National Workshop on Adaptive Instruction CDAC, Navi Mumbai, Dec 15-16, 2011

Learner Modeling

Sridhar Iyer Dept of Computer Science and Engg IIT Bombay

www.cse.iitb.ac.in/~sri

Learning Objectives

At the end of this session you should be able to:

- Describe some aspects of a learner model
- Analyze a classroom scenario to identify adaptivity actions based on learner models
- Explain incorporation of learner models in some adaptive tutoring systems

Activity – You as a teacher

- Consider a class that you are teaching
- What aspects of student related information do you consider?
 - Think about your decisions regarding topic, level of depth, way of teaching, exams
 - List down as many points as you can
- For each point above, how do you use the information?
- Do Think-Pair-Share:
 - Think individually for a few minutes; Pair discussion with your neighbour
 - Share your ideas with the class

Some sample answers

- Student goals Decide the topics to be covered
- Prior knowledge Decide the depth of each topic
- Body language Determine level of engagement, modify treatment
- Class participation Estimate level of learning, modify activities
- Time taken to complete a test Decide number of questions and level of difficulty for the next test
- Performance in a test Determine difficult topics, misconceptions
- Explicit feedback Adapt course accordingly

Learner Model: Definitions

- "The learner model is a model of the knowledge, difficulties and misconceptions of the individual. As a student learns the target material, the data in the learner model about their understanding is updated to reflect their current beliefs" [Bull, 2004]
- "The student model in an intelligent tutor observes student behavior and creates a qualitative representation of her cognitive and affective knowledge. This model partially accounts for student performance (time on task, errors) and reasons about adjusting feedback" [Woolf, 2009]

Activity – Definition of learner model

- Which items from your list (created earlier) should be included in a learner model?
- Should there be any additional items?
 - Discuss with your neighbour and expand your list!
 - Some possibilities:
 - Record scores achieved by a student over a period of time
 - Record time taken by a student to answer a question versus their performance in the question

Group the items in your list into 3-4 categories

Aspects in a learner model

From [Woolf 2009]

Topic related

- Knowledge of concepts, facts, procedures

Misconceptions

- Common well-understood errors
- Affect
 - Engagement, boredom, frustration

Experience

- Attitude, plans, goals, history

Stereotypes

Default characteristics assigned to groups of students

Why learner models?

- Every learner has different characteristics, and needs
- An adaptive system should consider individual differences and provide personalized learning experience
- Some characteristics where learners may differ:
 - Prior knowledge
 - -Motivation
 - -Learning goals / interests
 - –Cognitive abilities
 - –Learning styles
 - –Affective states

Example 1: Learning Styles

- Several models and research over 30 years!
- Two definitions:
 - "a description of the attitudes and behaviours which determine an individual's preferred way of learning" [Honey & Mumford, 1982]
 - "characteristic strengths and preferences in the ways they [learners] take in and process information" [Felder, 1996]
- Some examples:

. . .

NWAI

- Active experimentation; Reflecting
- Learning by listening; Learning from examples
- Collaborative learning

Felder-Silverman Learning Style Model

- Each learner has a preference on each of the dimensions:
- Active Reflective
 - learning by doing learning by thinking things through
 - group work work alone
- Sensing Intuitive
 - concrete material abstract material
 - $_$ more practical more innovative and creative
 - patient / not patient with details
 - standard procedures challenges
- Visual Verbal
 - learning from pictures learning from words
- Sequential Global
 - _ learn in linear steps learn in large leaps
 - good in using partial knowledge need "big picture"

Activity: What is your LS?

