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Abstract

Participatory budgeting enables the allocation of public funds
by collecting and aggregating individual preferences; it has
already had a sizable real-world impact. But making the most
of this new paradigm requires a rethinking of some of the ba-
sics of computational social choice, including the very way
in which individuals express their preferences. We analyti-
cally compare four preference elicitation methods — knap-
sack votes, rankings by value or value for money, and thresh-
old approval votes — through the lens of implicit utilitarian
voting, and find that threshold approval votes are qualitatively
superior. This conclusion is supported by experiments using
data from real participatory budgeting elections.

1 Introduction

One of the most well-studied problems in computational
social choice (Brandt et al. 2016) deals with aggregat-
ing individual preferences over alternatives — expressed as
rankings — into a collective choice of a subset of alter-
natives (Procaccia, Reddi, and Shah 2012; Skowron, Fal-
iszewski, and Lang 2015; Caragiannis et al. 2016). Nascent
social choice applications, though, have given rise to the
harder, richer problem of budgeted social choice (Lu and
Boutilier 2011), where alternatives have associated costs,
and the selected subset is subject to a budget constraint.

Our interest in budgeted social choice stems from the
striking real-world impact of the participatory budgeting
paradigm (Cabannes 2004), which allows local governments
to allocate public funds by eliciting and aggregating the pref-
erences of residents over potential projects. Indeed, in just a
few years, the Participatory Budgeting Project1 has helped
allocate more than $170 million dollars of public money
for more than 500 local projects, primarily in the US and
Canada (including New York City, Chicago, Boston, and
San Francisco).

In pioneering work, Goel et al. (2016) — who have facil-
itated a number of participatory budgeting elections as part
of the Stanford Crowdsourced Democracy Team2 — pro-
pose and evaluate two participatory budgeting approaches.
In the first approach, the input format — the way in which

1http://www.participatorybudgeting.org
2http://voxpopuli.stanford.edu

each voter’s preferences are elicited — is knapsack votes:
Each voter reports his individual solution to the knapsack
problem, that is, the set of projects that maximizes his over-
all value (assuming an additive valuation function), subject
to the budget constraint. The second component of the ap-
proach is the aggregation rule; in this case, each voter is
seen as approving all the projects in his knapsack, and then
projects are ordered by the number of approval votes and
greedily selected for execution, until the budget runs out.
The second approach uses value-for-money comparisons as
the input format — it asks voters to compare pairs of projects
by the ratio between value and cost. These comparisons are
aggregated using variants of classic voting rules, including
the Borda count rule and the Kemeny rule.

In a sense, Goel et al. (2016) take a bottom-up approach:
They define novel, intuitive input formats that encourage
voters to take cost — not just value — into account, and
justify them after the fact. By contrast, we wish to take a top-
down approach, by specifying an overarching optimization
goal, and using it to compare different methods for partici-
patory budgeting.

1.1 Our Approach and Results

Let us define the participatory budgeting problem a bit more
formally, following Goel et al. (2016). A set N of n voters
are voting over a set A of m alternatives (projects), where
each alternative a has cost ca. The utility voter i has for al-
ternative a is denoted vi(a). Moreover, utility functions are
additive, that is, the utility of a voter for a set of alterna-
tives A′ ⊆ A is

∑
a∈A′ vi(a). Our goal is to choose a set

W ⊆ A of winning alternatives that maximizes the (utili-
tarian) social welfare, subject to the total cost not exceeding
the budget B:

arg max
W⊆A :

∑
a∈W ca6B

∑
i∈N

∑
a∈W

vi(a). (1)

We make essentially3 no assumptions about the utility
functions. Nevertheless, solving (1) would be easy if we
had access to the utility functions; the problem is challeng-
ing precisely because we do not. Rather, we have access to

3Other than a standard normalization assumption that we dis-
cuss later.



votes, in a certain input format, that are consistent with the
utility functions. This goal — maximizing social welfare
based on votes that serve as proxies for latent utility func-
tions — has been studied for more than a decade (Procac-
cia and Rosenschein 2006; Caragiannis and Procaccia 2011;
Boutilier et al. 2015; Anshelevich, Bhardwaj, and Postl
2015; Anshelevich and Sekar 2016; Anshelevich and Postl
2016); it has recently been termed implicit utilitarian vot-
ing (Caragiannis et al. 2016).

Absent complete information about the utility functions,
clearly social welfare cannot be perfectly maximized. Pro-
caccia and Rosenschein (2006) introduced the notion of dis-
tortion to quantify how far a given aggregation rule is from
achieving this goal. Roughly speaking, given a vote profile
(a set of n votes) and an outcome, the distortion is the worst-
case ratio between the social welfare of the optimal out-
come, and the social welfare of the given outcome, where
the worst case is taken with respect to all utility profiles that
are consistent with the given votes.

Previous work on implicit utilitarian voting assumes that
each voter expresses his preferences by ranking the alter-
natives in order of decreasing utility. By contrast, the main
insight underlying our work is that

... the implicit utilitarian voting framework allows us
to decouple the input format and aggregation rule,
thereby enabling an analytical comparison of different
input formats in terms of their potential for providing
good solutions to the participatory budgeting problem.

This decoupling is achieved by associating each input format
with the distortion of the optimal (randomized) aggregation
rule, that is, the rule that minimizes distortion on every vote
profile. Intuitively, the distortion thus associated with an in-
put format measures how useful the information contained
in the votes is for achieving the stated goal of social welfare
maximization.

In §3, we apply the foregoing approach to analytically
compare four input formats. The first is knapsack votes,
which (disappointingly) is associated with trivial distortion
of Θ(m).4 Next, we analyze two closely related input for-
mats: rankings by value, and rankings by value for money,
which ask voters to rank the alternatives by their value and
by the ratio of their value and cost, respectively. We find that
both admit an upper bound of O(

√
m · logm) on distortion,

which almost matches a lower bound of Ω(
√
m). Finally, we

examine a novel input format, which we call threshold ap-
proval votes: each voter is asked to approve each alternative
whose value for him is above a threshold that we choose. We
find that its associated distortion isO(log2m), and establish
a lower bound of Ω (logm/ log logm). To summarize, our
theoretical results show striking separations between differ-
ent input formats, with threshold approval votes coming out
well on top.

While our theoretical results in §3 bound the distortion,
i.e., the worst-case ratio of the optimal social welfare to

4As we later show, an upper bound of O(m) can be achieved
trivially irrespective of the input format, by selecting a single alter-
native uniformly at random. Knapsack votes, unfortunately, do not
help improve it.

the social welfare achieved, in §4 we compare different ap-
proaches to participatory budgeting using the average-case
ratio of the two. Specifically, we experimentally evaluate ap-
proaches that use the input formats we study in conjunction
with their respective optimal aggregation rules, which min-
imize the distortion on each profile,5 and compare them to
two approaches currently employed in practice. We use data
from two real-world participatory budgeting elections held
in Boston in 2015 and 2016. The experiments indicate that
the use of aggregation rules that minimize distortion on ev-
ery input profile significantly outperforms the currently de-
ployed approaches, and among the input formats we study,
threshold approval votes remain superior, even in practice.

