

भारतीय प्रौद्योगिकी संस्थान मुंबई

Indian Institute of Technology Bombay

CS 6001: Game Theory and Algorithmic Mechanism Design

Week 3

Swaprava Nath

Slide preparation acknowledgments: Onkar Borade and Rounak Dalmia

ज्ञानम् परमम् ध्येयम् Knowledge is the supreme goal

Contents

► Matrix games

- ▶ Relation between **maxmin** and PSNE
- ► Mixed Strategies
- Mixed Strategy Nash Equilibrium
- ► Find MSNE
- ▶ MSNE Characterization Theorem Proof
- ► Algorithm to find MSNE
- ► Existence of MSNE

Definition (Two player zero-sum games)

A NFG $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ with $N = \{1, 2\}$ and $u_1 + u_2 \equiv 0$

Definition (Two player zero-sum games)

A NFG $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ with $N = \{1, 2\}$ and $u_1 + u_2 \equiv 0$

Question

Why called **matrix** game?

Definition (Two player zero-sum games)

A NFG $\langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$ with $N = \{1, 2\}$ and $u_1 + u_2 \equiv 0$

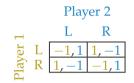
Why called **matrix** game?

Answer

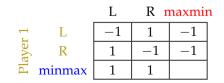
Possible to represent the game with only one matrix considering the utilities of player 1; player 2's utilities are negative of this matrix

Question

Example: Penalty shoot game

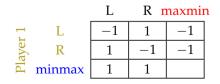


Example: Penalty shoot game

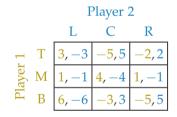


Example: Penalty shoot game

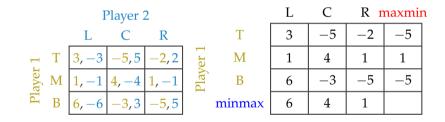
Player 2's maxmin value is the minmax value of this matrix



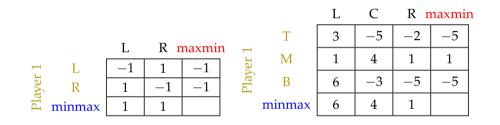
Another example



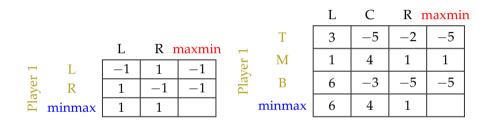
Another example



Two examples together



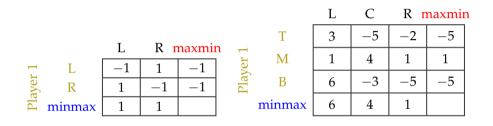
Two examples together



Question

What are the PSNEs for the above games?

Two examples together



Question

What are the PSNEs for the above games?

Answer

Left: no PSNE; **Right:** (M,R)

Saddle point of a matrix

The value is simultaneously the maximum in its column and minimum in its row i.e., maximum for player 1 and minimum for player 2

Saddle point of a matrix

The value is simultaneously the maximum in its column and minimum in its row i.e., maximum for player 1 and minimum for player 2

Question

What are the saddle points for the previous two games?

Saddle point

Saddle point

Answer

For the first example: no saddle point, for the second: (M,R)

Saddle point

Answer

For the first example: no saddle point, for the second: (M,R)

Theorem

In a matrix game with utility matrix u, (s_1^*, s_2^*) is a saddle point iff it is a PSNE.

Proof.

Consider (s_1^*, s_2^*) to be a saddle point. By definition of saddle point, this happens iff $u(s_1^*, s_2^*) \ge u(s_1, s_2^*)$, $\forall s_1 \in S_1$ and $u(s_1^*, s_2^*) \le u(s_1^*, s_2)$, $\forall s_2 \in S_2$. Since, $u \equiv u_1 \equiv -u_2$, the above is equivalent to $u_1(s_1^*, s_2^*) \ge u_1(s_1, s_2^*)$, $\forall s_1 \in S_1$ and $u_2(s_1^*, s_2^*) \ge u_2(s_1^*, s_2)$, $\forall s_2 \in S_2 \Leftrightarrow (s_1^*, s_2^*)$ is a PSNE.

Proof.

Consider (s_1^*, s_2^*) to be a saddle point. By definition of saddle point, this happens iff $u(s_1^*, s_2^*) \ge u(s_1, s_2^*)$, $\forall s_1 \in S_1$ and $u(s_1^*, s_2^*) \le u(s_1^*, s_2)$, $\forall s_2 \in S_2$. Since, $u \equiv u_1 \equiv -u_2$, the above is equivalent to $u_1(s_1^*, s_2^*) \ge u_1(s_1, s_2^*)$, $\forall s_1 \in S_1$ and $u_2(s_1^*, s_2^*) \ge u_2(s_1^*, s_2)$, $\forall s_2 \in S_2 \Leftrightarrow (s_1^*, s_2^*)$ is a PSNE.

Consider maxmin and minmax values

$$\underline{v} = \max_{s_1 \in S_1} \min_{s_2 \in S_2} u(s_1, s_2)$$

$$\overline{v} = \min_{s_2 \in S_2} \max_{s_1 \in S_1} u(s_1, s_2)$$

Proof.

Consider (s_1^*, s_2^*) to be a saddle point. By definition of saddle point, this happens iff $u(s_1^*, s_2^*) \ge u(s_1, s_2^*)$, $\forall s_1 \in S_1$ and $u(s_1^*, s_2^*) \le u(s_1^*, s_2)$, $\forall s_2 \in S_2$. Since, $u \equiv u_1 \equiv -u_2$, the above is equivalent to $u_1(s_1^*, s_2^*) \ge u_1(s_1, s_2^*)$, $\forall s_1 \in S_1$ and $u_2(s_1^*, s_2^*) \ge u_2(s_1^*, s_2)$, $\forall s_2 \in S_2 \Leftrightarrow (s_1^*, s_2^*)$ is a PSNE.

Consider maxmin and minmax values

$$\underline{v} = \max_{s_1 \in S_1} \min_{s_2 \in S_2} u(s_1, s_2)$$

$$\overline{v} = \min_{s_2 \in S_2} \max_{s_1 \in S_1} u(s_1, s_2)$$
minmax

Question

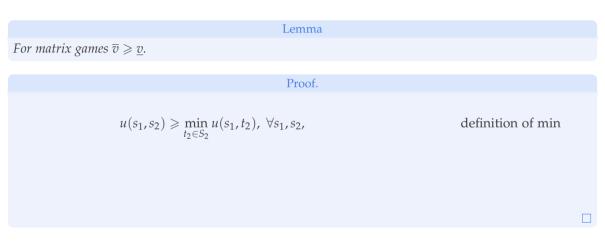
How are the maxmin and minmax values related?