NWAI

FSLSM: Identifying learning styles

- "Index of Learning Styles" (ILS) questionnaire:
 - 44 questions (11 for each dimension)
 - Available online
 - For each dimension:
 - [+11 to +9] indicates strong preference for one (ex. Active)
 - [-11 to -9] indicates strong preference for other (ex. Reflective)
 - [+3 to -3] indicates well-balanced
- Salient features:
 - Combines major learning style models (Kolb, Pask, MBTI)
 - Describes learning style in more detail (Types <-> Scale)
 - Describes tendencies

NWAI

Example use of Learning Styles: Adaptation for active/reflective

- Active learners
 - Self-assessments before and after content
 - High number of exercises
 - Low number of examples
 - Outline only at the beginning of content
 - Conclusion at the end of the chapter

- Reflective learners
 - Outlines between content
 - Conclusion after content
 - Avoid self-assessments before content
 - Examples after content
 - Exercises after content
 - Low number of exercises

From [Graf & Kinshuk 2008]

Identifying learning styles automatically

- [Graf & Kinshuk 2008] mapped learner behaviour described by FSLSM to online learning
 - Used indications from LMS data and a rule-based approach to identify learning styles
- Data recorded:
 - No of Visits and Time spent on different features of a course Content objects, Outlines, Examples, Exercises, Self-assessment tests, Discussion Forum
 - Also recorded: time spent on results of a test/exercise, retakes, Performance on questions about facts or concepts, details or overview, graphics or text, interpreting or developing solutions, postings to forum, Skipping learning objects
- Experiments (75 students) to compare rule-based vs data-driven approaches with ILS; Found that rule-based is closer to ILS results IIT Bombay

Example 2: Cognitive abilities

- Abilities to perform any of the functions involved in cognition whereby cognition can be defined as the mental process of knowing, including aspects such as awareness, perception, reasoning, and judgment [Colman, 2006]
- Cognitive abilities are more or less stable over time, unlike learning styles
- <u>Activity</u>: Come up with some examples of abilities that could be considered as cognitive abilities.

Cognitive abilities for learning

Some important cognitive abilities: [Graf & Kinshuk 2008]

Working Memory Capacity:

 allows us to keep active a limited amount of info (7+/-2 items) for short time (Miller, 1956)

Inductive Reasoning Ability:

is the ability to construct concepts from examples

Information Processing Speed:

- determines how fast the learners acquire the information correctly

Associative Learning Skill:

is the skill to link new knowledge to existing knowledge
NWAI
IIT Bombay

Example 3: Affective states

- Cognitive affective states: boredom, frustration, confusion, delight, engaged concentration and surprise [Baker et. al. 2010].
- For effective tutoring, student motivation and affective components should also be identified and considered while tailoring the learning content

Identifying affective states

- Human observation
 - Facial expression
 - Head movement
 - Gestures
 - Speech

- Sensor data
 - Facial analysis
 - Voice analysis
 - Physiological signals
 - Text inputs

- From log data
 - Correlation, classification
 - Machine learning techniques

Modeling frustration

Example Systems: Mindspark

- Mindspark is a commercially deployed system for Math tutoring in schools (for standards III to VIII)
 - Models and adapts on learner achievement
 - Content organized hierarchically into
 - Topic (Math) -> Teacher Topic (Alegbra) -> Cluster (Linear eq)
 - Cluster has 30-50 questions, divided into Sub difficulty levels
 - Performance less 75% in a cluster => Remedial (hints)
 - Second failure => Previous cluster or lower level
 - Developed by Educational Initiatives, India
 - http://www.mindspark.in

Example Systems: PAT

- PAT (Pump Algebra Tutor)
 - Models and reasons about student's skills
 - Uses pre-defined if-then production rules, such as
 - 1.Correct: IF the goal is to solve a(bx + c) = d, THEN rewrite the equation as bx + c = d/a
 - 2.Correct: IF the goal is to solve a(bx + c) = d, THEN rewrite the equation as abx + a c = d
 - 3. Incorrect: IF the goal is to solve a(bx + c) = d, THEN rewrite the equation as abx + c = d
 - Dynamically updates estimates of how well the student knows each production rule and selects future activities
 - http://act.psy.cmu.edu/awpt/awpt-home.html