1.2 Related Work

Due to space constraints, we only discuss a few closely
related papers. Let us first describe the theoretical results
of Goel et al. (2016) in slightly greater detail. Most rel-
evant to our work is a theorem that asserts that knap-
sack voting (i.e., knapsack votes as the input format, cou-
pled with greedy approval-based aggregation) actually max-
imizes social welfare. However, the result strongly relies
on their overlap utility model, where the utility of a voter
for a subset of alternatives is (roughly speaking) the size
of the intersection between this subset and his own knap-
sack vote. In a sense, the viewpoint underlying this model
is the opposite of ours, as a voter’s utility is derived from
his vote, instead of the other way around. One criticism
of this model is that even if certain alternatives do not
fit into a voter’s individual knapsack solution due to the
budget constraint, the voter could (and usually will) have
some utility for them. Goel et al. (2016) also provide strat-
egyproofness results for knapsack voting, which similarly
rely on the overlap utility model. Finally, they interpret their
methods as maximum likelihood estimators (Young 1988;
Conitzer and Sandholm 2005) under certain noise models.

Naturally, our work is also closely related to previous
work on implicit utilitarian voting. Crucially, as noted above,
this line of work focuses exclusively on the rankings-by-
value input format. Boutilier et al. (2015) study the problem
of selecting a single winning alternative, and provide an up-
per bound of O(

√
m log∗m) and a lower bound of Ω(

√
m)

on the distortion achieved by the optimal aggregation rule.
Their setting is a special case of the participatory budgeting
problem where the cost of each alternative equals the en-
tire budget. Consequently, their lower bound applies to our
more general setting, and our upper bound for the rankings-
by-value input format generalizes theirs (up to a logarith-
mic factor). Caragiannis et al. (2016) extend the results of
Boutilier et al. (2015) to the case where a subset of alterna-
tives of a given size k is to be selected (only for the rankings-
by-value input format); this is again a special case of the

5Note that such rules are not guaranteed to achieve the optimal
performance in our experiments as we measure performance using
the average-case ratio of the optimal to the achieved social wel-
fare rather than the (worst-case) distortion. Nonetheless, such rules
perform extremely well.



participatory budgeting problem where the cost of each al-
ternative is B/k. However, our results are incomparable to
theirs because we assume additive utility functions — fol-
lowing previous work on participatory budgeting (Goel et
al. 2016) — whereas Caragiannis et al. assume that a voter’s
utility for a subset of alternatives is his maximum utility for
any alternative in the subset.

2 The Model

Let [k] , {1, . . . , k}. Let N = [n] be the set of voters, and
A be the set of m alternatives. The cost of alternative a is
denoted ca, and the budgetB is normalized to 1. For S ⊆ A,
let c(S) =

∑
a∈S ca. Define Fc = {S ⊆ A : c(S) 6

1 ∧ c(T ) > 1, ∀S ( T ⊆ A} as the inclusion-maximal
budget-feasible subsets of A.

We assume that each voter has a utility function vi :
A → R+ ∪ {0}, where vi(a) is the utility that voter i
has for alternative a, and that these utilities are additive,
i.e., the utility of voter i for a set S ⊆ A is defined as
vi(S) =

∑
a∈S vi(a). Finally, to ensure fairness among vot-

ers, we make the standard assumption (Caragiannis and Pro-
caccia 2011; Boutilier et al. 2015) that vi(A) = 1 for all
voters i ∈ N . We call the vector ~v = {v1, . . . , vn} of voter
utility functions the utility profile. Given the utility profile,
the (utilitarian) social welfare of an alternative a ∈ A is
defined as sw(a,~v) =

∑
i∈N vi(a); for a set S ⊆ A, let

sw(S,~v) =
∑
a∈S sw(a,~v).

The utility function of a voter i is only accessible through
his vote ρi, which is induced by vi. The vector ~ρ =
{ρ1, . . . , ρn} is called the input profile. Let ~v B ~ρ denote
that utility profile ~v is consistent with input profile ~ρ. We
study four specific formats for input votes:

• The knapsack vote κi ⊆ A of voter i ∈ N represents a
feasible subset of alternatives with the highest value for
the voter. We have vi B κi if and only if c(κi) 6 1 and
vi(κi) > vi(S) for all S ∈ Fc.

• The rankings-by-value and the rankings-by-value-for-
money input formats ask voter i ∈ N to rank the alter-
natives by decreasing value for him, and by decreasing
ratio of value for him to cost, respectively.
Formally, let L = L(A) denote the set of rankings over
the alternatives. For a ranking σ ∈ L, let σ(a) denote the
position of alternative a in σ, and a �σ b denote σ(a) <
σ(b), i.e., that a is preferred to b under σ.
Then, we say that utility function vi is consistent with the
ranking by value (resp. value for money) of voter i ∈ N ,
denoted σi, if and only if vi(a) > vi(b) (resp. vi(a)/ca >
vi(b)/cb) for all a �σi b.

• For a threshold t, the threshold approval vote τi of voter
i ∈ N consists of the set of alternatives whose value for
him is at least t, i.e., vi B τi if and only if τi = {a ∈ A :
vi(a) > t}.

In our setting, a (randomized) aggregation rule f for an
input format maps each input profile ~ρ in that format to a

distribution over Fc. The rule is deterministic if it returns a
particular set in Fc with probability 1.

In the implicit utilitarianism framework, the ultimate goal
is to maximize the (utilitarian) social welfare. Procaccia and
Rosenschein (2006) use the notion of distortion to quantify
how far an aggregation rule f is from achieving this goal.
The distortion of f on a vote profile ~ρ is given by

dist(f, ~ρ) = sup
~v:~vB~ρ

maxT∈Fc sw(T,~v)

ES∼f(~ρ)[sw(S,~v)]
.

The (overall) distortion of a rule f is given by dist(f) =
max~ρ dist(f, ~ρ). The optimal aggregation rule f∗, which we
term the distortion-minimizing aggregation rule, selects the
distribution minimizing distortion on each input profile in-
dividually, that is,

f∗(~ρ) = arg min
µ∈∆(Fc)

sup
~v:~vB~ρ

maxT∈Fc sw(T,~v)

ES∼µ[sw(S,~v)]
,

where ∆(Fc) is the set of distributions over Fc. Needless to
say, f∗ achieves the best possible overall distortion.

Finally, we say that the distortion associated with an input
format (i.e., elicitation method) is the overall distortion of
the (randomized) distortion-minimizing aggregation rule for
that format; this, in a sense, quantifies the effectiveness of
the input format in achieving social welfare maximization.6

3 Theoretical Results

Before we present our analysis of the different input formats
from the perspective of implicit utilitarianism, let us make a
simple observation that holds across all input formats.

Observation 3.1. The distortion associated with any input
format is at most m.

Proof. Consider the rule that selects a single alternative uni-
formly at random; this is clearly budget-feasible. Due to
the normalization of utility functions, the expected welfare
achieved by this rule is (1/m) ·

∑
i∈N

∑
a∈A vi(a) = n/m.

On the other hand, the maximum welfare that any subset of
alternatives can achieve is at most n. Hence, the distortion of
this rule, which does not require any input, is at mostm.

3.1 Knapsack Votes

We now present our analysis for knapsack votes — an input
format advocated by Goel et al. (2016).

Theorem 3.2. The distortion associated with knapsack
votes is Ω(m).

