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 486 L. E. DUBINS AND D. A. FREEDMAN [Aug.- Sept.

 generally by S's, and universities, denoted by U's. Suppose that each university is to admit
 exactly one student. (More realistic assumptions are made in Section 4 below.) Each student rank
 orders all the universities, and each university rank orders all students. The object is to pair the
 students and universities off in a stable way. By definition, an instability is created by two pairs,
 S- U and S'- U', where S prefers U' to U, and reciprocally U' prefers S to S'. Nothing is assumed
 about the preferences of S' and U. If there are no instabilities, the system is said to be stable. Gale
 and Shapley prove the existence of a stable system of assignments.

 S---U

 S --- U'

 Each student S has an "available set" A(S) of universities: the ones S can get under some
 stable assignment. These available sets are nonempty. Consider assigning to S that university in
 A(S) that S likes best. Gale and Shapley prove that this assignment is one-to-one, and stable.

 Here is a sketch of a proof of the Gale-Shapley results which differs from theirs in detail only,
 but introduces some ideas needed later. Imagine the universities (much reduced in size) lined up in
 a room, with the students waiting outside in a hall. One student, S, walks into the room and
 applies to the university S likes best: this completes move * 1. Then another student walks in and
 does likewise; in case both apply to the same university, it keeps the preferred applicant and
 rejects the other, who goes back outside to the hall: this completes move *2. And so on: student

 Sj applying to the university Sj likes best- among those that have not previously rejected SJ.
 There are two rules to observe.

 (1) If there are still students outside in the hall, one, say Sj, goes into the room and applies to
 that university which Sj likes best, among those which have not previously rejected Sj. This
 initiates a move.

 (2) A university with two applicants keeps the preferred one and rejects the other, who goes
 back outside to the hall. This completes a move.

 Any sequence of moves made in obedience to rules (1) and (2) will be called a "Gale-Shapley
 algorithm."

 (3) THEOREM. Any Gale-Shapley algorithm terminates. At termination, the students and universi-
 ties are paired off, one-to-one. This pairing is stable. And, in fact, each student S will be paired with
 the university S likes best in A(S).

 Theorem (3) will be argued in a moment, but first a statement of the new results. Suppose a
 student, called Machiavelli, lies, that is, does not apply to the universities in the order of true
 preference. Can this help Machiavelli? The answer is no, not if the others continue to tell the
 truth. Similarly for coalitions of student liars. For universities, however, it is another story. These
 issues will be discussed in Sections 2, 3, and 4 below.

 Proof of Theorem (3). Suppose there are n students and n universities. By rule (1) each student
 applies at most once to each university. Consequently:

 (4) A Gale-Shapley algorithm terminates in n2 moves or less.

 Clearly, rules (1) and (2) imply:

 (5) Each student applies to successively less desirable universities. For each university, however,
 the applicants look better and better.

 At the end of every move, there are some students in the hall, and an equal number of
 universities in the room, who have not yet had applications. The remaining students and
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 1981] MACHIAVELLI AND THE GALE-SHAPLEY ALGORITHM 487

 universities are paired off, one-to-one. After a university gets its first application, it always has
 one. Furthermore:

 (6) The algorithm ends when each university has had at least one application.

 Next, it will be argued by induction that:

 (7) At the end of every move, the pairing in the room is stable.

 Plainly, this is so before move 1. Suppose it is so before move k, and consider the assignment at
 the end of that move. Now there cannot be two pairs S- U and S'- U', where S prefers U' to U,
 while U' prefers S to S'. For if S prefers U' to U, then S has already applied to U' and been
 rejected, by rule (1). Now U' must prefer the current applicant S' to the previous one S, by the
 fact (5). This completes the proof of (7).

 S~ --- U

 The next point, though similar, is a bit trickier.

 (8) If a student S is rejected by a university, that university is not in S's available set.

