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Abstract

We study the problem of manipulation of the
men-proposing Gale-Shapley algorithm by a single
woman via permutation of her true preference list.
Our contribution is threefold: First, we show that
the matching induced by an optimal manipulation is
stable with respect to the true preferences. Second,
we identify a class of optimal manipulations called
inconspicuous manipulations which, in addition to
preserving stability, are also nearly identical to the
true preference list of the manipulator (making the
manipulation hard to be detected). Third, for op-
timal inconspicuous manipulations, we strengthen
the stability result by showing that the entire sta-
ble lattice of the manipulated instance is contained
inside the original lattice.

1 Introduction
The theory of two-sided matching has been a cornerstone of
market design, inspiring a wide array of applications such as
school choice [Abdulkadiroğlu et al., 2005a; Abdulkadiroğlu
et al., 2005b], entry-level labor markets [Roth and Peranson,
1999], and kidney exchange [Roth et al., 2004]. All of these
markets are built around a centralized matching procedure,
which solicits the preferences of the participating agents (typ-
ically in the form of rank ordered lists) and selects a matching
outcome based on these preferences (i.e., decides who gets
matched to whom).

Arguably the most famous of such procedures is the Gale-
Shapley algorithm [Gale and Shapley, 1962], which takes as
input the preferences of two sets of agents over each other
(commonly referred to as men and women), and after a se-
quence of proposal and rejection steps, outputs a matching
that is stable in the sense that no pair of agents prefer each
other over their assigned partners. Over the years, the no-
tion of stability has emerged as the most significant predictor
of a market’s long term success—while markets with stable
matching procedures have successfully persisted, the unstable
ones have failed and are out of use [Roth, 2002].

A frequent concern in such markets, however, is that of
strategic behavior by individual agents. Indeed, Roth [1982]
has shown that no stable matching mechanism makes it a

dominant strategy for every agent to announce their true pref-
erences. This, in particular, means that the Gale-Shapley al-
gorithm is also vulnerable to manipulation.

Our interest in this paper is to study the conditions un-
der which the Gale-Shapley matching for the manipulated in-
stance remains stable with respect to the true preferences. It
is known from the results of Dubins and Freedman [1981]
and Roth [1982] that the proposing side (say, the men) in
the algorithm has no incentive to manipulate. Therefore, any
strategic behavior must occur on the proposed-to side (i.e.,
the women). Our starting point, therefore, is the following
natural question:

Suppose a woman can manipulate by permuting her
true preference list while everyone else is truthful.
Then, is the resulting Gale-Shapley matching stable
with respect to the true preferences?

Our first result (Theorem 3) shows that the answer to the
above question is YES if the manipulation is optimal. That is,
if, by misreporting, the manipulator secures the best possible
partner (according to her true preferences), then the resulting
Gale-Shapley matching is stable with respect to the true pref-
erences of the agents. This is an encouraging result for both
the market designer (who cares about stability with respect to
the true preferences) and the manipulator (who cares about
finding the optimal partner). We complement this result by
showing that sub-optimal manipulations can sometimes lead
to instability (Example 1).

Besides optimality, the manipulator might also want to
avoid being suspected of strategic behavior. Indeed, it is rea-
sonable to expect that the market designer has a coarse idea
of the true preferences of the agents, say from past runs of
the algorithm or from survey data. In such a setting, strate-
gic misreporting can be easily detected if the announced list
of an agent looks significantly different from the market de-
signer’s estimate. Our second result (Theorem 4) shows that
this is an avoidable concern for the manipulator: For any op-
timal manipulation, there exists an equivalent inconspicuous
manipulation which results in the same matched partner, and
can be derived from the true list by promoting only one man
(and making no other changes). In other words, an optimal
manipulation is nearly indistinguishable from the true list.