Proof. Consider the case where every alternative has cost 1
(i.e., equal to the budget). For ease of exposition, assume that
m divides n. Consider the input profile ~κ, in which voters

6In a setting where deterministic rules must be used, one could
similarly associate each input format with its best deterministic
rule. This setting is not as well motivated, and its analysis is tech-
nically less interesting, so it has been relegated to the appendix.



are partitioned into m subsets {Na}a∈A of equal size, and
for every a ∈ A and i ∈ Na, we have κi = {a}.

Consider a randomized aggregation rule f . There must
exist an alternative a∗ ∈ A such that Pr[f(~κ) = {a∗}] 6
1/m. Now, construct a utility profile ~v such that i) for all
i ∈ Na∗ , we have vi(a∗) = 1, and vi(a) = 0 for a ∈
A \ {a∗}; and ii) for all a ∈ A \ {a∗} and i ∈ Na, we have
vi(a) = vi(a

∗) = 1/2, and vi(b) = 0 for b ∈ A \ {a, a∗}.
Note that ~v is consistent with the input profile ~κ, i.e.,

~v B ~κ. Moreover, it holds that sw(a∗, ~v) > n/2, whereas
sw(a,~v) 6 n/m for a ∈ A \ {a∗}. It follows that

dist(f) > dist(f,~κ) >
n/2

1
m · n+ m−1

m · nm
>
m

4
,

as desired.

In light of Observation 3.1, this result indicates that the
distortion associated with knapsack votes is asymptotically
indistinguishable from the distortion one can achieve with
absolutely no information about voter preferences, suggest-
ing that knapsack votes may not be an appropriate input for-
mat if the goal is to maximize social welfare. Our aim now is
to find input formats that achieve better results when viewed
through the implicit utilitarianism lens.

3.2 Rankings by Value and by Value for Money
Goel et al. (2016) also advocate the use of comparisons be-
tween alternatives based on value for money, which, like
knapsack votes, encourage voters to consider the trade-off
between value and cost. We study rankings by value for
money as an input format; observe that such rankings convey
more information than specific pairwise comparisons.

In addition, we also study rankings by value, which are
prevalent in the existing literature on implicit utilitarian vot-
ing (Procaccia and Rosenschein 2006; Caragiannis and Pro-
caccia 2011; Boutilier et al. 2015; Anshelevich, Bhardwaj,
and Postl 2015; Anshelevich and Sekar 2016; Anshelevich
and Postl 2016). Rankings by value convey more informa-
tion than k-approval votes, in which each voter submits the
set of top k alternatives by their value — this is the input
format of choice for most real-world participatory budget-
ing elections (Goel et al. 2016).

As noted in §1.2, Boutilier et al. (2015) prove a lower
bound of Ω(

√
m) on distortion in the special case of our set-

ting where all alternatives have cost 1, and the input format is
rankings by value. This result carries over to our more gen-
eral setting, not only with rankings by value, but also with
rankings by value for money, as both input formats coincide
in case of equal costs. Our goal is to establish an almost
matching upper bound.

We start from a mechanism of Boutilier et al. (2015) that
has distortionO(

√
m logm) in their setting. It carefully bal-

ances between high-value and low-value alternatives (where
value is approximately inferred from the positions of the al-
ternatives in the input rankings). In our more general par-
ticipatory budgeting problem, it is crucial to also take into
account the costs, and find the perfect balance between se-
lecting many low-cost alternatives and fewer high-cost ones.

We modify the mechanism of Boutilier et al. precisely to
achieve this goal. Specifically, we partition the alternatives
into O(logm) buckets based on their costs, and differen-
tiate between alternatives within a bucket based on their
(inferred) value. Our mechanism for rankings by value for
money requires more careful treatment as (ironically) values
are obfuscated in value-for-money comparisons.

At first glance our setting seems much more difficult,
distortion-wise, than the simple setting of Boutilier et
al. (2015). But ultimately we obtain only a slightly weaker
upper bound on the distortion associated with both rank-
ings by value and by value for money. In other words, to
our surprise, incorporating costs and a budget constraint
comes at almost no cost (no pun intended) to social wel-
fare maximization. The proof of this result is deferred to
Appendix A.1.

Theorem 3.3. The distortion associated with rankings by
value and rankings by value for money is O(

√
m logm).

3.3 Threshold Approval Votes

Approval voting — where voters can choose to approve any
subset of alternatives, and the most widely approved alterna-
tive wins — is well studied in social choice theory (Brams
and Fishburn 2007). In our utilitarian setting we reinterpret
this input format as threshold approval votes, where the prin-
cipal sets a threshold t, and each voter i ∈ N approves every
alternative a for which vi(a) > t.

We first investigate deterministic threshold approval
votes, in which the threshold selected deterministically, but
find that it does not help us (significantly) improve over the
distortion we can already obtain using rankings by value or
by value for money. Specifically, for a fixed threshold, we
are always able to construct cases in which alternatives have
significantly different welfares, but either no alternative is
approved or an extremely large set of alternatives are ap-
proved, providing the rule little information to distinguish
between the alternatives, and yielding high distortion. The
formal proof of this result appears in Appendix A.2.

Theorem 3.4. The distortion associated with deterministic
threshold approval votes is Ω(

√
m).

We thus turn our attention to randomized threshold ap-
proval votes, in which the threshold is selected in a random-
ized fashion.7 We find that this flexibility allows us to dra-
matically reduce the distortion.

Theorem 3.5. The distortion associated with randomized
threshold approval votes is O(log2m).

Proof. For ease of exposition, assume m is a power of
2. Let I0 = [0, 1/m2] and Ij = (2j−1/m2, 2j/m2] for
j = 1, . . . , 2 logm. Let `j , uj denote the lower and upper
boundaries of the interval Ij .

7Technically, this is a distribution over input formats, one for
each value of the threshold. While threshold selection can be deter-
ministic or randomized, as it is part of the input format, we always
allow randomized aggregation rules. Appendix B explores the case
where the aggregation rule has to be deterministic.



Let ~v denote a utility profile that is consistent with the
input profile. For a ∈ A and j ∈ {0, . . . , 2 logm}, define
naj = |{i ∈ N : vi(a) ∈ Ij}| to be the number of voters
whose utility for a falls in the interval Ij . We now bound the
social welfare of a in terms of the numbers naj . Specifically,

sw(a,~v) =
∑
i∈N

vi(a) 6
2 logm∑
j=0

∑
i∈N

I{vi(a) ∈ Ij} · uj

=

2 logm∑
j=0

naj · uj ,

A similar argument also yields a lower bound, and after sub-
stituting `0 = 0, u0 = 1/m2, and na0 6 n, we get

2 logm∑
j=1

naj · `j 6 sw(a,~v) 6
n

m2
+

2 logm∑
j=1

naj · uj . (2)

Next, divide the alternatives into 1+2 logm buckets based
on their costs, with bucket Sj = {a ∈ A : ca ∈ Ij}. Note
that selecting at most 1/uj alternatives from Sj is guaran-
teed to satisfy the budget constraint.