 This is vacuous at move 1. Suppose it were so for moves 1 through k - 1, and S is paired with U
 at the end of move k - 1. On move k, suppose S' applies to U. Now U must retain one of these

 two applicants, say SI; call the rejected applicant S2. By way of contradiction, suppose there were
 a stable assignment in which S2 got U. Now SI has to get some university, call it U'. At the risk of
 the obvious, SI and S2 are different students; U and U' are different universities.

 Case 1: SI applied to U' before move k. Then SI must have been rejected by U', because SI is
 applying to U on move k. So this system is unstable, by the inductive assumption.

 Case 2: SI did not apply to U' before move k. Now SI prefers U to U', by rule (1). And U
 prefers SI to S2, the proof being that it rejected S2. Again an instability.

 SI1--- U'

 S 2---U

 To sum up, the algorithm terminates by (4); the resulting system is stable by (7); and it is
 optimal for the students by (8). This completes the proof of the theorem. D

 2. Enter Machiavelli. One of the students- named M for Machiavelli- will now be treated
 differently from the rest. M has some true rank ordering on the universities, and if M participates
 in a Gale-Shapley algorithm following rule (1), M will get some university: the best in M's
 available set. This is fair play. But now permit Machiavelli to lie, that is, to use some false rank
 ordering. This is foul play.

 (9) THEOREM. Suppose M participates in a Gale-Shapley algorithm, but uses a false rank
 ordering. The university M gets by this foul play is no better-measured by M's true rank
 ordering-than the one M would have got by fair play.

 For the proof, imagine that M waits outside in the hall until all the others have paired off. This
 will be called the prologue. At the end of the prologue, there will be one university, call it W,
 which has not yet received an application. M now enters and starts applying in accordance with
 the rules- but using the false rank ordering. Clearly,

 (10) The algorithm terminates when W gets its first application.

 No generality is lost by assuming that M does not move until the others are paired off: as
 Theorem (3) shows, all Gale-Shapley algorithms lead to the same system of assignments. (The
 algorithm is now being applied with M's false rank ordering in place of M's true one.)
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 488 L. E. DUBINS AND D. A. FREEDMAN [Aug.- Sept.

 The main step in the proof of Theorem (9) is Lemma (11) below, which requires two
 definitions. A scenario is a sequence of applications for M- an initial segment of a rank ordering.
 One scenario, for instance, is specified by naming three universities:

 A B C.

 The interpretation: M applies first to A; if rejected, M tries B next; if rejected there too, M goes
 on to C. In general, a scenario is specified by a list of universities; no university appears twice on
 the list, but-the list need not be exhaustive. The action called for by a scenario stops when

 * either M is rejected by the last university specified in the scenario (C, in the example);

 or

 * the whole algorithm stops, W getting its application.

 Corresponding to each scenario, there is a script that tells exactly what happens as the action
 unfolds, after the prologue. A script can be written in standard form as in Table 1.

 TABLE 1. Standard script

 Question marks indicate that the objects are undefined.

 Line University rejects Student who applies to University

 0 ??? So=M Uo=A
 1 UO SI Ul
 2 U1 S2 U2

 k- i Uk-2 Sk- I Uk- I
 k Uk-I Sk Uk

 The table is interpreted as follows. To fix ideas, suppose again that the scenario is A B C.
 Line 0. M enters and applies to A, and so S0 is M and U0 is A. Suppose A isn't W.

 Line 1. UO now has two applicants and must reject one, say SI. Then SI applies to another
 university; call it Ul. Of course, if SI is M, then U1 must be B, according to the scenario. If SI
 isn't M, then U1 is determined by SI's rank order, in accordance with the rules.

 Lines 2, 3 ... are interpreted in a similar way. The last line is special, and there are two cases.

 Case 1: M is rejected by the last university in the scenario. Then the last line is:

 Line University rejects Student who applies to University

 k Uk-l M ???

 In our example, the scenario was A B C, so Uk- I is C.

 Case 2: The last university W gets its application. The last line is

 Line University rejects Student who applies to University

 k W ??? ???

