed: boolean): JwmaFolder

+hasSubfolders(): boolean

+hasMessages(): boolean

+getNewMessageCount(): int

+hasNewMessages(): boolean

+getUnreadMessageCount(): int

+hasUnreadMessages(): boolean

+getMessageCount(): int

+isEmpty(): boolean

+getActualMessage(): JwmaMessage

-getMessage(num: int): Message

+getReadMessages(): int

+getNextMessageNumber(): int

+getPreviousMessageNumber(): int

+checkMessageExistence(number: int): boolean

+getJwmaMessage(num: int): JwmaMessage

+getDraftMessage(num: int): JwmaMessage

+listMessageInfos(): JwmaMessageInfo

+getMessageInfoList(): JwmaMessageInfoListImpl

+deleteActualMessage(): int

+deleteMessage(number: int)

+deleteAllMessages()

+deleteMessages(numbers: int)

+moveActualMessage(destfolder: String): int

+moveMessage(number: int, destfolder: String)

+moveMessages(numbers: int, destfolder: String)

+writeMessagePart(part: Part, out: OutputStream)

+equals(o: Object): boolean

+prepare()

+update(store: JwmaStoreImpl)

+createJwmaFolderImpl(store: JwmaStoreImpl, f: Folder): JwmaFolderImpl

+createJwmaFolderImpl(store: JwmaStoreImpl, fullname: String): JwmaFolderImpl

+createLight(folder: Folder): JwmaFolderImpl

JwmaInboxInfo

<<interface>>

JwmaMessage

#m_ActualMessage

JwmaMessageInfoListImpl

#m_MessageInfoList

JwmaStoreImpl

#m_Store

-m_TrashFolder

-m_JwmaRootFolder

-m_ActualFolder

-m_InboxFolder

JwmaStoreInfo

<<interface>>

JwmaTrashInfo

<<interface>>

javax.mail.Folder

#m_Folder

JwmaFolderList

#m_SubFolders

-m_Folders

Figure 2.1: Folder class in the jwma e-mail implementation
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Figure 2.1 shows how the folder class implementation JwmaFolderImpl, is ar-

ranged in the application (jwma WebMail).

There are few things to be noted here: the composition objects (aggregations,

associations, attributes), the public interface methods of jwmaFolderImpl class,

and the constructors.

A deeper look at the source code (see also source code listing 1.1) and design

documentation reveals that there are two associations. The first one is m Store is

actually a backward reference to the aggregator object jwmaStoreImpl. The second

one m Folder is a strong aggregation on the abstract class abstract Folder of

javax.mail package. The class jwmaFolder also acts as a wrapper to Folder.

The instance attributes of interest to us are: m FolderList and m MessageInfoList

represent the list of sub-folders and the list containing brief message informations re-

spectively. Some methods implementation too have been shown in the source code

listing 1.1 to highlight how these methods are using the class and instance fields.

Now, if we want to factor out this jwmaFolderImpl class, for the three scenarios

described above, we find that it is quite cumbersome and not at all straightforward.

The main difficulties that arise are listed below:

• The functionality of the jwmaFolderImpl class in the form of methods, is

not arranged in a manner so that it is easy to factor or extract out the sub-

functionalities. This is understandable because that was never the aim in this

implementation.

• The jwmaFolderImpl has various aggregate objects, and the functionality is

further embedded in these objects.

• The jwmaFolderImpl implements three interfaces JwmaFolder, JwmaTrashInfo,

and JwmaInboxInfo and in case we are using polymorphic messages in the

application, we cannot subgroup the methods from these interfaces.

• The constructors initialize the contained objects, and we need to rewrite them

when we factor out the functionality.

• The aggregated Folder class is abstract, and it is not clear what should we

refactor: abstract class, its implementation, or the full inheritance chain.

These implementation features of jwmaFolderImp class make the partitioning

of this class very difficult.

This points out to the fact that we need to reformulate and also redesign our

entity, jwmaFolder, in a way so as to make it more amenable to such refactorings.

In essence, we seek to make it breakable.
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2.2 Motivation-II: Fine Grained Reuse

Lehman and Ramil [Leh01] describe software evolution as: All programming activ-

ity that is intended to generate a new software version from an earlier operative one.

But new version of a software usually tends to be a bulkier or more comples; quoting

Walter Bender, Executive Director of the MIT media lab.

“I don’t think I’ve ever seen a piece of commercial software where the next

version is simpler rather than more complex.”

Though the need for designing software for expansion as well as contraction has long

been advocated, e.g. in [Par78], the contraction part has been largely been overlooked.

We don’t have program entities or composition mechanisms which encourage this. In

object-oriented domain, techniques like inheritance and aggregation have proved to be

a useful over the years. Other techniques like multiple inheritance and mixins help

to create new classes by combining the implementations (behaviors) or two or more

classes, or a class and a mixin.

However, these techniques only allow the whole to be added on to the new class.

There might be cases where only a part and not the whole is required to be present in

the newly created class. Techniques like multiple selective inheritance [Dor94] address

some of these concerns.

InstitutePerson

+name

+ID

+address

Faculty

+designation

+coursesTaught

+researchProjects

+consultancyProjects

Student

+category

+coursesEnrolled

+coursesTA

VisitingScholar

+parentUniversity

The Visiting Scholar is neither fully

a Student, nor fully a Faculty, so

multiply inheriting it from Faculty

or Student would be incorrect.

Figure 2.2: Example of how normal extensibility proves insufficient

Consider the following example shown in Figure 2.2. From the two classes faculty

and student, we need to take out the fragment functionality which we require in the



16 CHAPTER 2. Motivation and Background

visiting scholar. Simple extensibility techniques prove in sufficient. Figure 2.3 shows

the compositions when we consider part-functionality. In short, we need mechanisms

to allow part-functionality extensibility both for contraction, as well as expansion.

InstitutePerson

+name

+ID

+address

Faculty(Partial)

+researchProjects

Student(Partial)

+coursesEnrolled

VisitingScholar

+parentUniversity

VisitingScholar inherits only

the relevant characteristics

of the parents Faculty and

Student.

Figure 2.3: Example for optimal or selective extensibility

2.3 Motivation-III: Variability Support

Product families requires different products to support variations of some features

(Section 2.7 provides a more detailed discussion on the variability issues). A feature

variation at product level in an object oriented software can affect an individual class or

a series of related classes. Many approaches, including feature oriented programming

FOP and role based programming [Che05] [Ste00] have been proposed for achieving

this kind of variability.

In this section we shall discuss an example variability scenario, to illustrate the fact

that while supporting variability at class-level, the normal extensibility mechanisms

like static inheritance chains, may sometimes prove to be inadequate. This example

is somewhat similar to the one discussed by Valecia in smalltalk tutorial2 and also

presented by Mezini in [Mez02] [Mez97].

Consider a case, where we want to model and implement Bank Accounts. Many

variations that can exist are described below:

2http://www.gnu.org/software/smalltalk/gst-manual/gst.html
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Single person account Individual accounts which are most common personal in-

vestment accounts.

Shared account Joint accounts are set up by more than one person.

Corporate account There are opened by institutions, companies, partnerships, trust

and non-profit organizations. Require higher minimum investment.

Express account Designed for people who prefer to bank by ATM, telephone or

personal computer, this account usually boasts unlimited check writing, low

minimum balance requirements, and low or no monthly fees.

Checking account This account is for the customer who uses a checking account for

little more than bill-paying and daily expenses, and does not maintain a high

balance.

Saving or Interest-bearing Usually requires a minimum balance to open, with an

even higher balance to maintain in order to avoid fees.Interest is paid monthly,

at the conclusion of your statement cycle.

Senior/student checking Many institutions offer special checking deals if you are

a student or age 55 or over. The perks vary from bank to bank, but may include

freebies on checks, cashiers and traveler’s checks, ATM use, better rates on loans

and credit cards, or discounts on everything from travel to prescriptions.

Money market This account combines checking with savings and/or investment op-

portunities to help you pursue higher earnings. Requires high minimum deposit

to open.

Life-Line These ”no-frills” accounts for low-income consumers are typically products

with very low monthly fees . They require a low, if any, minimum deposit and

balance, and allot a certain number of checks per month.

In Figure 2.4 we try to build a hierarchical class taxonomy of different types of

accounts. Although this example does not consider dynamic or conditional variations

such as running account v/s blocked account, or pessimistic v/s optimistic transaction

algorithms [Mez02] [Mez97], still we soon encounter many difficulties. Some of these

are described below:

• When there many variations of an entity, a single strict hierarchical layout might

not work. To include every feature combination, the hierarchy would grow gi-

gantic in size.
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Figure 2.4: Possible hierarchies for accounts example

• Multiple inheritance is required and helps to reduce the hieararchy tree-size, but

again it has its own set of problems like name conflicts.

• If the feature plans change dynamically or over a period of time, the old hierar-

chical structure may not remain relevant.

If classes or objects can be viewed as made up of multiple parts, the variation in

the different versions has been provided by adding, removing or specializing a certain

functionality existing in a class. The main point that we emphasize is that different

object incarnations require different specialization. It is difficult to support all the

variations through normal inheritance mechanisms. An approach which would allow

specializations at fragment level is desirable.

In the rest of this chapter, we discuss in detail the software engineering areas that

form the background of these motivations.

2.4 Notion of Breakability

We believe that an important property of flexible software is breakability, which

has previously not been adequately applied at the architectural and design stages of

software development. We define it here, informally as:
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Breakability is ability of the software which has been already designed and/or

implemented, to be split into smaller constituent components, which can

then become new and independent units for modification or replacement.

In other words, breakability is the capability of a software base to disassemble

effectively. This tearing apart of the application and extracting useful and reusable

components in a systematic manner, in our view, leads to more managed evolution of

the softwares.

Car

Engine Chassis ... Interior Exterior

Radiator EngineBlock Battery AirCondtioner Seats

DriverSeat FrontPassengerSeat RearSeat

DashPanel Carpet

Cylinder SparkPlug CamShaft ...

...

Figure 2.5: Components of a car-assembly

The examples of breakability abound in the real life. Consider a car object in

Figure 2.5. It is made up of a number of components which can be separated or

taken apart (shown in white). Some of these components are unbreakable (shown in

light grey), by which we mean that if we try break (or decompose) them further, we

loose their usefulness in the considered context. Such component are, for example,

the tyres of a car, the front-glass, hood etc. There are other components which are

breakable, for example, the engine, which can be further broken down into cylinder,

piston etc. The flexibility in the construction of cars, has not only come from the

property that these components are replaceable but also from the fact, that the main

car object is breakable. This means that we have ability to extract these constituent

parts. Please note that breakability is also an abstraction and depends upon the view

under consideration. It is quite possible that breakable object in once scenario, might

be considered breakable in another. Figure 2.6 shows the assembly of a radio control

helicopter, which has various levels of breakability. Another example that we mention

here, before we consider breakability with respect to software artifacts, is that of a

graphics drawing application. Consider the clip-art object shown in the Figure 2.7.

This object can be ungrouped (or split), to yield constituting graphics objects. The
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Figure 2.6: Objects in a Ergo 30/46 CCPM radio control helicopter assembly

breaking down process can continue until we reach objects which are unbreakable.

These applications provide useful operations of the form group or ungroup. We can

group the split sub-objects into new groups and use them in entirely new graphical

contexts, thus enhancing the overall flexibility of the drawing application.

In software context, we deal with many forms of decompositions and at various

stages of software development. At the architectural and design stage we decompose

the functionality of requirements into modules and components/objects. We argue,

that this does not guarantee or ensure breakability of artifacts once they are trans-

formed into implementation units. Hence, it is equally important how we compose

these artifacts. However, there are already few prevailing architectural principles that

when applied enhance the breakability of software. For example, encapsulation or

designing to an interface principles enable the implementations to be separated from

the interface interactions. These allow implementations to be easily replaced without

the need to change the client software.

In object oriented systems, the objects become the atomic units of functionality.

The objects can be composed to form other objects. Once composed, however, the

composed units become a composite whole, and viewed as singular units. We believe

that object themselves, should be considered breakable. This would greatly enhance

the breakability of an object-oriented software, in turn making it more flexible. In

this thesis we look at these issues and consider the implications of BoB splitting
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Figure 2.7: Graphic objects in a PowerPoint application

transformations - behavior-preserving as well as those that extend functionality of the

given application.

2.5 Automatic Application Partitioning

Application partitioning refers to, breaking up of the application into components

while preserving the semantics of original application. The source application might

be designed, implemented and debugged to run on a stand-alone system. The re-

sulting components, however, are distributed so as to take advantage of distributed

setting. Automatic partitioning, hence, is described as the process of adding distribu-

tion capabilities to an existing centralized application without needing to rewrite the

application’s source code or needing to modify existing runtime systems. [Lio04]

Partitioning of object-oriented programs is motivated by the following reasons :

Distribution of program components Consider a large-scale, multi-user appli-

cation using a wide variety of resources in a network. For example, a large

banking application has its databases distributed over geographically separated

areas. A properly distributed application, would have components distributed

all over the network in an optimal manner, reducing amount of remote commu-

nication overheads; thereby optimizing the program execution. In contrast, a

stand-alone system based application might be situated at some central node
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making expensive network calls. In addition to this, a distributed program al-

lows load-balancing, where idle hosts can share the load of a busy system by

hosting some of the components.

Abstraction over the middleware Remote Method Invocation (RMI), DCOM,

CORBA provide mechanisms for developing remotely invocable components in

languages like Java, C++, C # etc. However, these middleware technologies

can be quite complicated to code. They have special coding constructs, and pro-

grammer has to think about distribution mechanisms while designing the classes.

Java RMI, for example, needs each remote class to be specifically defined to

extend a special interface. Creating a remote object and getting its access on

remote node is a tedious job.

Abstraction over deployment scenarios Primarily been designed to cater to client-

server systems, current middleware technologies also fail to provide enough ab-

straction for efficient placement of components. The programmer has to think

and consider the deployment aspects while designing the application. Finally,

these constraints prevent the program to be re-deployed efficiently in different

distributed settings.

Summing up, automatic application partitioning systems help to separate distri-

bution concerns from application logic.

2.5.1 A Taxonomy for Automatic Application Partitioning

We present here a brief discussion for automatic application partitioning tech-

niques. The taxonomy is based on the ones discussed in [Ved06] and [Spi02].

Explicit and Implicit Approaches

Application partitioning approaches, as described in the previous sections, work

from within the programming language, rather than modifying execution environ-

ments. These are called explicit approaches[Spi02]. They work by forming a layer

above the standard middleware of the corresponding programming language.

Partitioning can be also achieved by mechanisms that work by modifying the exe-

cution environment of an application. These are called as implicit approaches. These

systems do not work on the programming language level. Instead, a Distributed

Shared Memory(DSM) environment is used. DSM mechanisms involve caching and

replication, which can be done at different levels like page and object. Though they

make things more transparent, the efficiency of these a systems is usually lesser than
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the explicit approaches[Spi02]. Also, since these are often non-standard mechanisms,

they cannot be extended to different machine architectures.

Implicit approaches are beyond the scope of concern of this thesis and we shall

not discuss them further. In the rest of this section we discuss with various aspects of

explicit approaches.

Distribution Infrastructures

A partitioning framework or middleware works on top of a distribution middleware

(DCOM, CORBA, RMI, etc.). It provides an analysis component which creates dis-

tribution policy, and a translation component which processes the distribution policy

and transforms the source code into remote-enabled code accordingly. Another major

task is to handle the various issues related to the middleware. There are a num-

ber of systems that provide such infrastructure support. J-orchestra [Til02], Pangaea

[Spi99] , Addistant [Tat01] try to automate application partitioning of arbitrary Java

programs, Coign [Hun98] does partitioning of COM based applications

The distributed infrastructures expect a detailed distribution specification about

component. Specification (e.g, as in [Til02]) is of the form:

• Location of component, (class or object location).

• Parameter passing mode (visit, move, reference, copy) for formal arguments for

each method.

• Migration policy (fixed or migrable) for classes.

Further we need a way to specify distribution policy in the system. Mechanisms

for specifying the distributions are of the following form:

• Additional Constructs Additional keywords and constructs extending Java

language are provided to declare remotely accessible classes. E.g., as in Java

Party[Phi97]

• Comments Comments written above the classes in a specified format. E.g., as

in Doorastha[Dah00]

• Confiuration File A configuration file per class. E.g. J-Orchestra[Til02] uses

an XML configuration file, Addistant[Tat01] uses a special configuration file,

indexed by hosts for the same.
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Figure 2.8: A taxonomy for Automatic Application Partitioning techniques

Distribution of components causes some interactions to be local while increasing

the remote communication overhead for others. A partitioning strategy should tries

to balance these two opposing factors. In the next three sections we discuss various

features of a partitioning scheme.

Analysis Techniques

The partitioning scheme needs to identify closely interacting components so that

they can be co-located. This involves program analysis to identify dependency rela-

tionships between the components. The analysis can be done on source code, or on

the binary or byte code. Further, the analysis can be static or dynamic.

• Static Analysis Involves techniques like, call-graph creation and doing depen-

dency analysis based on it. Available libraries for code analysis can be used.

Source-code level analysis are easier to comprehend, whereas byte-code level

analysis techniques have the advantage that they can include analysis of system

classes.
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• Dynamic Analysis Involves instrumentation of the existing code, to profile

application runs. This profiling again can be of two types: on the standalone

code itself, or distribution-enabled code. Profiling can be used, to study the

component interactions and subsequent logs be then analyzed and classified.

Granularity of Distribution Component

Since an object-oriented program comprises of classes and objects, granularity of

partitioning component can be class or an object.

• Class-Level Partitioning This kind of partitioning aims at grouping closely

interacting classes together. The source code comprising of different classes can

be divided across the hosts. This kind of partitioning is based on the assumption,

that objects of a single class will exhibit similar behavior, use same resources

and hence should be placed on the same host. Further, classes can be clustered

into groups.

• Object-Level Partitioning Object level partitioning are useful where the

above assumption does not hold good and objects from the same class may

be operating in different contexts and interact with different objects. Allocating

all objects of one class to one node can lead to inefficient partitioning. Hence, in

object level partitioning, the primarily aim in not the division of source classes,

but that of instantiated objects across different hosts.

Allocation Decision

This feature is based on the time of actual allocation the deployment decision.

• Offline Component allocation is decided before execution and is specified in the

form of annotations within the program or through a configuration file.

• Online Component allocation decision is postponed till run-time.

Most the application partitioning systems work by pre-deciding the component allo-

cation before the actual execution of program. Veda [Ved06] discusses a mechanism

for online component allocation.

We state the problem that we are trying to solve:

In the next section. . .
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2.6 Separation of Concerns and Modularization

A concern is a piece of interest or focus in a program. Separation of concern is a

fundamental software engineering principle which states that a given problem involves

different kind of concerns, which should be identified and separated to cope with

complexity . This is done to achieve the required quality factors such as robustness,

adaptability and re-usability [Aks01].

2.6.1 Modularization

The separation of concerns principles states that each concern of a given software

design problem should be preferably mapped to one module in the system. The ad-

vantage of this is that concerns are localized and as such can be easier understood,

extended, reused, adapted etc. Figure 2.9 shows that the design problem is decom-

posed into various concerns C1 to Cn and each of these concerns is mapped to a

separate module M.

M1 M2 MnM3 M4

C3 CnC2 C4C1

M1C1 Concern Module

Figure 2.9: Concerns (C) and Modules (M)

The term separation of concern was first used by Edsger W. Dijkstra [Dij76]. It was

expressed in other idioms like information hiding by Parnas in [Par72] [Par85], though

the term was not used directly. Parnas emphasizes the concept of information hiding

modules and discusses the criteria to be used in decomposing system into modules -

identifying design decisions that are likely to change and isolating them into separate

modules (separation of concerns). He also points out that different design decisions

might require different decompositions.

A module is an abstraction of a modular unit in a given design language (class,

function, procedure, etc). For example, in structural methods, concerns are repre-

sented as procedures. In object-oriented programming, the separated concerns are
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modeled as classes or objects , which are generally derived from the entities in the re-

quirement specification and use cases [Aks01]. Hence, object-oriented decompositions

allow problem domain concepts to be directly reflected in the implementation concepts.

Further, we can say that the classes are the primary decomposition mechanisms and

the methods are the secondary decomposition mechanism.

BA C Method

Class

Figure 2.10: Modularization of concerns in a Class

Figure 2.10 shows how concern space is divided into classes and methods.

2.6.2 Cross-Cutting Concerns

Many concerns can indeed be mapped to single modules. Some concerns, however,

cannot be easily separated, and given the design language we are forced to map such

concerns over many modules. This is called crosscutting.

In Figure 2.11, for example, concern C4 is mapped to the modules M1, M2, M3,

and M4. We say that C4 is a crosscutting concern or an aspect. Examples of aspects

are monitoring, logging, synchronization, load balancing etc. Aspects are not the

result of a bad design but have more inherent reasons. A bad design including mixed

concerns over the modules could be refactored to a neat design in which each module

only addresses a single concern. However, if we are dealing with these crosscutting

concerns this is in principle not possible, that is, each refactoring attempt will fail

and the crosscutting will remain. A crosscutting concern is a serious problem since

it is harder to understand, reuse, extend, adapt and maintain the concern because it

is spread over so many places. Finding the places where the crosscutting occurs is

the first problem, adapting the concern appropriately (without unforeseen effects) is
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another problem.

M2M1 M3 M4

C2

C1

C4

C3

Crosscutting

Tangling

Joinpoints

Derived Aspect Modules

Principal  Modules

Concerns

Figure 2.11: Cross-Cutting and Tangled Concerns

Tangled Concerns

Since we cannot easily localize and separate crosscutting concerns several modules

will include more than one concern. We say that the concerns are tangled in the

corresponding module. For example in Figure 2.11, the concerns C1, C2 and C4 are

tangled in the module M1 and M4. Note that concern C3 is not crosscutting.

Joinpoints

In Figure 2.11 the modules have been aligned over the horizontal axis and the

concerns over the vertical axis. The squares represents the places where the concerns

crosscut a module. These are called joinpoints. Joinpoints can be at the level of a

module (class) or be more refined and deal with sub-parts of the module (attribute,

operation) etc. Crosscutting can be easily identified if we follow a concern in a hor-

izontal direction (multiple joinpoints). Tangling can be detected if we follow each

module in the vertical direction (multiple joinpoints).
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2.6.3 Aspect Decomposition

Conventional abstraction mechanisms may fail to appropriately cope with these

crosscutting concerns. Aspect approach provides explicit abstractions for representing

crosscutting concerns. As such, a given design problem is decomposed into concerns

that can be localized into separate modules and concerns that tend to crosscut over a

set of modules. Pointcuts specify the points at which the aspects crosscuts. To each

poincut and advice can be attached, which specifies the behaviour that is needed at

those pointcuts.

2.6.4 Multidimensional separation of concerns

The concept of multi-dimensional separation of concerns(MDSOC) was proposed

in [Tar99] and the key idea is to simultaneously support various concern encapsula-

tions in a software system. This includes overlapping and interacting concerns. Done

well, a multidimensional separation of concerns, enables on-demand remodularizations,

thus ameliorating many of the limitations of the dominant initial modularization. The

many advantages that are sought through MDSOC are improved comprehension, bet-

ter reuse, resilience to impact of change, and improvement is ease of maintenance,

evolution and traceability of the programs.
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Figure 2.12: Hypersplices in payroll application

Once such approach is hyperspaces [Oss01a]. In it, based on a concern a set of units

can be selected to from modules called hyperslices. Thus a hyperslice encapsulates

concerns. Relationships between hyperslices can be specified, and they can be used

to control flexible composition of hyperslices into hypermodules. Figure 2.12 shows
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the hyperslices along the two features - payroll and and personnel. Each hyperslice

separates these concerns in the classes Employee, Temporary, adn Regular. Sets

of hyperslices thus represent different decompositions of the software and by composing

them in a desired manner, components and systems can be built.

In the next section we consider various mechanism that exsit for achieving vari-

ability in software product lines.

2.7 Variability in Software Product Lines

A software product family is a collection of systems sharing a managed set of

features derived from a common set of core software assets [Cle01].

Software product families are required, when there is a need to create different (but

related) software products in order to better service the various market segments, and

the amount of software necessary for individual products is substantial. It becomes

important to exploit the commonality between different products and to implement

the differences between the products as variability in the software artifacts.