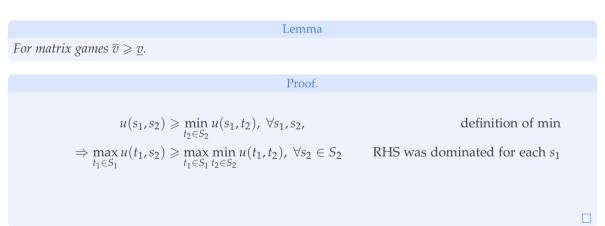
Relationship of the security values

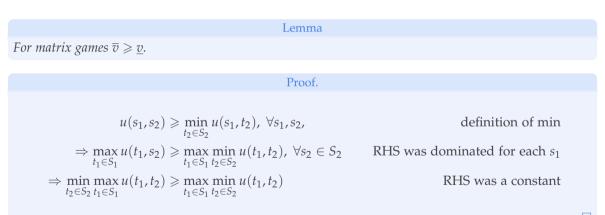
Lemma

For matrix games $\overline{v} \ge \underline{v}$.

Relationship of the security values





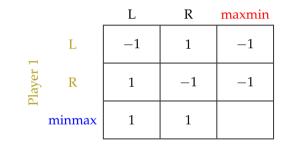


Contents

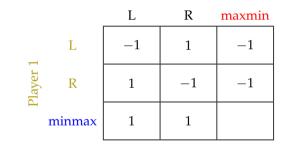
Matrix games

- ▶ Relation between **maxmin** and PSNE
- ► Mixed Strategies
- Mixed Strategy Nash Equilibrium
- ► Find MSNE
- ▶ MSNE Characterization Theorem Proof
- ► Algorithm to find MSNE
- ► Existence of MSNE

Earlier examples and security values

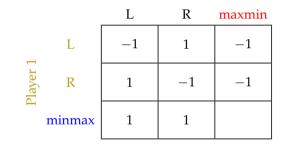


Earlier examples and security values



$$\overline{v} = 1 > -1 = \underline{v}$$

Earlier examples and security values



 $\overline{v} = 1 > -1 = \underline{v}$ PSNE does not exist

Earlier examples and security values (contd.)

		L	С	R	maxmin
Player 1	Т	3	-5	-2	-5
	Μ	1	4	1	1
	В	6	-3	-5	-5
	minmax	6	4	1	

Earlier examples and security values (contd.)

		L	С	R	maxmin
Player 1	Т	3	-5	-2	-5
	Μ	1	4	1	1
	В	6	-3	-5	-5
	minmax	6	4	1	

$$\overline{v} = 1 = \underline{v}$$

Earlier examples and security values (contd.)

		L	С	R	maxmin
Player 1	Т	3	-5	-2	-5
	Μ	1	4	1	1
	В	6	-3	-5	-5
	minmax	6	4	1	

 $\overline{v} = 1 = \underline{v}$ PSNE exists

Define the following strategies

$$\begin{split} s_1^* &\in \arg \, \max_{s_1 \in S_1} \min_{s_2 \in S_2} u(s_1, s_2), \\ s_2^* &\in \arg \, \min_{s_2 \in S_2} \max_{s_1 \in S_1} u(s_1, s_2), \end{split}$$

maxmin strategy of player 1

minmax strategy of player 2

Define the following strategies

 $s_{1}^{*} \in \arg \max_{s_{1} \in S_{1}} \min_{s_{2} \in S_{2}} u(s_{1}, s_{2}),$ $s_{2}^{*} \in \arg \min_{s_{2} \in S_{2}} \max_{s_{1} \in S_{1}} u(s_{1}, s_{2}),$ maxmin strategy of player 1

minmax strategy of player 2

Theorem

A game has a PSNE (equivalently, a saddle point) if and only if $\overline{v} = \underline{v} = u(s_1^*, s_2^*)$, where s_1^* and s_2^* are maxmin and minmax strategies for players 1 and 2 respectively.

Corollary: (s_1^*, s_2^*) is a PSNE

Proof

(\implies) let (s_1^*, s_2^*) is a PSNE $\implies \overline{v} = \underline{v} = u(s_1^*, s_2^*)$ and s_1^* and s_2^* are maxmin and minmax

(\implies) let (s_1^*, s_2^*) is a PSNE $\implies \overline{v} = \underline{v} = u(s_1^*, s_2^*)$ and s_1^* and s_2^* are maxmin and minmax Since (s_1^*, s_2^*) is a PSNE, $u(s_1^*, s_2^*) \ge u(s_1, s_2^*)$, $\forall s_1 \in S_1$.

(\implies) let (s_1^*, s_2^*) is a PSNE $\implies \overline{v} = \underline{v} = u(s_1^*, s_2^*)$ and s_1^* and s_2^* are maxmin and minmax Since (s_1^*, s_2^*) is a PSNE, $u(s_1^*, s_2^*) \ge u(s_1, s_2^*)$, $\forall s_1 \in S_1$.

$$\Rightarrow u(s_1^*, s_2^*) \ge \max_{t_1 \in S_1} u(t_1, s_2^*)$$
$$\ge \min_{t_2 \in S_2} \max_{t_1 \in S_1} u(t_1, t_2), \text{ since } s_2^* \text{ is a specific strategy}$$
$$= \overline{v}$$

(\implies) let (s_1^*, s_2^*) is a PSNE $\implies \overline{v} = \underline{v} = u(s_1^*, s_2^*)$ and s_1^* and s_2^* are maxmin and minmax Since (s_1^*, s_2^*) is a PSNE, $u(s_1^*, s_2^*) \ge u(s_1, s_2^*), \forall s_1 \in S_1$.

$$\implies u(s_1^*, s_2^*) \ge \max_{t_1 \in S_1} u(t_1, s_2^*)$$
$$\ge \min_{t_2 \in S_2} \max_{t_1 \in S_1} u(t_1, t_2), \text{ since } s_2^* \text{ is a specific strategy}$$
$$= \overline{v}$$

Similarly, using the same argument for player 2, we get $\underline{v} \ge u(s_1^*, s_2^*)$

(\implies) let (s_1^*, s_2^*) is a PSNE $\implies \overline{v} = \underline{v} = u(s_1^*, s_2^*)$ and s_1^* and s_2^* are maxmin and minmax Since (s_1^*, s_2^*) is a PSNE, $u(s_1^*, s_2^*) \ge u(s_1, s_2^*), \forall s_1 \in S_1$.

$$\implies u(s_1^*, s_2^*) \ge \max_{t_1 \in S_1} u(t_1, s_2^*)$$
$$\ge \min_{t_2 \in S_2} \max_{t_1 \in S_1} u(t_1, t_2), \text{ since } s_2^* \text{ is a specific strategy}$$
$$= \overline{v}$$

Similarly, using the same argument for player 2, we get $\underline{v} \ge u(s_1^*, s_2^*)$ But $\overline{v} \ge \underline{v}$ (from the previous lemma), hence

(\implies) let (s_1^*, s_2^*) is a PSNE $\implies \overline{v} = \underline{v} = u(s_1^*, s_2^*)$ and s_1^* and s_2^* are maxmin and minmax Since (s_1^*, s_2^*) is a PSNE, $u(s_1^*, s_2^*) \ge u(s_1, s_2^*), \forall s_1 \in S_1$.

$$\implies u(s_1^*, s_2^*) \ge \max_{t_1 \in S_1} u(t_1, s_2^*)$$
$$\ge \min_{t_2 \in S_2} \max_{t_1 \in S_1} u(t_1, t_2), \text{ since } s_2^* \text{ is a specific strategy}$$
$$= \overline{v}$$