 In any case the table has finite length, by (4).
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 1981] MACHIAVELLI AND THE GALE-SHAPLEY ALGORITHM 489

 Note: For all k > 1, the first university mentioned in line k is the same as the last university
 mentioned in line k - 1, namely Uk-l. In general, the same student will be mentioned several

 times in the sequence So, SI,...; likewise, Ui and Uj can easily be the same, even if i #1 j.
 One more definition. Consider two scenarios, * 1 and * 2. Then scenario * 1 is smaller than

 * 2 if every university mentioned in # 1 is also mentioned in #2: order is immaterial. Thus, A B
 C is smaller than E B D C A F.

 (1 1) THE SCENARIO LEMMA. Suppose scenario * 1 is smaller than scenario * 2, and that

 (12) M makes every application indicated in the larger scenario.

 Then every rejection and application in the script for the smaller scenario occurs, sooner or later, in
 the script for the larger scenario.

 Proof. The argument is by induction on the line number in the script for the smaller scenario.
 In line 0, M comes in and applies to U0; by assumption (12), this application occurs in the script
 for the larger scenario. Now make the inductive assumption:

 (13) All the rejections and applications in lines 0 through k - 1 of the script for the smaller
 scenario occur, sooner or later, in the script for the larger one.

 Consider line k > 1 of the script for the smaller scenario. To avoid trivialities, suppose this isn't
 the last line of the table. It will be shown that the rejection and application in turn occur in the
 second script as well:

 line k Uk_ I rejects Sk who applies to Uk.

 Line k of the script for the smaller scenario begins with university Uk- I rejecting student Sk.
 So Sk must already have applied to Uk 1: either in the prologue, or in lines 0 through k - 1 of the
 script. If not in ,the prologue, this application must occur somewhere in the script for the larger
 scenario, by inductive assumption (13). Furthermore, according to rule (2), university Uk-l must
 have been applied to by a student preferred to Sk, either in the prologue or in lines 0 through
 k - 1 of the script for the smaller scenario. If not in the prologue, this application too must occur
 somewhere in the script for the larger scenario. The upshot is that under the larger scenario, poor

 Sk must again be rejected by Uk- 1. This event does not occur in the prologue, by assumption: so it
 must occur in the script.

 Line k of the script for the smaller scenario ends by having Sk apply to Uk. There are two
 cases.

 Case 1: Sk is M. This application gets made in the script for the larger scenario, by assumption
 (12).

 Case 2: Sk isn't M. Now Uk in the script for the smaller scenario is identifiable. By rule (1),
 this is the university ranking after UkI l on Sk's list. As shown above, Sk gets rejected by UkI l in
 the script for the larger scenario, and must then apply to Uk.

 This completes the induction, except for the last line of the table. The argument there is similar,
 and is omitted. D

 Proof of Theoremt- (9). Suppose that M would get M's i th choice under fair play, where i > 2.
 By way of contradiction, suppose there is some scenario

 (14)A B C...U

 that gets M a university U that M ranks ahead of i. Then the corresponding foul play script must
 terminate with an application to W, while M is paired with U. In particular,

 (15) M makes all the applications called for in scenario (14).
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 490 L. E. DUBINS AND D. A. FREEDMAN [Aug.- Sept.

 There are two cases to consider.

 Case 1: M truly prefers all the other universities in scenario (14) to U. To get the contradic-
 tion, the foul play scenario (14) will be compared to a fair play scenario in which M applies to
 M's 1st, 2nd,... , (i - I)th choices in turn. By the assumption defining Case 1, the foul play
 scenario is smaller than the fair play one, since U ranks ahead of i. And M makes every

 application called for in this fair play scenario: indeed,

 (16) The fair play script ends with M rejected by M's (i - I)th choice.

 The reason is that, under fair play, M gets M's i th choice.

 The Scenario Lemma (11) applies, and shows that every application in the script for foul play,
 including the one to W, gets made in the script for fair play. In particular, the fair play script has

 to end with an application to W. This contradicts (16), and disposes of Case 1.

