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A 2-player game

Consider a two-player game in which there are 3 buckets (A, B, C) and each bucket contains two
numbers as shown below.

A

−50 50

B

1 3

C

−10 20

Rules of the game are:

1 Player 1 (agent) picks the bucket
2 Player 2 (opponent) picks a number from the “Selected” Bucket
3 Player 1 (agent) utility will be the number picked by player 2
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A 2-player game

Now, let’s construct the game tree

−50 50

A

1 3

B

−10 20

C

Agent 1’s Move

Opponent’s Move
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A 2-player game

Consider the following strategy of the opponent

The opponent is stochastic, i.e., the probability of choosing both left and right numbers in a
bucket are the same (i.e., 1

2 ).

• If A is chosen, expected utility =−50+50
2 = 0.

• If B is chosen, expected utility = 1+3
2 = 2.

• If C is chosen, expected utility = −10+20
2 = 5.

So in this case agent picks bucket C, to maximize it’s utility.
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A 2-player game

Consider another strategy that the opponent can adopt.

The opponent is a min player, i.e., the opponent always chooses the minimum number from the
bucket.

In this case,the agent picks Bucket B, as max{−50, 1,−10} = 1.

-50

A

1

B

-10

C
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2-player zero sum games

Lets start with some of the basic terminologies for 2-player games:

• Players: {Agent, Opponent}
• Starting State: S0

• Actions(s): Possible actions at state 's'
• Player(s): Player who makes the move at state 's'
• Successor(s, a): Resulting state if action a is taken at state 's'
• isEnd(s): Is state an end state/ Flag to identify terminal state
• Utility(s): Agent’s utility at the “end state”

Note:
i) In Actions(s), Player(s), Successor(s, a), 's' is an intermediate state.

ii) Utility(s) is not defined in other (intermediate) states.
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2-player zero sum games

For example in the game of chess

Example: Chess

• Players: {White, Black}
• State: A board position (positions of the chess pieces at a given time), denoted s
• Actions(s): All legal moves possible by Player(s)
• Player(s): Player who makes the move at state 's'
• Successor(s, a): Resulting state if action a is taken at state 's'
• isEnd(s): Whether 's' is a checkmate or a draw
• Utility function is defined as

Utility(s) =


+M if white wins
−M if black wins/white loses
0 if it is a draw
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Games with partial information

Consider the game tree below:

s

succ(s,a)

−50 50

A

1 3

B

−10 20

C

a ∈ {A, B, C}
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Games with partial information

uagent(s) =


utility(s) if isEnd(s)
∑a∈actions(s) Πagent(s)[a] uagent(successor(s, a)) if player(s) = agent

∑a∈actions(s) Πopponent(s)[a] uagent(successor(s, a)) if player(s) = opponent

Note: Πagent(s)[a] and Πopponent(s)[a] are probabilities that the agent and the opponent pick action
‘a’ respectively.
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Subgame

A subgame at ‘S’ is a restriction of the game at the subtree rooted at ’S’ where isEnd(s) is false

n1

n2

3

C

8

D

n3

5

E

n4

2

G

1

H

F

Player 1

Player 2

Player 1

A B
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maxa∈actions(s)u1(successor(s, a))
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u1(s) =
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• Player 2 is the utility minimiser(Min
Player) i.e. plays to minimize his
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Hence if player(s) = player 2, the utility
of Player 1 changes to,
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Subgame

Let us look at the subgame at node n4 :

n4

2

G

1

H

In this subgame, it is Player 1’s turn and he is a max player.

Player 1 (max player) should pick G here so as to get 2 ( > 1, that he would have got by choosing
H).

We are done solving this subgame.



14

Subgame

Let us look at the subgame at node n4 :

n4

2

G

1

H

In this subgame, it is Player 1’s turn and he is a max player.

Player 1 (max player) should pick G here so as to get 2 ( > 1, that he would have got by choosing
H).

We are done solving this subgame.



14

Subgame

Let us look at the subgame at node n4 :

n4

2

G

1

H

In this subgame, it is Player 1’s turn and he is a max player.

Player 1 (max player) should pick G here so as to get 2 ( > 1, that he would have got by choosing
H).

We are done solving this subgame.



14

Subgame

Let us look at the subgame at node n4 :

n4

2

G

1

H

In this subgame, it is Player 1’s turn and he is a max player.

