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The algorithmic aspects of the following problem are investigated: n (22) persons want to cut 

a cake into n shares so that every person will get at least l/n of the cake by his own measure and 

so that the number of cuts made on the cake is minimal. The cutting process is to be governed 

by a protocol (computer program). It is shown that no deterministic protocol exists which is fair 

(in a sense defined in the text) and results in at most n - 1 cuts. An O(n log n)-cut deterministic 

protocol and an O(n)-cut randomized protocol are given explicitly and a deterministic fair proto- 

col with 4 cuts for n = 4 is described in the appendix. 

1. Introduction 

The following is a well known mathematical puzzle [l]. Two persons own a cake 

which they want to split into two parts to be allotted between them. The cake may 

be made of different ingredients with different values to each person, i.e., each 

person has his own measure for evaluating any given part of the cake. Is there any 

procedure or ‘protocol’ which will enable the two persons to cut the cake into two 

pieces such that each person will get at least + of the cake by his own measure? 

The above problem and several possible generalizations involving n persons, has 

been studied in the literature by several authors (see references). While the papers 

of Dubins and Spanier [4] and Stromquist [5] prove the existence of certain solutions 

to a generalized problem, and are nonconstructive in nature, we would like to con- 

sider here the algorithmic aspects of the problem. 

A simple solution or ‘protocol’ for the 2-participants problem can be described 

as follows (see [l]): 

One of the persons cuts the cake into two pieces and the other chooses his piece 

out of the two: the cutter is sure to get at least half the cake if he cuts the cake 

exactly into 2 equal pieces (by his measure), the other person will also get at least 

half the cake (by his measure) as he is the one who chooses between the two pieces. 

We would like to address the generalized problem where n (22) persons want to 

cut a cake so that each participant will get at least l/n of the cake by his own 

measure. While this problem can be set in a precise and formal way (see [6]) we 
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would try to keep the discussion here as informal as possible, without sacrificing 

mathematical precision. 

The solution to this problem would be based on a formal definition of a fair 

protocol. But the concept of a fair protocol is quite hard to define for the n-person 

case. We shall avoid the necessity of a full definition of a protocol by basing our 

proof on some properties such a protocol and the participant’s ‘winning strategies’ 

(to be defined below) must have. Those properties and partial definitions are sum- 

marized below. 

By a protocol we understand a computer programmable interactive procedure. It 

may issue queries to the participants whose answers may affect its future decisions. 

It may issue instructions to the participants such as: “Cut a piece of the cake accor- 

ding to the following specifications: . ..” or “The piece labelled X is allotted to 

participant A ’ ’ , etc. The protocol has no information on the measures of the various 

pieces as measured by the different participants. It is assumed also that if the partici- 

pants obey the protocol, then each participant will end up with his piece of cake 

after finitely many steps. 

By a strategy of a participant we understand an adaptive sequence of ‘moves’ 

compatible with the protocol, that the participant chooses sequentially, when called 

by the protocol. A winning strategy for a given participant is a strategy which will 

guarantee that he gets at least l/n of the cake (by his own measure) independently 

of the other participants’ strategies. A protocol is fair if every participant has a 

winning strategy. 

To clarify the above concepts let us describe a fair protocol for the n-participants 

case when more than n - 1 cuts are allowed (up to +n(n - 1) for this protocol). (This 

solution is attributed in [2] to Banach and Knaster.) 

ALLOT(n) 

If n = 1 then allot the (remaining) cake to the 

remaining participant and halt. 

Let the remaining participants (who have not received 

their share yet) be 1,2, . . . , n. 

Tell participant 1 to cut from the cake a part a 

which he is willing to have. 

it 1. 

Forj=2 to n-l, begin 
Ask participant j if he agrees that i will get (Y. 

if he disagrees tell j to cut a proper piece of (x 

which he is willing to get. 

Call this new piece a. 

i+j. 

end 
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Ask n whether he agrees that i will get cr. 

If he does then i gets (x, else n gets (Y. 

n-n-1. 