Our third result (Theorem 5) strengthens the stability im-
plication of Theorem 3 for inconspicuous optimal manipula-
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tions. Specifically, we show that every matching (including
the Gale-Shapley matching) that is stable with respect to the
manipulated instance is also stable with respect to the true
preferences. We complement this result by giving an exam-
ple of a non-inconspicuous optimal manipulation, where a
matching that is stable with respect to the manipulated in-
stance is not stable with respect to the true preferences (Ex-
ample 2).

Why study permutation manipulations? By far, the most
commonly studied model of manipulation in the stable
matching literature has been that of truncation [Gale and So-
tomayor, 1985; Roth and Rothblum, 1999; Coles and Shorrer,
2014; Jaramillo et al., 2014]. This model allows the manip-
ulator to remove a tail of her true preference list and report
the rest of the list unshuffled. An especially attractive feature
of truncation-based manipulations is exhaustiveness, which
means that any possible misrepresentation can be replicated
or improved by a truncation strategy [Roth and Vate, 1991;
Jaramillo et al., 2014].

However, an optimal truncation manipulation by an agent
can look very different from her true preference list. In fact,
Coles and Shorrer [2014] have shown that when the true pref-
erences of all the other agents are generated uniformly at ran-
dom, the optimal truncation strategy for the manipulator in-
volves the removal of a large fraction of her true list. This
phenomenon is particularly severe for large markets, where
the ratio of the length of the reported list to that of the true
list goes to zero as the size of the market grows. By contrast,
as our results show, an optimal permutation manipulation can
be nearly identical to the true list of the manipulator. We
consider this feature of permutation manipulations to be an
important one, both from a theoretical and a practical stand-
point.

2 Related Work
The literature on permutation manipulations of Gale-Shapley
algorithm has focused primarily on computational questions
[Teo et al., 2001; Kobayashi and Matsui, 2009; Kobayashi
and Matsui, 2010; Deng et al., 2015; Gupta et al., 2016].
The earliest result in this direction is by Teo et al. [2001],
who gave an O(n3) algorithm for computing an optimal per-
mutation manipulation of Gale-Shapley algorithm by a sin-
gle manipulator. In conjunction with our result (Theorem 3),
this means that not only are optimal manipulations stability-
preserving, but are also efficiently computable.

The work of Teo et al. [2001] was generalized to the coali-
tional manipulation setting by Deng et al. [2015]. For permu-
tation manipulations, they provide an O(n6) algorithm for
computing a pareto-optimal manipulation for any fixed coali-
tion. Additionally, they show that any such manipulation can
be made inconspicuous. There are two important ways in
which the work of Deng et al. [2015] differs from ours: First,
their model only allows for manipulations that are stability-
preserving in the first place. On the other hand, we allow
the manipulator to pick any permutation (not just a stability-
preserving one), and identify a class of manipulations that
induce stability. Second, their result on the inconspicuous-
ness of coalitional manipulation involves a reduction to the

stable roommates problem [Irving, 1985], and uses sophisti-
cated combinatorial structures like rotations and suitor graphs
[Kobayashi and Matsui, 2010]. Our proof, on the other hand,
is direct and much simpler, which we consider an important
contribution of this work.

Another set of relevant works is by Kobayashi and Mat-
sui [2009; 2010], who study the following extension version
of the manipulation problem: Suppose we are given the pref-
erence lists of all men, and a complete/partial matching. The
goal is to compute a set (if it exists) of the preference lists of
all women such that the men-proposing Gale-Shapley match-
ing contains the given matching. They show that this problem
is NP-complete in general (when the given matching is par-
tial), but polynomial time solvable if the given matching is
complete.

Finally, the recent work of Gupta et al. [2016] studies the
question of total stability of a manipulation strategy when
all women are strategic individuals and all men are truthful.
A manipulation strategy is totally stable if (i) it is stability-
preserving, and (ii) it constitutes a stable Nash equilibrium,
meaning that any unilateral deviation from the strategy is ei-
ther non-improving or induces instability. It is shown that
checking a given strategy for total stability can be done in
polynomial time.