Similarly, using the same argument for player 2, we get $\underline{v} \ge u(s_1^*, s_2^*)$ But $\overline{v} \ge \underline{v}$ (from the previous lemma), hence

$$u(s_1^*, s_2^*) \ge \overline{v} \ge \underline{v} \ge u(s_1^*, s_2^*)$$
$$\implies u(s_1^*, s_2^*) = \overline{v} = \underline{v}$$

(\implies) let (s_1^*, s_2^*) is a PSNE $\implies \overline{v} = \underline{v} = u(s_1^*, s_2^*)$ and s_1^* and s_2^* are maxmin and minmax Since (s_1^*, s_2^*) is a PSNE, $u(s_1^*, s_2^*) \ge u(s_1, s_2^*), \forall s_1 \in S_1$.

$$\implies u(s_1^*, s_2^*) \ge \max_{t_1 \in S_1} u(t_1, s_2^*)$$
$$\ge \min_{t_2 \in S_2} \max_{t_1 \in S_1} u(t_1, t_2), \text{ since } s_2^* \text{ is a specific strategy}$$
$$= \overline{v}$$

Similarly, using the same argument for player 2, we get $\underline{v} \ge u(s_1^*, s_2^*)$ But $\overline{v} \ge \underline{v}$ (from the previous lemma), hence

$$u(s_1^*, s_2^*) \ge \overline{v} \ge \underline{v} \ge u(s_1^*, s_2^*)$$
$$\implies u(s_1^*, s_2^*) = \overline{v} = \underline{v}$$

Also implies that the maxmin for 1 and minmax for 2 are s_1^* and s_2^* respectively.

(\Leftarrow) i.e. $\overline{v} = \underline{v} = u(s_1^*, s_2^*)$ and s_1^* and s_2^* are maxmin and minmax $\implies (s_1^*, s_2^*)$ is a PSNE

(\Leftarrow) i.e. $\overline{v} = \underline{v} = u(s_1^*, s_2^*)$ and s_1^* and s_2^* are maxmin and minmax $\implies (s_1^*, s_2^*)$ is a PSNE

$$u(s_1^*, s_2) \ge \min_{t_2 \in S_2} u(s_1^*, t_2)$$
, by definition of min
= $\max_{t_1 \in S_1} \min_{t_2 \in S_2} u(t_1, t_2)$, since s_1^* is the maxmin strategy for player 1
= v (given)

(\Leftarrow) i.e. $\overline{v} = \underline{v} = u(s_1^*, s_2^*)$ and s_1^* and s_2^* are maxmin and minmax $\implies (s_1^*, s_2^*)$ is a PSNE

 $u(s_1^*, s_2) \ge \min_{t_2 \in S_2} u(s_1^*, t_2)$, by definition of min = $\max_{t_1 \in S_1} \min_{t_2 \in S_2} u(t_1, t_2)$, since s_1^* is the maxmin strategy for player 1 = v (given)

Similarly, we can show $u(s_1, s_2^*) \leq v, \ \forall s_1 \in S_1$

(\Leftarrow) i.e. $\overline{v} = \underline{v} = u(s_1^*, s_2^*)$ and s_1^* and s_2^* are maxmin and minmax $\implies (s_1^*, s_2^*)$ is a PSNE

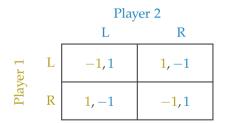
 $u(s_1^*, s_2) \ge \min_{t_2 \in S_2} u(s_1^*, t_2)$, by definition of min = $\max_{t_1 \in S_1} \min_{t_2 \in S_2} u(t_1, t_2)$, since s_1^* is the maxmin strategy for player 1 = v (given)

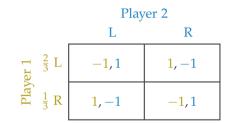
Similarly, we can show $u(s_1, s_2^*) \leq v$, $\forall s_1 \in S_1$ But $v = u(s_1^*, s_2^*)$. Substitute and get that (s_1^*, s_2^*) is a PSNE.

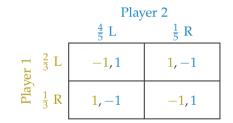
Contents

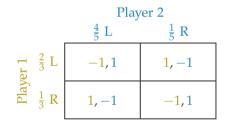
Matrix games

- ▶ Relation between **maxmin** and PSNE
- Mixed Strategies
- Mixed Strategy Nash Equilibrium
- ► Find MSNE
- ▶ MSNE Characterization Theorem Proof
- ► Algorithm to find MSNE
- ► Existence of MSNE



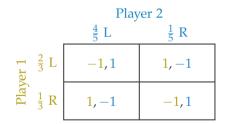






• Consider a finite set *A*, define

$$\Delta A = \{ p \in [0,1]^{|A|} : \sum_{a \in A} p(a) = 1 \}$$



• Consider a finite set *A*, define

$$\Delta A = \{ p \in [0,1]^{|A|} : \sum_{a \in A} p(a) = 1 \}$$

• Mixed strategy set of player 1: $\Delta S_1 = \Delta \{L, R\}, (\frac{2}{3}, \frac{1}{3}) \in \Delta S_1$

• **Notation**: σ_i is a mixed strategy of player *i*

- **Notation**: σ_i is a mixed strategy of player *i*
- $\sigma_i \in \Delta S_i$, i.e., $\sigma_i : S_i \to [0, 1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$

- **Notation**: *σ_i* is a mixed strategy of player *i*
- $\sigma_i \in \Delta S_i$, i.e., $\sigma_i : S_i \to [0, 1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$
- We are discussing non-cooperative games, the players choose their strategies independently

- **Notation**: *σ_i* is a mixed strategy of player *i*
- $\sigma_i \in \Delta S_i$, i.e., $\sigma_i : S_i \to [0, 1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$
- We are discussing non-cooperative games, the players choose their strategies independently
- The joint probability of player 1 picking s_1 and player 2 picking $s_2 = \sigma_1(s_1)\sigma_2(s_2)$

- **Notation**: *σ_i* is a mixed strategy of player *i*
- $\sigma_i \in \Delta S_i$, i.e., $\sigma_i : S_i \to [0, 1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$
- We are discussing non-cooperative games, the players choose their strategies independently
- The joint probability of player 1 picking s_1 and player 2 picking $s_2 = \sigma_1(s_1)\sigma_2(s_2)$
- Utility of player *i* at a mixed strategy profile (σ_i, σ_{-i}) is

$$u_i(\sigma_i,\sigma_{-i}) = \sum_{s_1 \in S_1} \sum_{s_2 \in S_2} \cdots \sum_{s_n \in S_n} \sigma_1(s_1) \cdot \sigma_2(s_2) \cdots \sigma_n(s_n) \ u_i(s_1,s_2,\ldots,s_n)$$

- **Notation**: *σ_i* is a mixed strategy of player *i*
- $\sigma_i \in \Delta S_i$, i.e., $\sigma_i : S_i \to [0,1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$
- We are discussing non-cooperative games, the players choose their strategies independently
- The joint probability of player 1 picking s_1 and player 2 picking $s_2 = \sigma_1(s_1)\sigma_2(s_2)$
- Utility of player *i* at a mixed strategy profile (σ_i, σ_{-i}) is