Player 1 (max player) should pick G here so as to get 2 ( > 1, that he would have got by choosing
H).

We are done solving this subgame.



14

Subgame

Let us look at the subgame at node n4 :

n4

2

G

1

H

In this subgame, it is Player 1’s turn and he is a max player.

Player 1 (max player) should pick G here so as to get 2 ( > 1, that he would have got by choosing
H).

We are done solving this subgame.



15

Subgame

Similarly using the result of the subgame at n4, we can solve the subgame at n3, and this
way we move to the upper levels.

Let us take a look at the subgame at n3 :

n3

5

E

2

F

In this subgame, it’s Player 2’s turn and he is a min player.

Therefore, he should pick F so that player 1 gets 2 (from n4, instead of getting 5 by picking E).
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Subgame

Let us look at the subgame at n2 :

n2

3

C

8

D

In this subgame, it’s Player 2’s turn and he is a min player.

Therefore, he should pick C so that player 1 gets 3 (instead of getting 8 by picking D).
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Subgame

Now, let us take a look at the subgame at n1 :

n1

3

A

2

B

In this subgame, it’s Player 1’s turn.

Player 1 (max player) should pick A here to get 3 ( > 2, that he would have got by choosing B).

Therefore, the final utility of the Player 1 = 3
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Subgame perfection

Subgame Perfect Equilibrium is an equilibrium at every subgame/subtree.

The summary of solving the above game is:

• Player 1 will choose H in the subgame at n4

• Player 2 will choose F in the subgame at n3

• player 2 will choose C in the subgame at n2

• player 1 will choose A in the subgame at n1

The algorithm described in the above example is Backward Induction.



18

Subgame perfection

Subgame Perfect Equilibrium is an equilibrium at every subgame/subtree.

The summary of solving the above game is:

• Player 1 will choose H in the subgame at n4

• Player 2 will choose F in the subgame at n3

• player 2 will choose C in the subgame at n2

• player 1 will choose A in the subgame at n1

The algorithm described in the above example is Backward Induction.



18

Subgame perfection

Subgame Perfect Equilibrium is an equilibrium at every subgame/subtree.

The summary of solving the above game is:

• Player 1 will choose H in the subgame at n4

• Player 2 will choose F in the subgame at n3

• player 2 will choose C in the subgame at n2

• player 1 will choose A in the subgame at n1

The algorithm described in the above example is Backward Induction.



18

Subgame perfection

Subgame Perfect Equilibrium is an equilibrium at every subgame/subtree.

The summary of solving the above game is:

• Player 1 will choose H in the subgame at n4

• Player 2 will choose F in the subgame at n3

• player 2 will choose C in the subgame at n2

• player 1 will choose A in the subgame at n1

The algorithm described in the above example is Backward Induction.



18

Subgame perfection

Subgame Perfect Equilibrium is an equilibrium at every subgame/subtree.

The summary of solving the above game is:

• Player 1 will choose H in the subgame at n4

• Player 2 will choose F in the subgame at n3

• player 2 will choose C in the subgame at n2

• player 1 will choose A in the subgame at n1

The algorithm described in the above example is Backward Induction.



18

Subgame perfection

Subgame Perfect Equilibrium is an equilibrium at every subgame/subtree.

The summary of solving the above game is:

• Player 1 will choose H in the subgame at n4

• Player 2 will choose F in the subgame at n3

• player 2 will choose C in the subgame at n2

• player 1 will choose A in the subgame at n1

The algorithm described in the above example is Backward Induction.



18

Subgame perfection

Subgame Perfect Equilibrium is an equilibrium at every subgame/subtree.

The summary of solving the above game is:

• Player 1 will choose H in the subgame at n4

• Player 2 will choose F in the subgame at n3

• player 2 will choose C in the subgame at n2

• player 1 will choose A in the subgame at n1

The algorithm described in the above example is Backward Induction.



18

Subgame perfection

Subgame Perfect Equilibrium is an equilibrium at every subgame/subtree.

The summary of solving the above game is:

• Player 1 will choose H in the subgame at n4

• Player 2 will choose F in the subgame at n3

• player 2 will choose C in the subgame at n2

• player 1 will choose A in the subgame at n1

The algorithm described in the above example is Backward Induction.