3 Preliminaries
Problem setup An instance 〈M,W,�〉 of the stable
marriage problem consists of a set M of n men, a
set W of n women, and a preference profile � =
{�m1

, . . . ,�mn
,�w1

, . . . ,�wn
} consisting of the prefer-

ence lists of all men and women. The preference list of each
man m ∈ M , denoted by �m, is a strict total order over the
set of all women (the preference lists of women are defined
analogously). We will use the shorthandw1 �m w2 to denote
‘either w1�m w2 or w1 = w2’. We let �−w denote the pref-
erence lists of all men and women except woman w. Thus,
� = {�−w,�w}.

Stable matchings A matching refers to a function
µ :M ∪W →M ∪W , where µ(m) ∈ W for all m ∈ M ,
µ(w) ∈ M for all w ∈ W , and µ(m) = w if and only if
µ(w) = m. A matching µ admits a blocking pair with respect
to � if there is a pair of agents (m,w) such that w�m µ(m)
andm�w µ(w). A matching µ is stable if it admits no block-
ing pair with respect to �. We let S� denote the set of all
matchings that are stable with respect to �.

Gale-Shapley algorithm A matching algorithm takes as
input a preference profile and outputs a matching. In this
paper, we study the well-known deferred acceptance algo-
rithm [Gale and Shapley, 1962], also known as Gale-Shapley
algorithm. In particular, we will focus on the men-proposing
version of this algorithm, abbreviated as GS algorithm. We
let µ = GS(�) denote the matching output by the men-
proposing Gale-Shapley algorithm for the input profile �.

Briefly, GS algorithm proceeds in rounds, and each round
consists of two phases: (i) a proposal phase, where each sin-
gle man proposes to his favorite woman from among those
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who haven’t rejected him yet, and (ii) a rejection phase,
where each woman with multiple proposals in hand rejects
all proposals except the one that she likes best. The algorithm
terminates when no single agents remain.

Gale and Shapley [1962] showed that GS algorithm always
terminates with a stable matching. Moreover, this matching
is simultaneously the best for all men from among all stable
matchings (and, as McVitie and Wilson [1971] later observed,
the worst for all women). Theorem 1 recalls these results.

Theorem 1 (Men-optimality of GS). Let � be a preference
profile, and let µ = GS(�). Then, µ ∈ S�. Moreover,
for any µ′ ∈ S�, µ(m) �m µ′(m) for all m ∈ M and
µ′(w) �w µ(w) for all w ∈W .

We let Prop(w,�) denote the set of all men who propose
to w during the run of GS algorithm on �. Further, we let
Prop(w,�, i) denote the ith favorite man of w (according to
�w) in the set Prop(w,�). Thus, Prop(w,�, 1) = µ(w) for
µ = GS(�).

Stable lattice Given a preference profile � and two match-
ings µ and µ′, define the join function µ∨ = µ∨µ′ as follows:
for each m ∈M and w ∈W ,

µ∨(m) =

{
µ(m) if µ(m)�m µ′(m)
µ′(m) otherwise, and

µ∨(w) =

{
µ′(w) if µ(w)�w µ

′(w)
µ(w) otherwise.

Similarly, define the meet function µ∧ = µ ∧ µ′ for all
m ∈M and w ∈W as:

µ∧(m) =

{
µ′(m) if µ(m)�m µ′(m)
µ(m) otherwise, and

µ∧(w) =

{
µ(w) if µ(w)�w µ

′(w)
µ′(w) otherwise.

The following result from [Knuth, 1997], attributed to John
Conway, shows that the join and meet of any pair of stable
matchings are also stable.

Theorem 2 (Lattice of stable matchings). Let � be a prefer-
ence profile and let µ, µ′ ∈ S�. Then, µ∨, µ∧ ∈ S�.