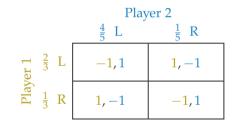
$$u_i(\sigma_i,\sigma_{-i}) = \sum_{s_1 \in S_1} \sum_{s_2 \in S_2} \cdots \sum_{s_n \in S_n} \sigma_1(s_1) \cdot \sigma_2(s_2) \cdots \sigma_n(s_n) \ u_i(s_1,s_2,\ldots,s_n)$$

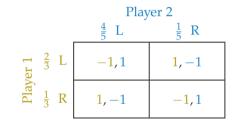
• We are *overloading* u_i to denote the utility at *pure* and *mixed* strategies

- **Notation**: *σ_i* is a mixed strategy of player *i*
- $\sigma_i \in \Delta S_i$, i.e., $\sigma_i : S_i \to [0,1]$ s.t. $\sum_{s_i \in S_i} \sigma_i(s_i) = 1$
- We are discussing non-cooperative games, the players choose their strategies independently
- The joint probability of player 1 picking s_1 and player 2 picking $s_2 = \sigma_1(s_1)\sigma_2(s_2)$
- Utility of player *i* at a mixed strategy profile (σ_i, σ_{-i}) is

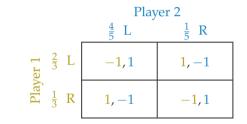
$$u_i(\sigma_i,\sigma_{-i}) = \sum_{s_1\in S_1}\sum_{s_2\in S_2}\cdots\sum_{s_n\in S_n}\sigma_1(s_1)\cdot\sigma_2(s_2)\cdots\sigma_n(s_n) \ u_i(s_1,s_2,\ldots,s_n)$$

- We are *overloading* u_i to denote the utility at *pure* and *mixed* strategies
- Utility at a mixed strategy is the **expectation** of the utilities at pure strategies; all the rules of expectation hold, e.g., linearity, conditional expectation, etc.





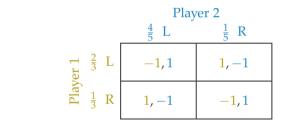
 $u_1(\sigma_1,\sigma_2)$



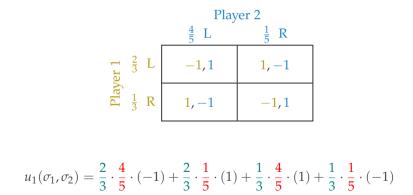
$$u_1(\sigma_1, \sigma_2) = \frac{2}{3} \cdot \frac{4}{5} \cdot (-1)$$



$$u_1(\sigma_1, \sigma_2) = \frac{2}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (1)$$



$$u_1(\sigma_1, \sigma_2) = \frac{2}{3} \cdot \frac{4}{5} \cdot (-1) + \frac{2}{3} \cdot \frac{1}{5} \cdot (1) + \frac{1}{3} \cdot \frac{4}{5} \cdot (1)$$



Contents

Matrix games

- ▶ Relation between **maxmin** and PSNE
- Mixed Strategies
- Mixed Strategy Nash Equilibrium

► Find MSNE

- ▶ MSNE Characterization Theorem Proof
- ► Algorithm to find MSNE
- ► Existence of MSNE

Definition (Mixed Strategy Nash Equilibrium)

A mixed strategy Nash equilibrium (MSNE) is a mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$, s.t.

 $u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i, \sigma_{-i}^*), \ \forall \sigma_i \in \Delta S_i \text{ and } \forall i \in N.$

Definition (Mixed Strategy Nash Equilibrium)

A mixed strategy Nash equilibrium (MSNE) is a mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$, s.t.

 $u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i, \sigma_{-i}^*), \ \forall \sigma_i \in \Delta S_i \text{ and } \forall i \in N.$

Question

Relation between **PSNE** and **MSNE**?

Definition (Mixed Strategy Nash Equilibrium)

A mixed strategy Nash equilibrium (MSNE) is a mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$, s.t.

 $u_i(\sigma_i^*, \sigma_{-i}^*) \ge u_i(\sigma_i, \sigma_{-i}^*), \ \forall \sigma_i \in \Delta S_i \text{ and } \forall i \in N.$

	Question
Relation between PSNE and MSNE ?	
	Answer
$PSNE \implies MSNE$	

Theorem

A mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$, is an **MSNE** if and only if $\forall s_i \in S_i$ and $\forall i \in N$

 $u_i(\sigma_i^*,\sigma_{-i}^*) \ge u_i(s_i,\sigma_{-i}^*).$

Theorem

A mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$, is an **MSNE** if and only if $\forall s_i \in S_i$ and $\forall i \in N$

$$u_i(\sigma_i^*,\sigma_{-i}^*) \ge u_i(s_i,\sigma_{-i}^*).$$

Proof.

 (\Rightarrow) : The pure strategy s_i is a special case of the mixed strategy, the mixed strategy with s_i having probability 1. Inequality holds by definition of MSNE

Theorem

A mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$, is an **MSNE** if and only if $\forall s_i \in S_i$ and $\forall i \in N$

$$u_i(\sigma_i^*,\sigma_{-i}^*) \ge u_i(\mathbf{s}_i,\sigma_{-i}^*).$$

Proof.

(⇒): The pure strategy s_i is a special case of the mixed strategy, the mixed strategy with s_i having probability 1. Inequality holds by definition of MSNE (⇐) Pick an arbitrary mixed strategy σ_i of player i

$$u_i(\sigma_i, \sigma_{-i}^*) = \sum_{s_i \in S_i} \sigma_i(s_i) \cdot u_i(s_i, \sigma_{-i}^*)$$

A mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$, is an **MSNE** if and only if $\forall s_i \in S_i$ and $\forall i \in N$

$$u_i(\sigma_i^*,\sigma_{-i}^*) \ge u_i(\mathbf{s}_i,\sigma_{-i}^*).$$

Proof.

(⇒): The pure strategy s_i is a special case of the mixed strategy, the mixed strategy with s_i having probability 1. Inequality holds by definition of MSNE (⇐) Pick an arbitrary mixed strategy σ_i of player i

$$u_i(\sigma_i, \sigma_{-i}^*) = \sum_{s_i \in S_i} \sigma_i(s_i) \cdot \underbrace{u_i(s_i, \sigma_{-i}^*)}_{\leq u_i(\sigma_i^*, \sigma_{-i}^*)}$$

A mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$, is an **MSNE** if and only if $\forall s_i \in S_i$ and $\forall i \in N$

$$u_i(\sigma_i^*,\sigma_{-i}^*) \ge u_i(\mathbf{s}_i,\sigma_{-i}^*).$$

Proof.

(⇒): The pure strategy s_i is a special case of the mixed strategy, the mixed strategy with s_i having probability 1. Inequality holds by definition of MSNE (⇐) Pick an arbitrary mixed strategy σ_i of player i

$$u_i(\sigma_i, \sigma_{-i}^*) = \sum_{s_i \in S_i} \sigma_i(s_i) \cdot u_i(s_i, \sigma_{-i}^*)$$
$$\leqslant \sum_{s_i \in S_i} \sigma_i(s_i) \cdot u_i(\sigma_i^*, \sigma_{-i}^*)$$

A mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$, is an **MSNE** if and only if $\forall s_i \in S_i$ and $\forall i \in N$

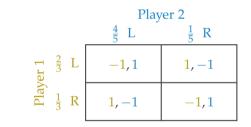
$$u_i(\sigma_i^*,\sigma_{-i}^*) \ge u_i(\mathbf{s}_i,\sigma_{-i}^*).$$

Proof.