Let S∗ = arg maxS∈Fc sw(S,~v) be the feasible set
of alternatives maximizing the social welfare. For j, k ∈
{0, . . . , 2 logm}, let n∗j,k =

∑
a∈S∗∩Sk n

a
j . Using Equa-

tion (2), we have
2 logm∑
j=1

n∗j,k · `j 6 sw(S∗ ∩ Sk, ~v)

6 |S∗ ∩ Sk| ·
n

m2
+

2 logm∑
j=1

n∗j,k · uj . (3)

We now construct three different mechanisms; our final
mechanism will randomize between them.
Mechanism A: Pick a pair (j, k) uniformly at random from
the set T = {(j, k) : j, k ∈ [2 logm]}. Then, set the thresh-
old to `j , and using the resulting input profile, greedily select
the 1/uk alternatives from Sk with the largest number of ap-
proval votes (or select Sk if |Sk| 6 1/uk). Let Bj,k denote
the set of selected alternatives for the pair (j, k). Because we
have j > 0 and k > 0,

sw(Bj,k, ~v) >
∑

a∈Bj,k

2 logm∑
p=j

nap

 · `j
>

1

4
·

2 logm∑
p=j

n∗p,k

 · uj > 1

4
· n∗j,k · uj , (4)

where, in the first transition, we bound the welfare from be-
low by only considering utilities that are at least `j , and the
second transition holds because uj = 2`j , |S∗ ∩ Sk| 6
2|Bj,k|, and Bj,k consists of greedily-selected alternatives
with the highest number of approval votes. Thus, the ex-
pected social welfare achieved by mechanism A is

1

(2 logm)2

2 logm∑
j=1

2 logm∑
k=1

sw(Bj,k, ~v)

>
1

4 · (2 logm)2

2 logm∑
j=1

2 logm∑
k=1

n∗j,k · uj

>
1

16 log2m

(
sw(S∗ \ S0, ~v)− |S∗ \ S0| ·

n

m2

)
>

1

16 log2m

(
sw(S∗ \ S0, ~v)− n

m

)
,

where the first transition follows from Equation (4), and the
second transition follows from Equation (3).
Mechanism B: Select all the alternatives in S0. Because
each alternative in S0 has cost at most 1/m2, this is clearly
budget-feasible. Further, the social welfare achieved by this
mechanism is sw(S0, ~v) > sw(S∗ ∩ S0, ~v).
Mechanism C: Select a single alternative uniformly at ran-
dom from A. This is also budget-feasible, and due to nor-
malization of values, its expected social welfare is n/m.

Our final mechanism executes mechanism A with prob-
ability 16 log2m/(2 + 16 log2m), and mechanisms B and
C with probability 1/(2 + 16 log2m) each. It is easy to see
that its expected social welfare is at least sw(S∗, ~v)/(2 +
16 log2m). Hence, its distortion is O(log2m).

We also show that at least logarithmic distortion is in-
evitable even when using randomized threshold approval
votes. The proof of this result appears in Appendix A.2.

Theorem 3.6. The distortion associated with randomized
threshold approval votes is Ω(logm/ log logm).

4 Empirical Results

Our theoretical results in §3 characterize how well we can
optimize distortion on an observed input profile. Recall that
distortion is the worst-case ratio of the optimal social wel-
fare to the social welfare achieved, where the worst case is
taken over all utility profiles consistent with the observed in-
put profile. In practice, however, we care about this ratio ac-
cording to the actual underlying utility profile. In particular,
a distortion-minimizing aggregation rule is not guaranteed
to be optimal in practice. This is why an empirical study is
called for.

In this section, we compare the performance of differ-
ent approaches to participatory budgeting, where the perfor-
mance is measured by the average-case ratio of the opti-
mal and achieved social welfare, and the average is taken
over utility profiles drawn to be consistent with input pro-
files from two real-world participatory budgeting elections.
Datasets: We use data from participatory budgeting elec-
tions held in 2015 and 2016 in Boston, Massachusetts. Both
elections offered voters 10 alternatives. The 2015 dataset
contains 2600 4-approval votes (voters were asked to ap-
prove their 4 most preferred alternatives) and the 2016
dataset contains 4430 knapsack votes. These datasets were
generously provided by Ashish Goel and Anilesh Krish-
naswamy of the Stanford Crowdsourced Democracy Team,
who administered these elections.



For each dataset, we conduct 3 independent trials. In each
trial, we create r sub-profiles, each consisting of n voters
drawn at random from the population. For each sub-profile,
we draw k random utility profiles ~v consistent with the sub-
profile, and use these to analyze the performance of different
approaches. We use the real costs of the projects throughout.
The choices of parameters (r, n, k) for the three trials are
(5, 10, 10), (8, 7, 10), and (10, 5, 10). We choose this exper-
imental design to yield sufficiently many samples to verify
statistical significance of the results while completing in a
reasonable amount of time.

Approaches: We use the utility profile ~v drawn to create an
input profile in four input formats we study. For each format,
we use the deterministic as well as randomized distortion-
minimizing aggregation rule. The non-trivial algorithms we
devise for these rules are presented in Appendix C. These
eight approaches are referred to using the type of aggrega-
tion rule used (“Det” or “Ran”), and the type of input format
(“Knap”, “Val”, “VFM”, or “Th Ap”).

It is important to note that, unlike the other input formats,
threshold approval votes are technically a family of input
formats, one for each value of the threshold. While random-
izing over the threshold is required to minimize the distor-
tion (the worst-case ratio of the optimal and achieved social
welfare), as is our goal in the theoretical results of §3, min-
imizing the expected ratio of the two can be achieved by a
deterministic threshold. Thus, in our experiments, we learn
the optimal threshold value based on a holdout set that is not
subsequently used. This approach is practical as it only uses
historical data on observed input profiles rather than under-
lying actual utility profiles to learn the threshold. In other
words, we acknowledge that this choice gives threshold ap-
proval votes an edge — but arguably it is an advantage this
input format would also enjoy in practice.

In addition to our eight approaches, we also test two ap-
proaches used in real-world elections (Goel et al. 2016):
greedy 4-approval (“Gr 4-Ap”), and greedy knapsack (“Gr
Knap”). The former elicits 4-approval votes, and greedily se-
lects the most widely-approved alternatives until the budget
is depleted. The latter is almost identical, except for inter-
preting a knapsack vote as an approval for each alternative
in the knapsack.

As the performance measure for the ten approaches, we
use the average ratio of the optimal and the achieved social
welfare according to the actual utility profile used to induce
the input profiles — termed average welfare ratio — where
the average is taken across the entire experiment.

Results: Figure 1 shows the average welfare ratio of the
different approaches with 95% confidence intervals, sorted
from best to worst. The differences in performance between
all pairs of rules — except between Det Knap and Ran Val,
and between Ran VFM and Gr Knap — are statistically sig-
nificant (Johnson 2013) at a 95% confidence level.

A few comments are in order. First, deterministic
distortion-minimizing aggregation rules generally outper-
form their randomized counterparts. This is not entirely un-
expected. While randomized rules do achieve better distor-
tion, there always exists a deterministic rule minimizing the

1.0 1.1 1.2 1.3 1.4 1.5

Average Welfare Ratio

Gr 4-Ap

Ran Knap

Gr Knap

Ran VFM

Ran Th Ap

Ran Val

Det Knap

Det Val

Det VFM

Det Th Ap

Figure 1: Average welfare ratio of different approaches to
participatory budgeting based on data from Boston 2015 and
2016 elections.

average welfare ratio objective; although, it is not necessar-
ily the deterministic distortion-minimizing aggregation rule.