ALLOT(n - 1) 

The reader can easily verify that every participant has a winning strategy, which 

is to cut ‘honestly’ every time he is required to cut by the protocol and to disagree 

that another participant be allotted a piece bigger than l/n of the cake (by his own 

measure). Every participant who adopts this strategy is sure to end up with at least 

l/n of the cake by his own measure. As for the number of cuts: With K participants 

still not allotted their share, at most K- 1 cuts are needed before one additional 

participant gets his share. Thus +n(n - 1) is the maximal number of cuts needed. 

This solution to the n-player game is unattractive since it tends to crumble the 

cake; in fact it is much more attractive for the allotment of gold dust or wine. 

Another interesting algorithmic solution to this problem was proposed by Kuhn 

[6] who, as mentioned above, also suggested a formalization of the problem in 

general mathematical terms. The solution of Kuhn has the same ‘complexity’ as the 

above solution as far as the maximal number of cuts of the cut cake is concerned. 

If the protocol is allowed to do the cutting and is trusted by all participants to 

make ‘straight’ cuts, then the number of cuts may be reduced to n - 1 by changing 

the above procedure so that all the cuts made by the participants are only virtual 

cuts, made be moving the knife over the cake without cutting, except when a piece 

of the cake is finally allotted by the protocol to a certain participant, in which case 

the protocol makes the cut and the resulting piece is taken by the specified partici- 

pant. This solution is also unattractive since it allows virtual cuts and the protocol 

must be trusted to make straight cuts (see also [3]). 

The authors do not know of any protocol which is deterministic (except for the 

ordering of the players) and uses less than O(n log n) cuts, for n > 4. A fair protocol 

for n = 4 with 4 cuts only is given in the appendix (it follows from Theorem 9 in the 

sequel that at least n cuts are necessary, for any n) but we don’t know whether this 

protocol can be generalized, even for n = 5. In Section 2 we present an O(n log n)-cut 

protocol. In Section 3 a randomized protocol with an average O(n) cuts is exhibited. 

In the last section we prove the nonexistence of a deterministic fair protocol for the 

n-person case (n 2 3) with II - 1 cuts only. We conjecture that no fair deterministic 

protocol exists in which the number of cuts is O(n). 

2. An O(n log n)-cut protocol 

The protocol to be presented in this section does not ask any queries: it only issues 

instructions. The players make ‘statements’ about how they evaluate pieces through 

the way they cut. 



288 S. Even, A. Paz 

We shall assume here and in Section 3, that the cake is the [0, l] interval, but 

clearly, each player may have his own measure defined over the interval. This 

restriction is needed for the sake of simplicity. The general case will require some 

additional definitions (concerning the way a cut is made) and some minor changes 

in the protocol (to prevent cuts from crossing one another). The following protocol 

P, is suggested: 

(1) The protocol tells each of the players, 1,2, . . . , n, to cut the cake into a left and 

right parts whose ratio is L~/21 : [n/21. Each player uses his own measure and 

ignores the cuts made by the others. 

(2) After this is done, the protocol notes the order of the cuts 0 < ci 5 c, c= 0.. 5 

c,,< 1, where ii, i,, . . . , i, is a permutation of 1,2, . . . , n and cut Cj was made by 

player iI. 

(3) The cake cutting game is now divided into two separate games. Players 

ii, 12 , . . ..ijnj21 play on W,qn12Jl while players itn,2J + ,, itn,zl +2r . . . , i, play on 

[cLnj2j, 11. The same protocol is used recursively until one player remains in each 

game, in which case the player gets the whole piece on which the game is played. 

A winning strategy is to follow the cutting instructions precisely. The proof of the 

protocol’s fairness is by induction on the number of times each player participates 

in game divisions: 

If a player participates in a game division only once before he gets his share, then 

either n = 3 and he happens to be i,, or n = 2. In the former case, if he cuts, accor- 

ding to the instructions, in a ratio 1: 2, he will get $ of the cake, by his measure. 

In the latter case n = 2 and the player is either i, or i,. If he is ii he gets [0, cl] which 

is exactly 3 of the cake, by his measure. If he is i, he gets [c,, l] which is at least 

3 of the cake, by his own measure. 