 Case 2: M truly prefers U to at least one of the other universities in scenario (14). Delete all
 such universities, creating a second and smaller foul play scenario. The corresponding script, by

 Case 1, must end with M ignominiously rejected by U. This rejection must occur in the script for

 the original foul play scenario (14), by the Scenario Lemma (11): condition (12) is satisfied by
 (15). This contradiction disposes of Case 2.

 REMARK. Two scenarios that are permutations of one another are equivalent, as long as M

 makes all the applications in both cases.

 3. Coalitions. So far, M has acted independently. What happens if M colludes with other
 students?

 (17) THEOREM. Suppose several students collude in a Gale-Shapley algorithm, each using a false
 rank ordering. They cannot all get better universities. "Better" is relative to each student's true rank

 ordering, and indicates strict inequality.

 The proof is an adaptation of the one for (9). Now a scenario indicates separately for each liar
 the sequence of universities applied to. Imagine the liars to wait outside in the hall until the honest
 students are all paired off with universities: this defines the prologue. At the end of the prologue,
 some universities have not yet had applications: their number is equal to the number of liars. Now
 the liars take turns in any way among themselves applying to the universities, but following the
 scenario. Each scenario therefore can be expanded into many scripts. To avoid complications, a
 student who is rejected gets to make the next application, by convention.

 The action initiated by a scenario terminates when

 * any liar L has been rejected by the last university on L's list

 or

 * the whole algorithm stops.

 If the action ends according to the first possibility, no honest students can be left outside.
 Note too that with several liars, and therefore several universities that have not had appli-

 cations in the prologue, some applications made before the end of the script do not cause
 rejections. Suppose one such occurs at line k of the script. Since an honest student will be found in
 the hall only after a rejection, and gets the next turn, line k + 1 of the script must have an
 application from a liar.

 Line University rejects Student who applies to University

 k Ukl I Sk Uk
 k+l ??? Sk+I Uk+I
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 1981] MACHIAVELLI AND THE GALE-SHAPLEY ALGORITHM 491

 Thus Uk is receiving its first application: Sk may be honest or a liar. However Sk+ 1 is necessarily
 one of the liars.

 (1 8) THE GENERALIZED SCENARIO LEMMA. Suppose scenario # 1 is smaller than scenario # 2.
 Expand scenario # 1 into script # 1, and scenario #2 into script #2. Suppose

 (19) In script #2, each liar makes every application indicated in scenario #2.

 Then every rejection and application in script # 1 occurs, sooner or later, in script #2.

 Proof. Argue by induction on the line number in script # 1, as in the proof of (11). D1

 Proof of Theorem (17). Number the liars as L1, L2, .... Suppose that, under fair play, L1's ijth

 choice is what Li would get. By way of contradiction, suppose there is a foul play script for a
 scenario in which Lj gets Ujk, which is strictly better than the university that Lj would get under
 fair play: Lj ranks Ujk above ij. Write the scenario as follows:

 L1 U11, U12,..., Ulk,

 (20) L2 U21,U22, , U2k2

 As before:

 (21) All the applications indicated by (20) get made in the foul play script.

 Furthermore, by test (6),

 (22) The foul play script for (20) ends with all the universities getting applications.

 Again, there are two cases to consider.

 Case 1: Each Lj really ranks all the universities applied to in scenario (20) as Ujk or better.
 This scenario will be compared to a truncated fair play scenario, but some care is needed. To
 begin with, consider any definite script for fair play. The liars arrive at their final universities in

 some order or other. Suppose (by renumbering) that L1 applies to the ilth choice only after Lj
 applies to the ijth choice for all]j > 2. Now consider the truncated fair play scenario in which

 L1 applies to the 1st, 2nd, . . ., (I - )th choices, in turn;

 and forj > 1,

 Lj applies to the 1st, 2nd, . . ., ijth choices, in turn.