Second, approaches based on deterministic rules are able
to limit the loss in social welfare due to incomplete informa-
tion about voters’ utility functions to only 2%–3%. Among
these approaches, the one using threshold approval votes in-
curs the minimum loss.

Third, knapsack votes consistently lead to higher distor-
tion than alternative input formats. This, together with the
poor theoretical guarantees for knapsack votes, suggests that
it may not be worthwhile to ask voters to solve their personal
NP-hard knapsack problems in order to cast a vote.

5 Discussion

Our results indicate that threshold approval votes should re-
ceive serious consideration as the input format of choice
for participatory budgeting. But there is one important is-
sue we have not studied: the cognitive load imposed on vot-
ers by different input formats. (If it were not for this issue,
we would just elicit the full utility functions — the whole
point is to reduce cognitive load.) A participatory budget-
ing system based on threshold approval votes might ask vot-
ers to “mark each project on which you would be happy to
see the city spend $10,000”. While this seems reasonable
enough (and probably easier than casting knapsack votes),
human subject experiments are needed to rigorously deter-
mine whether threshold approval votes, and other input for-
mats, require an acceptable cognitive effort.

Whatever the best, principled approach to participatory
budgeting is, now is the time to identify it, before various
heuristics become hopelessly ingrained. We believe that this
is a grand challenge for computational social choice, espe-
cially at a point in the field’s evolution where it is gaining
real-world relevance by helping people make decisions in
practice.
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A Missing Proofs

In the following we slightly abuse notation, and omit the
utility profile ~v from the social welfare notation sw(S,~v)
when ~v is clear from the context.

A.1 Rankings by Value and Value for Money

We now present the proof of Theorem 3.3, which establishes
an upper bound of O(

√
m logm) on the distortion associ-

ated with rankings by value and value for money. We first
present the proof for rankings by value for money as it is
trickier, and later describe how an almost identical proof
works for rankings by value.

Proof of Theorem 3.3. First, let us introduce additional no-
tation. For a ranking σ and an alternative a ∈ A, let σ(a)
denote the position of a in σ. For a preference profile ~σ
with n votes, let the harmonic score of a in ~σ be defined
as sc(a, ~σ) =

∑n
j=1 1/σj(a). Finally, given a set of alter-

natives S ⊆ A, let σ|S (resp. ~σ|S) denote the ranking (resp.
preference profile) obtained by restricting σ (resp. ~σ) to the
alternatives in S.

For ease of exposition assume m is a power of 2. Let
~σ denote the input profile consisting of voter preferences
in the form of rankings by value for money. Let ~v de-
note the underlying utility profile consistent with ~σ. Let
S∗ = arg maxS∈Fc sw(S,~v) be the budget-feasible set of
alternatives maximizing the social welfare.

Define `0 = 0 and u0 = 1/m. For i ∈ [logm], define
`i = 2i−1/m and ui = 2i/m. Let us partition the alterna-
tives into k+ 1 buckets based on their costs: S0 = {a ∈ A :
ca 6 u0} and Si = {a ∈ A : `i < ca 6 ui} for i ∈ [logm].
Note that for i ∈ {0}∪ [logm], selecting at most 1/ui alter-
natives from Si is guaranteed to be budget-feasible.

Next, let us further partition the buckets into two parts:
for i ∈ {0} ∪ [logm], let S+

i consist of the
√
m · (1/ui)

alternatives from Si with the largest harmonic scores in the
reduced profile ~σ|Si , and S−i = Si \ S+

i . If |Si| 6
√
m ·

(1/ui), we let S+
i = Si and S−i = ∅. Note that S+

0 = S0.
Let S+ = ∪logm

i=0 S+
i and S− = A \ S+.



We are now ready to define our randomized aggregation
rule, which randomizes over two separate mechanisms.

• Mechanism A: Select a bucket Si uniformly at random,
and select a (1/ui)-size subset of S+

i uniformly at ran-
dom.

• Mechanism B: Select a single alternative uniformly at
random.

Our aggregation rule executes each mechanism with an
equal probability 1/2. We now show that this rule achieves
distortion that is O(

√
m logm).

First, note that mechanism A selects each bucket Si with
probability 1/(logm + 1), and when Si is selected, it se-
lects each alternative in S+

i with probability at least 1/
√
m.8

Hence, the mechanism selects each alternative in S+ (and
therefore, each alternative in S∗ ∩ S+) with probability at
least 1/(

√
m(logm + 1)). In other words, the expected so-

cial welfare achieved under mechanism A is O(
√
m logm)

approximation of sw(S∗ ∩ S+, ~v).
Finally, to complete the proof, we show that the expected

welfare achieved under mechanism B is an O(
√
m logm)

approximation of sw(S∗∩S−, ~v). Let us first bound sw(S∗∩
S−, ~v). Recall that S−0 = ∅. Hence,

sw(S∗ ∩ S−, ~v) =

logm∑
i=1

sw(S∗ ∩ S−i , ~v).

Fix i ∈ [logm] and a ∈ S−i . One can easily check that∑
b∈Si

sc(b, ~σ|Si) = n ·H|Si| 6 n ·Hm,

where Hk is the kth harmonic number. Because S+
i consists

the of
√
m/ui alternatives in Si with the largest harmonic

scores, we have

sc(a, ~σ|Si) 6
n ·Hm√
m · (1/ui)

=
n · (1 + logm)√

m ·m/2i
. (5)

Next, we connect this bound on the harmonic score of a
to a bound on its social welfare. For simplicity, let us denote
~γ , ~σ|Si . Due to our definition of the partitions, we have

ca 6 2 · cb,∀b ∈ Si. (6)

Further, fix a voter j ∈ [n]. For each alternative b such that
b �γj a, we also have vj(b)/cb > vj(a)/ca. Substituting
Equation (6), we get

vj(a) 6 2vj(b),∀j ∈ [n], b ∈ Si s.t. b �γj a. (7)

Taking a sum over all b ∈ Si with b �γj a, and using the
fact that the values of each voter j sum to 1, we get vj(a) 6
2/γj(a) for j ∈ [n], and taking a further sum over j ∈ [n],
we get

sw(a,~v) 6 2 · sc(a, ~σ|Si). (8)
Combining this with Equation (5), we get

sw(a,~v) 6
2 · n · (1 + logm)√

m ·m/2i
,∀a ∈ S−i .

8This is because the mechanism selects 1/ui alternatives at ran-
dom from S+

i , which has at most
√
m · (1/ui) alternatives.

Note that S∗ can select at most 2/ui = m/2i−1 alterna-
tives from Si while respecting the budget constraint. Hence,

sw(S∗ ∩ S−, ~v) =

logm∑
i=1

sw(S∗ ∩ S−i , vv)

6
(m/2i−1) · 2 · n · (1 + logm)√

m ·m/2i

= 4 · n · (1 + logm)/
√
m. (9)

Because the utilities sum to 1 for each voter, the expected
social welfare achieved under mechanism B is (1/m) ·∑
i∈N

∑
a∈A vi(a) = n/m, which is an O(

√
m logm) ap-

proximation of sw(S∗ ∩ S−, ~v) due to Equation (9).
This completes the proof of O(

√
m logm) distortion as-

sociated with rankings by value for money. The proof for
rankings by value is almost identical. In fact, one can make
two simplifications.