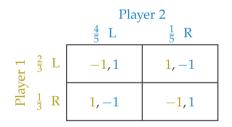
(⇒): The pure strategy s_i is a special case of the mixed strategy, the mixed strategy with s_i having probability 1. Inequality holds by definition of MSNE (⇐) Pick an arbitrary mixed strategy σ_i of player i

$$\begin{split} u_i(\sigma_i, \sigma_{-i}^*) &= \sum_{s_i \in S_i} \sigma_i(s_i) \cdot u_i(s_i, \sigma_{-i}^*) \\ &\leqslant \sum_{s_i \in S_i} \sigma_i(s_i) \cdot u_i(\sigma_i^*, \sigma_{-i}^*) \\ &= u_i(\sigma_i^*, \sigma_{-i}^*) \cdot \sum_{s_i \in S_i} \sigma_i(s_i) = u_i(\sigma_i^*, \sigma_{-i}^*) \end{split}$$

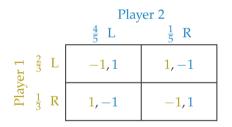
Is the mixed strategy profile an **MSNE**?



• To answer this, we need to show that there does not exist any better mixed strategy for the player

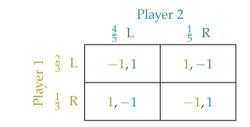


- To answer this, we need to show that there does not exist any better mixed strategy for the player
- Expected utility of player 2 from $L = 2/3 \cdot 1 + 1/3 \cdot (-1) = 1/3$

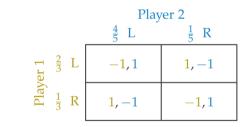


- To answer this, we need to show that there does not exist any better mixed strategy for the player
- Expected utility of player 2 from $L = 2/3 \cdot 1 + 1/3 \cdot (-1) = 1/3$
- Expected utility of player 2 from $R = 2/3 \cdot (-1) + 1/3 \cdot 1 = -1/3$

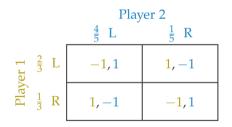
Is the mixed strategy profile an **MSNE**?



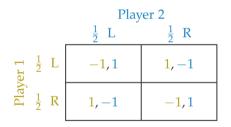
• Expected utility will increase if some probability is transferred from R to L



- Expected utility will increase if some probability is transferred from R to L
- \Rightarrow the current profile is **not** an MSNE



- Expected utility will increase if some probability is transferred from R to L
- \Rightarrow the current profile is **not** an MSNE
- Some balance in the utilities is needed



- Expected utility will increase if some probability is transferred from R to L
- \Rightarrow the current profile is **not** an MSNE
- Some balance in the utilities is needed
- Does there exist any improving mixed strategy?

Contents

Matrix games

- ▶ Relation between **maxmin** and PSNE
- ► Mixed Strategies
- Mixed Strategy Nash Equilibrium

► Find MSNE

- ▶ MSNE Characterization Theorem Proof
- ► Algorithm to find MSNE
- ► Existence of MSNE

For mixed strategy σ_i , the subset of strategy set of *i* on which σ_i has a positive mass is called the **support** of σ_i and is denoted by $\delta(\sigma_i)$. Formally, $\delta(\sigma_i) = \{s_i \in S_i : \sigma_i(s_i) > 0\}$.

For mixed strategy σ_i , the subset of strategy set of *i* on which σ_i has a positive mass is called the **support** of σ_i and is denoted by $\delta(\sigma_i)$. Formally, $\delta(\sigma_i) = \{s_i \in S_i : \sigma_i(s_i) > 0\}$.

Using the definition of support, here is a characterization of MSNE

Theorem

A mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$ is an MSNE iff $^a \forall i \in N$

^{*a*}This is a shorthand for 'if and only if'.

For mixed strategy σ_i , the subset of strategy set of *i* on which σ_i has a positive mass is called the **support** of σ_i and is denoted by $\delta(\sigma_i)$. Formally, $\delta(\sigma_i) = \{s_i \in S_i : \sigma_i(s_i) > 0\}$.

Using the definition of support, here is a characterization of MSNE

Theorem

A mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$ is an MSNE iff $a \forall i \in N$

• $u_i(s_i, \sigma_{-i}^*)$ is identical $\forall s_i \in \delta(\sigma_i^*)$,

^{*a*}This is a shorthand for 'if and only if'.

For mixed strategy σ_i , the subset of strategy set of *i* on which σ_i has a positive mass is called the **support** of σ_i and is denoted by $\delta(\sigma_i)$. Formally, $\delta(\sigma_i) = \{s_i \in S_i : \sigma_i(s_i) > 0\}$.

Using the definition of support, here is a characterization of MSNE

Theorem

A mixed strategy profile $(\sigma_i^*, \sigma_{-i}^*)$ is an MSNE iff $^a \forall i \in N$

• $u_i(s_i, \sigma_{-i}^*)$ is identical $\forall s_i \in \delta(\sigma_i^*)$,

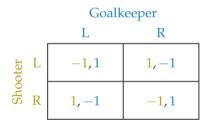
$$u_i(s_i, \sigma_{-i}^*) \ge u_i(s_i', \sigma_{-i}^*), \forall s_i \subseteq \delta(\sigma_i^*), s_i' \notin \delta(\sigma_i^*).$$

^{*a*}This is a shorthand for 'if and only if'.

Consider Penalty Shoot Game

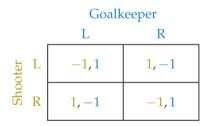
	Goalkeeper	
	L	R
oter T	-1,1	1, -1
oys R	1 , - 1	-1,1

Consider Penalty Shoot Game



Case 1: support profile ({*L*}, {*L*}): for player 1, $s'_1 = R$ – violates condition 2

Consider Penalty Shoot Game



Case 1: support profile ({*L*}, {*L*}): for player 1, $s'_1 = R$ – violates condition 2

Case 2: support profile $({L, R}, {L})$ – symmetric for the other case

For Player 1, the expected utility has to be the same for L and R - not possible – violates condition 1

Case 3: support profile $({L, R}, {L, R})$: condition 2 is vacuously satisfied

Case 3: support profile $({L, R}, {L, R})$: condition 2 is vacuously satisfied

For condition 1, let player 1 chooses L w.p. *p* and player 2 choose L w.p. *q*

Case 3: support profile $({L, R}, {L, R})$: condition 2 is vacuously satisfied

For condition 1, let player 1 chooses L w.p. *p* and player 2 choose L w.p. *q* For player 1:

$$u_1(L,(q,1-q)) = u_1(R,(q,1-q)) \implies (-1)q + 1 \cdot (1-q) = 1 \cdot q + (-1)(1-q) \implies q = \frac{1}{2}$$

Case 3: support profile $({L, R}, {L, R})$: condition 2 is vacuously satisfied

For condition 1, let player 1 chooses L w.p. *p* and player 2 choose L w.p. *q* For player 1:

$$u_1(L,(q,1-q)) = u_1(R,(q,1-q)) \implies (-1)q + 1 \cdot (1-q) = 1 \cdot q + (-1)(1-q) \implies q = \frac{1}{2}$$