If a player participates in more than one game division, consider the first game 

division. If he is one of ii, i,, . . . . itn,21, then he plays with Ln/2l players on a piece 

which is at least Ln/2j/n of the cake, by his measure. By the inductive hypothesis 

he gets at least l/Ln/21 of its value. Thus, his share is at least l/n of the whole 

cake, by is measure. The proof in the case that he is one of itn,21 +, , iLn,21 + 2, . . . , i, 
is similar. 

Let f(n) denote the number of cuts used by P, to divide a cake among n players. 

Clearly, 

f(n) = n +f(bm+fwm. 

It is easy to show that f(n)< 2n log, n, and thus the total number of cuts is 

O(n log n). This is also the time complexity of the protocol. 

By issuing queries to the players one cut may be saved each time step (1) of PI 
is called for, to reduce the total number of cuts to f(n) in log, n, but the number 

of cuts remains O(n log n). 
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3. A randomized protocol with an average O(n) cuts 

The protocol PI, to be used in this section is essentially P, with the exception 

that one attempts to save cuts by issuing queries. The first game division is achieved 

by the following protocol. 

(1) Lb@, R+@, M&(1,2 )...) n}. 

c,+O, c,+l. 

(2) A member A EM is chosen randomly and asked to cut the cake in 

Ln/2J : rn/21 ratio; A must cut at some c, cL I c I c, . 

(3) The following query is issued to members of M- {A}: “Do you agree to play 

a 1.h.s. game on [0, c] to be shared by L&2) players?” If a player answers no, then 

he must agree to play r.h.s. game on [c, I] to be shared by [n/21 players. Let L, 
(R,) be the set of those whose answer is yes (no). 

(4) If lLc[+ILjrLn/21--2, then L+LUL,U{A}, cL+-c, M&R, and go 

to (2). 

(5) If lR,j+JRI+/21-2, then R+RURcU{A}, cR+c, M+L, and go 

to (2). 

(6) [The conditions of (4) and (5) being false implies that [n/21 2 IR U R,l 2 

[n/21 - 1.1 If IR,U R ) = [n/21, then L U.&U {A} is assigned to the 1.h.s. game 

and R,U R to the r.h.s. game. Else (JR,U R / = [n/21 -I), L U L, is assigned to the 

1.h.s. game and {A} UR,UR to the r.h.s. game. 

One easily observes that the subsets of players, L, M, and R, always satisfy the 

following conditions: 

(Cl) ILj+7/2]-I, 

(C2) IRIS j-n/21 - 1, 

(C3) LnR=O, 
(C4) M={l,2,..., n}-(LUR), and thus jM112. 

(C5) Every member of L has indicated, through the cut he performed or through 

a query answered, that he will be happy to play in a 1.h.s. game on [O,c,J. 

(C6) Every member of R has indicated that he will be happy to play in a r.h.s. 

game on [CR, 11. 

(C7) Every member of A4 has indicated that he will be happy to play in a 1.h.s. 

game on [O,c,] or a r.h.s. game on [cL, 11. 

The comment made in the beginning of step (6) is also easily proved as follows: 

The condition of step (4) being false implies that IL,1 + IL1 2 Ln/2] - 1, Thus, 

The condition of step (5) being false implies that IR,J + jR ) L [n/21 - 1, and the 

comment follows. 

One observes that the first game division is achieved in at most n - 1 steps, and 

thus, as in the previous section, the protocol uses O(n log n) cuts. 

However, we shall show that due to the randomization, the expected number of 
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cuts until a game division is achieved is in fact O(log n). If we denote by f(n) the 

expected number of cuts to achieve a complete allotment, then for some constant k, 

f(n) I klogn+f(Ln/2J)+f(rn/21). (1) 

It is easy to verify that f(n) 5 an + k log n - 2k satisfies this recursive inequality for 

every a which satisfies the inductive basis. Thus, the expected number of cuts of the 

randomized protocol P, is O(n). 

Let us now analyze the question of the expected number of cuts, of the randomized 

protocol, until a game division is reached. 

We assume that player i, if asked to cut the cake in Ln/2j : [n/21 ratio, will cut 

at ci, and that all his answers to queries are determined by ci as follows: Let c be 

some cut. If player i is asked whether he agrees to join the 1.h.s. game on [O,c] or 

not, he will answer yes if ci IC and will answer no if c<ci. 