 By the assumption defining Case 1, this truncated fair play scenario is larger than the foul play

 scenario (20). Furthermore, by definition, in the specific script for fair play under consideration,

 L1 gets rejected by il - 1 while Lj is paired with the ijth choice forj > 2. In other words, all the
 proposals in the truncated fair play scenario above get made. Thus, condition (19) is satisfied, and
 the Generalized Scenario Lemma (18) applies. The conclusion is that any application generated
 under the script for the foul play scenario must also be generated in the script for the truncated
 fair play scenario. In particular, by (22) the fair play script would have to end with all the

 universities getting at least one application, rather than L1 being rejected by the (il - l)th choice.
 This contradiction disposes of Case 1.

 Case 2: Some Lj really ranks at least one of the universities applied to in scenario (20) below
 Uj'k. Eliminate all such universities from the scenario, for every liar, and expand the reduced
 scenario into a reduced foul play script. Case 1 applies to this smaller scenario, proving that its

 script terminates with some liar Lj being rejected by the last university U'k . This rejection must
 also occur in the original foul play script, by the Generalized Scenario Lemma (18). Condition
 (19) holds by (21). D1
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 We originally thought a stronger result might hold, namely, that if one liar in the coalition does
 better, another liar must do worse; as stated above, (17) only implies that if one liar does better,
 another liar must do no better. However, David Gale showed us that the stronger result is false.

 (23) EXAMPLE. With three students and three universities, two students can form a coalition
 and lie: one of the liars will do better, and the other will do no worse.

 The students are A, B, C; the universities are U, V, W. The true rank orderings are presented
 in Table 2 below: W's rank orderings are irrelevant.

 TABLE 2. The true rank orderings

 University preferences Student preferences

 1st 2nd 3rd 1st 2nd 3rd
 U B A C A U V W
 V A C B B V U W
 W ? ? ? C V W U

 One script for fair play is presented in Table 3 below, with a diagram for the positions of the
 applicants.

 TABLE 3. One script for fair play

 Applicants to

 U V W

 A applies to U A

 B applies to V A B

 Capplies to V A B, C
 V rejects B, who applies to U A, B C

 UrejectsA,whoapplies to V B A, C
 V rejects C, who applies to W B A C
 the algorithm ends

 Now suppose B and C form a lying coalition: B's lie coincides with the truth, but C orders the
 universities as W, V, U. As shown in Table 4 below, C will get the same university W; but B will
 improve from U to V. It is worth noting that the honest bystander A also does better, going from
 V to U. The improvement is at the expense of the universities.

 TABLE 4. One script for foul play

 Applicants to

 U V W

 A applies to U A
 B applies to V A B
 Capplies to W A B C

 4. Variations and Comments

 (24) Theorems (3), (9), and (17) apply even when the numbers of students and universities are
 unequal.

 Suppose, for instance, there are more students than universities. There is a new kind of
 instability to mention: S is paired with U and S' is not admitted to any university, but U prefers
 S' to S. The quick fix is to introduce some additional (fictitious) universities, ranking below the
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 1981] MACHIAVELLI AND THE GALE-SHAPLEY ALGORITHM 493

 real universities in every student's estimation. A similar trick works if there are more universities
 than students.

 Now consider the more realistic case, where universities may admit more than one student
 apiece. Each university U has a quota q(U) > 1, and may not admit more than q(U) students. In
 previous sections, q(U) 1. This condition is now dropped. The total number of places is

 Iuq(U). If this sum is bigger than the number of students, some universities have unfilled quotas.
 If the sum is smaller than the number of students, some students do not get assigned to
 universities.

 Rules (1) and (2) require only small modifications to handle this new situation. Students walk
 in, one at a time, and apply to the university of their choice; rule (1) remains in force. However, a
 university does not reject any applicants until their number first exceeds its quota: then it rejects
 the lowest-ranking applicant. This process too will be called a "Gale-Shapley algorithm."