First, the factor of 2 from Equation (7), and therefore from
Equation (8) disappears because the rankings already dictate
comparison by value. This leads to an improvement in Equa-
tion (9) by a factor of 2.

Second, Equation (7) not only holds for b ∈ Si such that
b �γj a, but holds more generally for b ∈ A such that b �σj
a. Hence, there is no longer a need to compute the harmonic
scores on the restricted profile ~σ|Si ; one can simply work
with the original input profile ~σ.

A.2 Threshold Approval
We show that for a fixed threshold, the distortion associated
with threshold approval votes is Ω(

√
m).

Proof of Theorem 3.4. Imagine the case where ca = 1 for
alternatives a ∈ A. Recall that the budget is 1. Let f denote a
randomized aggregation rule. It must return a single alterna-
tive, possibly chosen in a randomized fashion. We construct
our adversarial input profile based on whether t 6 1/

√
m.

For ease of exposition, assume n is divisible by
√
m. Let

A = {a1, . . . , am}.
Suppose t 6 1/

√
m. Fix a set of alternatives S ⊆ A such

that |S| =
√
m/2 + 1. Construct the input profile ~τ such

that τi = S for all i ∈ N . Now, there must exist a∗ ∈ S
such that Pr[f(~τ) = {a∗}] 6 1/(

√
m/2 + 1). Construct the

underlying utility profile ~v such that for each voter i ∈ N ,
vi(a

∗) = 1/2, vi(a) = 1/
√
m for a ∈ S\{a∗}, and vi(a) =

0 for a ∈ A \ S. Note that this is consistent with the input
profile given that t 6 1/

√
m. Further, sw(a∗, ~v) = n/2

whereas sw(a,~v) 6 n/
√
m for all a ∈ A \ {a∗}. Hence,

E[sw(f(~τ), ~v)] 6
1√

m/2 + 1
· n

2
+

√
m/2√

m/2 + 1
· n√

m

= O
(

n√
m

)
.

Because the optimal social welfare is Θ(n), we have that
dist(f) = Ω(

√
m), as required.

Now suppose that t > 1/
√
m. Construct an input profile ~τ

in which τi = ∅ for every voter i ∈ N . In this case, there ex-
ists an alternative a∗ ∈ A such that Pr[f(~τ) = a∗] 6 1/m.



Let us construct the underlying utility profile ~v as follows.
For every voter i ∈ N , let vi(a∗) = 1/

√
m, and vi(a) =

(1−1/
√
m)/m for all a ∈ A\{a∗}. Note that this is consis-

tent with the input profile given that t > 1/
√
m. Clearly, the

optimal social welfare is achieved by sw(a∗, ~v) = n/
√
m.

In contrast, we have

E[sw(f(~τ), ~v)] 6
1

m
· n√

m
+

(
1− 1√

m

)
· 1− 1/

√
m

m

= O
( n
m

)
.

Hence, we again have dist(f) = Ω(
√
m), as desired.

For specific ranges of the threshold, it is possible to derive
stronger lower bounds. However, the Ω(

√
m) lower bound

of Theorem 3.4 is sufficient to establish a clear asymptotic
separation between the power of randomized and determin-
istic threshold approval votes, as Theorem 3.5 shows that the
distortion associated with randomized threshold approval
votes is significantly lower — O(log2m).

Next, we provide a proof of Theorem 3.6, which shows
that logarithmic distortion is unavoidable in the worst case,
even using randomized threshold approval votes.

Proof of Theorem 3.6. Imagine the case where ca = 1 for
all a ∈ A. Recall that the budget is 1. Let f denote a rule
that elicits randomized threshold approval votes and aggre-
gates them to return a distribution over A (as only a single
project can be executed at a time). Note that f is not sim-
ply the aggregation rule, but the elicitation method and the
aggregation rule combined.

For ease of exposition, assume that m is a
power of 2 logm. Let us divide the interval
(1/m, 1] into logm/ log (2 logm) sub-intervals: For
j ∈ [logm/ log(2 logm)], let

Ij =

(
(2 logm)j−1

m
,

(2 logm)j

m

]
.

Let uj and `j denote the upper and lower end points of Ij .
Let t denote the threshold picked by f (in a randomized

fashion). Then, there must exist k ∈ [logm/ log(2 logm)]
such that Pr[t ∈ Ik] 6 log (2 logm)/ logm. Fix a subset
S ⊆ A of size logm, and let V = uk/2 + (logm− 1) · `k.
Construct a (partial) utility profile ~v such that for each voter
i ∈ N , vi(a) ∈ Ik for a ∈ S,

∑
a∈S vi(a) = V , and vi(a) =

(1 − V )/(m − logm) for a ∈ A \ S. First, this is feasible
because

V =
uk
2

+ (logm− 1) · `k 6
1

2
+

logm− 1

2 logm
6 1.

Second, this partial description completely dictates the in-
duced input profile when t /∈ Ik. Now, because f can only
distinguish between alternatives in S when t ∈ Ik, there
must exist a∗ ∈ S such that Pr[f returns a∗|t /∈ Ik] 6
1/ logm. Now, suppose the underlying utility profile ~v sat-
isfies, for each voter i ∈ N , vi(a∗) = uk/2 and vi(a) = `k
for a ∈ S \ {a∗}. Observe that this is consistent with the
partial description provided before.

In this case, the optimal social welfare is given by
sw(a∗, ~v) = n · uk/2, whereas sw(a,~v) 6 n · `k for all
a ∈ A \ {a∗}. The latter holds because `k > (1− V )/(m−
logm). The expected social welfare achieved by f under ~v
is at most

Pr[t ∈ Ik] · n · uk
2

+ Pr[t /∈ Ik]

(
1

logm
· n · uk

2
+

logm− 1

logm
· n · `k

)
6

log (2 logm) + 2

logm
· n · uk

2
,

where the final transition holds because uk = 2 logm · `k.
Thus, the distortion achieved by f is Ω(logm/ log logm),
as desired.

Our proof of Theorem 3.6 establishes
Ω(logm/ log logm) lower bound on the distortion as-
sociated with randomized threshold approval votes by
only using the special case of the participatory budgeting
problem in which ca = 1 for each a ∈ A, i.e., exactly
one alternative needs to be selected. This is exactly the
setting studied by Boutilier et al. (2015). On the other hand,
Theorem 3.5 establishes a slightly weaker upper bound of
O(log2m) for the general participatory budgeting problem.
We conclude this section by showing that for the restricted
setting of Boutlier et al. (2015), one can improve the general
O(log2m) upper bound to O(logm), thus leaving a very
narrow gap from the Ω(logm/ log logm) lower bound.
Theorem A.1. If ca = 1 for all a ∈ A, the distortion associ-
ated with randomized threshold approval votes isO(logm).

Proof. This proof is along the lines of the more general
proof of Theorem 3.5, whose O(log2m) bound is the result
of a randomization over O(logm) partitions of the alterna-
tives based on their cost andO(logm) possible values of the
threshold. In our special case, with the alternatives having an
equal cost, there is no longer a need to partition them based
on their cost, which leads to an improvement in the bound
by a factor of logm.

Formally, for j ∈ [logm], let `j = 2j−1/m and uj =
2·`j . Consider the rule which chooses j ∈ [logm] uniformly
at random, elicits approval votes with threshold t = `j , and
returns an alternative with the greatest number of approval
votes. We show that the distortion of this rule is O(logm).