Example Systems: Cardiac Tutor

Cardiac Tutor

- Models procedures used by student and simulates heart-condition of a patient in real-time
- Expert procedures are represented as protocols (steps) and student actions are compared with these
- Simulation supports various state-transition events, having different probabilities, based on learning needs
- http://centerforknowledgecommunication.com/

Example Systems: Wayang Outpost

- Wayang Outpost helps students prepare for standardized Math tests such as SAT
 - Models affective states such as interest in a topic through student surveys and correlation with log data (such as time spent on problem, use of hints)
 - Students address environmental issues of saving orangutans while solving geometry problems
 - Provides customized hints based on student model (Visual hints for students with high spatial skills, Computational hints for others)
 - http://wayangoutpost.com/

More Example Systems

- Andes Physics tutor for students to create equations and graphics; feedback and hints
 http://www.andestutor.org/
- AutoTutor Animated agent that acts as a dialog partner with the student

– http://www.autotutor.org/

- Anurup Framework to help instructors create adaptive tutoring systems
 - http://www.cdacmumbai.in/fai

Activity – Automating learner modeling

- Consider your list of student-related information and your adaptations (created in an earlier activity)
- Suppose the same adaptations have to be now incorporated into an automated system
- For each item in your list:
 - Identify relevant data that has to be recorded to enable the adaptation
 - Identify resources that are required to capture the above data
 - Suggest an algorithm that could be used to perform the adaptation automatically
- Do Think-Pair-Share

NWAI

24

Concepts of student models

Foundational concepts from [Woolf 2009]

Domain model

 Capture the domain knowledge of the student as an annotated version of expert knowledge (of facts, procedures, methods) in that area

Overlay model

 Subset of domain model that shows the difference between novice and expert reasoning

Bug libraries

Capture common misconceptions

Bandwidth

NWAI

 Amount and quality of information recorded during each interaction of the student with the system

Open student model

Student may inspect her model created in the system and reflect on their knowledge

Tools for automated learner modeling

Model-tracing

 Encode and follow student solution steps through the problem space and apply pre-defined rules at each step

Formal logic

- Pre-defined set of premises (Ex:- students who make mistake M dont understand topic T), observe student actions and infer conclusions
- Machine learning
 - Bayesian Belief Networks
 - Hidden Markov Models
- Details are beyond the scope of this session!

Revisit Learning Objectives

At the end of this session you should be able to:

- Describe some aspects of a learner model
- Analyze a classroom scenario to identify adaptivity actions based on learner models
- Explain incorporation of learner models in some adaptive tutoring systems

References

[Baker et. al. 2010] R. Baker, S. D'Mello, M. Rodrigo, and A. Graesser, Better to be frustrated than bored: The incidence, persistence, and impact of learners' cognitive-affective states during interactions with three different computer-based learning environments, International Journal of Human-Computer Studies 68 (2010), no. 4, 223–241.

[Bull 2004] S. Bull. Supporting Learning with Open Learner Models. Intl Conference on ICT in Education, Athens, 2004.

[Felder 1996] R. Felder. Matters of style. ASEE Prism, 6(4):18–23, 1996.

[Graf & Kinshuk 2008] S. Graf and Kinshuk. Learner Modelling Through Analyzing Cognitive Skills and Learning Styles. In Handbook on Information Technologies for Education and Training (2nd Ed.) (pp. 179–194). Springer, 2008

[Honey & Mumford 1982] P. Honey and A. Mumford. The Manual of Learning Styles. Peter Honey Publications Ltd, Maidenhead, 1982.

[Woolf 2009] B. Woolf. Designing Intelligent Interactive Tutors. Morgan-Kaufmann, 2009.

These slides

Are available at

- www.cse.iitb.ac.in/~sri/talks

- Are licensed as
 - Creative Commons Attribution-Share-Alike
 - See: creativecommons.org/licenses/