Software variability is then the ability of a software system or artefact to be ef-

ficiently extended, changed, customized or configured for use in a particular context

[Rie03]. It can also be defined as the ability of a system, an asset, or a development

environment to support the production of a set of artifacts that differ from each other

in a pre-planned fashion [Bac05].

2.7.1 Features

It is important to identify where the variability is needed in the software product

family. Variability is more easily identified when a system is modeled using features. A

feature is a logical unit of behavior that is specified by a set of functional and quality

requirements [Gur01]. Features are used to differentiate various products in a product

family. The process of identifying variability, hence consists of listing features which

may vary between products. The features can be classified as:

Mandatory These are the features that must be present in all the variants. In

essence, they identify the product.

Variant A variant is an abstraction for a set of related features. In XOR variants,

only one of the variants is selected and in OR variant, more than one variant

may be selected.
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Optional These features have the option to be selected or rejected for a product.

When selected they add some value to the core features.

External These are the features, which result from the capabilities of the deployment

platform and are external to the main requirement specification.
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Figure 2.13: ATM Feature Model

Figure 2.16 shows an example for an ATM product line with a feature ATM as

concept feature using Feature Oriented Domain Analysis(FODA) method [Kan90].

The feature debit card reader is a mandatory feature, stating that it is common to all

instances of the domain, because every ATM has a reader for debit cards. The feature

receipt printer is marked as optional by an empty bullet, because there are ATMs in

this product line example without a printing device.

Feature models help software architects and software developers [Rie03] in the

development of a product line by:

• defining reusable components and separating them according to the Separation

of Concerns principle

• assigning reusable components to variable features

• describing dependencies and constraints between components and features

• controlling the configuration of products out of the reusable components
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Figure 2.14: Similar semantics of hierarchical relation and dependency relation

FODA also introduces some composition rules like requires and mutex-with. These

rules control the selection of variable features in addition to hierarchical relations. If,

for example as shown in Figure 2.14, a feature F is selected and there is relations

F requires E, then E has to be selected as well. Oppositely, if there is a relation

B mutex− with C, then if B is selected, C has to be unselected.

Thus, a feature model provides an overview of the requirements, and it models the

variability of a product line. It is used for the derivation of the costumer’s desired

product and provides a hierarchical structure of features according to the decisions

associated with them.

By linking features to requirements, detailed information from the problem domain

is reachable. By linking features to elements of design and implementation, additional

information about details of the solution domain are provided. These links are built

using traceability links as shown in ERM diagram Figure in 2.15.

Feature

Implementation

Item

Design

Element
Requirement
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Figure 2.15: References between features, requirements, design and implementation
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2.7.2 Realizing Variability

The product family architecture and shared product family components must be

designed in such a way that the different products can be easily and effectively sup-

ported. These related products might be achieved by replacing components, extensions

to the architecture or particular configurations of the software components.

Additionally, the software product family must also incorporate variability to sup-

port likely future changes in requirements and future generations of products. This

means that when designing the commonalities of a software product line, not all deci-

sions can be taken. Instead, design decisions are left open and determined at a later

stage, e.g. when constructing a particular product or during runtime of a particular

product.

Nature of Variant

A variant can be implemented in many ways, for example as a component, a

set of classes, a single class, a few lines of code, or a combination of all of these.

Table 2.7.2 shows different software entities are most likely to be in focus during the

different stages of variability implementation: architecture design, detailed design,

implementation, compilation and linking.

Table 2.1: Entities involved in different development stages [Sva05]

Development activities Software entities in focus

Architecture design Components ,Frameworks

Detailed design Framework implementations, Sets of classes

Implementation Individual classes, Lines of code

Compilation Lines of code

Linking Binary components

Variant Introduction

When a variant feature is introduced into the software product family (by a domain

engineer) it takes the form of a set of variation points. The variation points are used

to connect the software entities constituting the variants with the rest of the software

product family. The decision on when to introduce a variant feature is governed by a

number of things, such as:

• the size of the involved software entities;
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• the number of resulting variation points;

• the cost of maintaining the variant feature.

Variant Population

During this step the software entities of the variants are created such that they

fit together with the variation points introduced in the previous step. After this, the

variation points are instrumented to be made aware of each new variant. Depending

on how a variation point is implemented, the population is either done implicitly or

explicitly.

If the population is implicit the variation point itself has no knowledge of the

available variants and the list of available variants is not represented as such in the

system. With an explicit population the list of available variants is manifested in the

software system. This means that the software system is aware of all of the possible

variants, can add to the list of available variants and possesses the ability to discern

between them and by itself select a suitable variant during runtime.

Variant Binding

The main purpose of introducing a variant feature is to delay a decision, but at

some time there must be a choice between the variants and a single variant will be

selected and used. This is referred to as binding of a variant. Binding can be done at

several stages during the development and also as a system is being run. Consequently

binding can happen during any of these phases: (i) Product architecture derivation,

(ii) Compilation, (iii) Linking, or (iv) Runtime.

The other aspect of binding is to decide whether or not the binding should be

done internally or externally. Internal binding implies that the system contains the

functionality to bind to a particular variant. This is typically true for the binding that

is done during a system runtime. External binding implies that there is a person or

a tool external to the system that performs the actual binding. This is typically true

for the binding that is done during product architecture derivation, compilation and

linking, where tools such as configuration management tools, compilers and linkers

perform the actual binding.

Variability Mechanisms

There are various mechanisms [Jac97] [Gac01] for achieving architecture variability:

• component replacement, omission, replication

• parameterization (including macros, templates)
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• compile-time selection of different implementations (e.g., #ifdef)

• OO techniques: inheritance, specialization, and delegation

• application frameworks

• configuration and module interconnection languages

• generation and generators

• aspect-oriented programming - an approach for modularizing system properties

that otherwise would be distributed across modules

In the next section we shall discuss the various contexts in which these variability

mechanisms are used.

2.7.3 Variability Realization Techniques

These provide different ways to implement the variation points for a variant fea-

ture. A taxonomy of variability realization techniques is presented in [Sva05]. We

discuss these techniques briefly with respect to their intent and variability solution

mechanisms, below:

Architecture reorganization Supports several product-specific architectures by re-

organizing (i.e. changing the architectural structure of components and their

relations) the overall product family architecture.

In this realization technique, the components are represented as subsystems

controlled by configuration management tools or, Architecture Description Lan-

guages (ADLs). Examples are Koala [Omm02], XVCL [Zha04], or different ADLs

[Med00]). Which variants are included in a system is determined by the configu-

ration management tools. Some variation points may be resolved at this level, as

the selected components may impose a certain architecture structure. Typically

this technique also requires variation points that are in focus during later stages

of the development cycle in order to work.

Variant architecture component Support several, differing, architecture compo-

nents representing the same conceptual entity.

The solution is to support a set of components, each implementing one variant

of the variant feature. The selection of which component to use at any given

moment is then delegated to the configuration management tools that select what

component to include in the system.

Optional architecture component Provide support for a component that may, or

may not, be present in the system. That is, it may be present in one product

and not the other.
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There are two ways of solving this problem. If we want to implement the solu-

tion on the calling side, the solution is simply delegated to variability realization

techniques introduced during later development phases. To implement the so-

lution on the called side ( convenient, but less efficient), we can create a null

component. This is a component that has the correct interface, but replies with

dummy values.

Binary replacement - linker directives Provide the system with alternative im-

plementations of underlying libraries.

The solution is to represent the variants as stand-alone library files, and instruct

the linker which file to link with the system.

Binary replacement - physical Facilitate the modification of software after deliv-

ery.

In order to introduce a new variation point after delivery, the software binary

must be altered. The easiest way of doing this is to replace an entire file with

a new copy. To facilitate this replacement the system should thus be organized

as a number of relatively small binary files, to localize the impact of replacing a

file. Furthermore, the system can be altered in two ways: either the new binary

completely covers the functionality of the old one or the new binary provides

additional functionality in the form of, for example, a new variant feature using

other variability realization techniques.

Infrastructure Centered Architecture Make connections as first-class entity.

The solution is to convert the connectors into first-class entities, so the com-

ponents are no longer connected to each other but are rather connected to the

infrastructure, i.e. the connectors. This infrastructure is then responsible for

matching the required interface of one component with the provided interface

of one or more other components. The infrastructure can either be an existing

standard, such as COM or CORBA [Szy02], or it can be an in-house developed

standard such as Koala [Omm02]. The infrastructure may also be a scripting

language, in which the connectors are represented as snippets of code that are

responsible for binding the components together in an architecture. These code

snippets can either be done in the same programming language as the rest of

the system, or they can be done using a specialized scripting language [Ous98].

Variant Component Selection Adjust component implementation to product ar-

chitecture.
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Solution is to separate the interfacing parts into separate classes that can decide

the best way to interact with the other component. Let the configuration man-

agement tool decide what classes to include at the same time as it is decided

what variant of the interfaced component to include in the product architecture.

Optional Component Specializations Include or exclude part of component im-

plementations.

One solution is to separate the optional behavior into a separate class and create

a null class that can act as a placeholder when the behavior is to be excluded. Let

the configuration management tools decide which of these two classes to include

in the system. Alternatively, surround the optional behavior with compile-time

flags to exclude it from the compiled binary.

Runtime Variant Component Specialization Support the existence and selec-

tion between various specializations inside a component implementation.

There are several Design Patterns [Gam00] that are applicable here, for example

Strategy, Template Method and Abstract Factory. Alternating behavior is col-

lected into separate classes, and mechanisms are introduced to select, at runtime,

between these classes. Design Patterns use language constructs such as inheri-

tance and polymorphism to implement the variability. Alternatively, generative

programming solutions such as C++ templates may also be used [Cza00].

Variant Component Implementations Support several coexisting implementations

of one architecture component so thateach of the implementations can be chosen

at any given moment.

Solution is to implement several component implementations adhering to the

same interface and make these component implementations tangible entities in

the system architecture. There are a number of Design Patterns [Gam00] that

facilitate this process. For example, the Strategy pattern is on a lower level a

solution to the issue of having several implementations present simultaneously.

Using the Broker pattern is one way of assuring that the correct implementation

gets the data, as are patterns like Abstract Factory and Builder.

Condition on Constant Support several ways to perform an operation, of which

only one will be used in any given system.

As a solution we can use two different types of conditional statements. One

form includes pre-processor directives such as C++ #IFDEFs, and the other is

the traditional if-statements in a programming language. If the former is used
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it can be used to alter the architecture of the system, for example by opting to

include one file over another or using another class or component, whereas the

latter can only work within the frame of a given system structure. Another way

to implement this variability is by means of C++ templates which are handled

similarly to pre-processor directives by most compilers.

Condition on Variable Support several ways to perform an operation of which only

one will be used at any given moment but allow the choice to be rebound during

execution.

The solution is to replace the constant used in condition on constant with a

variable and provide functionality for changing this variable. This technique

cannot use any compiler directives but is rather a pure programming language

construct.

Code Fragment Superimposition Introduce new considerations into a system with-

out directly affecting the source code.

The solution to this is to develop the software to function generically and then

superimpose the product-specific concerns at a stage when the work with the

source code is completed. There are a number of tools for this, for example

Aspect Oriented Programming [Kic97], where different concerns are weaved into

the source code just before the software is passed to the compiler and, superim-

position [Bos99], where additional behavior is wrapped around existing behavior.

Table 2.7.3 presents a detailed snapshot of various variability realization tech-

niques.
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Table 2.2: Snapshot of variability realization techniques

SNo. Name Involved

Entities

Variant

Intro-

duction

Open for

adding

variants

Binding

times

Variants

Collec-

tion

Function-

ality for

binding

1 Architecture reorga-

nization

Co,Fr AD AD PAD Imp Ext

2 Variant architecture

component

Co,Fr AD AD, DD PAD Imp Ext

3 Optional architec-

ture component

Co, Fr AD AD PAD Imp Ext

4 Binary replacement

linker directives

Co, Fr,

CoI,FrI,Cl

AD L L Imp/Exp Ext/Int

5 Binary replacement

physical

Co, Fr,

CoI, FrI,

Cl

AD AC BR Imp Ext

6 Infra-structure cen-

tered

Co, Fr AD AD,L,R C,R Exp Int

7 Variant component

specializations

CoI,FrI,Cl DD DD PAD Imp Ext

8 Optional compo-

nent specializations

CoI,FrI,Cl DD DD PAD Imp Ext

9 Runtime variant

component special-

izations

CoI,FrI,Cl DD DD R Exp Int

10 Variant component

implementations

CoI,FrI,Cl AD DD R Exp Int

11 Condition on con-

stant

LoC I I C Imp Int/Ext

12 Condition on vari-

able

LoC I I R Imp/Exp Int

13 Code fragment

super-imposition

CoI,FrI,Cl,

LoC

C C C/R Imp Ext

Co: Components, Fr: Frameworks, CoI: Component Implementation, FrI: Framework

Implementation, Cl: Classes, LoC: Lines of Code,

AD: Architecture Design, DD: Detailed Design, PAD: Product Architecture Derivation,

AC: After Compilation, I: Implementation, C: Compilation, L: Linking, BR: Before

Runtime R : Runtime,

Imp: Implicit, Exp: Explicit, Int: Internal, Ext: External.
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Table 2.3: Motivational Scenarios

Motivation Larger Context Particular Context

Ex I Application Partitioning and MD-

SOC

Class Partitioning

Ex II Software reuse Partial class extensibility and

composition

Ex III Variability in Product Lines Class functionality level variability

2.8 Summary of Example Scenarios

There is need to support constant evolution of softwares. Such a need arises due

to changes in software deployment environment or new user requirements in the form

of new features and new concerns. It is important that software is designed and

implemented in a manner so that it can easily be evolved for the above scenarios.

We observed that once decomposed into modules, classes/objects can become en-

tangled in the software base in a manner that it is difficult or cumbersome to disas-

semble them for modification, replacement or reuse.
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Figure 2.16: Summary of partial functionality usages

We need our software in the form so that we can easily extract its functionality.

Additionally, it is desirable to have mechanisms which allow part functionality of a
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class to be exploited. We summarize the motivational scenarios presented in this

chapter in Table 2.3, which shows the larger contexts in which they occur and the

particular aspects that are of interest to us. Figure 2.16 summarizes the three ways

of partial-functionality usage for a component that results from these motivational

scenarios.

In the next chapter, we introduce Breakable Object (BoB) and Brekable Object

Driven Architecture (BODA).





To create architecture is to put in or-

der. Put what in order?

Function and objects.

Le Corbusier

Chapter 3

BoB and BoB Driven Architecture

This chapter provides the definition for Breakable Object(BoB) and illustrates

the programming process of applying BoBs in an application - BoB driven architec-

ture(BODA).

3.1 BoB

An informal definition of BoB is as follows:

Definition 3.1.1 (BoB) A BoB is an entity (class/object) in a program that can be

readily split into sub entities. Sub entities should be so formed that they can replace

the BoB while retaining the semantics (operational) of the original program.

BoB supports an interface and the partitioning is done on the basis of this interface.

It has an added construct - together - to specify the inseparable groupings on its

interface methods.

A more precise definition is dependent on the specific programming language model

being used. A BoB may be - a class/object in class based systems, an object in object

based systems, a component in component driven systems, or a service in service

oriented programming systems.

In this thesis we concern ourselves with class-based programming language models

only. Definition for Java BoB is given in chapter ??

3.1.1 Features of a BoB

The various features of a BoB are listed below:

BoB Name : It is the name of the class that implements the BoB.

43
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Figure 3.1: BoB

BoB Interface : It defines the services provided by the BoB. It has the following

salient features:

• The set of public methods exported by the BoB provide the interface.

• There are no public attributes (fields) in a BoB interface. Access to

attributes, if needed, is provided through get() and set() methods.

• Inseparable methods: Some of the methods can be grouped together by

the designer of a BoB. These interface methods cannot be separated in

the course of a split. We introduce a language/ preprocessor construct

together to specify such methods.

BoB Implementation : A BoB in a class-based programming language is imple-

mented using a Class in that language. There are two features that BoBs do

not support: viz., BoBs do not inherit and BoBs are not active objects. We

discuss this in the later chapters.

Figure 3.1 depicts a BoB for a class-based programming language like C++, Java,

etc. It consists of name of the BoB class - A and an interface consisting of public

methods m1, m2, m3, m4, m5, and m6 exported by the class. Methods m1 and

m2 are together. The specification is: together{m1, m2};

3.1.2 Splitting Specifications

BoBs are split on the basis of their interface methods and an externally specified

split-configuration file.

For example, consider the BoB A ( Figure 3.1).

Interface IA = {together(m1, m2), m3, m4, m5, m6}

Given split-configuration:

Splitcfg−1A = {s1 =< m1, m2, m4 >, s2 =< m5 >, s3 =< m3, m6 >}
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Figure 3.2: BoB splits generation

After the splitting process ( Figure 3.2 a) , A is split into sub-classes A1, A2, A3

supporting the interfaces:

I1A = {together(m1, m2), m4} ,

I2A = {m5} , and

I3A = {m3, m6} respectively.

The original BoB A is replaced by these split-classes (A1, A2, A3) in the program. This

program transformation is denoted as: A
⊗

−−−−−→
Splitcfg

A1 + A2 + A3

Keeping the specification of split-configurations external to a BoB helps to separate

the splitting and implementation concerns.

3.2 Nature of Splits

We now discuss some of the properties of the splits:

3.2.1 Multi-form splits

The way in which a BoB can be split into sub-object sets is multi-form. That is,

both, the number of splits that are obtained by splitting a BoB, and the form of these

splits (determined by the interface methods supported by it) is variable. For example,

in the Figure 3.2, the BoB after splitting can acquire any of the two different split

forms - (a) or (b), depending upon whether split-config 1 or 2 is used.

3.2.2 Exclusive Splits and Overlapping Splits

If a BoB is split in a such a way that one interface method can belong to only one

split, the splits are said to be exclusive. The case, where a method can belong to more
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than one split, the splitting is said to be overlapping. In this thesis we use exclusive

splitting to build our partitioning models. The overlapping splitting can then easily

be incorporated as a simple extension of exclusive splitting.

3.2.3 Independent and Dependent Splits

The splits generated can be independent or dependent. A split is called an inde-

pendent split if does not refer to and is not referred by any other split from the same

BoB. Otherwise it is called a dependent split. The split in Figure 3.2(a) yields depen-

dent splits, while the one in Figure 3.2(b) yields two independent splits. Independent

splits may lead to ease of redeployment.

3.2.4 Types Implications of Splitting a BoB

Splitting a BoB introduces new classes or types into the system. The new classes

can either entirely replace the principal class in the system or they can co-exist with

the principal class. We shall discuss the implications of these replacements, when we

discuss splitting-engine details in Chapter 10.6. In the present model, the replacement

occurs universally at the class level for every object instance of the principal BoB’s

type.

3.2.5 Levels of Splitting

Since a BoB can contain another BoBs, the splitting can be applied at any level.

If a contained BoB is shared between more than two splits, it can be further split

between them. The level of splitting required, depends on the context of use and is

an externally specified parameter.

3.2.6 Splitting Multiple BoBs

If there are more than one BoBs in a program that need to be split, the splitting

is done iteratively. That is, we proceed by splitting one BoB, reorganizing the rest of

program and then repeating the process for the next BoB, until we are split all the

BoBs which were intended to be split. We shall discuss this in more detail in further

sections.

In the next section we describe the methodology of applying BoBs in an application.



3.3 BoB Driven Architecture (BODA) 47

3.3 BoB Driven Architecture (BODA)

We call an application architecture based on BoBs as BoB Driven Architecture

(BODA) and the resulting process for achieving relocation of an application from one

scenario to another as BODA process. In general, we can say that a BoB driven

architectural process supports two types of application translations:

1. BODA for Application Partitioning: In this, the new concern that we want to

address involves partitioning of an application into different partition spaces.

For example, such a need arises when do automatic transformation of a legacy

code into a distributed application deployed on multiple nodes.

2. BODA for Software Evolution: In this, the new concern or requirement that

we address, modifies the basic functionality of the application. Hence, there

is a need to provide for effective mechanisms for extension and contraction of

the software system. In fact, the ideal that we want is: the new increment (or

decrement) should be in such a manner that architectural quality of the system is

preserved. BODA tries to achieve this by using composition mechanisms which,

not only provide fine-grained reuse solutions, but also provide an architecture

sensitive approach and methodology.

In practice, both these translations need not be always mutually exclusive. For

example, we might light to partition and application on some concern and then con-

sider evolution of that particular partition. Similarly, an effect evolution might need

partitioning or re-modularization of certain parts of the software system.

The next section detail these two BoB driven architectural processes.

3.4 BODA - Application Partitioning

We discuss briefly the 3-stage BODA process for application partitioning:

3.4.1 Stage 1: Design and implementation

In this stage (steps 1-3, Figure 3.3), a deployment and context independent version

of the application implementation is prepared. We proceed with the analysis, design

and implementation phases of software development similar to those for normal object-

oriented programs. We also take the following additional steps:

• The program designer divides the application functionality into a set of objects

and BoBs. The choice as to which class should be defined as a simple class and
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Figure 3.3: BODA process stages for Automated Application Partitioning

which should be defined as a breakable, is application specific and is based on

designers understanding of the future deployment scenarios.

• For each BoB class an interface is defined. It consists of the public methods of

the class and specification of together methods.

Further than this a BoB is treated as just another object in the program. Thus a

base-implementation is done with no splitting on the BoBs.

3.4.2 Stage 2: Splitting and reorganization

In this stage (steps 4-6 , Figure 3.3), application functionality is factored into

specific subsets of objects.
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Figure 3.4: Splitting and Client Reorganization
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• The functionality required on each node of the new scenario is determined. This

functionality is mapped onto - (i) the normal objects in the application, and (ii)

the interface methods of a BoB.

• For the given deployment scenario, the BoB split-configurations are worked out

and specified for all the relevant BoBs.

• The BoBs are automatically split based on these specifications. The rest of

program is reorganized to transform the original BoB references to references to

BoB-splits.

For example, consider we have a program P with two BoB A, and B, and four other

client classes CL− 1,CL− 2, CL− 3, and CL− 4, out of which CL− 1,CL− 2, CL− 3

refer to interface methods of A ( Figure 3.4). Suppose, we are required to split A

based on a split-configuration a, we proceed as follows:

P = {A,B,CL− 1,Cl− 2,Cl− 3}

Splitting BoB A:

A
⊗

−−−−−−−−−−−−−−−→
(Split−Configuration−a)

A1 + A2 + A3

Client Reorganization

Reorganize→ {CL− 1,CL− 2,CL− 3}

New program

P
′

= {A1,A3,B,CL− 1
′

,CL− 2
′

,CL− 3
′

,CL− 4}

where, CL− 1
′

, CL− 2
′

, and CL− 3
′

refer to the new reorganized clients, having the

all references pertaining to A being translated to references to the splits of A.

Now, if we are required to split B too:

B
⊗

−−−−−−−−−−−−−−−→
(Split−Configuration−b)

B1 + B2 +· · ·+ Bl

Client Reorganization: Assuming A2,CL− 2
′

, and CL− 4 refers to B.

Reorganize→ {A2,CL− 2
′

,CL− 4}

New program

P
′′

= {A1,A2
′,A3, · · · ,Ak,B1,B2,· · · ,Bl,CL− 1

′

,CL− 2
′′

,CL− 3
′

,CL− 4
′

}
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The final program transformations are:

P
splitA, reorg
−−−−−−−→ P

′ splitB, reorg
−−−−−−−→ P

′′

The final program obtained after a series of these transformations, is independent

of the order in which BoBs are split. For example, in the above program if we had

split B first and then A, i.e.,

P
splitB, reorg
−−−−−−−→ P˜

splitA, reorg
−−−−−−−→ P≈

then following holds good :

P
′′

= P≈

3.4.3 Stage 3: Partitioning and Deployment Specific Trans-

formations

In stage 3 (steps 7-9, Figure 3.3), the application is partitioned and deployable

distributed components for the new scenario are generated, distributed and deployed.

• Partitioning: Each application object is mapped to a node of the application

deployment setup (deployment-configuration generation). A non-split program

can be partitioned on the basis of individual BoBs. A further, fine grained

partitioning is possible with BoBs. Wherever required, the split-fragments are

partitioned across different partition spaces. These partitions can be exclusive or

overlapping. In exclusive partitioning, split-fragments from a BoB do not have

overlapping interface methods. This restriction is done away with in overlapping

partitioning. For the purpose of this thesis, we consider only exclusive partition-

ing. The overlapping partitioning is a simple extension of exclusive partitioning

process.