 (25) Theorems (3), (9) and (17) hold when each university has a quota.

 The trick here is to clone the universities: make q(U) copies of university U, each copy having a
 quota of 1. Each student rank orders the clones arbitrarily: however, if for instance Harvard is
 preferred to Yale, then all the Harvard clones must be preferred to all the Yale clones.

 What happens if the universities make offers to the students instead of waiting for appli-
 cations? To be more explicit, line up the students in the room, and make the universities wait
 outside in the hall. One at a time, the universities walk in and make offers of admission. A
 university may have more than one offer outstanding; however, the number of offers may not
 exceed its quota of places. A student who gets two offers rejects the one from the less desirable
 university, which is then free to make an offer to the next-ranking student. The cloning trick used
 for (25) proves

 (26) Theorems (3), (9), and (17) apply when universities make offers to students; this time, it is
 the universities that cannot improve their situation by lying.

 It may be worth while to state (3) carefully in this new context.

 * There is a stable system of assignments of students to universities in which no university
 admits more than its quota of students. However, if the number of places exceeds the
 number of students, some universities will have unfilled quotas; if the number of students
 exceeds the number of places, some students will get assigned to no university.

 * For each university U, consider the set S(U) of students admitted to U under some system
 or other of stable assignments. If card S(U) < q(U), give U all the students in S(U). If card
 S(U) > q(U), give U the q(U) students it likes best in S(U). This is a stable system of
 assignments, and optimal for the universities.

 * The Gale-Shapley algorithm terminates in the system of assignments just specified.

 When the students do the applying, the algorithm optimizes for students, and no student or
 coalition of students can all beat the system by lying. When the universities make the offers, the
 algorithm optimizes for the universities and no university or coalition of universities can all beat
 the system by lying.

 (27) EXAMPLE. Return to the original rules, with equal numbers of students and universities,
 each university admitting exactly one student, and the students making the applications. The
 original algorithm defined by rules (1) and (2) optimized for the students, and no student could
 beat the system by lying. However, universities can improve their position by lying. There is a
 situation involving three students A, B, C and three universities U, V, W, in which under honest
 play U would get its 2nd choice student; but by lying, it gets the 1st choice. The true rank
 orderings are presented in Table 5 below; W's rank ordering are irrelevant.
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 494 L. E. DUBINS AND D. A. FREEDMAN

 TABLE 5. The true rank orderings

 University preferences Student preferences

 1st 2nd 3rd 1st 2nd 3rd
 U) A B C A) V U W

 V) B A C B) U V W

 W) C) U W V

 One script for fair play is given in Table 6 below, with diagrams for the position of applicants.

 TABLE 6. One script for fair play

 Applicants to

 U V W

 A applies to V - A

 B applies to U B A

 Capplies to U B, C A
 U rejects C, who applies to W B A C
 the algorithm ends

 Now in foul play, U rank orders the students as A C B. One script for foul play is given in Table 7
 below.

 TABLE 7. One script for foul play by university U

 Applicants to

 U V W

 A applies to V - A -

 B applies to U B A -

 C applies to U B, C A -
 U lies and rejects B, who

 applies to V C A, B -
 V rejects A, who applies to U A, C B -

 U rejects C, who applies to W A B C
 the algorithm ends

 (28) POSTSCRIPT THEOREM. Suppose M would get M's jth choice under fair play. Now M lies.

 There is no assignment, stable for the lie, under which M would get M's true ith choice, where i is
 better than j.

 Proof. Suppose there were such an assignment. This assignment would still be stable if M
 revised the lie to make i the 1st choice. Then M could get into this university by participating in a
 Gale-Shapley algorithm with the revised lie: for the algorithm gives M the best available
 university: Theorem (3) applied to the revised lie. Now there is a contradiction to Theorem (9). D

 Research for this paper was partially supported by National Science Foundation Grant MCS-77-01665.
 We thank David Gale, Donald Knuth, and Jim Pitman for their comments.
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