Let ~v denote the underlying utility profile, and a∗ =
arg maxa∈A sw(a,~v) be the welfare-maximizing alterna-
tive. If there exists j ∈ [logm] such that our rule returns
a∗ when it sets the threshold t = `j (which happens with
probability 1/ logm), we immediately obtainO(logm) dis-
tortion. Let us assume that our rule never returns a∗. For
a ∈ A and j ∈ [logm], let naj denote the number of approval
votes a receives when the threshold t = `j , and let aj ∈ A
be the alternative returned by our rule when t = `j . Because
our rule returns an alternative with the greatest number of
approval votes, we have

∀j ∈ [logm],

logm∑
k=j

n
aj
k >

logm∑
k=j

na
∗

k > na
∗

j . (10)



Now, the expected social welfare achieved by our rule is
at least

logm∑
j=1

Pr[t = `j ] · sw(aj , ~v) >
1

logm

logm∑
j=1

`j

logm∑
k=j

n
aj
k


>

1

2 logm

logm∑
j=1

uj · na
∗

j

>
1

2 logm
· sw(a∗),

where the first transition follows from Equation (10), and
the second transition holds because `j = uj/2. Hence, the
distortion of our rule is O(logm), as desired.

B Deterministic Aggregation Rules

In this section we study the distortion we can achieve with
different input formats if we are forced to use a determinis-
tic aggregation rule. In other words, we redefine the distor-
tion associated with an input format as the least distortion
a deterministic aggregation rule for that format can achieve.
Specifically, we study the distortion associated with knap-
sack votes, rankings by value and value for money, and de-
terministic threshold approval votes. We do not consider ran-
domized threshold approval votes as the inherent randomiza-
tion involved in the elicitation makes the use of deterministic
aggregation rules less motivated.

We find that rankings by value achieve Θ(m2) distortion,
which is significantly better than the distortion of knapsack
votes (exponential in m) and that of rankings by value for
money (unbounded). This separation between rankings by
value and value for money in this setting stands in stark con-
trast to the setting with randomized aggregation rules, where
both input formats admit similar distortion. One important
fact, however, does not change with the use of deterministic
aggregation rules: threshold approval votes still performs at
least as well as all other input formats. Specifically, we show
that setting the threshold to be t = 1/m results in O(m2)
distortion. The choice of the threshold is crucial as, for ex-
ample, setting a slightly higher threshold t > 1/(m − 1)
results in unbounded distortion.

B.1 Knapsack Votes

Our first result is an exponential lower bound on the dis-
tortion associated with knapsack votes when the aggrega-
tion rule is deterministic. While our construction requires
the number of voters to be extremely large compared to the
number of alternatives, we remark that this is precisely the
case in real participatory budgeting elections, in which a
large number of citizens vote over much fewer projects.

Theorem B.1. The distortion associated with deterministic
aggregation of knapsack votes is Ω(2m/

√
m).

Proof. Imagine a case where every alternative has cost 2/m
(recall that the budget is 1). Thus, one can execute at most

m/2 alternatives while respecting the budget constraints.
Let S1, . . . , S( m

m/2)
denote the

(
m
m/2

)
subsets of A of size

m/2.
For ease of exposition, assume that

(
m
m/2

)
divides n. Parti-

tion the voters into
(
m
m/2

)
setsN1, . . . , N( m

m/2)
, each consist-

ing of n/
(
m
m/2

)
voters. Construct an input profile of knap-

sack votes ~κ, where κi = Sk for all k ∈ [
(
m
m/2

)
] and i ∈ Nk.

Let f denote a deterministic aggregation rule. We can
safely assume that |f(~κ)| = m/2 as otherwise we can add
alternatives to f(~κ), which can only improve the distortion.
Let f(~κ) = Sk∗ .

Construct a utility profile ~v consistent with the input pro-
file ~κ as follows. Fix b ∈ Sk∗ , and for all i ∈ Nk∗ , let
vi(b) = 1 and vi(a) = 0 for all a ∈ A \ {b}. Note that
these valuations are consistent with the votes of voters in
Nk∗ .

Next, fix a∗ ∈ A\Sk∗ . Our goal is to make a∗ an attractive
alternative that f(~κ) missed. Note that a∗ appears in half of
the m/2-sized subsets of A. For all k ∈ [

(
m
m/2

)
] such that

a∗ ∈ Sk, and all voters i ∈ Nk, let vi(a∗) = 1 and vi(a) = 0
for all a ∈ A \ {a∗}. This ensures sw(a∗, ~v) > n/2.

For k ∈ [
(
m
m/2

)
] \ {k∗} such that a∗ /∈ Sk, and all voters

i ∈ Nk, let vi(a′) = 1 for some a′ ∈ Sk\Sk∗ , and vi(a) = 0
for all a ∈ A \ {a′}.

Note that all voters who do not belong to Nk∗ assign zero
utility to all the alternatives in Sk∗ , yielding sw(f(~κ), ~v) 6
n/
(
m
m/2

)
. Hence, we have

dist(f,~v) >
n/2

n/
(
m
m/2

) =
1

2
·
(
m

m/2

)
= Ω

(
2m√
m

)
,

as required.

We next show that an almost matching upper bound can
be achieved by the natural “plurality knapsack” rule that se-
lects the subset of alternatives submitted by the largest num-
ber of voters.
Theorem B.2. The distortion associated with deterministic
aggregation of knapsack votes is O(m · 2m).

Proof. Let ~v denote the underlying utility profile, and let
S∗ ⊆ A be the set of alternatives reported by the largest
number of voters. Due to the pigeonhole principle, it must be
reported by at least n/2m voters. Further, each voter i who
reports S∗ must have vi(S∗) > 1/m because there must
exist a ∈ A such that vi(a) > 1/m, and vi(S∗) > vi(a).

Hence, we have sw(S∗, ~v) > (n/2m) · 1/m, whereas the
maximum welfare any set of alternatives can achieve is at
most n. Hence, the distortion of the proposed rule is at most
m · 2m.

B.2 Rankings by Value and by Value for Money
While rankings by value and by value for money have simi-
lar distortion in case of randomized aggregation rules, deter-
ministic aggregation rules lead to a clear separation between
the distortion of the two input formats.



We first show that rankings by value for money cannot
offer bounded distortion. Our counter example exploits the
uncertainty in values induced when alternatives have vastly
different costs.

Theorem B.3. The distortion associated with deterministic
aggregation of rankings by value for money is unbounded.

Proof. Fix a, b ∈ A. Let ca = ε > 0, and ct = 1 for all
t ∈ A \ {a}. Recall that the budget is 1. Hence, every deter-
ministic aggregation rule must select a single alternative.

Construct an input profile ~σ in which each input ranking
has alternatives a and b in positions 1 and 2, respectively.
Let f be a deterministic aggregation rule.

If f(~σ) ∈ A \ {a}, the utility profile ~v in which every
voter has utility 1 for a, and 0 for every alternative inA\{a}
ensures dist(f) > dist(f,~v) =∞.

If f(~σ) = a, the utility profile ~v in which every voter
has utility ε for a, 1 − ε for b, and 0 for every alternative in
A \ {a, b} ensures that dist(f) > dist(f,~v) = (1− ε)/ε.