For player 2:

$$u_2((p,1-p),L) = u_2((p,1-p),R) \Rightarrow p = \frac{1}{2}$$

Case 3: support profile $({L, R}, {L, R})$: condition 2 is vacuously satisfied

For condition 1, let player 1 chooses L w.p. *p* and player 2 choose L w.p. *q* For player 1:

$$u_1(L,(q,1-q)) = u_1(R,(q,1-q)) \implies (-1)q + 1 \cdot (1-q) = 1 \cdot q + (-1)(1-q) \implies q = \frac{1}{2}$$

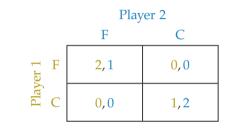
For player 2:

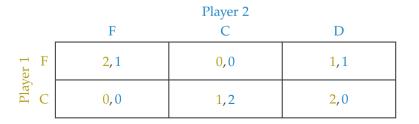
$$u_2((p,1-p),L) = u_2((p,1-p),R) \Rightarrow p = \frac{1}{2}$$

MSNE =

$$\left(\left(\frac{1}{2},\frac{1}{2}\right),\left(\frac{1}{2},\frac{1}{2}\right)\right)$$

Exercises





30

Contents

Matrix games

- ▶ Relation between **maxmin** and PSNE
- ► Mixed Strategies
- Mixed Strategy Nash Equilibrium
- ► Find MSNE
- ▶ MSNE Characterization Theorem Proof
- ► Algorithm to find MSNE
- ► Existence of MSNE

MSNE Characterization Theorem

Theorem

A mixed strategy profile is an MSNE iff $\forall i \in N$

- $u_i(s_i, \sigma_{-i}^*)$ is identical $\forall s_i \in \delta(\sigma_i^*)$,
- $u_i(s_i,\sigma_{-i}^*) \geqslant u_i(s_i',\sigma_{-i}^*), \forall s_i \subseteq \delta(\sigma_i^*), s_i' \notin \delta(\sigma_i^*).$

A mixed strategy profile is an MSNE iff $\forall i \in N$

- $u_i(s_i, \sigma_{-i}^*)$ is identical $\forall s_i \in \delta(\sigma_i^*)$,
- $\ \ \, \bullet \ \ \, u_i(s_i,\sigma_{-i}^*) \geqslant u_i(s_i',\sigma_{-i}^*), \forall s_i \subseteq \delta(\sigma_i^*), s_i' \notin \delta(\sigma_i^*).$

Observations:

• $\max_{\sigma_i \in \Delta S_i} u_i(\sigma_i, \sigma_{-i}) = \max_{s_i \in S_i} u_i(s_i, \sigma_{-i})$ maximizing w.r.t. a distribution \Leftrightarrow whole probability mass at max

A mixed strategy profile is an MSNE iff $\forall i \in N$

- $u_i(s_i, \sigma_{-i}^*)$ is identical $\forall s_i \in \delta(\sigma_i^*)$,

Observations:

- $\max_{\sigma_i \in \Delta S_i} u_i(\sigma_i, \sigma_{-i}) = \max_{s_i \in S_i} u_i(s_i, \sigma_{-i})$ max_{*i*} max_{*i*} w.r.t. a distribution \Leftrightarrow whole probability mass at max
- If $(\sigma_i^*, \sigma_{-i}^*)$ is an MSNE, then

$$\max_{\sigma_i \in \Delta S_i} u_i(\sigma_i, \sigma_{-i}^*) = \max_{s_i \in S_i} u_i(s_i, \sigma_{-i}^*) = \max_{s_i \in \delta(\sigma_i^*)} u_i(s_i, \sigma_{-i}^*)$$

the maximizer must lie in $\delta(\sigma_i^*)$ – if not, then put all probability mass on that $s'_i \notin \delta(\sigma_i^*)$ that has the maximum value of the utility – $(\sigma_i^*, \sigma_{-i}^*)$ is not a MSNE

 (\Rightarrow) Given $(\sigma_i^*, \sigma_{-i}^*)$ is an MSNE

$$u_{i}(\sigma_{i}^{*},\sigma_{-i}^{*}) = \max_{\sigma_{i}\in\Delta S_{i}} u_{i}(\sigma_{i},\sigma_{-i}^{*}) = \max_{s_{i}\in S_{i}} u_{i}(s_{i},\sigma_{-i}^{*}) = \max_{s_{i}\in\delta(\sigma_{i}^{*})} u_{i}(s_{i},\sigma_{-i}^{*})$$
(1)

 (\Rightarrow) Given $(\sigma_i^*, \sigma_{-i}^*)$ is an MSNE

$$u_{i}(\sigma_{i}^{*},\sigma_{-i}^{*}) = \max_{\sigma_{i}\in\Delta S_{i}} u_{i}(\sigma_{i},\sigma_{-i}^{*}) = \max_{s_{i}\in S_{i}} u_{i}(s_{i},\sigma_{-i}^{*}) = \max_{s_{i}\in\delta(\sigma_{i}^{*})} u_{i}(s_{i},\sigma_{-i}^{*})$$
(1)

By definition of expected utility

$$u_{i}(\sigma_{i}^{*},\sigma_{-i}^{*}) = \sum_{s_{i}\in S_{i}}\sigma_{i}^{*}(s_{i})u_{i}(s_{i},\sigma_{-i}^{*}) = \sum_{s_{i}\in\delta(\sigma_{i}^{*})}\sigma_{i}^{*}(s_{i})u_{i}(s_{i},\sigma_{-i}^{*})$$
(2)

 (\Rightarrow) Given $(\sigma_i^*, \sigma_{-i}^*)$ is an MSNE

$$u_{i}(\sigma_{i}^{*},\sigma_{-i}^{*}) = \max_{\sigma_{i} \in \Delta S_{i}} u_{i}(\sigma_{i},\sigma_{-i}^{*}) = \max_{s_{i} \in S_{i}} u_{i}(s_{i},\sigma_{-i}^{*}) = \max_{s_{i} \in \delta(\sigma_{i}^{*})} u_{i}(s_{i},\sigma_{-i}^{*})$$
(1)

By definition of expected utility

$$u_i(\sigma_i^*, \sigma_{-i}^*) = \sum_{s_i \in S_i} \sigma_i^*(s_i) u_i(s_i, \sigma_{-i}^*) = \sum_{s_i \in \delta(\sigma_i^*)} \sigma_i^*(s_i) u_i(s_i, \sigma_{-i}^*)$$
(2)

Equations (1) and (2) are equal, i.e., max is equal to positive weighted average – can happen only when all values are same: proves condition 1

We can shift the probability mass $\sigma^*(s_i)$ to s'_i , this new mixed strategy gives a strict higher utility to player *i*: contradicts MSNE

We can shift the probability mass $\sigma^*(s_i)$ to s'_i , this new mixed strategy gives a strict higher utility to player *i*: contradicts MSNE

This completes the proof of the necessary direction.

We can shift the probability mass $\sigma^*(s_i)$ to s'_i , this new mixed strategy gives a strict higher utility to player *i*: contradicts MSNE

This completes the proof of the necessary direction.