• Deployment Specific Transformation Components are prepared for these

new distributed environments by doing source/binary level transformations on

them.

• Distribution The resulting application components are distributed and de-

ployed across these nodes.

For the application described in the figure 1.2, we construct two BoB classes: viz.

BoBFolder and BoBMessage. Figure 8.2 shows the interface and split-configuration

specifications for BoBFolder. It also shows the resulting node-specific splits for the
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Figure 3.5: (a)BoB Partitioning, (b) BoB Split-fragment Partitioning

disconnected deployment scenario. Figure 8.3 shows the distributions for the three

scenarios of e-mail application. The example is further detailed in chapter ??.

The main advantage that BODA offers is the separating out of partitioning con-

cerns from the application design and implementation concerns. It achieves this

through split and deployment configuration specifications, which are external to the

objects and through automation of object refactorings.

3.5 BODA for Software Evolution

We would like software applications to be available to us in a manner that they

can be easily decomposed, and the resulting artifacts recombined in new ways. For

this purpose we reformulated the basic structuring entities in the form of BoBs. A

BoB can be considered as an object (or a component), and hence provides us all

the advantages of object-oriented (or component oriented) software development and

reuse. Additionally, since a BoB functionality can be split into multiple forms though

automated splitting, we can further use these split-fragments are new artifacts (or

units) for reuse. This gives us the power of a flexible and fine-grained evolution of

software systems.

We shall describe three ways in which a BoB based architecture supports program

evolutions:
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3.5.1 BoB Program Modifications

The new requirements (or new concerns) for a software can come from a variety

of sources like support for new concerns in the form of a new use-case (or scenario), a

new feature or a new task. [Loh03].
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Modify BoB

Create BoB

Delete BoB

SOURCE  MANIPULATION  LAYER

SOURCE  CODE  LAYER

Merge BoB

A

B

C

D E

Figure 3.7: BODA- BoB Program Modifications

Whatever be the source, what is common is that a new requirement will require

a change and modification to the existing software base. Whenever a new adaptation

has to be made to a software base, the first task is to map these requirements to the

artifacts that we use in a program. In a BoB based program, the primary artifacts

are BoBs. So any new requirement will be mapped to:
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• Addition of a component into the system.

• Deletion of component from the system.

• Modification of a component in the system.

Figure 3.7 describes this process. However, since BoB can be further decomposed,

the paradigms supports two new mechanisms for program evolutions. We describe

these in the next two sections.

3.5.2 Individual BoB Modifications

Instead of doing a white-box modification by making invasive changes to a BoB as

a whole, BoB support a methodology for a more fine-grained black-box modification.

Figure 3.8 explains this in detail. The process is two-three step:

Add Fragment Remove Fragment

Modify Fragment

External Fragment

Delete

Fragment

BoB  MANIPULATION  LAYER

BoB LAYER

Merge Fragment

BoB  FRAGMENT  LAYER

A

A
1 A

2
A

3

Split Merge

Extract from another BoBCreate New

Figure 3.8: BODA- Individual BoB Modifications

1. Split the BoB on the desired lines.

2. Adapt fragments individually. Each fragment can now be considered as an ar-

tifact for modification and recombination. A new fragment can be added, and

the old one deleted or modified. Similarly a fragment from one BoB can provide

an element for reuse in an entirely different BoB.

3. Merge the new combination back into a BoB.



54 CHAPTER 3. BoB and BoB Driven Architecture

3.5.3 BoB Slice Modification

Add BoB Slice Remove BoB Slice

Modify BoB Slice

Create BoB Slice

Delete BoB Slice

SLICE  MANIPULATION  LAYER

SOURCE  CODE  LAYER

Merge BoB Slice

A

B

C

D E

A1 B1 C1 D1 E1

A2 B2 C2 D2 E2

Split Merge

Figure 3.9: BODA- Collaborating BoBs Slice Modifications

The process of modification is similar to the ones described in previous two sec-

tions. The main difference is that instead of concerning ourselves with individual BoBs

and BoB fragments, we take can take a whole slice across some BoBs and the whole

of slice-fragment can now be considered as an element for adaptation and reuse Fig-

ure 3.9 . Such an approach is particularly useful when we are considering a role-based

collaboration of classes [Van96b].

Summarizing, we can say that a BoB driven architecture of a software system,

provides a fine-grained and systematic manner for partitioning and evolving the ap-

plications for adaptation to different concerns. In the rest of thesis, we elaborate on

these mechanisms are provide case-study examples on their usage in object-oriented

applications. The next chapter describes a model of BoBs based on object-oriented

programming language Java. We shall use this model as a basis for developing our

application-partitioning, BoB based composition and decomposition mechanisms.



I can’t work without a model.

Vincent Van Gogh

Chapter 4

Programming Model

This chapter presents the preliminary model for Breakable Objects. We first build

a very basic programming model, so that we can illustrate various BoB mechanism.

More sophisticated features, will be added to this model, as we build BoB related

concepts in the subsequent chapters .

We had the following three design guidelines for the BoB programming model: (a)

it should match closely to a widely deployed language platform, (b) it should be based

on a language which makes distributed computing relatively easier, and (c) it should

minimize the inclusion of new constructs into the language.

To this effect, we chose Java as the base programming model. We introduce only

one new construct into the language. The splitting engine generates the Java class

definition files (.java files) from the BoB class definition files (.bob files). This enables

BoBs to be used with existing Java Virtual Machines(JVMs) without any modification

to the latter.

4.0.4 Programming Model

The programming model for BoBs, called JavaBoB is based on the object oriented

language Java. Table 4.1 presents the status of various constructs used in JavaBoB.

BoB class resembles a Java Class except the restrictions that are placed on certain

features. There is an additional programming language construct in JavaBoB, viz.,

together, which is used to specify clubbed methods. Figure 4.1 provides the schematics

of a BoB class. Appendix A presents the formal description of a BoB Class.

Clubbed Methods

The designer of a BoB might intend that some of the methods should not be

separated from each other during future splittings. We introduce a new programming

55
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Together methods

 

...

...

}

  private static field declarations
  private field declarations

  constructor declarations

  private static method declarations

  public method declarations

        

             }

  together{ (‘;’ separted list 

...

  public static  method declarations

  private method declarations

(...),...
methodName(List ArgumentTypes),

BoB Interface

specification

<public> final BoBClass A{

Figure 4.1: Schematic of BoB class - A.bob

construct named together to specify methods in a class that are inseparable. This

is applied only to the interface methods. Also a number of such groupings can be

done on the methods. For example, consider we have six interface methods m1, m2,

m3, m4, m5, and m6. The designer might decide to create more than one clubbing,

say together {m1; m2}, together {m4; m5}. If a method is part of more than

one clubbing, the union of two sets will form a clubbed methods set.

The reason for clubbing methods together can by anything and is prerogative of

the designer. For example, consider two synchronized methods in a BoB that access a

shared field inside it. An inadvertent splitting might put these two methods in different

splits leading to possible race conditions. Clubbing them together can prevent this.

Concepts Not Considered in this Model

Some of the constructs in present language have been disallowed1 for the sake

of simplicity while others have been removed because they pose difficulties in the

construction of relevant BoBs. We discuss the implications of some of these restrictions

1However, this is not a binding on the model. If required and if appropriate solutions for refactoring

are available, the model can be extended to incorporate new or many of these disallowed features.
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in later part of the thesis. The JavaB differs from the Java as defined in language

reference [Gos96] [Gos00] principally in the following ways:

public fields No public fields are exported by the BoB. The designer provides getter

and setter methods for accessing the fields if required.

Inheritance The class that needs to be split cannot be a derived class. This means

that all the members that form a part of the class are specified within it. The

only class that a BoB class implicitly inherits from is object, the root Java

object class. The interface inheritance can be used with one constraint that all

the methods of a particular interface are designated as together. This to prevent

the breaking of polymorphic references to the object after splitting.

Also each BoB is a final class. This means that it cannot be further extended.

Threading BoB are not active object [Agh90] [Lav95], that is they cannot run as

separate threads. Also, since we do not allow inheritance, Java BoBs cannot

inherit from the Thread class and hence cannot be run as a separate thread

in a program. However, BoB methods can be accessed by different threads in a

program and we can specify the methods as synchronized. The responsibility

of ensuring thread safety lies with the designer of the BoB.

4.0.5 Format of the Configuration File

The format of configuration file is simple. It specifies the number of splits required

and the signatures of the public methods of a BoB.

A valid configuration file satisfies the following properties:

• Only public methods are specified.

• Every public method in each BoB has to be specified as part of some split.

• A method cannot belong to more than one split.

• Clubbed methods (identified by the together construct) cannot be split.

The next chapter provides the details of the splitting engine.
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Table 4.1: Constructs for BoB Model - JavaBoB

Java Construct Status in JavaBoB

Class declarations

public Allowed

abstract Not Allowed

final Allowed (default)

class Name Of Class Allowed

extends Super Not-Allowed

implements Interface Allowed

Variable (Field) declarations

public Not Allowed

private Allowed

protected Not Allowed

package Not Allowed

static Allowed

final Allowed

transient Not Allowed

volatile Allowed

Method declarations

public Allowed

private Allowed

protected Not-Allowed

package Not-Allowed

static Allowed

abstract Not-Allowed

final Allowed (default)

native Not Allowed

synchronized Allowed

Miscellaneous features

Constructors Allowed

Exceptions Allowed

Threads Not Allowed

Nested class/Inner class Not-Allowed



                         MethodName (list ArgumentTypes) )

 Number of BoBs = n;
  

   

  

  BoB  1
  BoB Name { 
    No of splits = k;
    Split 1 = (‘;’  separated list of methods specified as 

     . . .        

    Split k = . . .

  }

  BoB Name {
  BoB  n

...

    . . .
  }

Figure 4.2: Configuration file - split.conf





Consciousness, we shall find, is re-

ducible to relation between objects,

and objects we shall find to be re-

ducible to different states of con-

sciousness..

T.S. (Thomas Sterns) Eliot

Chapter 5

Splitting Process

In this chapter, we present the algorithms used by the splitting engine (refer Figure

5.1). A program P comprising of a set of BoB classes and Java classes and a split-

configuration file, forms the input. The transformed program P
′

containing only Java

classes is the output of the splitting engine. Both the operations, viz., BoB splitting

and client reorganization, are done at compile time. Prior to splitting, a validator

checks whether the splittings specified in the configuration file form valid splits on the

specified BoBs.

5.1 Main Algorithm

The splitting engine takes a specified BoB class, splits it and performs client re-

organizations. For the example shown in Figure 5.1, it takes the BoB class A.bob,

the client classes Cl-1.java, Cl-2.java, Cl-3.java and the split.conf

file as input. It creates a internal dependency graph of the BoB class A.bob to cap-

ture the various interdependencies among the methods and fields of A.bob. Based

on the specifications in the split.conf file and the internal dependency graph, it

generates Java class definitions for the new splits A1.java, A2.java, A3.java.

It reorganizes all the client classes, Cl-1.java, Cl-2.java, and Cl-3.java,

that referred to A.bob to now refer to A1.java, A2.java, A3.java, as appro-

priate. This process is then repeated for all the specified BoB classes. This algorithm

is described in Algo.1

5.1.1 BoB Internal Dependency Graph (IDG)

BoB internal dependency graph is used for understanding various dependencies

between fields and methods, and among methods in a BoB class. Algo.2 constructs
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CLASSESCLIENT

.java .java
Cl−2

.java
Cl−3Cl−1

BoB SPLITS

.java
Cl−1

.java
Cl−3

.java
Cl−2

REORGANIZER

CLIENT

A.bob

BoB Internal

Dependency Graph

GENERATOR

SPLIT
CONFIG VALIDATOR

BoB

A3.java
A2.java

A1.java

MODIFIED CLIENTS

SPLITTER

Split 
Info

Program P’

Program P 

Figure 5.1: Mechanisms of Splitting Engine

Input: BoB and Java class files for P, Split-Config file

Output: Java class files for P
′

foreach BoB class A ∈ Split-Config do1

if (valid A ∧ valid splitcfgA) then2

Prepare IDG for A {using Algo. 2 } ;3

Split A {using Algo. 8 } ;4

forall classes in P that refer A do5

Reorganize {using Algo. 7};6

end7

Delete A;8

end9

else10

report ‘invalid splits’11

end12

end13

1: Splitting engine main algorithm
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hasNewMessages()
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getActualMessage()
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getMessage()
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getBoBMessage()
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moveMessage()
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m_Store

m_DraftProfile

deleteMessage()

deletAllMessages()

deleteMessages()

Figure 5.2: IDG for BoBFolder (message handling portion)

the BoB dependency graph. It is a directed graph. It has two types of nodes: field (F)

nodes and method (M) nodes. We need to consider only those references, in a method,

that form the fields of that class. Figure 8.1 presents the IDG for BoBFolder.

5.2 Algorithm for Splitting a BoBClass

Input to this algorithm is a valid BoB class file (A.bob) and its corresponding split-

configuration file (Acfg). The splitting algorithm (Algo. 8) creates a .java file for each

specified split. Split class file constructions are done in the following three passes:

Pass 1: Writing specified methods into the splits This pass begins by includ-

ing all the import package statements. It modifies the Name of Class and

includes the class declaration constructs. These translations are done as indi-

cated in the Table 5.1. It then includes all the methods that are specified in the

configuration file into the respective split class files, referring to the Table 5.1

for appropriate translations of method declaration constructs. Next it includes

all the methods of the original class, which fall in the call chain of an included

method M .
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Input: BoB class file A ∈ P

Output: dependency-graph for A

Construct a graph G = (V,E) where v ∈ V is one of the following1

types:

• Field F Nodes {¦ nodes}

• Method M Nodes {◦ nodes}

and e(v1, v2) ∈ E is an directed edge v1 → v2 , where v1, v2 ∈ V ;

forall method m in the BoBClass C do2

foreach reference to field f ∈ C do3

Construct a directional edge between m and f4

end5

foreach invocation reference to method mnext do6

Construct an edge to referred node mnext7

end8

foreach reference to class/object /∈ this class/object.field do9

Ignore10

end11

end12

2: BoB internal dependency graph generation
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Table 5.1: Construct Translations in Split Classfiles

BoB

construct

Class Translation in splits

public apply public to all split class declarations

final apply final to all split class declarations

class apply class to all split class declarations

NameOfBoB modified in the split classes in the following way:

NameOfBoBSplit_1

NameOfBoBSplit_2

. . .

NameOfBoBSplit_k

Field Translation in respective split fields

private apply private

static apply private

final apply final

volatile apply volatile

Type Type remains same as before

Name Name remains same as before

Method Translation in respective split methods

public change to private if split interface does not contain this

method; otherwise, apply public

private apply private

static apply static

final apply final

synchronized apply synchronized

throws apply throws

Type Type remains same as before

Name Name remains same as before

Arg list Arg List remains same as before
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Input:

• BoBClass File A.bob

• Split Configuration File Acfg

Output: Split Class Files Asplit 1.java,...,Asplit k.java & Asplit AUX.java

forall splits specified in Acfg do1

Create a class file (splitclass) ;2

Name it as: ASplit k.java,where k = split number ;3

foreach import statement (importstm) in the original class A do4

splitclass
write
←−−−− importstm5

end6

splitclass
write
←−−−− ASplit k + translated class constructs {refer Table 5.1}7

splitclass
write
←−−−− ‘ { ’8

foreach method m in original class A do9

if method m specified for this split in the Acfg file then10

MethodInclude(m);11

end12

end13

foreach method m in splitclass do14

if method m NOT specified for this split in the Acfg then15

if access 6= private then16

Make (access = private)17

end18

end19

end20

end21

forall splits specified in Acfg do22

foreach method m in splitclass do23

Refer BoB Internal Dependency Graph. Check all outgoing edges from the given24

method node m ;

foreach outgoing edge do25

if referred node is field f then26

FieldInclude(f)27

end28

end29

end30

foreach constructor A(exps) in original class A do31

ConstructorInclude(A(exps));32

end33

splitclass
write
←−−−− ‘ } ’34

end35

forall splits specified in Acfg do36

foreach method m in splitclass do37

foreach field reference ref.f in m do38

if field f /∈ this split then39

if field f is static then40

f
convert
−−−−−→ AUX.(get/set)f41

end42

else43

f
convert
−−−−−→ refAUX.(get/set)f44

end45

end46

end47

end48

end49

3: Generating BoB class splits
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Procedure MethodInclude(M)

Input: Method Name M

if M not already included then50

splitclass
write
←−−−− M ;51

Refer BoB IDG. Check all outgoing edges from method node M ;52

foreach outgoing edge do53

if referred node is method M then54

MethodInclude(M)55

Procedure FieldInclude(F)

Input: Field Name F

if F not already included then56

if F = constant field then57

splitclass
write
←−−−− F ;58

else if F = variable field then59

Refer BoB IDG. Check all incoming edges to field node F ;60

if ∃ incoming edges from methods in other splits then61

AUXclass
write
←−−−− F ;62

AUXclass
write
←−−−− getter and setter for F ;63

if F is non static then64

splitclass
write
←−−−− refAUX ;65

66

67

else68

splitclass
write
←−−−− F ;69

Procedure ConstructorInclude(A (exps))

Input: Constructor Name A(exps)

forall (f ∈ original class) ∧ (f referred in A(exps)) do70

if f /∈ this split then71

Declare f local in beginning of constructor body with same initial value as72

in original class ;

if exist AUX class then73

Include AUX in argument list A(exps);74

Initialize refAUX with passed value in A(exps);75

splitclass
write
←−−−− Asplit k(exps) ;76
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Folder1

-m_Name: String

-m_Path: String

-m_Type: int

+m_ActualMessage: Message
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+getMessage()
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-m_Folder_Aux2

Figure 5.3: Splitting and redeployment for BoBFolder
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As the final step in this pass, it changes the access specifiers of all the included

methods that are not part of the split-specifications to private. This is done

to maintain interface consistency.

Pass 2: Writing fields and constructors into the splits The algorithm notes

all the fields referred by a method M in a split class. If a field is referred only

by the methods of one split, i.e., if it is an independent field, it is included in

that particular split. If it is a shared field, i.e., it is referred by the methods

of more than one split, it is written into a separate auxiliary (AUX) split class

file. Constant fields are replicated into all the splits that use them. Table 5.2

indicates various cases and the corresponding adopted strategies for the fields of

a BoB class.

We use only simple constructors for constructing BoBs. It is assumed that BoB

constructors will not affect the state of objects external to that BoB. For each

constructor specified in the original BoBClass, the algorithm includes a corre-

sponding modified constructor in each split.

Pass 3: Transforming the shared field references In this pass, the algorithm

iterates over each split class file and its method bodies to see if there are any

class or object references to a shared field in the AUX − Split file. Every such

occurrence is transformed into a reference through AUX−split class or an object

of this class.

Example: Figure 8.2 shows the splits performed on BoBFolder using FolderSplitcfg

- 2. The figure also shows the redeployments done on BoBFolder splits. The

AUX class obtained after splitting is further split into AUX1 and AUX2 for

the purpose of redeployments.

Handling Shared Fields

Some fields of a BoB are shared between two or more splits. The splitting engine

places all the shared fields as private fields of an auxiliary class. The access to these

shared fields is provided with the help of getters and setters. At a later stage, the

option is given to the user, to merge these shared variables with any of the split

classes or keep them in separate node-specific auxiliary classes (as illustrated in the

BoBFolder split example).
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Table 5.2: Effect of Splitting on BoB Fields

Updation −→ Constant Variable

Scope −→ Static Instance Static Instance

Visibility −→ Public Private Public Private Public Private Public Private

Split-Field


y Independent NA SS NA SS NA SS NA SS

Shared NA Repl NA Repl NA Sh Class NA Sh Obj
Repl: Replicated in all sharing splits, Sh Class: Present in a shared class accessible

to all sharing splits,

Sh Obj: Present in a shared object accessible to all sharing splits, SS : Present only in a

single split class/object,

NA: Case in not applicable to BoBs

5.3 Modification of the Client Program

All the classes that refer to a BoB class or object in a program, constitute clients

with respect to the server BoB class. The clients can access these classes or objects

in a number of forms. Algorithm (Algo. 7) considers the various scenarios and the

corresponding modifications that are done in client codes. Table 5.3 shows the various

transformations that occur on client statements that refer to BoB classes or objects.

We discuss them briefly below:

Variable declaration Transformation T-1. Variables for each split are declared.

Object creation Transformation T-2. Argument types for the constructor that is

being invoked are noted. Split-objects are created by invoking the same signature

constructor for all the split-classes.

Method invocation Transformation T-3 and T-4. The reference is changed to the

split-class/object to which this method belongs and the corresponding method

is invoked.

Variable assignment, argument passing, or aliasing T-5 and T-6. Wherever

the split variable is being assigned a value, being passed as an argument or being

aliased, it is replaced by corresponding assignment, method argument passing,

and aliasing for each of the split variables.

It is to be noted that, access to a BoB is only through the public methods exported

by it, and hence we need not consider references made to class or object fields. Also



5.4 Restrictions on the Client-models 71

some cases present in the Java language, are not considered in the reorganizer. For

example, polymorphic references do not apply in case of BoBs (BoBs do not inherit or

implement) and we do not consider reflection based class references.

Input: Class files Cl which refers to BoB

Output: Modified Class file Cl
′

which refers to BoB splits

switch FORM of statement do1

case FORM = object declaration2

− Declare variable for each split3

case FORM = object creation4

− Note constructor that is being called (compare argument types)5

− Create all split objects by calling corresponding (similar argument types)6

constructor for each split

− If AUX split is present, then create AUX split first and pass its reference7

to other splits

case FORM = class method invocation8

− Note M that object refers to9

− Locate split class to which this M belongs10

− Change class name to corresponding split class11

case FORM = object method invocation12

− Note m that object refers to13

− Locate split class to which this m belongs14

− Change object name to corresponding split object15

case FORM = object assignment and aliasing16

− For each variable assignment (or aliasing) of BoB object, expand to do the17

assignments (or aliasing) for all BoB splits

− In method arguments, for each passed parameter of BoB class, expand to18

pass all BoB splits

otherwise19

− Report ERROR - outofscope -20

7: Client reorganization algorithm

5.4 Restrictions on the Client-models

1. Return values - Side-effect free methods, or pass only as method parameters.

5.5 Restrctions for BoBs

1. Reflection based references. 2. this. reference.
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Table 5.3: Client Transformations

Tfm Code form in P Code translation in P
′

T-1 BoBTypeA x; BoBTypeA Split1 x split1;

. . .

BoBTypeA Splitk x splitk;

BoBTypeA AUX x aux;

T-2 new BoBTypeA

(exps);

new BoBTypeA Split1(exps);

. . .

new BoBTypeA Splitk(exps);

new BoBTypeA AUX(exps);

T-3 BoBClassA.m (exps) BoBClassA Split1.m(exps) ∨

. . .∨

BoBClassA Splitk.m(exps)

T-4 ref. BoBClassA/m

(exps)

ref. BoBClassA Split1/m(exps) ∨

. . .∨

ref. BoBClassA Splitk/m(exps)

T-5 BoBTypeA x = ref-

BoBTypeA;

BoBTypeA Split1

x split1 = refBoBTypeA split1;

. . .

BoBTypeA Splitk

x splitk = refBoBTypeA splitk;

BoBTypeA AUX

x aux = refBoBTypeA aux;

T-6 Method (Type1 arg1,

. . . , BoBTypeA

x,. . . , Typen argn)

Method (Type1 arg1, . . . ,

BoBTypeA Split1 x split1,

BoBTypeA Split2 x split2,

. . .

BoBTypeA Splitk x splitk,

BoBTypeA AUX x aux,

. . . , Typen argn )
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5.6 A simplified illustrating example

Let us consider a simple case where we have a program consisting of two classes

namely CalculatorServer and CalculatorClient. The server provides four arithmetic

operations (addition, subtraction, multiplication and division) of integer numbers.

The client instantiates an object of this server and then access its methods to perform

the arithmetic operations

Server class = CalculatorSever.java

Class CalculatorServer {

int ADD (int x, int y);

int SUB (int x, int y);

int MUL (int x, int y);

int DIV (int x, int y);

}

Client class = CalculatorClient.java

Class CalculatorClient {

CalculatorServer cs = null;

CalculatorClient() {

cs = new CaluclatorServer();

}

public static void main() {

cs.MUL(4, 5);

cs.SUB(3, 9);

}

}

We provide a configuration file Calculator.splitconf which specifies the lines of split

i.e. the combination of fields and methods that are required in the corresponding splits.