Manipulation A matching algorithm is said to be manipu-
lable by an agent w if there exists a pair of preference pro-
files � and �′, differing only in the preferences of w, such
that µ′(w)�w µ(w), where µ and µ′ are the matchings be-
fore and after the manipulation respectively. The agent w is
referred to as the manipulator. In this study, we only consider
permutation manipulations, i.e., �′w is a permutation of �w.
Besides, we focus only on the manipulation of GS algorithm,
and the manipulator is assumed to be a woman, who knows
the preferences of all the other agents.

We will often use �′ = (�−w,�′w) and µ′ = GS(�′)
to denote the manipulated profile (with respect to �) and the
resulting GS matching respectively. The matching µ′ and the
set S�′ will be referred to as the induced matching and the
induced lattice respectively. The set S� will be referred to as
the original lattice. We will say that a manipulation �′w with
respect to � is stability-preserving if µ′ ∈ S�.

Optimal manipulation Given a preference profile �, an
optimal manipulation of GS algorithm by an agent w with
respect to a profile � refers to a preference list �′w such
that (i) µ′(w)�w µ(w), and (ii) µ′(w) �w µ′′(w) for any
other preference list �′′w, where µ′ = GS(�−w,�′w) and
µ′′ = GS(�−w,�′′w).

Inconspicuous equivalent of a manipulation Given a
preference profile �, we call �′′w an inconspicuous equiva-
lent of a manipulation �′w (of GS algorithm by woman w)
if (i) �′′w can be derived from the true preference list �w by
moving at most one man, and (ii) µ′′(w) = µ′(w), where
µ′ = GS(�′) and µ′′ = GS(�′′).

4 Main Results
Our first result (Theorem 3) shows that optimal manipulation
of GS algorithm by a single woman preserves stability.
Theorem 3 (Optimal manipulation is stability-preserving).
Let �′w be an optimal manipulation with respect to � for
woman w and let µ′ = GS(�′). Then, µ′ ∈ S�.

This is a positive result, since the stability of the resulting
matching is not affected by optimal strategic behaviour of a
single agent. Example 1 complements this result by showing
that sub-optimal strategic behavior can lead to instability.
Example 1. (Sub-optimal manipulation can be unstable)
Consider the stable marriage instance shown below.

True preferences of men True preferences of women

m1: 2 1 3 4 w1: 1 2 3 4
m2: 3 1 2 4 w2: 3 1 2 4
m3: 1 2 3 4 w3: 1 2 3 4
m4: 1 4 2 3 w4: 1 2 3 4

w1 manipulates w1 manipulates
sub-optimally (�′) optimally (�′′)

w1: 2 4 3 1 w1: 1 4 3 2
w2: 3 1 2 4 w2: 3 1 2 4
w3: 1 2 3 4 w3: 1 2 3 4
w4: 1 2 3 4 w4: 1 2 3 4

The top row shows the true preferences of the agents,
and the bottom row shows two different manipulations by
w1 with respect to �. The underlined numbers denote the
matched partners of the women under the men-proposing
Gale-Shapley algorithm.

Notice that the manipulation under �′ is sub-optimal for
w1 because she matches to a strictly better partner (accord-
ing to her true preference list �w1

) under �′′. Besides, the
matching induced under �′ is not stable with respect to the
true preferences � since (m1, w1) is a blocking pair. On the
other hand, the manipulation under�′′ is optimal, and the in-
duced matching is stable with respect to the true preferences.

As mentioned earlier in Section 1, it is still possible that
the list reported by the manipulator (as part of optimal ma-
nipulation) might look very different from her true list. In-
deed, for the stable marriage instance in Example 1, notice
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that except for the most preferred man (namely m1), the op-
timal manipulation �′′w1

by w1 is a complete reversal of her
true preference list �w. Theorem 4 addresses this concern
by showing that any optimal manipulation has an inconspicu-
ous equivalent which results in the same matched partner for
the manipulator (thus maintaining optimality) while differing
from the true list in the positioning of only one man (thus
making the manipulation hard to be detected).
Theorem 4 (Inconspicuous equivalent of optimal manipula-
tion). Let �′w be an optimal manipulation with respect to �
for woman w. Let �′′w be another preference list derived
from her true list �w by promoting the man Prop(w,�′, 2)
to the position right after Prop(w,�′, 1) while making no
other changes. Then, �′′w is the inconspicuous equiva-
lent of �′w, i.e., µ′′(w) = µ′(w), where µ′ = GS(�′) and
µ′′ = GS(�′′).