19

Feasibility of backward induction

We can apply Backward induction on small games like Tic-tac-toe.

But can we apply it to Chess, Go, Checkers, etc.?

We can, but the game tree is huge.

• Checkers game tree ∼ 1020 nodes
• Chess game tree ∼ 1040 nodes
• Go game tree ∼ 10170 nodes

Checkers was solved in 2007 after 18 years of computation and the optimal solution was a draw.
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Recall: 2-player zero sum game
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Depth Limited Search

• Depth-limited search algorithm explores as far as possible along each branch before
backtracking.

• A depth limit is imposed and when the algorithm reaches the specified depth limit, it stops
exploring that branch further and backtracks to explore other branches

• This prevents the algorithms from getting stuck in deep paths and allows it to handle very
deep trees effectively, reducing the computational time.

The utility of the agent at node s and depth d can be written as

uagent(s, d) =



utility(s) if isEnd(s)
eval(s) if d = 0

max
a∈actions(s)

{uagent(succ(s, a), d − 1)} if player(s) = agent

min
a∈actions(s)

{uagent(succ(s, a), d − 1)} if player(s) = opponent
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Depth Limited Search

Where eval(s) is a domain specific function denoting the possible utility to the agent.

For example in the game of chess, it can be written as

eval(s) = army + mobility + king′s safety + . . . (1)

The contribution of army towards the utility can be represented by the following equation

army = 10100(K − K′) + q(Q − Q′) + r(R − R′) + . . . (2)

Here K, Q, R and K′, Q′, R′ are the number of king, queen and rooks that the agent and the
opponent respectively have.

The constants can be appropriately chosen according to the value of the pieces in the game.
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Pruning

Another method is the α, β pruning method. It aims to reduce the number of nodes evaluated by
eliminating irrelevant branches.

• We initialise α with -∞ and β with +∞ in all action nodes.
• we mark subtrees to be pruned based on the values of α and β. If α ⩾ β at a node, we can

prune the subtree rooted at that node as it won’t affect the final decision.

• — For ‘Max’ nodes: α = max(α, value)
— For ‘Min’ nodes: β = min(β, value)
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An example of α, β pruning

Considering the given binary tree, these are the following steps :-

1 Start with the subtree rooted at D. After transfering values from its two leaves, α=5, β=∞.

A

B

D(5)

3 5

E

6 9

C

F

1 2

G

0 -1



25

An example of α, β pruning

1 Transfering the value of D to B, α=-∞, β=5.
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An example of α, β pruning

1 Transfering the value of B to E, α=-∞, β=5.
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An example of α, β pruning

1 Taking the value from first child of E, α=6. So, α > β, hence the rest branch of E is ignored.

A

B(5)

D(5)

3 5

E(6)

6 9

C

F

1 2

G

0 -1



25

An example of α, β pruning

1 After transfering values from B to A, α=5, β=∞.

A(5)
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3 5
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An example of α, β pruning

1 Start with the subtree rooted at F. After transfering values from its two leaves, α=2, β=∞.

A(5)

B(5)

D(5)

3 5

E(6)

6 9

C

F(2)

1 2

G
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An example of α, β pruning

1 After transfering values from A and F to C, α=5, β=2. So, α > β. Hence, G subtree is ignored.

A(5)

B(5)

D(5)

3 5

E(6)

6 9

C(2)

F(2)

1 2

G

0 -1

Likewise, the whole game can be solved in a computionally less expensive way by pruning.
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Simultaneous move games

Consider football where the shooter makes a decision on whether to aim towards the left, right,
or center of the goal. At the same time the goalkeeper must decide whether to block the left, right
or center of the goal

−1 1 1

1 −1 1

1 1 −1

L

C

R

L C R

Football

Sh
oo

te
r

This is an example of a 2-player zero sum simultaneous move game and is called a Matrix
Game.
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Equilibrium

Definition

Equilibrium : A tuple of actions from which no player gains (a strict gain) by a unilateral
deviation. A unilateral deviation from a tuple of actions (a1, a2, . . . , an) is a tuple of actions of the
form (b1, b2, . . . , bn) where ai = bi , ∀i ̸= j for some j ie, the actions of exactly one player j differs
from the previous set.