Configuration file: Calculator.splitconf

{

No of splits = 4;

Split 1 = Field (nil);

Method (int Add(int, int));

Split 2 = Field (nil);

Method (int Sub(int, int));

Split 3 = Field (nil);

Method (int Mul(int, int));

Split 4 = Field (nil);

Method (int Div(int, int));

}
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This implies that the Server should be split into four servers with each split serving

a single arithmetic operation. The split server class files and the modified client class

are shown below:

Split Class files:

Server Class 1 = CalculatorServerSplit_1.java

Class CalculatorServerSplit_1 {

int ADD (int x, int y);

}

Server Class 2 = CalculatorServerSplit_2.java

Class CalculatorServerSplit_2 {

int SUB (int x, int y);

}

Server Class 3 = CalculatorServerSplit_3.java

Class CalculatorServerSplit_3 {

int MUL (int x, int y);

}

Server Class 4 = CalculatorServerSplit_4.java

Class CalculatorServerSplit_4 {

int DIV (int x, int y);

}

Modified Client after split:

Class CalculatorClient {

CalculatorServerSplit1 cs1 = null;

CalculatorServerSplit1 cs2 = null;

CalculatorServerSplit1 cs3 = null;

CalculatorServerSplit1 cs4 = null;

CalculatorClient() {

CalculatorServerSplit1() cs1 =

new CaluclatorSeverSplit1();

CalculatorServerSplit1() cs2 =

new CaluclatorSeverSplit1();

CalculatorServerSplit1() cs3 =

new CaluclatorSeverSplit1();

CalculatorServerSplit1() cs4 =

new CaluclatorSeverSplit1();

}
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public static void main() {

cs3.MUL(4, 5);

cs2.SUB(3, 9);

}

}

In the next chapter, we provide proofs for correctness of splitting process.





We cannot believe by proof; but

could we believe without?

A.C.(Algernon Charles)

Swinburne

Chapter 6

Proofs

We need to prove:

Given a program P with aBoBclass C, if we replace C with splits C1, C2, · · · , Ck,

and reorganize client accesses from the rest of program to now refer to these

splits, the new program P
′

so obtained, is equivalent to P.

In this chapter we first evolve a definition of equivalence relevant to parallel lock-

step execution of P and its split version P
′

. Next we develop a proof methodology to

prove this equivalence for all the relevant statement types in the program. In the later

part, we devise these proofs based on the execution semantics of a JavaBoB run.

We use the following definition (6.0.1) of contextual equivalence as described in

[Pit00].This kind of program equivalence is also known as operational or observational

equivalence.

Definition 6.0.1 (Contextual equivalence) Two

phrases of a programming language are contextually equivalent if any occurrences of

the first phrase in a complete program can be replaced by the second phrase without

affecting the observable results of executing the program.

6.1 Equivalence of Split and Non-Split programs

Let us consider a program P having a set of classes and a BoB class as defined

below:.

P = C1, C2, ..., Cn, CBoB

After being supplied with a configuration file Ccfg specifying the lines of split, we

split CBoB into k classes. Let Σ CBoBSplitk be the generated split-classes. We now do

77
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SPLIT

 P

Execution Engine

GLOBAL
STATE

GLOBAL
STATE

 P’    
SPLIT

Program
Counter

Program
Counter

(Next Statement) (Next Statement)

Step i in P = Step 

Execution Engine

ζ (i) in P’

G G

Figure 6.1: Parallel lock-step runs of P and P’

the client reorganizations to produce a transformed version for each client class file

C
′

1, C
′

2, ..., C
′

n. The new program P
′

thus obtained is defined as follows:

P
′

= C
′

1, C
′

2, ..., C
′

n, Σ CBoBSplitk

Consider an abstract execution engine which takes one program statement (or

phrase) at a time and then executes it. The statement executions cause changes in

the global state of the program. We specify the global state of the program as the

intended observed results in the execution of a program.

We create a mechanism (refer Figure 6.1) for parallel lock-step runs of programs

P and P
′

. We use the mapping n 7→ ζ(n) to denote the corresponding steps in the two

runs, i.e., if n is the nth step of execution in P, then ζ(n) is the corresponding step

in P
′

. This mapping is not monotonic, i.e., one step in P may result in zero, one, or

more steps in P
′

. Following properties hold good: if m ≤ n, then ζ(m) ≤ ζ(n).

Extended contextual equivalence

We extend the definition of contextual equivalence, as described in the previous

section, to get a definition for describing the equivalence between pre-split (P) and

post-split (P
′

) versions of the program. We term this new notion of equivalence as

extended contextual equivalence.

Definition 6.1.1 (Extended contextual equivalence) Two phrases of a program-
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ming language are extended contextually equivalent if any occurrences of the first

phrase in a complete program P can be replaced by the corresponding split-phrase

in the complete program P
′

, without affecting the observable results in the par-

allel runs of the programs.

In order to show the extended contextual equivalence of P and P
′

, we now define

a transform τ on the global state.

6.2 The τ Transform

The τ transform is a function of the form f : G → G where G is the global

state(refer 6.4.1) of a program. It takes the global state of an unsplit program, and

with the help of the configuration file, transforms it into an equivalent global state of

the split version of the program.

τ : GBoB

Ccfg , Split−Algo
−−−−−−−−−−→ GBoBSplits

Methodology for τ transformation

• In global state of P, we refer:

each static field as:

ClassName · FieldName

each object field as:

ClassName : ObjectName.F ieldName

• For a BoB class (with the help of split configuration file and split-algorithm)

determine the corresponding fields and the splits to which they belong.

• In the global state of P, replace each ClassName of a field by its corresponding

SplitClassName and each ObjectName of a field by its corresponding

SplitObjectName to get global state for P
′

.

6.3 Methodology for Equivalence Proofs

The general methodology for equivalence proofs is commutative diagram based and

is indicated in Figure 6.2. The steps involved in the proof process are described below:

1. We capture the global state Gi of the program P in the ith step of its execution.
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Figure 6.2: Equivalence proof methodology

A = Gi

Stmi

²²

τ // B = G
′

i

Stm
′

i
²²

C = Gi+1
τ // D = G

′

i+1
ks

Show equal
+3 E = Gτ

i+1

2. We assume that the program P
′

has reached the corresponding step ζ(i) in a

parallel run, and has a corresponding equivalent global state G
′

i. This can be

obtained by applying a transform τ on Gi.

3. By the execution of a program statement (Stmi) in P, we generate a new global

state Gi+1.

4. A corresponding version of the Stmi for ζ(i) step in P
′

, Stm
′

i, is obtained by

applying the appropriate split-transformations as specified in Table 5.3.

5. By the execution of program statement (Stm
′

i) in P
′

, we generate a new global

state G
′

i+1.

6. From Gi+1, by applying the τ transform, we can generate Gτ
i+1, equivalent global

state for P
′

in ζ(i+ 1).

7. Now, if we can show that G
′

i+1 = Gτ
i+1, we have proved that the two program

statements Stmi in P and Stm
′

i in P
′

are extended contextually equivalent.

The formal proof is based on the abstract execution model described in the next

section.

6.4 Abstract Execution Model

We base our abstract machine model for execution of the JavaBoB on the formalisms

presented in [Bor98] [Stä01] which provides a system and machine independent defini-

tion of the semantics of the full programming language Java, as it is seen by the Java

programmer. The definition is modular, given as a series of refined ASMs, dealing

in succession with Java’s imperative core, its object oriented features, exceptions and

threads. For the sake of simplicity and without loss of any generality, we consider only

the imperative (JavaI), class (JavaC) and object (JavaO) modules of the language for

proof purposes [? ].
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6.4.1 Dynamic Global State

The Global State G of a program comprises the state of: (i) all classes (value

of static fields), (ii) objects (value of instance fields) that exist at the time of state

capture, and (iii) method call stack resulting from method-invocations during program

executions (includes values of all local variables of the methods called).

Global State is defined for JavaBoB ASM model as dynamic state of the program

P given by the following functions: pos, restbody, locals, meth, frames, classState,

globals, heap [? ].

6.5 Main Theorem

Theorem 6.5.1 Given a program P having a BoB class C and a split-configuration

Ccfg, if the class C is split into C1, · · · , Ck, the new program P
′

is equivalent to P.

Before we go on to prove this theorem, we present some definitions and some

lemmas which are used in the proof. we provide detailed proofs of these lemmas in

the next section.

Definition 6.5.2 (Equivalent Methods) Two methods are said to be equivalent iff

(i) they have same signature, (ii) on being supplied same values in arguments, return

the same value (iii) on being supplied same values in arguments, create the same side-

effects on the rest of program.

Lemma 6.5.3 For every static method invocation m of a BoBClass C in program P,

there is always a corresponding static method invocation m
′

in program P
′

such that

m and m
′

are equivalent methods.

Lemma 6.5.4 For every instance method invocation m of a BoBClass C in program

P, there is always a corresponding instance method invocation m
′

in program P
′

such

that m and m
′

are equivalent methods.

Lemma 6.5.5 For every object O instantiated from BOBClass C in program P, there

is always a set of split-objects {Osplit 1, Osplit 2, . . . , Osplit k,∧Osplit AUX} instantiated

in P
′

such that for every field in O, O.f , there is a corresponding equivalent variable

in one of the splits {Osplit 1 ∨Osplit 2 ∨ . . . ∨Osplit k ∨Osplit AUX}.
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Proof for Main Theorem

Proof sketch: We have to prove that by applying any statement Stm in P and

applying an equivalent statement Stm
′

in split version of the program P
′

, the post-

conditions obtained on the GlobalState are equivalent. For this we divide the pro-

gramming statements into JavaI , JavaC , and JavaO.

Prove: True

〈1〉1. for all JavaI Stm P ≡ P
′

Proof: No splitting for JavaI .

〈1〉2. for all JavaC Stm P ≡ P
′

Proof: by Lemma 6.5.3

〈1〉3. for all JavaO Stm P ≡ P
′

Proof: by Lemmas 6.5.4, and 6.5.5

〈1〉4. Q.E.D.

Proof: by 〈1〉1, 〈1〉2, 〈1〉3

¤.

6.6 Lemma Proof Details

Lemma 6.6.1 For every static method invocation m of a BoBClass C in program P,

there is always a corresponding static method invocation m
′

in program P
′

such that

m and m
′

are equivalent methods.

Prove: True. OR. methods return the same value, and produce the same side-affects

〈1〉1. m and m
′

have same arguments

Proof: By Split-Algo

〈1〉2. m and m
′

have same return type

Proof: By Split-Algo

〈1〉3. m and m
′

have same method body statements ∀ JavaI statements

Proof: By Split-Algo

〈1〉4. m and m
′

have same method body statements for class field references and class

method invocations for classes outside the splits

Proof: By Split-Algo

〈1〉5. references in m and m
′

to the fields within the splits produce similar results
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Prove: references are equivalent variable references

The variables referred by m
′

are either in the split class containing m
′

or in the

AUX split class.

Case: Variables within the split class containing m
′

References remain unchanged. By Split-Algo Initial values are same (see next step)

and references are from equivalent method body (equivalent invocations in same the

same order).

Case: Variable in the AUX

References are modified to BoBClassCAUX .f By Split-Algo Initial values are same

(see next step) and references are from equivalent method body (equivalent invoca-

tions in same the same order).

〈1〉6. preconditions for m and m
′

are same

By assumption that this is the first method invocation on split class. So the preced-

ing program is either of type JavaI or the method invocations and field references

are the unsplit classes. For the rest of invocations, post-conditions for the first

invocation become the pre-conditions for the rest of program)

〈1〉7. Q.E.D.

Proof: 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, and 〈1〉5

¤.

Lemma 6.6.2 For every instance method invocation m of a BoBClass C in program

P, there is always a corresponding instance method invocation m
′

in program P
′

such

that m and m
′

are equivalent methods.

Proof: On same lines as Lemma 6.5.3, except that method invoked is an instance

method as shown below:

αref · c/mI(vals) → if ref 6= null then

let c
′

= case

callKind(up(pos)) of

invokeMethod(up(pos), c
′

/m,

[ref ] · vals)

¤.

Lemma 6.6.3 For every object O instantiated from BOBClass C in program P, there

is always a set of split-objects {Osplit 1, Osplit 2, . . . , Osplit k,∧Osplit AUX} instantiated
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in P
′

such that for every field in O, O.f , there is a corresponding equivalent variable

in one of the splits {Osplit 1 ∨Osplit 2 ∨ . . . ∨Osplit k ∨Osplit AUX}.

〈1〉1. Every BoB creation in P is translated to BoB split creation in P
′

Proof: By Client-Reorg Algo and Transformation T2

〈1〉2. Each BoB field has a corresponding BoB split field

Proof: By Split-Algo and Transformation T2

〈1〉3. Instance creation methods are treated like ordinary method invocations. An

instance creation expression new C(exps) is transformed at compile time into the

abstract form (new C) . C misg(exps), where misg is the name of a constructor

of class C with name <init>. The abstract expression (new C) creates a new

reference to an instance of class C which is the target reference of the invoked

constructor

• for P, we get:

new c→ if initialized(c) then

create ref

heap(ref) := Object(c,

{(f, defaultV al(type(f)))

|f ∈ instanceF ields(c)})

yield(ref)

else initialize(c)

Difference U of states =

{(c, f, defaultV al(type(f))|f ∈ instanceF ields(c))}
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• for P
′

, we get:

new csplitk → if initialized(csplitk) then

create ref

heap(ref) := Object(csplitk,

{(f, defaultV al(type(f)))

|f ∈ instanceF ields(csplitk)})

yield(ref)

else initialize(csplitk)

Difference U
′

of states =

{(csplit1 , f, defaultV al(type(f)))|

f ∈ instanceF ields(csplit1)},
⋃

. . . ,

{(csplitk , f, defaultV al(type(f)))|

f ∈ instanceF ields(csplitk)},
⋃

{(csplitAUX
, f, defaultV al(type(f)))|

f ∈ instanceF ields(csplitAUX
)}

〈2〉1. U and U
′

are Isomorphic

Proof: Let θ : ClassNamesplit number → ClassName be an isomorphism from

U
′

to U. Isomorphic states property is satisfied

〈2〉2. Constructors (new C) . <init> / misg(exps) and (new C split number).

<init> / misg(exps) cause equivalent state changes

Proof: By Split-Algo each constructor has same signature and method body

except that the fields not present in that particular split are suppressed as local

variables in the respective constructors. The updates will reflect as (new C) . C

/ f, value change

defaultV al→ constructorV al and the corresponding (new C split split) . C split k/f,

value change

defaultV al→ constructorV al.

〈1〉4. preconditions for m and m
′

are same

Proof: Same as first leema < 1 > 6.

〈1〉5. Q.E.D.

Proof: 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4 .
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¤.

In the next section, we extend the BoB program transformation primitives to in-

clude the merging of BoBs which have been split. We shall also discuss the implemen-

tation details of splitting and merging engines, and those of deployment engine (based

on two existing partitioning engines). We also discuss issues related to inheritance in

BoB application partitioning.



The need to become a separate self is

as urgent as the yearning to merge

forever.

Judith Viorst

Chapter 7

Merging, Redeployments, and

Implementation Details

In this chapter, we present the algorithms used by the merging engine (refer Figure

7.1). A set of BoB fragment classes forms the input. The BoB class formed by merging

these fragments is the output of merging engine.

7.1 Merging Algorithm

Merging algorithm is described in Algo.8.

Input: Split Class Files A split 1.java,...,A split k.java &

A split AUX.java

Output: BoBClass File A.bob

Create a class source file MergedClass; Name it as: A.bob;

MergedClass
write
←−−−

⋃

{ importstm ∈ split class in Mergecfg }

MergedClass
write
←−−− class constructs in any split + “BoBClass” + A

MergedClass
write
←−−− ‘ { ’

forall splits specified in Mergecfg do

foreach method m in SplitClass excluding AUXclass do

MergeMethodInclude (m) ;

foreach field f in SplitClass do

MergeFieldInclude (f);

foreach constructor c in SplitClass do

MergeConstructorInclude (c);

NewClass
write
←−−− ‘ } ’

8: Merging BoB class splits

87
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A.bobBoB

Figure 7.1: Mechanisms of Merging Engine

Procedure MergeFieldInclude(F)
Input: Field Name F

if F not already included then

NewClass
write
←−−− F ;

Procedure MergeMethodInclude(M)
Input: Method Name M

if M not already included then

NewClass
write
←−−− M ;

Refer split BoB IDG.

forall outgoing edges from method node M do

if referred node is AUXclass then

Change the reference to corresponding accessed field in this

if method M ∈
⋃

{ interface methods ∀ splits in Mergecfg } then

if access of M = private then

Make (access = public)
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Procedure MergeConstructorInclude(C(exps))

Input: Constructor Name C

if C (exps) not already included then

NewClass
write
←−−− C (exps) ;

forall outgoing edges from constructor C do

if refereed node is AUXclass then

Change the reference to corresponding accessed

field in this.

∀ local variables declared in the beginning of constructor

(after super(exps) or this(exps) call), having the same name

as the class fields, remove the local variable declarations.

7.1.1 Rules for merging fragments

• Validation - for Fields: Matching field names should have same type

• Validation - for Methods: Matching methods should have same method bodies

(ignore references to AUX or convert AUX reference to field references)

• Validation - for Constructor : Constructors signatures should match. If opti-

mization has taken place on the constructors, the signatures are expanded by

concatenation

7.2 Handling Inheritance

Following sections illustrate the issues related to BoB Class inheritance

A

M1 M2 M3

B

M2 M4 M5

Split Config-1

S1 = M1, M2, M3

S2 = M4, M5

A

M1 M2 M3

B1

M2

B2

M4 M5

Figure 7.2: Inheritance-issues (a)
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Consider a BoB A. Figure 7.2 shows the splitting for a given configuration. The

parent is not affected by the partitioning. However, in Figure 7.2 we have a case where

the parent is also partitioned. This can pose problems as we discuss in next section.

A

M1 M2 M3

B

M2 M4 M5

Split Config-2

S1 = M1, M3, M4

S2 = M2, M5

A1

M1, M3

B1

M4

A2

M2

B2

M2 M5

Figure 7.3: Inheritance-issues (b)

7.2.1 Issue: Retaining old type

A

M1 M2 M3

B

M2 M4 M5

Split Config-3

S3 = M1, M2, M7

S4 = M3, M8

A3

M1 M2

C1

M2 M7

A4

M3

C2

M8

C

M2 M7 M8

A a = new A;

A b = new B; ?

A c = new C; ?

Each child can split A in a unique way

Figure 7.4: Inheritance-issues-(c)

Consider the splitting in Figure 7.4. When BoB C is partitioned, it partitions A

in a different manner than that of BoB B partitioning in the previous example. This

leads to problems as shown in the example.

So any partitioning introduces new types into the system. The issue is what should

be done with the old type (A in this case). We have two options:

• Retain old type. That is, for Figure 7.2 A remains along with A1, A2.



7.3 Implementation - Splitting and Merging Engines 91

• Delete old type. Only A1 and A2 remain.

We prefer case 2, and allow only interface inheritance with the condition that all

the methods of an interface are designated together. W recommended aggrega-

tion (and delegation) as the principal composition mechanisms for BoBs when used

in the context of partitioning. It leads to neater design and reduces complexity of

restructuring.

7.2.2 Class-level/object level

We do class-level partitioning. Object level partitioning creates more complexity,

particularly when used in the context of class based object oriented languages.

If we allow object-level partitioning, it implies that we allow a BoB to be split in

more than one way in application. This lead to the same kind of problems as discussed

in the above section.

Consider, for example, the assignment operation. We need to know the ¡type¿ of

object on RHS and then convert it to the ¡type¿ being assigned (LHS)

A ax = new A();

A ay = new A();

ax split: ax1 = m1, m2, split ax2 = m3

ay split: ay1 = m2, split ay2 = m1, m3;

If we have following assignment operation, ax = ay it is cumbersome to do this

translations once splitting is done .

We need run-time support for such an operation. Such a support is not available

in the present languages. We use class-level BoB partitioning, and it is sufficient and

meaningful for most applications.

7.3 Implementation - Splitting and Merging En-

gines

The implementation of the splitting and merging engines has been done using Injec-

t/J [Gen03], which provides support for large-scale source meta-programming[Lud00].

It is based on Recorder/Java1 transformation library. It can be used to transform

Java program. The input is a Java program and the output is a modified Java pro-

gram. Inject/J language is dynamically typed and provides transformation operators

1http://recoder.sourceforge.net/index.html
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in terms of model entities. Its allows to navigate these model entities (e.g. a class, a

method etc.), select model entities and perform transformational operations on them.

Inject/J software then processes transformations scripts written in Inject/J software

transformation language. Both the splitting and merging engines make heavy use of

these scripts. There, are however, certain limitations in the language, e.g. it does not

allow i/o operations, and at present can read in only Java source code files. This makes

it difficult for us to specify e.g. a xml based configuration file. We circumvent this

by using Java interface definitions for specifying the split and merge configurations.

Extending the Inject/J language platform for our specific and customized use is an

area for future work.

Inject-J Meta-Model

Script Parser

Transformation Scripts

Configuration and

Project Management

Control Unit

Project Files

Source Code

Recorder

Transformation Unit

Inject - J

Figure 7.5: Inject-J Architecture

7.4 Deployment Architecture

This chapter provides the details of deployment Engine. The deployment engine

currently uses mechanisms developed by Pangaea [Spi99] and J-orchestra [Til02] for

BoB deployments. In the former case, the distribution transformations are done on

the source code and the compilation is done at the subsequent stage, while in the

latter case the distribution is done after compilation of the source code into the Java

byte code. Below we explain the constitution of BoB-deployment engine based on

both these techniques.
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7.4.1 Deployment using Pangaea

Pangaea is a system that can distribute centralized Java programs, based on static

source code analysis and using arbitrary distribution platforms as a back-end. It thus

distributes programs automatically, in the following four senses:

• Pangaea automatically analyzes the source code of a program, estimating its

run-time structure and determining distribution-relevant properties.

• Based on this information, the distribution strategy for the program can be

decided upon. This involves where to place objects, and when to employ object

migration. To specify the distribution strategy, the programmer is provided

with a graphical view of the program, in which he may configure the program

for distributed execution, assisted by automatic tools.

• After the program has been configured, the desired distribution strategy is im-

plemented automatically by regenerating the program’s source code for a chosen

distribution platform.

• At run-time, the placement of some or all of the program’s objects can be ad-

justed automatically based on their communication behavior. This is realized

by an asynchronous migration facility supplied by Pangaea’s run-time system.

Pangaea provides support for three back-end code generators, viz., CORBA, Java-

Party, and Doorastha. For our purpose we have considered only Doorastha.

The various steps involved in distribution through Pangaea (see figure 7.6) system

are enumerated below:

1. The first step is source code analysis. The source code analysis algorithm for

Pangaea provides an object-oriented, macroscopic view of the program’s run-

time structure that is suitable for further distribution analysis.

2. Next step is specifying the distribution strategy. Pangaea’s graphical user in-

terface, provides a useful tool by which the programmer can specify distribution

requirements. The act of specifying a distribution strategy for a program is

called configuring the program. This involves where to place individual objects,

which objects may be kept local on each machine, and for which objects asyn-

chronous object migration should be employed. The programmer specifies the

configuration in Pangaea’s graphical user interface, assisted by automatic tools.
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Centralized Program

.java

Distribution

Requirements

Analyzer

Backend-Adapter
for

(Java Party)

for

(CORBA)

for

(DOORASTHA)

.java Distributed Program

(backend-specific)

DOORASTHA

.class Executable Program

Figure 7.6: Pangaea Architecture

3. After the configuration is complete, the types of the program are classified,

which means, for example, that some types must be remotely invokable, others

migrable, etc. The classification of the program’s types is an abstract way of

describing the implementation of the chosen distribution strategy. Classification

is carried out automatically by Pangaea and forms the basis for the subsequent

code generation step.

4. Pangaea’s back-end code generators regenerate the source code of the program,

transforming it into a distributed program for the chosen distribution platform,

while preserving the centralized program’s semantics. This includes making

some classes remotely invokable, turning some object allocation statements into

remote allocations, and other transformations. There are back-end code gener-

ators for CORBA, JavaParty, and Doorastha.