Going back to Example 1, it can be observed that w1 can
achieve her optimal partner (i.e., m1) by reporting the list
m1�m4�m2�m3, derived from her true list �w by pro-
moting the man m4 and making no other changes.

Our final result strengthens the stability implication of The-
orem 3 for inconspicuous optimal manipulations. Recall from
Theorem 3 that the men-proposing Gale-Shapley matching
for the optimally manipulated instance is stable with respect
to the true preferences. This result can be alternatively inter-
preted in the lattice terminology as follows: Theorem 3 shows
that the “men-optimal extreme” of the lattice S�′ always lies
inside the original lattice S�. One might wonder whether the
same holds for the rest of the manipulation lattice as well.
Theorem 5 shows that this is indeed the case for inconspicu-
ous optimal manipulations.
Theorem 5 (Lattice containment result). Let �′w be an opti-
mal manipulation with respect to� for woman w, and let�′′w
be its inconspicuous equivalent (as described in Theorem 4).
Then, S�′′ ⊆ S�.

Example 2 complements Theorem 5 by showing that the
implication does not extend to non-inconspicuous optimal
manipulations.
Example 2. Consider the following stable marriage instance

True preferences of men True preferences of women

m1: 2 1 3 4 5 w1: 1 2 3 4 5
m2: 4 1 5 3 2 w2: 3 2 4 5 1
m3: 3 1 4 5 2 w3: 4 2 1 5 3
m4: 1 3 4 5 2 w4: 5 1 4 3 2
m5: 1 5 4 3 2 w5: 1 2 3 4 5

Opt + Non-Inconsp Opt + Inconsp
manipulation (�′) manipulation (�′′)

w1: 2 5 4 3 1 w1: 1 2 5 3 4
w2: 3 2 4 5 1 w2: 3 2 4 5 1
w3: 4 2 1 5 3 w3: 4 2 1 5 3
w4: 5 1 4 3 2 w4: 5 1 4 3 2
w5: 1 2 3 4 5 w5: 1 2 3 4 5

The top row shows the true preferences of the agents, while

the bottom row shows two different optimal manipulations�′
and �′′ for the manipulator w1. The underlined numbers
denote the matched partners of the women under the men-
proposing Gale-Shapley algorithm.

First, we briefly describe why �′ and �′′ are both opti-
mal. Observe that during the run of GS algorithm on the
true profile �, w1 receives proposals only from m4 and m5.
Therefore, any manipulation byw1 must involve swapping the
relative ordering of m4 and m5. By rejecting m4 in favor of
m5, w1 forces m4 to propose to w3, thereby displacing m3.
As a result, m3 is forced to propose to w1. This already is an
improvement for w1 over her original partner m4. However,
w1 can do even better by pretending to prefer m5 over m3 in
the manipulated list. This forcesm3 to propose tow4, thereby
displacing m2, who in turn is forced to propose to w1, giving
her a more preferred match. Notice that w1 can do no better,
since rejecting m2 in favor of m5 will not displace m1 in the
preference list of w2. Thus, m2 is the optimal partner for w1.

Let us now consider the matching φ defined as φ =
(m1, w5), (m2, w1), (m3, w2), (m4, w3), (m5, w4). It is easy
to verify that φ ∈ S�′ but φ /∈ S�′′ and φ /∈ S� since
(m1, w1) constitutes a blocking pair in each case. Therefore,
the stable lattice induced by an optimal manipulation (in this
case�′) need not be completely contained inside the original
lattice.