(\Leftarrow) Given the 2 conditions of the theorem, need to show that $(\sigma_i^*, \sigma_{-i}^*)$ is an MSNE

We can shift the probability mass $\sigma^*(s_i)$ to s'_i , this new mixed strategy gives a strict higher utility to player *i*: contradicts MSNE

This completes the proof of the necessary direction.

(\Leftarrow) Given the 2 conditions of the theorem, need to show that $(\sigma_i^*, \sigma_{-i}^*)$ is an MSNE

Let
$$u_i(s_i, \sigma_{-i}^*) = m_i(\sigma_{-i}^*), \forall s_i \in \delta(\sigma_i^*)$$
 condition 1
Note $m_i(\sigma_{-i}^*) = \max_{s_i \in S_i} u_i(s_i, \sigma_{-i}^*)$ condition 2

$$u_{i}(\sigma_{i}^{*},\sigma_{-i}^{*}) = \sum_{s_{i} \in \delta(\sigma_{i}^{*})} \sigma_{i}^{*}(s_{i})u_{i}(s_{i},\sigma_{-i}^{*}),$$

$$u_{i}(\sigma_{i}^{*}, \sigma_{-i}^{*}) = \sum_{s_{i} \in \delta(\sigma_{i}^{*})} \sigma_{i}^{*}(s_{i})u_{i}(s_{i}, \sigma_{-i}^{*}),$$

= $m_{i}(\sigma_{-i}^{*})$

previous conclusion

$$u_{i}(\sigma_{i}^{*}, \sigma_{-i}^{*}) = \sum_{s_{i} \in \delta(\sigma_{i}^{*})} \sigma_{i}^{*}(s_{i})u_{i}(s_{i}, \sigma_{-i}^{*}),$$

= $m_{i}(\sigma_{-i}^{*})$
= $\max_{s_{i} \in S_{i}} u_{i}(s_{i}, \sigma_{-i}^{*})$

previous conclusion previous conclusion

$$u_{i}(\sigma_{i}^{*}, \sigma_{-i}^{*}) = \sum_{s_{i} \in \delta(\sigma_{i}^{*})} \sigma_{i}^{*}(s_{i})u_{i}(s_{i}, \sigma_{-i}^{*}),$$

= $m_{i}(\sigma_{-i}^{*})$
= $\max_{s_{i} \in S_{i}} u_{i}(s_{i}, \sigma_{-i}^{*})$
= $\max_{\sigma_{i} \in \Delta S_{i}} u_{i}(\sigma_{i}, \sigma_{-i}^{*})$

previous conclusion previous conclusion

from the observation

$$u_{i}(\sigma_{i}^{*}, \sigma_{-i}^{*}) = \sum_{s_{i} \in \delta(\sigma_{i}^{*})} \sigma_{i}^{*}(s_{i})u_{i}(s_{i}, \sigma_{-i}^{*}),$$

$$= m_{i}(\sigma_{-i}^{*})$$

$$= \max_{s_{i} \in S_{i}} u_{i}(s_{i}, \sigma_{-i}^{*})$$

$$= \max_{\sigma_{i} \in \Delta S_{i}} u_{i}(\sigma_{i}, \sigma_{-i}^{*})$$

$$\geq u_{i}(\sigma_{i}, \sigma_{-i}^{*}), \forall \sigma_{i} \in \Delta S_{i}$$

previous conclusion previous conclusion

from the observation

$$u_{i}(\sigma_{i}^{*}, \sigma_{-i}^{*}) = \sum_{s_{i} \in \delta(\sigma_{i}^{*})} \sigma_{i}^{*}(s_{i})u_{i}(s_{i}, \sigma_{-i}^{*}), \qquad \text{by definition of } \delta(\sigma_{i}^{*})$$
$$= m_{i}(\sigma_{-i}^{*}) \qquad \text{previous conclusion}$$
$$= \max_{s_{i} \in S_{i}} u_{i}(s_{i}, \sigma_{-i}^{*}) \qquad \text{previous conclusion}$$
$$= \max_{\sigma_{i} \in \Delta S_{i}} u_{i}(\sigma_{i}, \sigma_{-i}^{*}) \qquad \text{from the observation}$$
$$\geq u_{i}(\sigma_{i}, \sigma_{-i}^{*}), \forall \sigma_{i} \in \Delta S_{i}$$

This proves the sufficient direction. The result yields an algorithmic way to find MSNE

Contents

Matrix games

- ▶ Relation between **maxmin** and PSNE
- ► Mixed Strategies
- Mixed Strategy Nash Equilibrium
- ► Find MSNE
- ▶ MSNE Characterization Theorem Proof
- ► Algorithm to find MSNE
- ► Existence of MSNE

Consider a NFG $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$

Consider a NFG $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$

The total number of supports of $S_1 \times S_2 \times S_3 \cdots \times S_n$ is $K = (2^{|S_1|} - 1) \times (2^{|S_2|} - 1) \times \cdots \times (2^{|S_n|} - 1)$

Consider a NFG $G = \langle N, (S_i)_{i \in N}, (u_i)_{i \in N} \rangle$

The total number of supports of $S_1 \times S_2 \times S_3 \cdots \times S_n$ is $K = (2^{|S_1|} - 1) \times (2^{|S_2|} - 1) \times \cdots \times (2^{|S_n|} - 1)$

For every support profile $X_1 \times X_2 \times \cdots \times X_n$, where $X_i \subseteq S_i$, solve the following feasibility program

Program

$$\begin{split} w_i &= \sum_{s_{-i} \in S_{-i}} (\prod_{j \neq i} \sigma_j(s_j)) \cdot u_i(s_i, s_{-i}), \forall s_i \in X_i, \forall i \in N \\ w_i &\geq \sum_{s_{-i} \in S_{-i}} (\prod_{j \neq i} \sigma_j(s_j)) \cdot u_i(s_i, s_{-i}), \forall s_i \in S_i \setminus X_i, \forall i \in N \\ \sigma_j(s_j) &\geq 0, \forall s_j \in S_j, \forall j \in N, \qquad \sum_{s_j \in X_j} \sigma_j(s_j) = 1, \forall j \in N \end{split}$$

Remarks on the algorithm

Program

$$\begin{split} w_i &= \sum_{s_{-i} \in S_{-i}} (\prod_{j \neq i} \sigma_j(s_j)) \cdot u_i(s_i, s_{-i}), \forall s_i \in X_i, \forall i \in N \\ w_i &\geq \sum_{s_{-i} \in S_{-i}} (\prod_{j \neq i} \sigma_j(s_j)) \cdot u_i(s_i, s_{-i}), \forall s_i \in S_i \setminus X_i, \forall i \in N \\ \sigma_j(s_j) &\geq 0, \forall s_j \in S_j, \forall j \in N, \qquad \sum_{s_j \in X_j} \sigma_j(s_j) = 1, \forall j \in N \end{split}$$

• This is not a linear program unless n = 2

¹Daskalakis, Goldberg, Papadimitriou, "The Complexity of Computing a Nash Equilibrium" [2009]