5. Pangaea provides a run-time system in addition to that of the distribution plat-

form. Its main purpose is to implement asynchronous object migration, which

means that objects are monitored at run-time and moved to the partition from

which they are most frequently accessed.

In addition, Pangaea provides a small Launcher utility that hides these differences

and complexities of the distribution platforms , so that executing a distributed pro-
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gram becomes very similar to the centralized case.

7.4.2 Deployment using J-orchestra

J-Orchestra operates at the Java bytecode level. It rewrites the application code

to replace local data exchange (function calls, data sharing through pointers) with

remote communication (remote function calls through Java RMI, indirect pointers to

mobile objects).

J-Orchestra receives input from the user specifying the network locations of var-

ious hardware and software resources and the code using them directly. A separate

profiling phase and static analysis are used to automatically compute a partitioning

that minimizes network traffic. It specifies the deployment node for each component

of the system. Figure 7.7 gives a high-level overview of the operation of J-Orchestra.

.class

J-Orchestra

classifier

J-Orchestra

Profiler

J-Orchestra

translator

User

Partitioning

Info

Partitioned

Application

Original

Bytecodes

.class

Figure 7.7: Jorchestra Architecture

The various features of the J-orchestra system are discussed below:

1. The user interaction with the J-Orchestra system consists of specifying the mo-

bility properties and location of application objects.

2. J-Orchestra converts all objects of an application into remote-capable objects,

i.e., objects that can be accessed from a remote site.

3. Remote-capable objects can be either anchored (i.e., they cannot move from

their location) or mobile (i.e., they can migrate at will). For every class in the

original application, or Java system class potentially used by application code,

the user can specify whether the class instances will be mobile or anchored.

4. For mobile classes, the user needs to also describe a migration policy - specifi-

cation of when the objects should migrate and how. For anchored classes, the

user needs to specify their location.
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5. Using this input, the J-Orchestra translator modifies the original application

and system byte code, creates new binary packages, produces source code for

helper classes (proxies, etc.), compiles that source code, and creates the final

distributed application.

To ensure a correct and efficient partitioning, J-Orchestra offers two tools: a profiler

and a classifier. The profiler reports to the user statistics on the interdependencies- of

various classes based on (off-line) profiled runs of the application. With this informa-

tion, the user can decide which classes should be anchored together and where. The

J-Orchestra classification algorithm is responsible for ensuring the correctness of the

user-chosen partitioning. The classifier analyzes classes to find any dependencies that

can prevent them from being fully mobile. The classifier takes one or more classes

and their desired locations as input and computes whether they can be mobile and,

if not, whether the suggested locations are legal and what other classes should be

co-anchored on the same sites. The user interacts with the classifier until all system

classes have been anchored correctly.

7.5 Summary and Discussion

The main aim of providing distribution capability to a BoB is to facilitate opti-

mal placement of distributed components. Optimal placement of BoB components is

beyond the scope of this thesis. For our purposes we assume that a mechanism exists

- manual or automatic, which determine the suitable location for each of the appli-

cation components. Partitioning systems, as discussed above, provide provide these

mechanisms. For BoBs, the information for placement of sub-components is specified

externally and is assumed to be available.

We have mainly looked at compile time distribution of BoBs. Deployment time

distributiondistribution of BoBs is an area of future research.
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Case-Studies-1

8.1 Multi-mode E-mail Client Application

We describe here briefly the e-mail client application motivated in the introduction

and which we has been designed as a BoB based application. Figure 1.2 shows the class

layout view of the e-mail application. We mention here only those classes which are

relevant for the purpose of illustrating the concepts and exclude all other details that

are used in actual implementation such as the graphical user interfaces classes, session

class, mime-helper class utilities, text processing utilities, etc. We had identified two

objects for BoB implementation were, viz., BoBFolder and BoBMessage.

BoBFolder: BoBFolder builds as a container of Folder class provided by

javax.mail package. All the connection and protocol handling part is done by the

protocol specific implementation class (e.g. IMAPFolder). BoBFolder provides the

various utilities to the user interface and the rest of the program through a series of

public methods (refer figure 8.2). It also supports a mechanism to create a cache for

the sub-folders and message-infos of the acquired messages.

BoBMessage: It carries the actual e-mail message which can be single or multi

part. We only do simple splitting on BoBMessage to separate out the information,

content and attached parts. Depending upon the need, the requisite part is fetched,

e.g., if we are only displaying the list of mails in a folder, we create a list of message

information parts.

We use the BoBFolder example for further illustration of the BDA process. Fig-

ure 8.1 presents the IDG for BoBFolder. Figure 8.2 shows the splits performed on

BoBFolder using FolderSplitcfg - 2. The figure also shows the redeployment done

97
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 m_Store : Store

 m_ProtocolFolder 

+ getMessage() 

 m_ActualMessage 

+ hasSubFolders()

 m_MessageFolderList 

+ createSubFolderList()

 m_MessageInfoList
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 m_Path
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+ prepareFolder()

DependencyFieldsInterface Methods

m3 =

BoB Folder IDG

m4 =

m5 =

m2 =

m1 =

m7 =

m6 =

Figure 8.1: IDG for BoBFolder

on BoBFolder splits. The AUX class obtained after splitting is further split into

AUX1 and AUX2 for the purpose of redeployment.

Figure 8.3 describes different configurations of principal classes for the different

versions - online, disconnected and offline - obtained for the e-mail application, im-

plemented using these BoBs.

8.2 Small (Mobile) Device Application Architec-

tures

An important aspect of software is that they should small in size. This is particu-

larly important when we have devices which are resource constrained.

Classes with contain a lot of functionality which lies untilized add to the overall

bulk of program size. Consider the following overvation by a game developer Kyle

Wislon:

. . .More troubling is all the functional code that’s left lying around

never to be executed. It bloats the executable, it makes it harder to find

the function you’re looking for, and it leaves everyone unsure when to

invest effort in making sure something still works and when to just let

it lie. Eventually, code will become so bloated and unwieldy that it’s

impossible to maintain, and everyone on the team will start talking about

how much things need to be rewritten from scratch. . . .

Application on mobile devices have to run in a limited environment. The primary

limitation is amount of available memory to run and store applications. For example,

in MIDP devices running J2ME applications, the application size is 50K or less. This
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− m_MessageFolderList : List

− m_MessageFolderList : List

− m_MessageInfoList : List

− m_ActualMessage : BoBMessage
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 BoB Folder− AUX−1

Figure 8.2: Splitting and redeployment for BoBFolder

is in contrast to multi-megabyte applications in server based environments. To reduce

the application sizes, many optimization are advised 1. Some of them are:

• Remove unnecessary classes by pruning the application’s functionality. Build

the most minimal version of the application.

• Examine and remove the inner classes if possible.

• Combine two or three classes as one multifunctional class and place all the code

in one file.

• Maximize the use of pre-installed classes.

• Collapse application inheritance hierarchies.

• Shorten the names of packages, classes, methods and data members.

1http://java.sun.com/developer/J2METechTips/2002/tt0226.html
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Figure 8.3: BoB-based email application

• Rexamine the use of array initializations.

In the section we discuss the example of a Stock Database application implemented

on wireless device. We show how a BoB based approaches helps to reduce the overall

size of application in most of the usage scenarios.

The MIDlet for this example does the following:

• Creates a record store (database).

• Adds new records (stocks) to the database.

• Views the stocks in the database.

To add a stock to the database, the user enters the stock symbol (such as, SUNW,

IBM, IT, MS, GM, or Ford). The MIDlet retrieves the corresponding stock quote from

the Yahoo Quote Server (http://quote.yahoo.com), constructs a record, and adds the

record to the database. To view the stocks in the record store, the MIDlet iterates

through the records in the record store and prints them on the display in a nice format.

8.2.1 The Implementation

The implementation of this MIDlet consists of the following three classes: Stock.java,

StockDB.java, and QuotesMIDlet.java. Figure 8.4 shows the classes used in the used

Record Management Store (RMS) package. This package forms the backend in this
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MIDlet example. Figure 8.5 shows an implementation of Record Store class. We also

show through RMS package, how it can optimized for different applet accesses, for

example StockDB in this case.

InvalidRecordIDException

RecordComparator

<<interface>>

+compare(rec1: byte, rec2: byte): int

RecordEnumeration

<<interface>>

+numRecords(): int

+nextRecord(): byte

+nextRecordId(): int

+previousRecord(): byte

+previousRecordId(): int

+hasNextElement(): boolean

+hasPreviousElement(): boolean

+reset()

+rebuild()

+keepUpdated(keepUpdated: boolean)

+isKeptUpdated(): boolean

+destroy()

RecordEnumerationImpl

+numRecords(): int

+nextRecord(): byte

+nextRecordId(): int

+previousRecord(): byte

+previousRecordId(): int

+hasNextElement(): boolean

+hasPreviousElement(): boolean

+reset()

+rebuild()

+keepUpdated(keepUpdated: boolean)

+isKeptUpdated(): boolean

+recordAdded(recordStore: RecordStore, recordId: int)

+recordChanged(recordStore: RecordStore, recordId: int)

+recordDeleted(recordStore: RecordStore, recordId: int)

+destroy()

RecordFilter

<<interface>>

+matches(candidate: byte): boolean

RecordListener

<<interface>>

+recordAdded(recordStore: RecordStore, recordId: int)

+recordChanged(recordStore: RecordStore, recordId: int)

+recordDeleted(recordStore: RecordStore, recordId: int)

RecordStore

+AUTHMODE_PRIVATE: int

+AUTHMODE_ANY: int

+deleteRecordStore(recordStoreName: String)

+openRecordStore(recordStoreName: String, createIfNecessary: boolean): RecordStore

+openRecordStore(recordStoreName: String, createIfNecessary: boolean, authmode: int, writable: boolean): RecordStore

+openRecordStore(recordStoreName: String, vendorName: String, suiteName: String): RecordStore

+setMode(authmode: int, writable: boolean)

+closeRecordStore()

+listRecordStores(): String

+getName(): String

+getVersion(): int

+getNumRecords(): int

+getSize(): int

+getSizeAvailable(): int

+getLastModified(): long

+addRecordListener(listener: RecordListener)

+removeRecordListener(listener: RecordListener)

+getNextRecordID(): int

+addRecord(data: byte, offset: int, numBytes: int): int

+deleteRecord(recordId: int)

+getRecordSize(recordId: int): int

+getRecord(recordId: int, buffer: byte, offset: int): int

+getRecord(recordId: int): byte

+setRecord(recordId: int, newData: byte, offset: int, numBytes: int)

+enumerateRecords(filter: RecordFilter, comparator: RecordComparator, keepUpdated: boolean): RecordEnumeration

RecordStoreException

RecordStoreFullException

RecordStoreNotFoundException

RecordStoreNotOpenException

Figure 8.4: Overview of javax.microedition.rms package

8.2.2 The Stock.java Class

This class parses a string obtained from the Yahoo Quote Server or the record

store into fields (such as, name of stock, or price). The string returned from the

Yahoo Quote Server has the following format: NAME TIME PRICE CHANGE LOW

HIGH OPEN PREV ”SUNW”, ”2:1PM - 79.75”, +3.6875, ”64.1875 - 129.3125”, 78,

76.0625 In this MIDlet, the fields retrieved are the name of the stock, the time, and

the price.

%Listing 1: Stock.java

public class Stock {

private static String name, time, price;

// Given a quote from the server ,

// re t r i eve the name,

//price , and date of the stock

public static void parse(String data) {

int index = data.indexOf(’"’);

name = data.substring(++index,

(index = data.indexOf(’"’, index)));

index +=3;

time = data.substring(index,

(index = data.indexOf(’-’, index))-1);
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RecordStore

+AUTHMODE_PRIVATE: int = 0
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-opencount: int

-dbraf: RecordStoreFile

~rsLock: Object

-recordListener: java.util.Vector

-recHeadCache: RecordHeaderCache

-CACHE_SIZE: int = 8

-recHeadBuf: byte[*] = new byte[DB_RECORD_HEADER_LENGTH]
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-dbNumLiveRecords: int

-dbLastModified: long
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-dbDataStart: int = 48

-dbDataEnd: int = 48

-dbState: byte[*] = new byte[DB_INIT.length]

-RS_SIGNATURE: int = 0

-RS_NUM_LIVE: int = 8

-RS_AUTHMODE: int = 12

-RS_VERSION: int = 16

-RS_NEXT_ID: int = 20

-RS_REC_START: int = 24

-RS_FREE_START: int = 28

-RS_LAST_MODIFIED: int = 32

-RS_DATA_START: int = 40

-RS_DATA_END: int = 44

<<create>>-RecordStore()

<<create>>-RecordStore(uidPath: String, recordStoreName: String, create: boolean)

+deleteRecordStore(recordStoreName: String)

+openRecordStore(recordStoreName: String, createIfNecessary: boolean): RecordStore

+openRecordStore(recordStoreName: String, createIfNecessary: boolean, authmode: int, writable: boolean): RecordStore

+openRecordStore(recordStoreName: String, vendorName: String, suiteName: String): RecordStore

+setMode(authmode: int, writable: boolean)

+closeRecordStore()

+listRecordStores(): String

+getName(): String

+getVersion(): int

+getNumRecords(): int

+getSize(): int

+getSizeAvailable(): int

+getLastModified(): long

+addRecordListener(listener: RecordListener)

+removeRecordListener(listener: RecordListener)

+getNextRecordID(): int

+addRecord(data: byte, offset: int, numBytes: int): int

+deleteRecord(recordId: int)

+getRecordSize(recordId: int): int

+getRecord(recordId: int, buffer: byte, offset: int): int

+getRecord(recordId: int): byte

+setRecord(recordId: int, newData: byte, offset: int, numBytes: int)

+enumerateRecords(filter: RecordFilter, comparator: RecordComparator, keepUpdated: boolean): RecordEnumeration

-findRecord(recordId: int, addToCache: boolean): RecordHeader

-getAllocSize(numBytes: int): int

-allocateNewRecordStorage(id: int, dataSize: int): RecordHeader

-splitRecord(recHead: RecordHeader, allocSize: int)

-freeRecord(rh: RecordHeader)

-removeFreeBlock(blockToFree: RecordHeader)

-storeDBState()

~isOpen(): boolean

-checkOpen()

-notifyRecordChangedListeners(recordId: int)

-notifyRecordAddedListeners(recordId: int)

-notifyRecordDeletedListeners(recordId: int)

~getInt(data: byte, offset: int): int
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~putInt(i: int, data: byte, offset: int): int
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Figure 8.5: Implementation of RecordStore
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index +=5;

price = data.substring(index,

(index = data.indexOf(’<’, index)));

}

// Get the name of the stock from

// the record store

public static String

getName(String record) {

parse(record);

return(name);

}

// Get the price of the stock from

// the record store

public static String

getPrice(String record) {

parse(record);

return(price);

}

}

8.2.3 The StockDB.java Class

This class provides methods that do the following:

• Opens a new record store.

• Adds a new record to the record store.

• Closes the record store.

• Enumerates through the records.

import javax.microedition.rms.*;

import java.util.Enumeration;

import java.util.Vector;

import java.io.*;

public class StockDB {

RecordStore recordStore = null;

public StockDB() {}

// Open a record store with the given name

public StockDB(String fileName) {

try {

recordStore =

RecordStore.openRecordStore(

fileName, true);

} catch(RecordStoreException rse) {

rse.printStackTrace();
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}

}

// Close the record store

public void close()

throws RecordStoreNotOpenException,

RecordStoreException {

if (recordStore.getNumRecords() == 0) {

String fileName =

recordStore.getName();

recordStore.closeRecordStore();

recordStore.deleteRecordStore(

fileName);

} else {

recordStore.closeRecordStore();

}

}

// Add a new record ( stock )

// to the record store

public synchronized void

addNewStock(String record) {

ByteArrayOutputStream baos = new

ByteArrayOutputStream();

DataOutputStream outputStream = new

DataOutputStream(baos);

try {

outputStream.writeUTF(record);

}

catch (IOException ioe) {

System.out.println(ioe);

ioe.printStackTrace();

}

byte[] b = baos.toByteArray();

try {

recordStore.addRecord(b,

0, b.length);

}

catch (RecordStoreException rse) {

System.out.println(rse);

rse.printStackTrace();

}

}

// Enumerate through the records .

public synchronized

RecordEnumeration enumerate()

throws RecordStoreNotOpenException {

return recordStore.enumerateRecords(

null, null, false);

}

}
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8.2.4 The QuotesMIDlet.java Class

The QuotesMIDlet class is the actual MIDlet that does the following:

• Creates commands (List Stocks, Add New Stock, Back, Save, Exit).

• Handles command events.

• Connects to the YAHOO Quote Server and retrieves Quotes.

• Invokes methods from Stock and StockDB to parse quotes and add new stocks

to the record store.

Listing 3: QuotesMIDlet.java

import javax.microedition.rms.*;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.*;

import javax.microedition.io.*;

import java.io.*;

import java.util.Vector;

public class QuotesMIDlet

extends MIDlet implements CommandListener {

Display display = null;

List menu = null; // main menu

List choose = null;

TextBox input = null;

Ticker ticker =

new Ticker("Database Application");

String quoteServer =

"http://quote.yahoo.com/d/quotes.csv?s=";

String quoteFormat =

"&f=slc1wop"; // The only quote format supported

static final Command backCommand = new

Command("Back", Command.BACK, 0);

static final Command mainMenuCommand = new

Command("Main", Command.SCREEN, 1);

static final Command saveCommand = new

Command("Save", Command.OK, 2);

static final Command exitCommand = new

Command("Exit", Command.STOP, 3);

String currentMenu = null;

// Stock data

String name, date, price;

// record store

StockDB db = null;

public QuotesMIDlet() { // constructor

}
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// s ta r t the MIDlet

public void startApp()

throws MIDletStateChangeException {

display = Display.getDisplay(this);

// open a db stock f i l e

try {

db = new StockDB("mystocks");

} catch(Exception e) {}

menu = new List("Stocks Database",

Choice.IMPLICIT);

menu.append("List Stocks", null);

menu.append("Add A New Stock", null);

menu.addCommand(exitCommand);

menu.setCommandListener(this);

menu.setTicker(ticker);

mainMenu();

}

public void pauseApp() {

display = null;

choose = null;

menu = null;

ticker = null;

try {

db.close();

db = null;

} catch(Exception e) {}

}

public void destroyApp(boolean

unconditional) {

try {

db.close();

} catch(Exception e) {}

notifyDestroyed();

}

void mainMenu() {

display.setCurrent(menu);

currentMenu = "Main";

}

// Construct a running t i c ke r

// with stock names and prices

public String tickerString() {

StringBuffer ticks = null;

try {

RecordEnumeration enum =

db.enumerate();

ticks = new StringBuffer();

while(enum.hasNextElement()) {

String stock1 =

new String(enum.nextRecord());

ticks.append(Stock.getName(stock1));

ticks.append(" @ ");
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ticks.append(Stock.getPrice(stock1));

ticks.append(" ");

}

} catch(Exception ex) {}

return (ticks.toString());

}

// Add a new stock to the record store

// by ca l l i n g StockDB . addNewStock()

public void addStock() {

input = new TextBox(

"Enter a Stock Name:", "", 5,

TextField.ANY);

input.setTicker(ticker);

input.addCommand(saveCommand);

input.addCommand(backCommand);

input.setCommandListener(this);

input.setString("");

display.setCurrent(input);

currentMenu = "Add";

}

// Connect to quote . yahoo .com and

// re t r i eve the data for a given

// stock symbol .

public String getQuote(String input)

throws IOException,

NumberFormatException {

String url = quoteServer + input +

quoteFormat;

StreamConnection c =

(StreamConnection)Connector.open(

url, Connector.READ_WRITE);

InputStream is = c.openInputStream();

StringBuffer sb = new StringBuffer();

int ch;

while((ch = is.read()) != -1) {

sb.append((char)ch);

}

return(sb.toString());

}

// List the stocks in the record store

public void listStocks() {

choose = new List("Choose Stocks",

Choice.MULTIPLE);

choose.setTicker(

new Ticker(tickerString()));

choose.addCommand(backCommand);

choose.setCommandListener(this);

try {

RecordEnumeration re = db.enumerate();

while(re.hasNextElement()) {

String theStock =

new String(re.nextRecord());

choose.append(Stock.getName(

theStock)+" @ "
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+ Stock.getPrice(theStock), null);

}

} catch(Exception ex) {}

display.setCurrent(choose);

currentMenu = "List";

}

// Handle command events

public void commandAction(Command c,

Displayable d) {

String label = c.getLabel();

if (label.equals("Exit")) {

destroyApp(true);

} else if (label.equals("Save")) {

if(currentMenu.equals("Add")) {

// add i t to database

try {

String userInput =

input.getString();

String pr = getQuote(userInput);

db.addNewStock(pr);

ticker.setString(tickerString());

} catch(IOException e) {

} catch(NumberFormatException se) {

}

mainMenu();

}

} else if (label.equals("Back")) {

if(currentMenu.equals("List")) {

// go back to menu

mainMenu();

} else if(currentMenu.equals("Add")) {

// go back to menu

mainMenu();

}

} else {

List down = (List)display.getCurrent();

switch(down.getSelectedIndex()) {

case 0: listStocks();break;

case 1: addStock();break;

}

}

}

}

In the next chapter, we relax many of our restrictions on BoBs and consider the

BoB fragment as an artifact for reuse. We discuss the various BoB operations for

application extension and contraction.



Architecture starts when you care-

fully put two bricks together. There

it begins.

- Ludwig Mies van der Rohe

Chapter 9

Software Composition Using BoBs

In the previous chapters, we considered behavioral preserving transformations

(split and merge) for BoBs. In this chapter, we discuss how BoBs are used as compos-

able units for reuse and extensibility. We first build a formal model for BoBs and then

explain basic BoB operations. BoBs can not only combine with other BoBs but also

combine with other BoB fragments. This provides an effective and flexible mechanism

for incremental software evolution.

9.1 Structure of BoB - revisited

BoB interface exposes the features of a BoB. A BoB is split on the basis of its

interface methods. The BoB which is split is called principal BoB. Splits of a BoB are

said to have a is split of relation to the principal BoB and are called fragments. It is

depicted by the symbol Â. The reverse relation is is principal of and is depicted by ≺.

For example: Consider the calculator example discussed in Chapter 5.

BoBClass Calculator {

public int ADD (int x, int y) {return (x+y)};

public int SUB (int x, int y) {return (x-y)};

public int MUL(int x, int y) {return (x*y)};

public int DIV (int x, int y) {return (x/y)};

}

If Calculator is split for each mathematical operation, we get four BoB splits,

namely CalculatorADD, CalculatorSUB, CalculatorMUL, and CalculatorDIV.

BoBClass Calculator_ADD{

public int ADD (int x, int y) {return (x+y)};

}

BoBClass Calculator_SUB{

public int SUB (int x, int y) {return (x-y)};

}

109
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Calculator

Calculator
MUL

Calculator
ADD

Calculator
SUB

Calculator
DIV

Denotes is-split-of and is-principal-of

relationships. The thick head lies towards

the principal class’s side.

Figure 9.1: Calculator BoB in extended UML notation

BoBClass Calculator_MUL{

public int MUL(int x, int y) {return (x*y)};

}

BoBClass Calculator_DIV {

public int DIV (int x, int y) {return (x/y)};

}

Then, for the multiply-split we have:

Calculator ≺ CalculatorMUL

CalculatorMUL Â Calculator.

A principal BoB is acts a sub-type to any of its fragments. The interface methods of

a BoB-fragment provide the same service, as they would have, had they been present

inside the principal BoB.

We extend the UML notation to denote these new relationships between two

classes. It is shown in the Figure 9.1.

9.1.1 Allowing inheritance

Since here the purpose here is reusability, and the programmer is aware of the

classes he is creating at the time of code creation (extension is explicit, inheritance

can be easily used and is a useful technique in the construction of BoBs. In fact, it

provide a mechanism for building a structure of fragment refinements within a BoB.
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9.1.2 Formal Model for BoB

We start with a basic model of BoB based program. Later we extend the definition

of BoB class after the discussion of BoB compositions in the later sections. Consider

a program P comprising of BoB classes C1,C2, . . . ,Cn.

Figure below shows the basic construction of a BoB class. In its basic canonical

form it is constructed from fields and methods or by extending it from another BoB.