Observe that for the game described above, no such equilibrium exists. This can be shown by
analysing all possible pairs of actions.

1 (L,L) : Player 1 gains additonal utility by (C, L) or (R, L). Similarly for (C, C) and (R, R),
player 1 stands to gain by unilaterally deviating.

2 (L,R) : Player 2 gains additonal utility by (L, L). Similarly for any tuple (A, B), where A ̸= B,
if player 2 deviates and chooses the action A, there is a utility gain.

Therefore there exists no such equilibrium for the game.
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Equilibrium

Consider a modification of the above game where the shooter can score by aiming to the left
regardless of whether the goal keeper defends the left side or not.

1 1 1

1 −1 1

1 1 −1
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L C R
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oo
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r

In this case , (L, L) is a simultaneous move equilibrium for game 2 because, the agent (player 1)
will not gain any extra utility from (C, L) or (R, L) and similarly the opponent (player 2) will not
gain any extra utility from (L, C) or (L, R).
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Max-min criteria for equilibrium

The agent is a max player and the opponent is a min player.

The agent tries to maximise his utility at each step and the opponent tries to minimise the agent’s
utility thereby maximising his own utility. :

1 For every row of the matrix calculate the minimum utility possible. The value corresponding
to row i denotes the least utility for the agent upon performing move i. Maximize over these
values. This quantity is denoted as max

s1
min

s2
u(s1, s2).

2 Similarly, for every column of the matrix calculate the maximum utility possible. The values
corresponding to column j denotes the most utility the agent can obtain if the opponent
performs move j. Minimize over these values. This quantity is denoted as min

s2
max

s1
u(s1, s2).



30

Max-min criteria for equilibrium

The agent is a max player and the opponent is a min player.

The agent tries to maximise his utility at each step and the opponent tries to minimise the agent’s
utility thereby maximising his own utility. :

1 For every row of the matrix calculate the minimum utility possible. The value corresponding
to row i denotes the least utility for the agent upon performing move i. Maximize over these
values. This quantity is denoted as max

s1
min

s2
u(s1, s2).

2 Similarly, for every column of the matrix calculate the maximum utility possible. The values
corresponding to column j denotes the most utility the agent can obtain if the opponent
performs move j. Minimize over these values. This quantity is denoted as min

s2
max

s1
u(s1, s2).



30

Max-min criteria for equilibrium

The agent is a max player and the opponent is a min player.

The agent tries to maximise his utility at each step and the opponent tries to minimise the agent’s
utility thereby maximising his own utility. :

1 For every row of the matrix calculate the minimum utility possible. The value corresponding
to row i denotes the least utility for the agent upon performing move i. Maximize over these
values. This quantity is denoted as max

s1
min

s2
u(s1, s2).

2 Similarly, for every column of the matrix calculate the maximum utility possible. The values
corresponding to column j denotes the most utility the agent can obtain if the opponent
performs move j. Minimize over these values. This quantity is denoted as min

s2
max

s1
u(s1, s2).
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Max-min criteria for equilibrium

Lemma

max
s1

min
s2

u(s1, s2) ⩽ min
s2

max
s1

u(s1, s2).

If for some game, these two quantities equal each other, we have an equilibrium and the
equilibrium point is called the saddle point.
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Max-min criteria for equilibrium

Proof.

For any (s1, s2),

u(s1, s2) ⩽ max
s1

u(s1, s2) and

min
s2

u(s1, s2) ⩽ u(s1, s2)

⇒ min
s2

u(s1, s2) ⩽ max
s1

u(s1, s2)

Since the previous inequality is true ∀s1, it is also true for s∗1 which maximises min
s2

u(s1, s2).

Therefore we have,

min
s2

u(s∗1 , s2) ⩽ max
s1

u(s1, s2)

⇒ max
s1

min
s2

u(s1, s2) ⩽ max
s1

u(s1, s2)
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Max-min criteria for equilibrium

Proof.

Similarly, since the previous inequality is true ∀s2, it is also true for s∗2 which minimises
max

s1
u(s1, s2). Therefore we have,

max
s1

min
s2

u(s1, s2) ⩽ max
s1

u(s1, s∗2)

⇒ max
s1

min
s2

u(s1, s2) ⩽ min
s2

max
s1

u(s1, s2)

And we are done with the proof.
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