5 Proofs of Main Results
5.1 Proof of Stability of Optimal Manipulation

(Theorem 3)
We start by stating a lemma (Lemma 6) that will be useful in
the proof of Theorem 3. The lemma states that if a fixed man
m proposes to a fixed woman w during the run of GS algo-
rithm, then the same holds when w moves that man up/down
in her list while making no other changes. The proof is omit-
ted due to space constraints. (Notice that the lemma applies
only to the fixed manm who was moved in the preference list
of w, and not to any other man who proposed to w but was
not moved.)
Lemma 6. Let � and �′ be two preference profiles that
are completely identical except for the preferences of a fixed
womanw. Let�′w be derived from�w by moving a fixed man
m and making no other changes. Then, m ∈ Prop(w,�) ⇒
m ∈ Prop(w,�′).

We now provide the proof of Theorem 3.

Proof. (of Theorem 3) Suppose, for contradiction, that µ′ /∈
S�. Then, there must exist a pair (m′, w′) that blocks µ′ with
respect to �. That is, w′�m′ µ′(m′) and m′�w′ µ′(w′).

We first claim that w′ = w. Indeed, by the stability of GS
algorithm, we have µ′ ∈ S�′ . Hence, either µ′(m′)�′m′ w′

or µ′(w′)�′w′ m′ or both. If w′ 6= w, then by construction
�′w′ = �w′ . Similarly, �′m′ = �m′ . Therefore, we have
that either µ′(m′)�m′ w′ or µ′(w′)�w′ m′ or both, which
contradicts the blocking pair condition. Hence, w′ = w.

Next, consider a preference list�′′w for w derived from�′w
by promoting the man m′ to the top position and making no
other changes. Let �′′ = (�−w,�′′w) and µ′′ = GS(�′′).
Since w′ = w, we have thatm′�w µ

′(w) and w�m′ µ′(m′).
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Moreover, since �′m′ = �m′ , we have that w�′m′ µ′(m′).
Therefore, during the run of GS algorithm on �′, it must be
that m′ proposes to and is rejected by w before he is matched
to µ′(m′). That is, m′ ∈ Prop(w,�′). By applying Lemma 6
with �′ and �′′ as the old and the new profiles respectively,
we get thatm′ ∈ Prop(w,�′′). Sincem′ is at the top position
in �′′w, we must have µ′′(w) = m′. This, however, contra-
dicts the optimality of �′w, since m′�w µ

′(w) according to
the blocking pair condition.

5.2 Proof of Inconspicuous Equivalent of Optimal
Manipulation (Theorem 4)

Our proof of Theorem 4 crucially relies on the swapping
lemma (Lemma 7). This lemma provides a complete de-
scription of the matched partners that the manipulator can
secure by swapping any pair of adjacent men in her pref-
erence list. We state the lemma below and omit its proof
due to space constraints. It will be convenient to denote
the set of non-proposing men by Non-Prop(w,�). Thus,
Non-Prop(w,�) =M \ Prop(w,�).
Lemma 7 (Swapping lemma). Let � and �′ be two pref-
erence profiles differing only in the preferences of a fixed
woman w, and let µ = GS(�) and µ′ = GS(�′). Let �′w
be derived from �w by swapping the positions of an adjacent
pair of men (mi,mj) and making no other changes. Then,

(1) if mi ∈ Non-Prop(w,�) or mj ∈ Non-Prop(w,�), then
µ′(w) = µ(w).

(2) if mi,mj /∈ {Prop(w,�, 1), Prop(w,�, 2)}, then
µ′(w) = µ(w).

(3) if mi = Prop(w,�, 2) and mj = Prop(w,�, 3), then
µ′(w) ∈ {µ(w),mj}.

(4) if mi = Prop(w,�, 1) and mj = Prop(w,�, 2), then
Prop(w,�′, 2) ∈ {mi,mj}.

In words, case (1) shows that swapping two non-proposers
or a proposer and a non-proposer cannot give a different
matched partner. Case (2) shows the same result for swap-
ping a pair of proposers outside the first and the second best.
Case (3) shows that the matched partner either stays the same
or becomes worse (according to the true preference list) if the
second and third-best proposers are swapped. Finally, case
(4) shows that swapping the first and the second-best pro-
posers can lead to at most one new proposal that is better than
the old partner (according to the true preference list).