Program

P ::= C1, C2 . . . Cn

BoBClass

C ::= C { fd* con* md*} | C extends C

Field

fd ::= C f;

Constructor

con ::= C(e*){super(e*) | this(e*) ; s*}

Method

md ::= τ m (e*) {s*}

τ ::= C |void

f ::= field name

m ::= method name

e ::= argument expression

s ::= statment

We now define some basic terminology to build our formal model for BoB compositions.

Let A be the BoB class.

m→ set of interface together method specifications of A,

n→ |m|, cardinality of m or total number of interface together method specifi-

cations.

Definition 9.1.1 (Selection ρ) It is a subset of the BoB interface method specifica-

tion m and denotes a selection on the interface methods of BoB.

ρx = selectionx(m ∈ A) ⊂ m,

x ⊂ {y|y → 1, n}
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where, x is a set having one to one correspondence with ρ and is used as short

hand notation for selection. For example for ρ = {m1,m3,m4}, we have x = {1, 3, 4}

and we denote this selection as: ρx or ρ1,3,4

Also note that:

This signifies the process of splitting a BoB. See figure 9.2.

Definition 9.1.2 (Selection Set ζ) It is the set specifying the configuration file for

splitting. It is a set containing the selections on m such that all methods are included

and no two selections intersect.

ζ = {ρx | ∀x( ∪ρx = m, ∧ ∩ ρx = φ)}

For example, For a BoB A having m = {m1,m2,m3,m4,m5,m6}, one such selec-

tion set is:

ζA = {{m1,m2}, {m3,m5},m4,m6}

or

ζ = {ρ1,2, ρ3,5, ρ4, ρ6}

9.2 BoB Basic Operations

These are the extentions of the basic BoB operations split and merge disscussed in

the previous chapters, except that we now consider the use of inheritance. Additonally,

we provide an operation for extracting a fragment from a BoB.

9.2.1 Split ⊗

As discussed in the earlier chapters, it is the process of splitting a BoB into split-

fragments. It results in a set having all the split-fragments obtained by using a selection

set ζ.

A
⊗
−→
ζA

{

Ax

}

∀ ρx∈ ζA

where, Ax is the split-fragment corresponding to the selection ρx.

For example, for a BoB A with interface methods, m1,m2,m3,m4,m5,m6, if we

consider a selection set, ζA = {{m1,m2}, {m3,m5},m4,m6}, we get:
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A, {{m1,m2}, {m3}, {m4,m5},{m6}}Selection Set:

Operation: split

B12

m1

m2
B3

m3
B4

m4

A12 m2 A3 A45 m5

AUXB f

A6 m6

AUXA g

m  overriding method

m  interface method

dependence

f field

A

m2

m5

m6

B
m2

m3

m1

m4

f

g

Figure 9.2: Composition: Split - Operation

A
⊗
−→

{

A1,2 , A3,5 , A4 , A6

}

Please note that, each fragment is itself a BoB and can be further split if |m| > 1. A

BoB with |m| is called an atomic BoB and represents the smallest unit of composition

in BoB compositions.

In the above example, A1,2, and A3,5 can be further split:

A1,2
⊗
−→

{

A1 , A2

}

A3,5
⊗
−→

{

A5 , A5

}

The final split-set thus obtained:

{

A1 , A2 , A3 , A4 , A5 , A6

}

contains only atomic BoBs.

In Figure 9.2, we show the use of inheritance, and the corresponding splits for a

selection set, ζA = {{m1,m2}, {m3}, {m4,m5}, {m6}}. The shared auxiliary fields

(AUXAg, andAUXBf in this case), at each hierarchy level (A, andB), are replicated

in each BoB fragment that shares them.
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Operation: merge

A

m1

m3

m4

B m2

m1f

g

B1

m1
B2

m2

A1 m1 A23

AUXB f

A4

m4

AUXA h

AUXA g

AUXB f

AUXA gAUXA g

AUXA h

B1

m1 m2B2

m3
A1 m1 A23

AUXB f

A4

m4

AUXA h

AUXA g

m3

h

Selection Set: {A1, A23, A4}

Figure 9.3: Composition: Merge - Operation

9.2.2 Merge ./

This signifies the process of integrating the BoBs from its splits. It is reverse of

split. We specify the split-fragments that need to be merged and the result is an

integrated BoB. We can either do a partial merge where only a subset of the split-

fragments are integrated, or a full merge where the whole set of split-fragments from

one particular split operation are integrated.

Full merge,
{

Ax

}

./
−−−−−→
∀ ρx∈ ζA

A

Partial merge:

{

Ax

}

n

−−−−−−−−−→
forsome ρx∈ ζA

A

Since, merging is reverse of splitting, following relation holds good:

A
⊗
−→
ζA

{

Ax

}

./
−−−−−→
∀ ρx∈ ζA

A

Later we shall show that a partial merge, where only two fragments are involved,

is equivalent to addition operation. Similarly a partial split, where only one fragment

is output, is equivalent to extract operation.

Figure 9.3 shows an example of merging operation. Please note that corresponding

BoB fragments at the same hiearchy level get merged together. The operation of

merging follows the same rules as discussed in Chapter 7.
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1. A, {m1,m2}

2. A, {m6}

Selection Sets:

Operation: extract

B
12

m1

m2

A
12 m2 A

6 m6

AUX
B

f

AUX
A

g AUX
A

g

Case (1) Case (2)

A

m2

m5

m6

B
m2

m3

m1

m4

f

g

Figure 9.4: Composition: Extract Operation

9.2.3 Extract Fragment ξ

It is the process of extracting a fragment from a BoB by doing a selection mx.

Step1: Obtain: Ax as described in previous sections.

Figure 9.4 illustrates this operation.

Other, BoB fragment compositions discussed in next section, do not allow inher-

itance in fragments. If an extract operation yields multiple levels of hiearchy, we

collapse (or flatten) this hierarchy to obtain a BoB fragment. A BoB fragment, in

that stricter sense is defined as:

Step 2: Collapse Ax

FragxA = collapse{Ax}

Summarizing:

ξ(C, ρx)→ FragxA

Note: A total of 2n fragment combinations are possible, where n = |m|
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9.2.4 Remove

It is the process of removing a ρx from the A and obtaining the remaining fragment.

The process is complimentary to the extract opearation.

Remove(C, ρx)→ ξ(C, ρ{m−x})

In the remaining sections, we describe the composition methods for extending

BoBs.

9.3 BoB Fragment Compositions

These represent the mechanisms for extending (or contracting) a BoB by adding

(or subtracting) another BoB or BoB fragment to it. These operations are of the form

C } Frag, where Frag denotes a BoB fragment. A BoB fragment is equivalent to a

BoB, but in the strict sense, as it is used in the operations here, it is a BoB whose

inheritance hierarchy has been collapsed (or flattened). The symbol } denotes one

of the composition operations described the following sections. A BoB class C forms

the left hand side (LHS) of composition. The right-hand-side (RHS) is always a BoB

fragment.

9.3.1 Structure Preserving Compositions

In these operations, the refinement structure is preserved. This is achieved by

keeping the added refinement in the form of fragment hieararchy.

Fragment Add(C + F )

Adds a new functionality to the BoB. The process is illustrated in Figure 9.5.

The semantics for addition are similar to the merge operations, except for some

differences where an additional functionality is added.

1. For methods following rules are used:

(a) If the method signatures are different, each method is included.

(b) If method signatures are same:

i. If one is private and another public, public access specifier is

used. The general rule that is followed is that access should not de-

crease according to the following ordering private < default <

protected < public.
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A + B

Operation: fragment addition – hierarchical

C
m1

A m3

m2

B
m2

m3

m2

m1

m4

C
m1

A

m2

m3

m2

m1

m4

j k

i

k

i

A/ m3

m2j

f

g
f

g

f

g

x Normal Field

y Aux Field

Interface Method

Figure 9.5: Composition: Fragment - Addition - Hierarchical

ii. If, the methods have different implementations, then methods of the

added BoB-Fragment on the RHS override the methods on the LHS

2. For fields, following rules are used:

(a) If the names are different, each field is included.

(b) If two fields, for example, f1 on the LHS and f2 on the RHS, have same

name, then the constraint is, Type (f1) = Type(f2), else the composition

error is flagged.

3. The constructors are merged and for new additions their signatures are ex-

panded1.

4. The resultant BoB Class has the same name as the LHS Class unless explicit

name is mentioned.

Figure 9.5 illustrates this operation. Please note that the added fragment adds one

level of refinement to the hierarchy.

Fragment Subtract (C − F )

In this a fragment is subtracted from a BoB class. The to be removed fragment

is specified. One of the requirement is that this fragment should find a match at

1For the sake of simply we consider only one fully expanded constructor for one fragment
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A - B

Operation: fragment subtraction - hierarchical

C
m1

A

m2

m3

m2

m1

m4

k

i

B m3

m2j
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m1
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f

g

g

f

g

Figure 9.6: Composition: Fragment Subtraction (Structure Preserving)

some level of the hierarchy. If it gets matched in the fragment hierarchy of the given

component, the corresponding fragment is removed. The hierarchy is readjusted, and

the fields that are used by the fragment refinements in the regions lower to the removed

fragment, are pushed down one level. Figure 9.6 illustrates this operation.

9.3.2 Fragment Replace (#(C,Fold, Fnew))

B # D

Operation: fragment replacement

C
m1

A

m2

m3

m2

m1

m4

k

i

B m3

m2j

D
m5

m6

n

C
m1

A

m2

m3

m2

m1

m4

k

i

D
m5

m6

n

f

g h

f

g

h

Figure 9.7: Composition: Fragment Replacement

The to be removed fragment is specified. Its match in the LHS BoB hierarchy

is searched and subtracted. The new fragment is added in place to the removed
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A (+) B

Operation: fragment addition – overwriting

C

A m3

m2

B
m2

m3

m2

m1

m4
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m2

m3

m2

m1
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j
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f

g
f

gg

f

m1

Figure 9.8: Composition: Fragment Addition (Overwriting)

fragment. Hence the process is two fold: (i) Fragment Subtraction , (ii) Fragment

Addition (in-place). Figure 9.7 illustrates this operation.

9.3.3 Overwriting Compositions

In these compositions no new level of hierarchy is added or subtracted from a BoB.

Fragment Add (C(+)F )

The addition is similar to structure preserving addition except that the fragment

addition in this case overwrites the methods in the LHS BoB class. In this form of

addition, no new level of hierarchy is added. All the additions take place to the leaf

node of the BoB class on LHS. Figure 9.8 illustrates this operation.

Fragment Subtract (C(−)F )

The to be removed fragment is specified. The signatures of the methods which

are to be removed are derived from this fragment. The methods corresponding to

this selection of methods are removed from the leaf of BoB class on LHS. Figure 9.9

illustrates this operation.

9.4 Extended Definition of BoB

We discussed the basic model for a BoB class in the Section 9.1.2. We now extend

this model by incorporating the operations as discussed in the above sections.
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A (-) D

Operation: fragment subtraction - overwriting
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Figure 9.9: Composition: Fragment Subtraction (Overwriting)

The extended definition of a BoB is shown below:

C ::= C extends C { fd* con* md*} | frag | ξ (C, ρ) | C } frag | #(C,frag, frag)

frag ::= collapse(ξ (C, ρ))

} ::= + | - | ⊕ | ª

In the next chapter we provide the case-study of a software product line component,

where many of the above BoB compositions are illustrated.



With a painter or a sculptor, one

cannot begin to alter his works, but

an architect has to put up with any-

thing, because he makes utility ob-

jects - the building is there to be used,

and times change.

- Arne Jacobsen

Chapter 10

Case Studies-2

This chaper highlights the usage of BoB as a variability mechanism in software.

We take the graph product line (GPL) example discussed in literature in [Bat03] and

provide a BoB based design. Next we consider a large-scale distributed application,

and explore where BoB based applications design can help. Finally, we discuss a small

example of BoB based adaptation.

10.1 Graph Product Line

Graph Product Line (GPL) represents the family of graph applications. It is

proposed as a standard problem for evaluating product line methodologies in [LH01]

and is based on the some of the exensibility works in object-oriented technology, like

[Hol93] and [Van96a]. The graph applications differ from each other on the basis of

certain features. These features [LH01] are described briefly below:

• Directed, Undirected

• Weighted, Unweighted

• Search algorithm: breadth-first search (BFS) or depth-first search (DFS);

• Additional algorithms:

– Vertex Numbering (Number): Assigns a unique number to each vertex as

a result of a graph traversal.

121
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– Connected Components (Connected): Computes the connected compo-

nents of an undirected graph.

– Strongly Connected Components (StronglyConnected): Computes the strongly

connected components of a directed graph, which are equivalence classes

under the reachable-from relation. A vertex y is reachable form vertex x if

there is a path from x to y.

– Cycle Checking (Cycle): Determines if there are cycles in a graph.

– Minimum Spanning Tree (MST Prim, MST Kruskal): Computes a Mini-

mum Spanning Tree (MST), which contains all the vertices in the graph

such that the sum of the weights of the edges in the tree is minimal.

– Single-Source Shortest Path (Shortest): Computes the shortest path from

a source vertex to all other vertices.

In Figure 10.3, we show the dependencies between various features. Note that not

all feature combinations are meaningful or even possible to co-exist.

10.2 BoB Based Design

Let us start with a graph which is minimal and has the following features: Undi-

rected, Weighted and implements the MSTKruskal algorithm. Construction of such a

BoB is shown below.

We have a client program which invokes a method MSTKruskal() which com-

putes a minimum spanning tree for the read in graph and displays it.

public class Main {

public static void main( String[] args ) {

// Create graph objec t

Graph g = new Graph();

// Read in graph values from the spec i f i ed f i l e

// and construct graph ob jec t s

try {

// for ( i =0, i < num vertices ; i++) {g . addVertex (V[ i ] )} ;

// for ( i =0, i < num edges ; i++)

// {g .addAnEdge(V[ s tar t Ver t i ces [ i ] ] , V[ endVertices [ i ] ] , weights [ i ] )}

g.runReadInGraph( args[0] );
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MST Kruskal
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Graph Search Layer

Figure 10.1: GPL Layers
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Graph-Directed

+vertices: LinkedList

+edges: LinkedList

+isDirected = true: Boolean

+Graph()

+run(): void

+addAnEdge(star: Vertex, end, weight): void

+addVertex(Vertex v): void

+addEdge(Edge the_edge): void

+addOnlyEdge(Edge the_edge): void

+findsVertex(String theName): Vertex

+display(): void

Graph-Undirected

+vertices: LinkedList

+edges: LinkedList

+isDirected = false: Boolean

+Graph()

+void run(Vertex s)

+void addAnEdge(Vertex start, Vertex end, int weight)

+void addVertex(Vertex v)

+addEdge(Edge the_edge)

+void addOnlyEdge(Edge the_edge)

+Vertex findsVertex(String theName)

+Edge findsEdge(Vertex theSource, Vertex theTarget)

+void display()

Edge

+Vertex start

+void EdgeConstructor(Vertex the_start, Vertex the_end)

+void adjustAdorns(Edge the_edge)

+void display()

Neighbour

+Vertex end

+Edge edge

+Neighbor()

+Neighbor(Vertex v, Edge e)

Vertex

+LinkedList neighbors

+String name

+Vertex()

+void VertexConstructor()

+Vertex assignName(String name)

+void addNeighbor(Neighbor n)

+void display()

Edge

+Vertex start

+void EdgeConstructor(Vertex the_start, Vertex the_end)

+void adjustAdorns(Edge the_edge)

+void display()

Vertex

+LinkedList neighbors

+String name

+Vertex()

+void VertexConstructor()

+Vertex assignName(String name)

+void addNeighbor(Neighbor n)

+void display()

Neighbour

+Vertex end

+Edge edge

+Neighbor()

+Neighbor(Vertex v, Edge e)

Graph-Weighted

+void addAnEdge(Vertex start, Vertex end, int weight)

Vertex-DFS

+boolean visited

+void VertexConstructor()

+void init_vertex(WorkSpace w)

+void dftNodeSearch(WorkSpace w)

+void display()

Edge-Weighted

+int weight

+EdgeConstructor(Vertex the_start, Vertex the_end, int the_weight)

+void adjustAdorns(Edge the_edge)

+void display()

Graph-DFS

+void GraphSearch(WorkSpace w)

GlobalVarsWrapper

+static LinkedList Queue = new LinkedList()

NumberWorkspace

+int vertexCounter

+NumberWorkSpace()

+preVisitAction(Vertex v)

Workspace

+void init_vertex(Vertex v)

+void preVisitAction(Vertex v)

+void postVisitAction(Vertex v)

+void nextRegionAction(Vertex v)

+void checkNeighborAction(Vertex vsource, Vertex vtarget)

Graph-Number

+void run(Vertex s)

+void NumberVertices()

Vertex-Number

+int VertexNumber

+void display()

Graph-Connected

+void run(Vertex s)

+void ConnectedComponents()

Vertex-BFS

+boolean visited

+void VertexConstructor()

+void init_vertex(WorkSpace w)

+void bftNodeSearch(WorkSpace w)

+void display()

Graph-BFS

+void GraphSearch(WorkSpace w)

Workspace

+void init_vertex(Vertex v)

+void preVisitAction(Vertex v)

+void postVisitAction(Vertex v)

+void nextRegionAction(Vertex v)

+void checkNeighborAction(Vertex vsource, Vertex vtarget)

Vertex-Connected

+int componentNumber

+void display()

FinishTimeWorkSpace

+int FinishCounter

+FinishTimeWorkSpace()

+void preVisitAction(Vertex v)

+void postVisitAction(Vertex v)

CycleWorkSpace

+boolean AnyCycles

+int counter

+boolean isDirected

+static final int WHITE = 0

+static final int GRAY = 1

+static final int BLACK = 2

+CycleWorkSpace(boolean UnDir)

+void init_vertex(Vertex v)

+void preVisitAction(Vertex v)

+void postVisitAction(Vertex v)

+void checkNeighborAction(Vertex vsource, Vertex vtarget)

Graph-Cycle

+void run(Vertex s)

+boolean CycleCheck()

Graph-MSTPrim

+void run(Vertex s)

+Graph Prim(Vertex r)

WorkSpaceTranspose

+int SCCCounter

+WorkSpaceTranspose()

+void preVisitAction(Vertex v)

+void nextRegionAction(Vertex v)

Vertex-StronglyConnected

+int finishTime

+int strongComponentNumber

+void display()

Graph-StronglyConnected

+void run(Vertex s)

+Graph StrongComponents()

RegionWorkspace

+int counter

+RegionWorkSpace()

+void init_vertex(Vertex v)

+void postVisitAction(Vertex v)

+nextRegionAction(Vertex v)

Vertex-Cycle

+int VertexCycle

+int VertexColor

+void display()

Graph-Transpose

+Graph ComputeTranspose(Graph the_graph)

Vertex-Shortest

+String predecessor

+int dweight

+void display()

Graph-Shortest

+void run(Vertex s)

+Graph ShortestPath(Vertex s)

Main

+static void main(String[] args)

Graph-Benchmark

+Reader inFile

+static int ch

+static long last = 0, current=0, accum=0

+void runBenchmark(String FileName)

+void stopBenchmark()

+int readNumber()

+static void startProfile()

+static void stopProfile()

+static void resumeProfile()

+static void endProfile()

Vertex-MSTPrim

+String pred

+int key

+void display()

Vertex-MSTKruskal

+Vertex representative

+LinkedList members

+void display()

Graph-MSTKruskal

+void run(Vertex s)

+Graph Kruskal(Vertex r)

Figure 10.2: GPL Classes
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}

catch( IOException e ) {}

// Executes the se l ec ted features

g.startProfile();

g.run( g.findsVertex( args[1] ) );

g.MSTKruskal();

g.stopProfile();

g.display();

g.resumeProfile();

// End pro f i l i n g

g.endProfile();

} // End main

}

Below is the above BoBClass Graph code:

BoBClass Graph

{

import java.lang.Integer;

import java.util.LinkedList;

import java.util.Collections;

import java.util.Comparator;

private LinkedList vertices;

private LinkedList edges;

F1 = public static final boolean isDirected = false;

C1 = public Graph() {..}

M1 = public void run( Vertex s ) {/∗ dummy ∗/}

// pub l ic void addAnEdge( Vertex start , Vertex end , in t weight ) { . .}

M2 = public void addVertex( Vertex v ) {..}

M3 = public void addEdge( Edge the_edge ) {..}

M4 = public void addOnlyEdge( Edge the_edge ) {..}

M5 = public Vertex findsVertex( String theName ) {..}

M6 = public Edge findsEdge( Vertex theSource, Vertex theTarget ) {..}

M7 = public void display() {..}

//For weighted graph

M8 = public void addAnEdge( Vertex start, Vertex end, int weight ){..}

M9 = public void run( Vertex s ){..}

M10 = public Graph Kruskal( Vertex r ) {\ldots}

M20 = public readInGraph(Vertex s){..}

}
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Creating split objects from this BoB class, with following configuration:

Split 1 = F1, C1, M1-M7, M20

Split 2 = M8

Split 3 = M9, M10

The splits are shown below:

BoBClass Graph_Split_1_Undirected

{

private LinkedList vertices;

private LinkedList edges;

F1 = public static final boolean isDirected = false;

C1 = public GraphSplit_1() {..}

M1 = public void run( Vertex s ) {/∗Dummy∗/}

// pub l ic void addAnEdge( Vertex start , Vertex end , in t weight ) { . .}

{Use this to show that unnecessary methods are carried over}

M2 = public void addVertex( Vertex v ) {..}

M3 = public void addEdge( Edge the_edge ) {..}

M4 = public void addOnlyEdge( Edge the_edge ) {..}

M5 = public Vertex findsVertex( String theName ) {..}

M6 = public Edge findsEdge( Vertex theSource, Vertex theTarget ) {..}

M7 = public void display() {..}

M20 = public readInGraph(Vertex s){..}

}

BoBClass Graph_Split_2_Weighted

{

import java.lang.Integer;

import java.util.LinkedList;

import java.util.Collections;

import java.util.Comparator;

//∗ NOT required in th i s s p l i t ∗/ private LinkedList ve r t i c e s ;

private LinkedList edges;

public -> Make Above public

C1 = public GraphSplit_2( ) {..}

//For weighted graph

M8 = public void addAnEdge( Vertex start, Vertex end, int weight ){..}

M3 = private void addEdge( Edge the_edge){..}

}

BoBClass GraphSplit_3_MSTKruskal

{

import java.lang.Integer;
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import java.util.LinkedList;

import java.util.Collections;

import java.util.Comparator;

private LinkedList vertices;

private LinkedList edges;

C1 = public GraphSplit_3( ) {..}

M9 = public void run( Vertex s ){..}

M10 = public Graph Kruskal( Vertex r ) {\ldots}

}
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The fully integrated BoB class for Graph is shown in the figure below:

BoBClass Graph

{

private LinkedList vertices;

private LinkedList edges;

F1 = public static final boolean isDirected = false;

C1 = public Graph() {..}

M1 = public void run( Vertex s ) {/∗Dummy∗/}

// pub l ic void addAnEdge( Vertex start , Vertex end , in t weight ) { . .}

M2 = public void addVertex( Vertex v ) {..}

M3 = public void addEdge( Edge the_edge ) {..}

M4 = public void addOnlyEdge( Edge the_edge ) {..}

M5 = public Vertex findsVertex( String theName ) {..}

M6 = public Edge findsEdge( Vertex theSource, Vertex theTarget ) {..}

M7 = public void display() {..}

//For weighted graph

M8 = public void addAnEdge( Vertex start, Vertex end, int weight ){..}

M9 = public void DFSGraphSearch(Workspace w)

M10 = public void BFSGraphSerach(Workspace w)

M9 = public void run( Vertex s ){..}

M10 = public Graph Kruskal( Vertex r ) {..}

M11 = public Graph Prim(Vertex r) {..}

M12 = public Graph ComputeTranspose(Graph the_graph) {\ldots}

M13 = public Graph ShortestPath(Vertex s) {..}

M14 = public Graph StrongComponents(){..}

M15 = public void NumberVertices() {..}

M20 = public readInGraph(Vertex s){..}

}
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MST Kruskal

Weighted

Directed

MST Prim

Undirected

Cycle

Transpose

DFS BFS

Number

Strongly

Connected
Connected Shortest

A needs BBA

Graph Top Layer

Graph Algorithm Layer

Graph (Un)Weighted Layer

Graph Search Layer

Figure 10.3: GPL Layers
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Graph_Core

+vertices: LinkedList

+edges: LinkedList

+Graph()

+isDirected(): boolean

+run(v:Vertex): void

+addVertex(v:Vertex): void

+addEdge(edge:Edge): void

+findsVertex(name:Vertex): Vertex

+findsEdge(): Edge

+readInGraph(): void

+display(): void

Graph-Directed

+isDirected: boolean final = true

+addEdge(edge:Edge): void

Graph-Weighted

+addAnEdgeWithWeight(start:Vertex,end:Vertex,
                     weight:int): void

Graph-UnWeighted

+addAnEdgeWithoutWeight(start:Vertex,end:Vertex,
                        weight:int): void

Graph-UnDirected

+isDirected: boolean final = false

+addEdge(edge:Edge): void

Figure 10.4: Simple GPL Core Layers

10.3 Programming using BoBs

10.3.1 Using scripts to create BoB classes

We shall now write a program in JavaBoB scripting language that will construct two

different graph objects and corresponding two different clients that use them, using

options in the command line argument.