Assume, the dividing (virtual) cuts, as above, of the various players are O< Cj, 5 

c. I *.. I Cj, < 1. Once cut Cj,, for k = L&21 or Ln/2J + 1 is made, a game division 
J2 

is reached. Thus, the situation is very much like that of a median search [7], under 

the following condition: When an element c of {c,, c2, . . . , c,} is picked, we are told 

which c;‘s are below it and which are above it. Our purpose is to find Cj,. 

The randomized protocol for game division is similar to the following procedure 

for finding the r-ranked element in a set D of m numbers: 

RANK(r,m,D): [l%rSm, IDI =m]. 

(0) If m = 1 return the 

(1) Choose deD, randomly. Let L,RCD, where LfIR=O. 

D - {d} = L U R, dj EL implies d; <d and dj E R implies dj 2 d. 

(2) If IL1 or-2 then begin r +- r - IL\ -1 

m+m-lLi-1 

D-D-L-(d) 

end 

(3) If IRlsm-r-l then begin m+m-lR1-1 

D-D-R-(d) 

RANK@, m, D) 

end 

(4) [IL1 =r-1 and IRl =m-r-1 Return d. 

Actually, our game division protocol is slightly more efficient than the above pro- 

cedure, since it finds an element whose rank is either Ln/21 or Ln/2l+ 1, but for 

our purposes, this extra efficiency is insignificant. 

Let us denote by g(k,n) the expected number of applications of step (1) of 

RANK(k,n, {cl,c7, . . . . cn}), where 1 Sk< n (and is not necessarily Ln/21); i.e., 
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g(k,n) is the expected number of times elements are chosen randomly before the 
k-ranked element is found. 

It is easy to see that for n> 1 

g(kn) = 1 

while g(1, 1) = 0. 

Lemma 1. For n > 1, 

g(1, n) = 1 

Proof. The lemma is 
By (2), for nz2 

+; [;!I g(k-l,n-l)+~~kg(k,n-p) . 
p=l 1 

+ i3 ;. 

obviously true for n = 2. 

(2) 

g(l,n+l) = 1 +I- n+l P;, g(l,n+l-P). 

Thus, 

(n+ l)g(l,n+ l)-ng(l,n) = 1 +g(1,n), 

or 

g(1, n + 1) = g(1, n) = $. 

and the lemma follows by induction. 0 

Lemma 2. For n 2 k + 1, 

g(kn+l)-g&n) = n_;+2. 

Proof. By induction on k. The basis, k= 1, has been shown in the proof of Lemma 

1. BY (2), 
k-l n-k 

ng(k,n)=n+ c dk-An--A)+ c g(k,n-p), 
*=I p=l 

and 
k-1 n+l-k 

(n+l)g(k,n+l)=(n+l)+ c g(k-A,n+l--A)+ c g(k,n+l-p). 
,?=I p=1 

Thus, 
k-1 

(n+I)g(k,n+l)-ng(k,n) = lf c [g(k-A,n+l-A)-g(k-An-A)] 
A=I 

“-1 
+ i;k [g(k,i)-g(k,i)l+g(k,n). 
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For k > 1, by the inductive hypothesis, 

k-1 

(n+l)[g(k,n+l)-g(k,n)l = 1 +A;, n_;+2. 

(n+I)[g(k,n+l)-g(k,n) = “-,“‘;l;-’ = ‘+’ 
n-k+2’ 

and the lemma follows. q 

Lemma 3. For n > 2, 

g(2, n) = 5 + fl$1 4. 
r=3 2 

Proof. It is easy to see that g(2,2) = 1 (deterministically). 

Let us compute g(2,3) by (2). 

g(2,3)= l+$[g(l,2)+g(2,2)] =$. 

For n 2 4 we can apply Lemma 2: 

1 
g(2, n) = g(2, n - 1) + __ 

n-l 

= g(2, n - 2) + 
1 1 

-+- 
n-2 n-l 

n-1 

=g(2,3)+ c 4. 0 
r=3 1 

Lemma 4. g(k, n) = g(n - k + 1, n). 

The lemma follows from the inherent symmetry of RANK. 