Proof. (of Theorem 4) We construct the preference list �′′w
by starting from �′w and performing a sequence of massag-
ing operations on it in order to make it resemble the origi-
nal preference list �w, except for the placement of the man
Prop(w,�′, 2). Each such operation involves swapping a pair
of adjacent men in the current list. By repeatedly invoking
swapping lemma (Lemma 7), we will argue that w continues
to receive a proposal from µ′(w) at each intermediate step,
giving us the desired result. We start by describing the con-
struction of the list �′′w followed by arguing the correctness
of this construction. For notational convenience, we will use
p = Prop(w,�′, 1) and q = Prop(w,�′, 2).

(1) Constructing �′′w: Starting from �′w, we construct a se-
quence of preference lists �(1)

w ,�(2)
w , . . . culminating in

�′′w as follows (refer Figure 1):

(a) Promoting q: The list �(1)
w is obtained from �′w

by promoting q to the position right after p. Since
any men between p and q in the list �′w can only
be non-proposers, it follows from case (1) of swap-
ping lemma (Lemma 7) that the run of the algo-
rithm on the profile �(1) = (�−w,�(1)

w ) is identi-
cal to that on �′. Thus, Prop(w,�(1), 1) = p and
Prop(w,�(1), 2) = q. Notice that any man above p
in the list �(1)

w must be a non-proposer.
(b) Fixing the part of the list above p: Our goal in this

step will be to make the part of the list �(1)
w above

and including p resemble that in the list �w. We
achieve this by replacing the set of non-proposers
above p in �(1)

w with the set of men above p in the
true list �w. It is easy to see that no man in the
latter set can be a proposer to w at any stage, or
else the optimality of the manipulation is violated.
Thus, our task involves shuffling around a set of
non-proposers in the list �(1)

w , which, by case (1) of
swapping lemma (Lemma 7), does not affect the run
of GS algorithm. We call the resulting preference
list �(2)

w .
It is easy to verify that after this step, the new
list �(2)

w resembles the true preference list �w

for all positions above and including p, and that
Prop(w,�(2), 1) = p and Prop(w,�(2), 2) = q,
where �(2) = (�−w,�(2)

w ).
(c) Fixing the part of the list below q: The final

step in our construction involves a sequence
of preference lists {�(3)

w ,�(4)
w , . . . }. The

list �(k+1)
w is derived from �(k)

w by swap-
ping a pair of adjacent men (mi,mj) in �(k)

w

such that (i) Prop(w,�(k), 2)�(k)
w mi and

Prop(w,�(k), 2)�(k)
w mj , and (ii) mi�wmj

and mj �(k)
w mi. In words, each new list in the se-

quence is derived from the previous list by swapping
a pair of adjacent men that are (i) both positioned
below the second-favorite proposer according to
the previous list, and (ii) are incorrectly ordered
with respect to the true preference list �w. No
other changes are made. Notice that this sequence
of preference lists must be finite since there can
only be a finite number of pairs of men that are
incorrectly ordered with respect to the true list.
Let �(`)

w be the final list in this sequence, and let
�(k) = (�−w,�(k)

w ) and µ(k) = GS(�(k)) denote
the preference profile and the corresponding GS
matching at each step. This finishes the construction
of the sequence of preference lists.

(2) Correctness: We will now show that Theorem 4 holds for
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�(k)
w
...

p

q
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mj

mi...

�(k+1)
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p
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q

...

......

. . . . . .

Figure 1: The sequence of preference lists constructed in the proof of Theorem 4. Here, p = Prop(w,�′, 1) = µ′(w) and q = Prop(w,�′, 2).