C:> BoBCompose −−script=graphcompose.bobs −−option=1

Listing 10.1: Script graphcompose.bobs

BoBScript (option) {

switch (option) {

case 1:

BoBClass Graph = Graph_Core + Graph_Undirected + Graph_Weighted;

break;

case 2:

BoBClass Graph = Graph_Core + Graph_Directed + Graph_Unweighted;

break;

default: console ("Wrong Option!"); break;

}

switch (option) {

case 1:

BoBClass Client = {

public static void Main(args[]) {

Graph g = new Graph();

g.readInGraphValues(args[0]);

g.displayUnweighted( );

}

}

break;

case 2:
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Graph_Core

+vertices: LinkedList

+edges: LinkedList

+Graph()

+isDirected(): boolean

+run(v:Vertex): void

+addVertex(v:Vertex): void

+addEdge(edge:Edge): void

+findsVertex(name:Vertex): Vertex

+findsEdge(): Edge

+readInGraph(): void

+display(): void

Graph-Directed

+isDirected: boolean final = true

+addEdge(edge:Edge): void

+isDirected(): boolean

Step 1: Graph_Core + Graph_Directed = Graph_Directed

Both options apply: Hierarchical and Collapsed

Graph_Directed

+vertices: LinkedList

+edges: LinkedList

+isDirected: boolean final = true

+Graph_Core_Directed()

+isDirected(): boolean

+run(v:Vertex): void

+addVertex(v:Vertex): void

+addEdge(edge:Edge): void

+findsVertex(name:Vertex): Vertex

+findsEdge(): Edge

+readInGraph(): void

+display(): void

+addEdge(edge:Edge): void

Step 2: Graph_Directed + Graph_Weighted = Graph_Directed_Weighted

Graph_Core

+vertices: LinkedList

+edges: LinkedList

+Graph()

+isDirected(): boolean

+run(v:Vertex): void

+addVertex(v:Vertex): void

+addEdge(edge:Edge): void

+findsVertex(name:Vertex): Vertex

+findsEdge(): Edge

+readInGraph(): void

+display(): void

Graph_Directed_Weighted

+isDirected: boolean final = true

+addEdge(edge:Edge): void

+isDirected(): boolean

+addEdgeWithWeight(startVertex:Vertex,endVertex:Vertex,
                   weight:int): void

Graph_Directed_Weighted

+vertices: LinkedList

+edges: LinkedList

+isDirected: boolean final = true

+Graph_Core_Directed()

+isDirected(): boolean

+run(v:Vertex): void

+addVertex(v:Vertex): void

+addEdge(edge:Edge): void

+findsVertex(name:Vertex): Vertex

+findsEdge(): Edge

+readInGraph(): void

+display(): void

+addEdge(edge:Edge): void

+addEdgeWithWeight(startVertex:Vertex,endVertex:Vertex,
                   weight:int): void

Figure 10.5: Simple GPL BoB
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Graph_UnWeighted

-aux: AUX

+addAnEdgeWithoutWeight(start:Vertex,end:Vertex): void

-addEdge(edge:Edge): void

AUX

-vertices: LinkedList

-edges: LinkedList

+getVertices(): LinkedList

+setVertices(): void

+getEdges(): LinkedList

+setVertices(): void

Graph_Directed

+vertices: LinkedList

+edges: LinkedList

+isDirected: boolean final = true

-aux: AUX

+Graph_Core_Directed()

+isDirected(): boolean

+run(v:Vertex): void

+addVertex(v:Vertex): void

+addEdge(edge:Edge): void

+findsVertex(name:Vertex): Vertex

+findsEdge(): Edge

+readInGraph(): void

+display(): void

+addEdge(edge:Edge): void

Graph_Core

+vertices: LinkedList

+edges: LinkedList

+Graph()

+isDirected(): boolean

+run(v:Vertex): void

+addVertex(v:Vertex): void

+addEdge(edge:Edge): void

+findsVertex(name:Vertex): Vertex

+findsEdge(): Edge

+readInGraph(): void

+display(): void

Graph-Directed

+isDirected: boolean final = true

-aux: AUX

+addEdge(edge:Edge): void

+isDirected(): boolean

AUX

-vertices: LinkedList

-edges: LinkedList

+getVertices(): LinkedList

+setVertices(): void

+getEdges(): LinkedList

+setVertices(): void

AUX

-vertices: LinkedList

-edges: LinkedList

+getVertices(): LinkedList

+setVertices(): void

+getEdges(): LinkedList

+setVertices(): void

BoB Fragments for Graph_Directed: (a) and (b), and Graph_Weighted: (c)

 (b)

 (c)

 (a)

Figure 10.6: Simple GPL BoB Fragments

BoBClass Client = {

public static void Main(args[]) {

Graph g = new Graph();

g.readInGraphValues(args[0]);

g.displayWeighted( );

}

}

break;

}

default: console(‘‘Wrong Option!’’); break;

}

}

This script creates two BoB classes, Graph.bob and Client.bob with features

as determined by the option parameter.

10.3.2 Using BoB Programming Language extenstions

The operations of BoB addition and BoB substraction have been included in an

extension of programming language JavaBoB. A typical is use is shown in the example

below.
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Listing 10.2: Source snippets from: GraphOperations.bob

public BoBClass GraphOperations

{

. . .

public static void main (args[]) {

BoBClass Graph_UW = Graph_Core + Graph_Undirected + Graph_Weighted;

Graph_UW g_uw = new Graph_UW();

g_uw.display();

BoBClass Graph_DW = Graph_UW - Graph_Undirected + Graph_Directed;

Graph_DW g_dw = new Graph_dw();

g_dw.dispaly();

BoBClass Graph_DuW = Graph_DW - Graph_Weighted + Graph_UnWeighted;

Graph_DuW g_duw = new Graph_DuW();

g_duw.display();

}

The pre-processor in invoked by the command: C:> javabobc GraphOperations.bob.

It creates Java source code files: Graph UW.java, Graph DW.java, and Graph DuW.java

which are used in the GraphOperations.bob. It also produces a GraphOperations.java

file as shown in the listing below.

Listing 10.3: Source snippets from: GraphOperations.java

public Class GraphOperations

{

. . .

public static void main (args[]) {

Graph_UW g_uw = new Graph_UW();

g_uw.display();

Graph_DW g_dw = new Graph_dw();

g_dw.dispaly();

Graph_DuW g_duw = new Graph_DuW();

g_duw.display();

}

10.4 Discussion: Object Morphing

This is the methodology that BoB based programming emphasises - start with an

existing basic shape and obtain new morphed versions by doing simple addition and
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subtractions (with the addition of some glue code in some instances).

Thus programming using BoBs makes it a logical and intuitive flow leading to a

more managed evolution of software. programs.

10.5 Designing a Distance Evaluation Application

10.5.1 DE Application scenario

We consider an examination scenario where a large number of students are e-

evaluated concurrently. A typical large-scale examination process involves the fol-

lowing stages: (i) preparation of question papers by gathering inputs from various

paper-setters who may work at their respective remote locations, (ii) dispatch of ques-

tion papers to the examination centers and distribution to the enrolled students, (iii)

collection of answer papers and their dispatch to the evaluation center, (iv) evaluation

of answer papers by the designated evaluators, and (v) compilation and publication

of the results.

Our earlier approach: using Mobile Agents

Over the past few years, the Mobile Agent paradigm has emerged as a new mech-

anism for structuring distributed applications. It promises to alleviate many of the

shortcoming of the client-server approach Mobile Agent (MA) is an autonomous piece

of software that can migrate between the various nodes of the network and can perform

computations on behalf of the user. Some of the benefits provided by MAs include re-

duction in network load, overcoming network latency and disconnected operations.For

our application, Mobile Agents seemed particularly useful because they map directly

to real life situations, are dynamic autonomous entities, and can work in both push

and pull modes. We have designed and implemented MADE, a Mobile Agent based

system for distance evaluation. We used the Voyager framework to implement our

system.

10.5.2 MADE Overview

MADE [Jam03] is a Mobile Agent based system for distance evaluation of stu-

dents. It was designed with a view to map closely to the real world scenario. Other

goals include automation and integration of the entire examination process, mini-

mization of infrastructure requirements at different nodes, and ease of deployment
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and maintenance. In MADE we divide the examination process into three stages: (i)

paper-setting, (ii) distribution and testing and (iii) evaluation and result compilation.

Paper setting

As shown in Figure 10.7, the examination setting process takes place in a collabo-

rative manner among the paper-setters who are at different remote locations. Install

Agents are used to install the paper-setting application on each setter’s machine (Step

1). Each setter prepares a partial question paper (Step 2). Fetch Agents are subse-

quently dispatched to collect these question papers (Step 3). The Paper Assembler

node creates one/more comprehensive question paper from the partial papers (Step

4). One of this question papers is sent to the examination centers at the appropriate

time (Step 5).

Paper Assembler

Comprehensive Question Paper

To Examination Center

= Paper Setter Nodes

= Install Agent

= Fetch Agent

15

3

4

Partial Question

Paper

2

Cloning

Launcher

Paper Setter App

Fetch Agent

Install Agent

new InstallAgent()

new FetchAgent()

moveTo (PaperSetter)

[arrived at new node] new paperSetterApp()

Naming Service

register( )

moveTo (PaperSetter)

*

Clone() &

moveTo (next RemoteSetter) …

addAgentGUIObject()

removeAgentGUIObject()

new AgentGUIObject()

getApplicationReference()

(a) (b)

Figure 10.7: MADE - Paper Setting (a) Scenario, (b) Component Interactions

Distribution and testing

As shown in Figure 10.8, this stage involves sending the question paper to different

centers, distribution to students and the collection of answer papers. The question

paper is dispatched to the different examination centers with the help of Courier

Agents (Step 1a, 1b). The Distribution Server at each center has a list of candidates

enrolled for that center. It creates Question Agents (one per student) and dispatches

them to each student node in the center (Step 2, 3). After the designated examination

duration or when the student finishes, each Question Agent returns to the Distribution
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Server with the student’s answers (Step 4). The Distribution Server now creates an

Answer Agent for each answer-paper (Step 5), and sends it to the Evaluation Server.

Exam Center

Distribution

Server

Courier Agent brings

Single  copy of paper

c9611060

Separate Copy per user

List of

enrolled students

…

…

Each Candidate get a Question Agent

1a

4

3

2

Answered and Returned

5
Answer Agents to

Evaluation Center

1b

Courier Agent to next

Examination Center

Paper Courier Agent

Answer Agent

Question

Paper Agent

Distribution Server

moveTo

(nextDistributionServer)

[arrive at center]

workAtCenter ( )

distributeQuestionPaper( )
new QuestionPaperAgent

(QuestionList )

moveTo (student)

[arrive back at the Distribution Server]

dispatchAnswers (AnswerList)

new AnswerAgent (AnswerList )

moveTo (EvaluationServer)

* moveTo

(nextDistributionServer)

…

[arrive at the student node]

InteractWithStudent ()

(a) (b)

Figure 10.8: MADE - Paper Testing (a) Scenario, (b) Component Interactions

Evaluation and result compilation

As shown in Figure 10.9, this stage involves evaluation of the answer papers, com-

pilation of the results and their publication. When an Answer Agent reaches the

Evaluation Server, it is supplied with an itinerary of evaluators (Step 1). The Answer

Agent visits various evaluators, until all the answers are evaluated (Step 2). Finally

the Answer Agent moves to the Publishing Server where it supplies its results (Step

3). The comprehensive results are then compiled and published (Step 4).

The detailed design and implementation aspects of MADE are available in [Jam03].

10.6 Design using Breakable Objects

Places where BoB are employed in DE application:

1. Question Paper Adaptation - Different versions of question paper

2. Question Paper GUI adaptation

3. Dynamically building and decomposing BoBs.

We show how GUI is to be built for partitioning.
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c9611060

Automatic  Evaluator

Evaluator C

Evaluator B

Results

…

…

Agents collaborate to produce the final result

Evaluation Server

2

4

3

1

Answer Agents

Evaluator A

Publishing Server

Answer Agent

Evaluator

Evaluation Server

Publish Server

get PublishServerIRef( )

publishResults (scores)

new PublishServer ( )

get EvaluatorItinerary ( )

* moveTo (next Evaluator)

moveTo (first Evaluator)

[arrive at Evaluator node]

evaluate (Answers )

acceptScores( )

evaluate( )

(a) (b)

Figure 10.9: MADE - Paper Evaluation (a) Scenario, (b) Component Interactions

/∗

∗ TabbedPaneDemo. java i s a 1.4 example that requires one addi t iona l f i l e :

∗ images/middle . g i f .

∗/

import javax.swing.JTabbedPane;

import javax.swing.ImageIcon;

import javax.swing.JLabel;

import javax.swing.JPanel;

import javax.swing.JFrame;

import javax.swing.JComponent;

import java.awt.BorderLayout;

import java.awt.Dimension;

import java.awt.GridLayout;

import java.awt.event.KeyEvent;

public class BoBTabbedPaneDemo extends JPanel {

private static JTabbedPane tabbedPane; // = new JTabbedPane ( ) ;

private ImageIcon icon = createImageIcon("images/middle.gif");

public BoBTabbedPaneDemo() {

super(new GridLayout(1, 1));

tabbedPane = new JTabbedPane();

// add( tabbedPane ) ;

}

public void addFirstTab() {

JComponent panel1 = makeTextPanel("Panel \#1");

tabbedPane.addTab("Tab 1", icon, panel1,

"Does nothing");

// tabbedPane . setMnemonicAt(0 , KeyEvent .VK 1) ;
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// add( tabbedPane ) ;

//Uncomment the fo l lowing l ine to use s c ro l l i n g tabs .

//tabbedPane . setTabLayoutPolicy (JTabbedPane .SCROLLTABLAYOUT) ;

}

public void addRestofTabs() {

JComponent panel2 = makeTextPanel("Panel #2");

tabbedPane.addTab("Tab 2", icon, panel2,

"Does twice as much nothing");

// tabbedPane . setMnemonicAt(1 , KeyEvent .VK 2) ;

JComponent panel3 = makeTextPanel("Panel #3");

tabbedPane.addTab("Tab 3", icon, panel3,

"Still does nothing");

//tabbedPane . setMnemonicAt(2 , KeyEvent .VK 3) ;

JComponent panel4 = makeTextPanel(

"Panel #4 (has a preferred size of 410 x 50).");

panel4.setPreferredSize(new Dimension(410, 50));

tabbedPane.addTab("Tab 4", icon, panel4,

"Does nothing at all");

//tabbedPane . setMnemonicAt(3 , KeyEvent .VK 4) ;

}

protected JComponent makeTextPanel(String text) {

JPanel panel = new JPanel(false);

JLabel filler = new JLabel(text);

filler.setHorizontalAlignment(JLabel.CENTER);

panel.setLayout(new GridLayout(1, 1));

panel.add(filler);

return panel;

}

/∗∗ Returns an ImageIcon , or nu l l i f the path was inva l id . ∗/

protected static ImageIcon createImageIcon(String path) {

java.net.URL imgURL = TabbedPaneDemo.class.getResource(path);

if (imgURL != null) {

return new ImageIcon(imgURL);

} else {

System.err.println("Couldn’t find file: " + path);

return null;

}

}

/∗∗

∗ Create the GUI and show i t . For thread safety ,

∗ t h i s method should be invoked from the

∗ event−dispatching thread .

∗/

private static void createAndShowGUI() {

//Make sure we have nice window decorations .

JFrame.setDefaultLookAndFeelDecorated(true);
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//Create and se t up the window .

JFrame frame = new JFrame("TabbedPaneDemo");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//Create and se t up the content pane .

JComponent newContentPane = new BoBTabbedPaneDemo();

newContentPane.setOpaque(true); //content panes must be opaque

//New methods added

BoBTabbedPaneDemo newTP = new BoBTabbedPaneDemo();

newTP.addFirstTab();

//newTP. addRestofTabs ( ) ;

newTP.add(tabbedPane);

frame.getContentPane().add(newTP, //new TabbedPaneDemo() ,

BorderLayout.CENTER);

//Display the window .

frame.pack();

frame.setVisible(true);

}

public static void main(String[] args) {

//Schedule a job for the event−dispatching thread :

//creating and showing th i s app l icat ion ’ s GUI.

javax.swing.SwingUtilities.invokeLater(new Runnable() {

public void run() {

createAndShowGUI();

}

});

}





When each thing is unique in itself,

there can be no comparison made....

There is only this strange recognition

of present otherness.

D.H. Lawrence

Chapter 11

Related Work Comparison

We discuss here the concepts and works which are related to our work. We also

indicate the manner in which these efforts relate to our work.

11.1 Objects

As already mentioned in this thesis, BoB is similar to an object, except that we

view it as a breakable object. In BoB we can designate some methods as inseparable

by the keyword together. So an object can be considered as one extreme case of

a BoB where all its interface methods are together. Another extreme is when none

of the public methods are together. This gives a user the maximum flexibility to

configure the fragments.

Some of the features of objects like multi-threading, and polymorphism require

a more disciplined used in the context of BoBs. Similarly, some mechanisms like

reflection pose special difficulties and are not presently supported by BoBs.

11.1.1 Fine Grained Objects/Components

One can design an application in a manner that it is made up of components of

extremely fine granularity. Though this approach will give flexibility in functionality

composition, we believe building applications this way creates very cumbersome and

unintuitive designs. Our approach gives the choice to create fine grained components

on demand.

141
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11.1.2 Fragmented Objects (FOs)

BoBs are FOs [Mak94] are two distinct concepts serving different purposes. While

a FO is a distributed shared object by definition, BoBs are objects that can be readily

split. The fragments may exist in a single address space or multiple address space.

BoBs do not carry any notion of distribution per say. FOs are monolithic in nature.

BoB splits can be dynamically specified.

11.2 Application Partitioning

Application partitioning, has been active area of research in the last decade. For

example, J-orchestra [Til02], Pangaea [Spi99] , Addistant [Tat01] try to automate

application partitioning of arbitrary Java programs, Coign [Hun98] does partitioning

of COM based applications. Work on the application partitioning has so far focused

mainly on finding optimal ways to partition an application among different nodes, and

component conversions into distributed components. Our focus is: (i) to start from

the first principles and have an entity which is more suitable for such partitioning (ii)

create mechanisms or a process by which partitioning goals are externally specified (in

manual or semi-automated way) and actual partitioning is automated and transparent.

This makes our approach a declarative way of application partitioning. Additionally

the granularity level in these systems is fixed by the objects or components of the

programming language/system they use, while in our case, granularity level of objects

is dynamically decided and is related to the methods of a BoB.

11.3 Multidimensional Separation of Concerns (MD-

SOC)

A concern is a piece of interest or focus in a program. Separation of concern is

a fundamental software engineering principle which states that a given problem in-

volves different kinds of concerns, which should be identified and separated to cope

with complexity [Aks01]. This is done to achieve the required quality factors such

as robustness, adaptability and reusability. The concept of multi-dimensional sepa-

ration of concerns(MDSOC) was proposed in [Tar99] [Oss01b]. The key idea is to

simultaneously support or partition various concerns in a software system along mul-

tiple dimensions of composition and decomposition. This includes overlapping and

interacting concerns. Most of the software formalisms allow separation of concerns,

but there is a tendency towards a single, main dimension. This is also referred to as
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tyranny of dominant decomposition. MDSOC tries to ameliorate some of these limi-

tations. Once such approach is hyperspaces. In it, based on a concern a set of units

can be selected to from modules called hyperslices. Thus a hyperslice encapsulates

concerns. Relationships between hyperslices can be specified, and they can be used to

control flexible composition of hyperslices into hypermodules. Sets of hyperslices thus

represent different decompositions of the software and by composing them in a desired

manner, components and systems can be built.

Hyper/J [Oss01a] supports MDSOC for Java using hyperspaces approach. It al-

lows: (i) specification of Java files to consider, (ii) specification of concern mappings,

what are the concerns and what classes are members affect them, (iii) specification of

concerns to be encapsulated in a hyperslice. (iv) specification of composition mech-

anisms for hyperslice compositions into hypermodules, (v) generating java classes for

hypermodules.

BoBs provide a concrete formulation of many of the abstractions that MDSOC

uses. For example, the units can be BoB classes or BoB Fragments. This implies

that units of finer granularity can not be created. BoB’s concept of shared (AUX)

variables between two partitions provides a realization and implementation of abstract

declarations. Further more, BoB composition rules define the dimensions of unit

compositions and decompositions in a flexible, yet concrete and systematic manner.

11.4 Fragmentation in Object-Oriented Database

Systems

The problem of distributed database design comprises first, the fragmentation of

database entities, and second the allocation of these entities to distributed sites. In

the relational database environment, the entity of distribution is a relation, while in

a distributed object based database system, entity of fragmentation and distribution

can be a class. Classes can be divided into fragments which can be later distributed.

A class is a ordered relation C = (K,A,M, I) where K is the class identifier, A the

set of attributes, M the set of methods and I is the set of objects using A and M.

A fragment is a subset of the whole class extension.

In horizontal fragmentation [Eze95] case class instances are distributed across frag-

ments. Each horizontal fragment (Ch) of a class contains all attributes and methods of

a class but only some instance objects (I
′

⊆ I) of the class. Thus Ch = (K, A,M, I
′

).

In BoB splitting does not occur along these lines.

In Vertical Fragmentation [Eze98] the attributes and methods are distributed across
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fragments. The main motivation is to reduce irrelevant data accessed by applications.

It is similar to the way we approach splits of a BoB class. However, in vertical

fragmentation of classes (in the work that has appeared so far), fragmentation is done

only for unshared fields of the class cases. We find this to be a limiting feature when

we consider the classes and objects as a basic entities for programming.

Each vertical fragment Cv of a class contains its class identifier, and all of its

instance objects for only some of its attributes (A
′

⊆ A), and some of its methods

(M
′

⊆M). Thus Cv = (K, A
′

,M
′

, I)

Hybrid Fragmentation: Each hybrid fragment (Cv
h) of a class contains its class

identifier, some of its instance objects (I
′

⊆ I) for only some of its attributes (A
′

⊆ A)

and some of its methods (M
′

⊆M). Thus (Cv
h) = (K, A

′

,M
′

, I
′

)

BoBs look at fragmentation from the programming perspective, whereas fragmen-

tation in Object Databases concentrates on fragmentation of data, as stored in the

form of objects. In Horizontal fragmentation of database objects, fragmentation oc-

curs by separating out a particular set of instances of a class from the others instance

object of that class. The focus is on how to choose the lines of split for optimal queries,

whereas we abstract this out in the form of a split-configuration file and as separate

from the basic BoB concept.

Summarizing, we can say that BoBs can be easily used to provide vertical frag-

mentation in distributed object oriented databases. Horizontal fragmentation, on the

other hand, is an orthogonal concept to the mechanisms of splitting as specified in

BoBs and does not have any bearing on the mechanisms employer in BoB per say.

11.5 Class Refactorings

Different methods of refactorings have been proposed in literature [Opd92] [Bec97]

[Fow99]. [Men04] does a comprehensive survey and elaborates these refactoring tech-

niques. Class refactoring methods like extract class, extract interface etc. [Fow03]

provide a means to refactor classes for improving designs of the existing code. How-

ever no comprehensive techniques exist to provide refactorings for redeployment as

discussed in this thesis.