Corollary. 

g(k,k+l)=g(2,k+l)=++ i 4. 
,=3 1 

Lemma 5. For n> kz2, 

g(k,n)=++ i A+nmf4’+. 
r=3 1 ,=3 l 

Proof. By Lemma 2, for n > ki- 1 

g(k,n) =g(k,n-l)+ 
1 

n-k+1 



A note on cake cutting 293 

=g(k,n-2)+- l+ l 
n-k n-k+1 

.., 

=g(k,k+l)+f+i+.+.+ 
1 

n-k+1 

Theorem 6. The expected number of cuts made for cutting a cake, by the rando- 
mized protocol P2 is O(n). 

Proof. Since I:=, l/i<In n, by Lemma 5, the expected number of cuts made 

before a game division is reached, for n players, is O(log n). By (1) and the discus- 

sion which follows it, the theorem holds (with multiplying constant < 2). 0 

4. The nonexistence of a deterministic protocol for n 2 3 

Our purpose is to show that no fair deterministic protocol exists for the n-persons 

case, II 2 3, in which exactly n - 1 cuts are made, even if all participants have identi- 
cal measures for evaluating pieces of the cake, an assumption to be understood in 

the sequel. 

First we prove two lemmas: 

Lemma 7. If there is a protocol as above and ifallparticipants follow their winning 
strategies, then all cuts made divide the cake into multiples of l/n of the cake so 
that when the cutting process terminates the cake is cut into n equal pieces. 

Proof. All participants, following their winning strategies, will get at least l/n, and 

therefore exactly I/n, of the cake when the process terminates, and all the measures 

are assumed to be identical. 0 

Lemma 8. Assume there is a fair protocol as described above. If in the course of 
the cutting, somepiece is cut by participant B f A, into two pieces, then A’s winning 
strategy allows him to designate one of the two pieces and make sure that he will 
not end up with it or with any proper part of it. 

Proof. The lemma must hold true for otherwise A could be forced to take some 

piece which is less than l/n of the cake, cut by some participant B, even if he acts 

‘honestly’ and according to his winning strategy. 0 
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Theorem 9. A fair protocol, as described above, does not exist. 

Proof. Assume such a fair protocol P exists. Assume that n persons act according 

to it, each following his own winning strategy. By Lemma 7, each of the pieces 

during the cutting process is an integral multiple of l/n. 

Consider the first cut after which each piece is at most 2/n in size. Assume that 

A is the participant to make this cut (in accordance with the protocol’s request). 

Clearly, he either cuts a 4/n piece in the middle, or he cuts a 3/n piece into l/n and 

2/n. Assume that while he makes this cut he goes berserk. We will show that the 

other participants can no longer use their winning strategies so as to assure them- 

selves a fair share. 

Case 1. A’s cut is of a 3/n piece, and he cuts (1 -t&)/n and (2-&)/n where 

0< E< 1. The other participants must be able, by using their winning strategies, to 

force A into sharing the 3/n piece cut by him: The 3/n piece must be cut into at 

least 3 pieces. (Otherwise at least 2 pieces of size less than l/n will be created de- 

priving some participant other than A of his fair share.) But, no matter how the 3/n 

piece is cut again one of its parts will be smaller than l/n of the cake and they must 

be able to avoid taking that part. Now if A is allowed to cut again he may cut either 

the (1 + .s)/n piece or the (2 - ~)/n piece (as the case may be) into two equal pieces, 

both smaller than l/n of the cake, thus depriving some other participant of his fare 

share. On the other hand if BfA makes the additional cut then, by Lemma 8, A 
can make sure that he does not end up with the smaller of the 2 pieces created by 

B (the smaller piece will necessarily be smaller than l/n of the cake) and again one 

other participant is deprived of his fair share. 

Case I. A’s cut is of a 4/n piece, and he cuts (2 -&)/n and (2-t e)/n where 

0 < E < 1. Using an argument similar to the one used in Case 1, it is clear that here 

too, the other participants must be able, by using their winning strategies, to force 

A into sharing the 4/n piece cut by him, together with some other, 3 participants. 