�′′w = �(`). That is, we will show that:

(a) The list �(`)
w can be obtained from the true list �w

by promoting q to the position right after p while
making no other changes, and

(b) Prop(w,�(`), 1) = µ(`)(w) = p.
Case (a) follows easily from the above construction. In-
deed, the steps (1a) and (1b) ensure that �(`)

w resembles
�w for all positions above and including p, while step
(1c) incrementally corrects for pairs that are out of order
with respect to�w, thus eventually terminating with a list
�(`)

w that is identical to �w except for the positioning of
the man q.
We prove case (b) by induction. The base case con-
sists of showing that µ(3)(w) = p. Indeed, let (mi,mj)

be the pair of adjacent men in �(2)
w that are swapped

in �(3)
w . By construction, we know that mi,mj /∈

{Prop(w,�(2), 1), Prop(w,�(2), 2)}. Therefore, from
cases (1) and (2) of swapping lemma (Lemma 7), we have
that µ(3)(w) = p.
We now proceed to the induction hypothesis. That is, we
now assume that µ(k)(w) = p for all 3 < k ≤ K, and
show that µ(K+1)(w) = p.
As before, let (mi,mj) be the pair of adja-
cent men that are swapped in �(K)

w to ob-
tain �(K+1)

w . By construction, we have that
mi,mj /∈ {Prop(w,�(K), 1), Prop(w,�(K), 2)}.
Therefore, from cases (1) and (2) of swapping lemma
(Lemma 7), we have that µ(K+1)(w) = µ(K)(w).
Finally, using the induction hypothesis, we get that
µ(K+1)(w) = p.

Hence, by induction, we have that µ(`)(w) = p. This finishes
the proof of case (b) and, as a result, of Theorem 4.

5.3 Proof of Lattice Containment (Theorem 5)
Proof. (of Theorem 5) Let us assume, for contradiction, that
there exists a matching φ such that φ ∈ S�′′ \ S�. Then,
there must exist a pair (m,w) that blocks φ with respect to �
(it follows from the argument in the proof of Theorem 3 that
one of the blocking agents must be the manipulator w). Thus,
m�w φ(w) and w�m φ(m).

Consider the set S�′′ . Since φ ∈ S�′′ , it follows from
Theorem 2 that φ(w) �′′w µ′′(w), where µ′′ = GS(�′′).
Moreover, from Theorem 4, we know that µ′(w) = µ′′(w) for
µ′ = GS(�′). Therefore, we also have that φ(w) �′′w µ′(w).

By inconspicuousness of �′′w, we have that φ(w) �w

µ′(w). Combining this with the blocking pair condition
above, we get that m�w φ(w) �w µ′(w). Once again, by
inconspicuousness of �′′w, we have that m�′′w φ(w).

We also know that �m = �′′m by construction. Therefore,
from the blocking pair condition, we have that w�′′m φ(m).
Combining this with the condition m�′′w φ(w), we get that
the pair (m,w) blocks φ with respect to �′′, which contra-
dicts the assumption φ ∈ S�′′ . Therefore, S�′′ ⊆ S�.

6 Concluding Remarks

We studied the problem of manipulation of Gale-Shapley al-
gorithm by a single agent, and identified a class of manipula-
tions called inconspicuous manipulations which are optimal,
stability-preserving, and nearly identical to the manipulator’s
true preference list.

Our work motivates several directions for future work.
First, extensions of the current model to a setting with several
self-interested manipulators (seeking an equilibrium strategy)
will be interesting to study. It will also be interesting to find
out if our techniques—in particular, swapping lemma—can
lead to faster algorithms for optimal manipulation by a sin-
gle agent or a coalition of agents; the current best algo-
rithms for these problems are O(n3) [Teo et al., 2001] and
O(n6) [Deng et al., 2015] respectively. Finally, it would
be of interest to conduct a similar analysis for other stable
matching algorithms, such as ones that compute minimum re-
gret [Knuth, 1997; Gusfield, 1987], egalitarian [Irving et al.,
1987; Teo and Sethuraman, 1998] or median [Teo and Sethu-
raman, 1998] stable matchings.
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