11.6 Class Extensibility Mechanisms

Various mechanisms have been proposed for extending the classes in object-oriented

programs. The usage of inheritance and aggregation (containment, composition) are

the most popular usage. Inheritance can be single or multiple. Single inheritance is
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the mechanism by which one class (called the derived class) acquires the properties

(data and operations) of another class (called the base class). In multiple inheritance,

one class acquires the properties of two or more base classes. We use single inheritance

in BoB as more as a mechanism for preserving the refinement changes, rather than for

providing polymorphic support. Polymorphic support can be provided with interface

inheritance, by declaring that interface as atomic by using together specification.

Multiple inheritance is not allowed. Containment is a useful mechanism for creating

BoBs, but a decision has to be made, if the containments are, in turn, are breakable

or atomic. Other mechanisms for class extensibility have been proposed e.g. mixins

[Fla98] [Anc03] , which act as abstract subclasses and traits [Sch03], which provides

mechanisms for behavioral compositions. The latter also provides mechanism for ad-

dition and removal of traits from a class. Mixins pose same challenges for us a single

inheritance. The traits, though providing a more flexible mechanism, do not allow

us to directly apply their composition mechanisms because the states are exclusive to

traits. Once flattened to a single class, however, the manner of these compositions be-

comes orthogonal to subsequent decomposition, and we can treat the resultant classes

as normal classes. Another mechanism for collective extensions of collaborating class

called mixin layers is proposed in [Sma02]. BoB composition mechanisms, implicitly

use a similar concept when we use the most specialized field instances during a frag-

ment’s addition to a BoB. In this thesis, we have provided BoB composition rules

and mechanisms. We also provide rationale and correctness of their use. However, a

rigorous type implication study of these techniques, is an area of future work.

11.7 Feature Oriented Programming (FOP)

Feature Oriented Programming (FOP) considers applications as provisions for a

set of features. Feature-oriented programming is particularly useful in the applications

where a large variety of similar objects is needed. There are few related approaches

to this form of programming. One of the prominent one is Algebraic Hierarchical

Equations for Application Design (AHEAD) [Bat04]. It is an algebraic method for

program synthesis based on step-wise refinement. Here a feature refinement (say, f)

is a function that takes program (say, P ) as an input, and the produces an output

that is a program with included feature, in this case f(P ). A multi feature application

is an equation, e.g. g(h(f(P )) for features f, g, andh. One of the intended goals is

that suits of product families be progressively built by using this approach [Liu04].

An alternative approach for stepwise refinement method for feature introduction is

discussed in [Bac02]. In [Pre97], a model of feature compositions is proposed, where



146 CHAPTER 11. Related Work Comparison

a formulation called feature is used for feature-compositions in a software. A feature

entity is similar to mixin (or abstract class). The main difference from abstract sub-

classes is that, method overriding is considered in a more general sense and not tied

to - a child class overriding the methods of a parent class - semantics. Only two

features are combined at a time. Feature interactions are resolved by lifting functions

(method-overwriting) of one feature to the context of another. The fact that multiple

features can be incorporated by considering two features at a time, greatly simplifies

the model.

The BoB model of composition directly supports feature combinations by all these

different methodologies. In BoB composition, fragment additions and subtractions can

take place in any arbitrary order. The composition order of the arguments determines

both the order of method overriding/overwriting and the naming resolution of the

resultant class. Since a BoB fragment can be conveniently separated out, it is easy

to take a hyperslice across multiple BoB classes. This is particularly useful, when a

feature needs to form a separate concern and is mapped across multiple classes.

11.8 Variability in Software Product Lines

Product lines help to develop a variety of products as a variation from reusable

core assets [Cle01]. Variability is the ability of a system to support such variations.

Various architecture variability mechanisms exist in practice[Sva02], e.g., (i) compo-

nent replacement, omission, replication (ii) parameterization (including macros, tem-

plates), (iii) compile-time selection of different implementations (e.g., #ifdef), (iv)

OO extensibility techniques: inheritance, specialization, (v) configuration and mod-

ule interconnection languages, (vi) generation and generators, (vii) aspect-oriented

programming (viii) application frameworks etc. Some of these are directly supported

by the base language, while other require additional meta-level support. E.g.aspect-

oriented programming [Kic97], which an approach for modularizing system properties

that cross-cut different modules, would require an additional aspect compiler. Simi-

larly a generative programming and configuration approaches require external gener-

ator and configurator respectively.

BoBs, by virtue of their design, are meant to be variable components. They support

variability in a flexible, but controlled manner by addition, removal and replacement of

the subset functionalities. They can easily work in conjunction with other-variability

mechanisms like compile time selectors, generators, aspects, configurators to produce

powerful techniques and mechanisms for introducing variability in a planned and flex-

ible manner in the software product lines. This thesis indicates how variability is
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achieved at an intra-component level using BoBs. The full exploration of language

and meta-level support techniques, particularly their combinations with other mech-

anisms, is an area of future research.

11.9 BODA as Distributed Design Paradigm

In this section we discuss the existing distributed design paradigms and then discuss

BODA with respect to these paradigms.

For distributed applications that exploit (static/dynamic) reconfiguration of soft-

ware components, the concepts of location, distribution of components among loca-

tions, and migration of components to different locations need to be taken explicitly

into account during the design stage [Fug98]. Some of the basic architectural concepts

that are an abstraction of the entities that constitute such a software system, are:

.

Components Components are the constituents of a software architecture. They can

be further divided into:

• Code components:,encapsulate the know-how to perform a particular

computation

• Resource components: represent data or devices used during the com-

putation

• Computational components: active executors capable to carry out a

computation as specified by a corresponding know-how.

Interactions Interactions are events that involve two or more components, e.g., a

message exchanged among two computational components.

Sites A site represents the intuitive notion of location. Sites host components and

support the execution of computational components.

A computation can be actually carried out only when the know-how describing

the computation, the resources used during the computation, and the computational

component responsible for execution are located at the same site.

11.9.1 Distributed Design Paradigms

Design paradigms are described in terms of interaction patterns that define the

relocation of and coordination among the components needed to perform a service.
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As described in[Fug98] , we consider a scenario where a computational component A,

located at site SA needs the results of a service. Site SB, provides this service.

Client-Server (CS)

In this paradigm, a computational component B (the server) offering a set of

services is placed at site SB. Resources and know-how needed for service execution

are hosted by site SB as well. The client component A, located at SA, requests

the execution of a service with an interaction with the server component B. As a

response, B performs the requested service by executing the corresponding know-how

and accessing the involved resources Co-located with B.

Remote Evaluation (REV)

In the REV paradigm, a component A has the know-how necessary to perform the

service but it lacks the resources required, which happen to be located at a remote

site SB. Consequently, A sends the service know-how to a computational component B

located at the remote site. B, in turn, executes the code using the resources available

there. An additional interaction delivers the results back to A.

Code on Demand (COD)

In the COD paradigm, component A is already able to access the resources it needs,

which are co-located with it at SA. However, no information about how to manipulate

such resources is available at SA. Thus, A interacts with a component B at SB by

requesting the service know-how, which is located at SB as well. A second interaction

takes place when B delivers the know-how to A, that can subsequently execute it.

Mobile Agent (MA)

In the MA paradigm, the service know-how is owned by A, which is initially hosted

by SA, but some of the required resources are located on SB. Hence, A migrates

to SB carrying the know-how and possibly some intermediate results. After it has

moved to SB, A completes the service using the resources available there. The mobile

agent paradigm is different from other mobile code paradigms since the associated

interactions involve the mobility of an existing computational component.
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Table 11.1: Distributed Computation Paradigms

Paradigm SA-initial SB-initial SA-later SB-later

Client-Server A know-how

resource B

A know-how

resource B

Remote Evaluation know-how A resource B A know-how

resource B

Code on Demand resource A know-how B resource

know-how A

B

Mobile Agent know-how A resource - know-how

resource A

Breakable Object know-how A

resource

resource (A)-part-1,

(knowhow)-

part-1 re-

source

(A)-part-1,

(know-how)-

part-2 re-

source

11.9.2 Breakable Object (BoB)

It combines the power of all the paradigms and leaves open the choice of how a

computation is distributed inside an object. In the BoB paradigm too, the service

know-how is owned by A, which is initially hosted by SA, but some of the required

resources are located on SB. But in BoB case, only the requisite part of A that needs

to interact locally with the resources at SB is moved (or deployed in case of static

distribution) to SB.

11.9.3 Discussion and Comparison

Table 11.9.3 shows the location of the components before and after the service

execution. For each paradigm, the computational component in bold face is the one

that executes the code. Components in italics are those that have been moved.

Client-Server paradigms are static with respect to code and location. Mobile code

paradigms overcome these limits by providing component mobility. By changing their

location, components may change dynamically the quality of interaction, reducing

interaction costs. To this end, the REV and MA paradigms allow the execution of

code on a remote site, enabling local interactions with components located there and

COD paradigm enables computational components to retrieve code from other remote

components, providing a flexible way to extend dynamically their behavior and the

types of interaction they support [Fug98].
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BoBs, per say, do not introduce any notion of code-mobility but provide easy mech-

anisms and lines along with which the component can be broken and distributed across

the network nodes. The static or dynamic behavior of the various BoB splits, will de-

pend upon the paradigm that is needed and also being supported by the distributed

platform.

In the next chapter we conclude the discussions of this thesis and also provide

pointers to new and future directions of work that emerge as result of the notion of

Breakable Objects.



My interest in the future is because I

am going to spend the rest of my life

there.

-Charles F. Kettering

Chapter 12

Conclusions and Future Work

In this thesis we have motivated the need for structuring programs in such a way

that they can be easily refactored for deployment in various scenarios. Toward this end,

we have developed the notion of Breakable Object (BoB) as an entity in a programming

language and also provided a methodology for BoB based application architecture

(BODA). We use BODA in two contexts - application paritioning and application

evolutions.

More concretely, we have defined a programming model for BoBs in Java, which re-

quires the introduction of one new construct together in the language/preprocessor.

Additionally, in this thesis we developed BoB fragments as means to language level

compositions in the context of object-oriented applications. BoB compositions raise

fragments to the level of first-class entities and provide a flexible fine-grained mech-

anism for extensibility and variability-control in an application. We also validated

these BoB-based programming and restructuring techniques through some real-word

application case-studies.

Future Directions of Work: Some of the future directions of our work are:

• Optimal BoB partitioning and redeployment: One would like to define the mech-

anisms for automatic deployment of BoBs in various distributed scenarios. This

would involve finding optimal distribution settings for a BoB component and its

different fragment configurations. Presently the splitting and deployment setups

are separate processes. Techniques which allow for splitting and the deployment

codes to be inter-weaved are desirable. This would allow optimal implementa-

tions of components for redeployable applications. Additionally, mechanisms for

object-level partitioning instead of BoB class-level partitionings can be explored

to gain a more fine grained control over the application partitioning. Also, a
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utility evaluation and feasibility study of incorporating additional programming

language features, like threads etc., is one important direction of future research.

• Refactoring or re-architecting existing applications to BoB driven architectures:

The process is two fold: (i) Identifying and converting existing objects in an

application to BoBs, and (ii) Restructuring of rest of the application. Some of

the the existing objects can be, with minimal changes, made suitable as BoBs.

Others might require non-trivial refactoring or redesign.

If this involves redistribution of application functionalities in terms of newer

interface methods implementations or newer components, the rest of the prgram

might also might require non-trivial restructuring. A full investigation of this

problem, has thus, naturally become an an area of future interest BODA related

work.

• Integration with feature-oriented and automatic programming: Another area for

further considerations is the integration of BoB compositional mechanisms with

feature-oriented and automatic program generation techniques. This can be

done both at architectural and implementation levels. This thesis provided the

initial directions in this area, but a full integration of techniques is are area of

future research.

• Meta-layer for large-scale program restructuring: This thesis has provided mech-

anisms by which application structuring can be separated as concerns of two

different layers - a physical layer where the actual application is implemented,

and (ii) a meta-layer where program refactoring and program compositions are

achieved. Devising a generic methodology for such application developments is,

hence, another area of future research.

Summarizing, we can say that instead of visualizing an object as a monolithic en-

tity, it is advantageous to consider it as breakable in terms of functionality and yield-

ing split-objects which have factored functionality. The notion of Breakable Objects

(BoBs) greatly facilitates flexible application architecturing. That is, these applica-

tions can now provide functionality partitioning, feature selection and extensibility

to a more optimal level of granularity. We believe, that this has direct relevance in

ubiquitous computing systems, software product lines and role and feature oriented

application developments. It can also help to produce leaner implementations of soft-

wares.

Although, in this thesis we concern ourselves with class-based object-oriented pro-

gramming language models only, the definition of BoB is generic and is applicable to an
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object in object based systems, a component in component driven systems, or a service

in service oriented systems. Lastly, an important aspect of future work is providing

methodologies and processes for BoB-oriented analysis, design and implementation.





Appendix A

JavaBoB

A.1 Class Declaration

Class Declaration:

ClassModifiersopt class Identifier ClassBody

ClassModifiers

ClassModifiers: public

ClassBody and Member Declarations

ClassBody:

ClassBodyDeclarationsopt

ClassBodyDeclarations:

ClassBodyDeclaration

ClassBodyDeclarations ClassBodyDeclaration

ClassBodyDeclaration:

ClassMemberDeclaration

StaticInitializer

ConstructorDeclaration

TogetherMethodsDeclaration

ClassMemberDeclaration:

FieldDeclaration

MethodDeclaration
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A.2 Field Declarations

FieldDeclaration:

FieldModifiersopt Type VariableDeclarators ;

VariableDeclarators:

VariableDeclarator

VariableDeclarators , VariableDeclarator

VariableDeclarator:

VariableDeclaratorId

VariableDeclaratorId = VariableInitializer

VariableDeclaratorId:

Identifier

VariableDeclaratorId [ ]

VariableInitializer:

Expression

ArrayInitializer

Filed Modifiers

FieldModifiers:

FieldModifier

FieldModifiers FieldModifier

FieldModifier:one of

private

final static

A.3 Method Declarations

MethodDeclaration:

MethodHeader MethodBody

MethodHeader:

MethodModifiersopt ResultType

MethodDeclarator Throwsopt

ResultType:

Type

void

MethodDeclarator:

Identifer ( FormalParameterListopt )
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Formal Parameters

FormalParameterList:

FormalParameter

FormalParameterList , FormalParameter

FormalParameter:

Type VariableDeclaratorId

VariableDeclaratorId:

Identifier

VariableDeclaratorId [ ]

Method Modifiers

MethodModifiers:

MethodModifier

MethodModifiers MethodModifier

MethodModifier:one of

public private

static final synchronized volatile

Method Throws

Throws:

throws ClassTypeList

ClassTypeList:

ClassType

ClassTypeList , ClassType

Method Body

MethodBody:

Block

;

A.4 Constructor Declarations

ConstructorDeclaration:
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ConstructorModifiersopt ConstructorDeclarator

Throwsopt ConstructorBody

ConstructorDeclarator:

SimpleTypeName ( FormalParameterListopt )

Constructor Modifiers

ConstructorModifiers:

ConstructorModifier

ConstructorModifiers ConstructorModifier

ConstructorModifier:one of

public private

Constructor Body

ConstructorBody:

ExplicitConstructorInvocationopt BlockStatementsopt

ExplicitConstructorInvocation:

this ( ArgumentListopt ) ;

A.5 Together Declarations

TogetherDeclarations:

TogetherDeclaration

TogetherDeclarations, TogetherDeclaration

TogetherMethodDeclaration:

MethodSignatureList

MethodSingatureList:

MethodSignature

MethodSignatureList MethodSignature

MethodSignature:

MethodModifiersopt

MethodDeclarator Throwsopt

MethodDeclarator:

Identifer ( FormalParameterListopt )
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ASM Model for JavaBoB

ASMmodels for JavaBoB described here are derived from those of Java [Wal99][Bor98]

[Stä01]. We divide JavaBoB into three execution models: namely JavaI , JavaC and

JavaO denoting the imperative, class-based and object-based execution modules re-

spectively.

B.1 Dynamic state

Dynamic state is given by the following functions:

• pos : Pos

• restbody : Phrase

• locals : MAP (Loc, V al)

• meth : Class/MSig

• frames : (Meth,Restbody, Pos, Locals)∗

• classState : Class toLinked, Initialized, Unusable

• globals : Class/F ield toV al

• heap : Ref toObject(Class,MAP (Class/F ield, V al))

• where: pos gives current position of program execution, restbody assigns to each

position a phrase, restbody/pos denotes currently to be executed sub-term of

restbody at pos, locals gives the current value of local variables, meth denotes

the currently executing method, frames gives the sequence of still to be executed

frames on the stack, classState records the current initialization status of a class,

globals yields the value stored under a field specification in a class, and heap

records the class object together with the field values of an object.
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B.2 Syntax of Language Modules

Syntax of JavaI

Exp := Lit | Loc | Uop Exp | Exp Bop Exp

| Exp ? Exp : Exp | Asgn

Asgn := Loc = Exp

Stm := ; | Asgn; | Lab : Stm | break Lab;

|continue Lab; | if (Exp) Stm else Stm

| while (Exp) Stm | Block

Block := {Bstm1 . . . Bstmn}

Bstm := Type Loc; | Stm

Phrase := Exp | Bstm | V al | Abr | Norm

B.2.1 Syntax of JavaC

Exp := . . . | Invk

Exps := Exp1, . . . , Expn

Invk := Meth(Exps) | Class ·Meth(Exps)

Stm := . . . | Invk; | return Exp; | return;

Phrase := . . . | static Block

B.2.2 Syntax of JavaO

Exp := . . . | null | this

| Exp instanceof Class | (Class) Exp

Invk := . . . | new Class(Exps) | Exp ·Meth(Exps)
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B.3 Operational Semantics Model

B.3.1 Execution Machine

This is described below:

execJava =execJavaI

execJavaC

execJavaO

execJavaI =

execJavaExpI

execJavaStmI

execJavaC =

execJavaExpC

execJavaStmC

execJavaO =

execJavaExpO

context(pos) =if (pos = firstPos∨

restbody/pos ∈ Bstm ∪ Exp) then

restbody/pos

else

restbody/up(pos)

yieldUp(result) =

restbody := restbody[result/up(pos)]

pos := up(pos)

yield(result) =

restbody := restbody[result/pos]
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B.3.2 Execution of JavaI expressions

execJavaExpI = case context(pos) of

lit→ yield(JLS(lit))

loc→ yield(locals(loc))

uopαexp→ pos := α

uopIval→ yieldUp(JLS(uop, val))

αexp1bop
βexp2 → pos := α

Ival1bop
βexp→ pos := β

αval1bop
Ival2→

if (bop ∈ divMod ∧ isZero(val2)) then

yieldUp(JLS(bop, val1, val2))

loc =α exp→ pos := α

loc =I val→ locals := locals⊕ (loc, val)

yieldUp(val)

αexp0?
βexp1 :

γ exp2 → pos := α

Ival?βexp1 :
γ exp2 →

if val then pos := β else pos := γ

αTrue?Ival :γ exp→ yieldUp(val)

αFalse?βexp :I val→ yieldUp(val)
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B.3.3 Execution of JavaI statements

execJavaStmI = case context(pos) of

;→ yield(Norm)

αexp; topos := α

Ival; to yieldUp(Norm)

break lab; → yield(Break(lab))

continue lab; c → yield(Continue(lab))

lab :α stm → pos := α

lab :I Norm → yieldUp(Norm)

lab :I Break(labb) → if lab = labb

then yieldUp(Norm)

else yieldUp(Break(labb))

lab :I Continue(labc) → if lab = labc

then yield(body/pos)

else yieldUp(Continue(labc))

phrase(Iabr)→ if pos 6= firstPos∧

propagatesAbr(restbody/up(pos)) then

yieldUp(abr)

{} → yield(Norm)

{α1stm1 . . .
αn stmn} → pos := α1

{α1Norm . . .I Norm} → yieldUp(Norm)

{α1Norm . . .I Normαi+1stmi+1 . . .
αn stmn} → pos := αi+1
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if (αexp)βstm1 else γstm2 → pos := α

if (Ival)βstm1 else γstm2 → if val

then pos := β

else pos := γ

if (αTrue)INorm else γstm → yieldUp(Norm)

if (αFalse)βstm else INorm → yieldUp(Norm)

while (αexp)βstm → pos := α

while (Ival)βstm → if val then pos := β

else yieldUp(Norm)

while (αTrue)INorm → yieldUp(body/up(pos))

Typex;→ yield(Norm)

B.3.4 Execution of JavaC expressions

execJavaExpC = case context(pos) of

c ·mα(exps) → pos := α

c ·mI(vals) → if initialized(c)

then

invokeMethod(up(pos), c = m, vals)

else initialize(c)
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() → yield([])

(α1exp1, . . . ,
αn expn) → pos := α1

(α1val1, . . . ,
I valn) → yieldUp

([val1, . . . , valn])

(α1val1, . . . ,
I vali,

αi+1 expi+1, . . .
αn expn) → pos := αi+1

initialize(c) =

if classState(c) = Linked then

classState(c) := InProgress

forall f ∈ staticF ields(c)

globals(f) := defaultV al(type(f))

invokeMethod(pos; c = < clinit >; [])

if classState(c) = Unusable then

fail(NoClassDefFoundErr)

B.3.5 Execution of JavaC statements

execJavaStmC = case context(pos)of

static αstm→ let c = classNm(meth)

if c = Object ∨ initialized(super(c))

then pos := α

else initialize(super(c))

static αReturn→ yieldUp(Return)
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return αexp; → pos := α

return Ival; → yieldUp(Return(val))

return; → yield(Return)

lab :I Return → yieldUp(Return)

lab :I Return(val) → yieldUp(Return(val))

Return → if pos = firstPos∧

notnull(frames)

then exitMethod(Norm)

Return(val) → if pos = firstPos∧

notnull(frames)

then

exitMethod(val)

INorm;→ yieldUp(Norm)

B.3.6 Execution of JavaC methods

invokeMethod(nextPos, c/m, values)

frames := push(frames,

(meth, restbody, nextPos, locals))

meth := c/m

restbody := body(c/m)

pos := firstPos

locals := zip(argNames

(c/m), values)
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exitMethod(result) =

let (oldMeth; oldPgm ; oldPos; oldLocals)

= top(frames)

meth := oldMeth

pos := oldPos

locals := oldLocals

frames := pop(frames)

if methNm(meth) = ′′ < clinit >′′ ∧ result = Norm then

restbody := oldPgm

classState(classNm(meth)) := Initialized

elseif methNm(meth) = ′′ < init >′′ ∧ result = Norm then

restbody := oldPgm[locals(′′this′′) = oldPos]

else

restbody := oldPgm[result = oldPos]
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B.3.7 Execution of JavaO expressions

execJavaExpO = case context(pos) of

this → yield(locals(′′this′′))

new c → if initialized(c) then

create ref

heap(ref) := Object(c,

{(f, defaultV al(type(f)))

|f ∈ instanceF ields(c)})

yield(ref)

else initialize(c)

αexp instanceof c → pos := α

Iexp instanceof c → yieldUp(ref 6= null

∧ classOf(ref) ¹ c)

(c)αexp → pos := α

(c)Iref → if ref = null

∨ classOf(ref) ¹ c

then yieldUp(ref)

αexp · c/mβ(exps) → pos := α

Iref · c/mβ(exps) → pos := β

αref · c/mI(vals) → if ref 6= null then

invokeMethod(up(pos),

c
′

/m, [ref ] · vals)
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Publications

Following are the publications that are related to this work.

1. Automated Refactoring of Objects for Application Partitioning. 12th Asia-

Pacific Software Engineering Conference (APSEC),Taipei , Taiwan, December

15-17, 2005. Authors: Vikram Jamwal and Sridhar Iyer.

2. Breakable Objects: Building Blocks for Flexible Application Architectures. 5th

Working IEEE/IFIP Conference on Software Architecture(WICSA), November

6 - 10, 2005, Pittsburgh, Pennsylvania, USA. Authors: Vikram Jamwal and

Sridhar Iyer.

3. BoBs: Breakable Objects (Poster Paper) 20th Object-Oriented Programming,

Systems, Languages And Applications (OOPSLA), October 16- 20, 2005, San

Diego, California, USA. Authors: Vikram Jamwal and Sridhar Iyer.

4. Mobile Agent based Realization of a Distance Evaluation System. 2003 Inter-

national Symposium on Application and the Internet (SAINT 2003), Orlando,

Florida, USA, Jan 27-31, 2003. Authors: Vikram Jamwal and Sridhar Iyer.

5. Mobile Agents for effective structuring of large-scale distributed applications.

Workshop on Software Engineering and Mobility, ICSE 2001 at Toronto, Canada.
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