Now if A is allowed to cut again and he cuts the (2-&)/n piece he may cut it into 

2 equal parts thus depriving some other participant of his fair share. If A cuts the 

(2+&)/n piece he may cut an l/n piece out of it thus creating a situation identical 

to Case 1 (one (2 - E)/n piece and one (1 + &)n piece to be shared by 3 participants). 

On the other hand if B #A makes the cut then by Lemma 8 A can make sure that 

he does not end up with a piece smaller than l/n of the cake, cut by B. Thus, if 

B cuts the (2 - E)/n piece into two then at least one participant, other than A, will 

be deprived of his fair share. On the other hand, if B cuts the (2 + &)/n piece into 2 

parts of size a and b, with ac b, then A can reject the smaller piece. If a< l/n, then 

somebody else will be deprived of his fair share while if (2-t &)/2nS b<(l +&)/n, 
then again, A cannot be forced to accept a part of b smaller than l/n without 

depriving somebody else of his fair share. 

The proof is now complete. 

Remark. An even simpler proof of our theorem can be given if the assumptions are 

weakened to allow different measures for different participants. 
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Appendix 

A fair protocol for 4 participants with up to 4 cuts allowed. Label the partici- 

pants: a, 6, c, d; assume that the cake has size 1. 

1. Let a cut the cake into two equal halves (by a’s measure) to be labelled X and Y. 

2. Let 6, c, d evaluate X and Y by their measures. 

2.1. w#C)>$; w,(Y), w~(Y)z+ (w&C) = the size of X as measured by b, 

etc.) then b and a share X, c and d share Y, done! All similar cases are dealt with 

in a similar way. Or 

2.2. wb(Y), w,(Y), wd(Y)>+ (w&X), w,(X), wd(X)<+). (The other symmetric 
case is dealt with in a similar way.) Then 

3. Let a cut X into 2 equal parts, by his own measure, to be labelled I and II. 

4. Let 6, c, d 

6, c, d evaluates either I or II as bigger or equal to $, then that 

participant gets that piece; a gets the other piece, the remaining participants share 

Y, done! Or 

4.2. Both I and II are evaluated by all three participants as less than +. At least 

two participants, say b and c, evaluate one of the 2 pieces I and II, say II, as bigger 
than the other: :> Wb(II)Z %$(I); +> w,(II)r w,(I); $> Wd(II), wd(I); (a= w,(I)= 

~~(11)). Let a get I and 

5. Let b cutY into 2 equal pieces, by b’s measure to be labelled III and IV. 
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6. Let c and devaluate III and IV. Comment: The following information is available 

to the protocol after step 5 has been executed. 

(i) Due to $ > ~~(11) 2 ~~(1) and ~~(11) = wb(IV) > + and ~~(1 + II + III + IV) = 1, 

b must agree to share any of the three combinations II + III, II + IV, III + IV with 

some other participant. 

(ii) As w,(I)<+, if ~~(111) < + (or w,(N) < $), then w,(II + IV)> 3 (or w,(II + 

III) > 3). 

(iii) Same as (ii) for d. 

The continuation of the protocol depends on the result of step 6. Let - denote < $ 

and let + denote 2 $. There are 3 possible combinations for the evalutions of c 

(~~(111) =- together with w,(N) =- is impossible as ~,(I11 +IV)>+) and 3 pos- 

sible different evaluations for d but only 5 of the possible combined evaluations are 

distinct and they are listed in the table below, together with the decision of the 

protocol. 

6.1. Table 

III IV Decision 

W‘ - + 

“d + - 

WC _ + 

Wd - + 

WC _ + 

Wd + + 

WC + + 

wd - + 

WC + + 

Wd + + 

d gets 111, b and c will share 

II + IV (see (i) and (ii) above) 

b gets Ill, c and d will share II + IV 

(see (i) and (ii) and (iii) above) 

d gets III, b and c will share II + IV 

(see (i) and (ii)) 

c gets III, b and d will share I1 + IV 

Assume also that w,.(IV)> w,(III). Then 

d gets III, b and c will share II + IV. 

Comment: w,(N) 2 w,.(III) and w,.(II) 2 

w,.(I) imply that w,(Il+ IV)?+. As for 

b see (i) above. 

Done! 