Remarks on the algorithm

Program

$$\begin{split} w_i &= \sum_{s_{-i} \in S_{-i}} (\prod_{j \neq i} \sigma_j(s_j)) \cdot u_i(s_i, s_{-i}), \forall s_i \in X_i, \forall i \in N \\ w_i &\geq \sum_{s_{-i} \in S_{-i}} (\prod_{j \neq i} \sigma_j(s_j)) \cdot u_i(s_i, s_{-i}), \forall s_i \in S_i \setminus X_i, \forall i \in N \\ \sigma_j(s_j) &\geq 0, \forall s_j \in S_j, \forall j \in N, \qquad \sum_{s_j \in X_j} \sigma_j(s_j) = 1, \forall j \in N \end{split}$$

- This is not a linear program unless n = 2
- For general game, there is no poly-time algorithm

¹Daskalakis, Goldberg, Papadimitriou, "The Complexity of Computing a Nash Equilibrium" [2009]

Remarks on the algorithm

Program

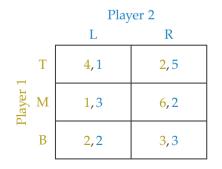
$$\begin{split} w_i &= \sum_{s_{-i} \in S_{-i}} (\prod_{j \neq i} \sigma_j(s_j)) \cdot u_i(s_i, s_{-i}), \forall s_i \in X_i, \forall i \in N \\ w_i &\geq \sum_{s_{-i} \in S_{-i}} (\prod_{j \neq i} \sigma_j(s_j)) \cdot u_i(s_i, s_{-i}), \forall s_i \in S_i \setminus X_i, \forall i \in N \\ \tau_j(s_j) &\geq 0, \forall s_j \in S_j, \forall j \in N, \qquad \sum_{s_j \in X_j} \sigma_j(s_j) = 1, \forall j \in N \end{split}$$

- This is not a linear program unless n = 2
- For general game, there is no poly-time algorithm
- Problem of finding an MSNE is PPAD-complete [Polynomial Parity Argument on Directed graphs]¹

¹Daskalakis, Goldberg, Papadimitriou, "The Complexity of Computing a Nash Equilibrium" [2009]

The previous algorithm can be applied to a smaller set of strategies by removing the dominated strategies

Is there a dominated strategy in this game? Domination can be via mixed strategies too



Theorem

If a pure strategy s_i is strictly dominated by a mixed strategy $\sigma_i \in \Delta S_i$, then in every MSNE of the game, s_i is chosen with probability zero.

So, We can remove such strategies without loss of equilibrium

Contents

Matrix games

- ▶ Relation between **maxmin** and PSNE
- ► Mixed Strategies
- Mixed Strategy Nash Equilibrium
- ► Find MSNE
- MSNE Characterization Theorem Proof
- ► Algorithm to find MSNE
- ► Existence of MSNE

Definition (Finite Games)

A game is said to be **finite** when the number of players is finite, and each player has a finite set of strategies.

Definition (Finite Games)

A game is said to be **finite** when the number of players is finite, and each player has a finite set of strategies.

Theorem (Nash 1951)

Every finite game has a (mixed) Nash equilibrium.

Definition (Finite Games)

A game is said to be **finite** when the number of players is finite, and each player has a finite set of strategies.

Theorem (Nash 1951)

Every finite game has a (mixed) Nash equilibrium.

Proof requires a few tools and a result from real analysis. Proof is separately given in the course webpage.

• A set $S \subseteq \mathbb{R}^n$ is **convex** if $\forall x, y \in S$ and $\forall \lambda \in [0, 1], \lambda x + (1 - \lambda)y \in S$.

- A set $S \subseteq \mathbb{R}^n$ is **convex** if $\forall x, y \in S$ and $\forall \lambda \in [0, 1], \lambda x + (1 \lambda)y \in S$.
- A set *S* ⊆ ℝⁿ is closed if it contains all its limit points (points whose every neighborhood contains a point in *S*). Example of a set that is not closed: [0, 1) every ball of radius *ε* > 0 around 1 has a member of [0, 1), but 1 is not in the set [0, 1).

- A set $S \subseteq \mathbb{R}^n$ is **convex** if $\forall x, y \in S$ and $\forall \lambda \in [0, 1], \lambda x + (1 \lambda)y \in S$.
- A set *S* ⊆ ℝⁿ is closed if it contains all its limit points (points whose every neighborhood contains a point in *S*). Example of a set that is not closed: [0, 1) every ball of radius *ε* > 0 around 1 has a member of [0, 1), but 1 is not in the set [0, 1).
- A set $S \subseteq \mathbb{R}^n$ is **bounded** if $\exists x_0 \in \mathbb{R}^n$ and $R \in (0, \infty)$ s.t. $\forall x \in S, ||x x_0||_2 < R$.

- A set $S \subseteq \mathbb{R}^n$ is **convex** if $\forall x, y \in S$ and $\forall \lambda \in [0, 1]$, $\lambda x + (1 \lambda)y \in S$.
- A set *S* ⊆ ℝⁿ is closed if it contains all its limit points (points whose every neighborhood contains a point in *S*). Example of a set that is not closed: [0, 1) every ball of radius *ε* > 0 around 1 has a member of [0, 1), but 1 is not in the set [0, 1).
- A set $S \subseteq \mathbb{R}^n$ is **bounded** if $\exists x_0 \in \mathbb{R}^n$ and $R \in (0, \infty)$ s.t. $\forall x \in S, ||x x_0||_2 < R$.
- A set $S \subseteq \mathbb{R}^n$ is **compact** if it is **closed** and **bounded**.

- A set $S \subseteq \mathbb{R}^n$ is **convex** if $\forall x, y \in S$ and $\forall \lambda \in [0, 1]$, $\lambda x + (1 \lambda)y \in S$.
- A set *S* ⊆ ℝⁿ is closed if it contains all its limit points (points whose every neighborhood contains a point in *S*). Example of a set that is not closed: [0, 1) every ball of radius *ε* > 0 around 1 has a member of [0, 1), but 1 is not in the set [0, 1).
- A set $S \subseteq \mathbb{R}^n$ is **bounded** if $\exists x_0 \in \mathbb{R}^n$ and $R \in (0, \infty)$ s.t. $\forall x \in S, ||x x_0||_2 < R$.
- A set $S \subseteq \mathbb{R}^n$ is **compact** if it is **closed** and **bounded**.

- A set $S \subseteq \mathbb{R}^n$ is **convex** if $\forall x, y \in S$ and $\forall \lambda \in [0, 1], \lambda x + (1 \lambda)y \in S$.
- A set *S* ⊆ ℝⁿ is closed if it contains all its limit points (points whose every neighborhood contains a point in *S*). Example of a set that is not closed: [0, 1) every ball of radius *ε* > 0 around 1 has a member of [0, 1), but 1 is not in the set [0, 1).
- A set $S \subseteq \mathbb{R}^n$ is **bounded** if $\exists x_0 \in \mathbb{R}^n$ and $R \in (0, \infty)$ s.t. $\forall x \in S, ||x x_0||_2 < R$.
- A set $S \subseteq \mathbb{R}^n$ is **compact** if it is **closed** and **bounded**.

A result from real analysis (proof omitted):

Brouwer's fixed point theorem

If $S \subseteq \mathbb{R}^n$ is **convex** and **compact** and $T : S \to S$, is **continuous** then *T* has a fixed point, i.e., $\exists x^* \in S$ s.t. $T(x^*) = x^*$.

भारतीय प्रौद्योगिकी संस्थान मुंबई Indian Institute of Technology Bombay