Hence, in either case, dist(f) > (1− ε)/ε. Because ε can
be arbitrarily small, the distortion is unbounded.

We now turn our attention to rankings by value. Caragian-
nis et al. (2016) study deterministic aggregation of rankings
by value in the special case of our setting where the cost
of each alternative equals the entire budget, and establish a
lower bound of Ω(m2) on the distortion, which carries over
to our more general setting.

Theorem B.4 ((Caragiannis et al. 2016)). The distortion as-
sociated with deterministic aggregation of rankings by value
is Ω(m2).

Caragiannis et al. (2016) also show that selecting the plu-
rality winner — the alternative that is ranked first by the
largest number of voters — results in distortion at most m2.
We show that this holds true even in our more general set-
ting, giving us an asymptotically tight bound on the distor-
tion.

Theorem B.5. The distortion associated with deterministic
aggregation of rankings by value is O(m2).

Proof. Due to the pigeonhole principle, the plurality winner,
say a ∈ A, must be ranked first by at least n/m voters, each
of which must have utility at least 1/m for a. Hence, the
social welfare of a is at least n/m2, while the maximum
social welfare that any set of alternatives can achieve is at
most n, yielding a distortion of at most m2.

B.3 Threshold Approval Votes

We now turn our attention to threshold approval votes. As
mentioned earlier, our use of deterministic aggregation rules
makes randomized threshold selection less motivated; we
thus focus on deterministic threshold approval votes.

First, we show that for some choices of the threshold, the
distortion can be unbounded.

Theorem B.6. For a fixed threshold t > 1/(m − 1), the
distortion associated with deterministic aggregation of de-
terministic threshold approval votes is unbounded.

Proof. Imagine the case where ca = 1 for each a ∈ A.
Recall that the budget is 1. Let f denote a deterministic ag-
gregation rule for threshold approval votes. Suppose the rule
receives an input profile ~τ in which no voter approves any
alternative. Without loss of generality, let f(~τ) = a∗.

Now, we construct an underlying utility profile such that
for each voter i ∈ N , vi(a) = 1/(m − 1) for a ∈ A \
{a∗}, and vi(a∗) = 0. Note that this is consistent with the
input profile ~τ . Now, the optimal social welfare is n ·1/(m−
1), whereas the welfare achieved by f is zero, yielding an
unbounded distortion.

We next show that slightly reducing the threshold to 1/m
reduces the distortion toO(m2), which is at least as good as
the distortion associated with any other input format. In fact,
this distortion can be achieved via the simple aggregation
rule that greedily selects alternatives with the highest ratio
of the number of approvals to the cost, until the budget is
exhausted.

Theorem B.7. For the fixed threshold t = 1/m, the distor-
tion associated with deterministic aggregation of determin-
istic threshold approval votes is O(m2).

Proof. Let ~τ denote an input profile, and let ~v denote the un-
derlying utility profile. Let S∗ ∈ Fc denote the feasible set
of alternatives with the highest number of total approvals,
and let S ∈ Fc denote the feasible set of alternatives re-
turned by the greedily rule that selects alternatives with the
highest ratio of the number of approvals to the cost, until the
budget is exhausted. Let P ∗ and P denote the total number
of approvals received by alternatives in S∗ and S, respec-
tively.

Consider a knapsack problem where the value of an alter-
native is the number of approvals it receives under ~τ . Then,
P ∗ is the optimal knapsack solution, whereas P is the solu-
tion quality achieved by the greedy algorithm. Using the fact
that the greedy algorithm achieves a 2-approximation of the
(unbounded) knapsack problem (Dantzig 1957), we have

P > (1/2) · P ∗.

We can now establish an upper bound on the distortion
of our rule. Let T be the feasible set of alternatives maxi-
mizing the social welfare. Then, T achieves at most P ∗ total
approvals under ~τ . Each voter approving each alternative in
T can contribute at most 1 to the welfare of T , and each
voter not approving each alternative in T can contribute at
most 1/m to the welfare of T . Hence, we have

sw(T,~v) 6 P ∗ · 1 + (n ·m− P ∗) · (1/m).

Using a similar line of argument, we also have

sw(S,~v) > P · (1/m).

Hence, the distortion of f is at most

P ∗ + (n ·m− P ∗)/m
P/m

6 2 · 1 + (n ·m/P ∗ − 1)/m

1/m



= 2 ·
(
m+

n ·m
n/m

− 1

)
= O(m2),

where the first transition follows from P > P ∗/2. For the
second transition, note that with the threshold being 1/m,
each voter must approve at least 1 alternative. Hence, there
must exist an alternative with at least n/m approvals, imply-
ing that P ∗ > n/m.

C Worst-Case Optimal Aggregation Rules

Our theoretical results focus on the best worst-case (over all
input profiles) distortion we can achieve using different in-
put formats. However, specific profiles may admit distortion
much better than this worst case. Thus, in practice we are
more interested in the deterministic or randomized aggrega-
tion rule that, on each input profile, returns the feasible set
of alternatives or a distribution thereover which minimizes
the distortion, thus achieving the optimal distortion on each
input profile individually. The optimal deterministic aggre-
gation rule is given by

f∗(~ρ) = arg min
S∈Fc

max
~vB~ρ

maxT∈Fc sw(T,~v)

sw(S,~v)
, ∀~ρ,

and the optimal randomized aggregation rule is given by

f∗(~ρ) = arg min
p∈∆(Fc)

max
~vB~ρ

maxT∈Fc sw(T,~v)

ES∼psw(S,~v)
, ∀~ρ,

where ∆(X) denotes the set of distributions over the ele-
ments of X .

While these profile-wise optimal aggregation rules dom-
inate all other aggregation rules, they may be computation-
ally difficult to implement, specially given that they optimize
a non-linear objective function (a ratio) over a complicated
space. We believe it is unlikely that these rules can be com-
puted in polynomial time; in this section, we employ sev-
eral computational tools to devise practical (although, the-
oretically exponential-time) implementations of the deter-
ministic and randomized profile-wise optimal aggregation
rules for the input formats we study. Interestingly, we dis-
cover generic algorithms for the optimal deterministic (Al-
gorithm 1) and randomized (Algorithm 2) rules, which work
for each of our input formats. These implementations also
help us in our experiments in §4 and §D for measuring the
average-case distortion, i.e., in computing the optimal distor-
tion on a given profile and averaging it over profiles drawn
from real-world data.

Throughout this section, we assume that it is practically
feasible to explicitly enumerate the collection of inclusion-
maximal feasible sets of alternatives Fc. This assumption is
justified given that real-world participatory budgeting prob-
lems typically involve up to 20 alternatives.

C.1 Deterministic Rules
Let V (~ρ) = {~v : ~v B ~ρ} denote the set of utility profiles
consistent with input profile ~ρ. Hence, we are interested in

computing

arg min
S∈Fc

max
~v∈V (~ρ)

maxT∈Fc sw(T,~v)

sw(S,~v)

= arg min
S∈Fc

max
T∈Fc

max
~v∈V (~ρ)

sw(T,~v)

sw(S,~v)
.

A natural algorithm is now self-evident. We compute
d(S, T ) = max~v∈V (~ρ) sw(T,~v)/sw(S,~v) for every pair
S, T ∈ Fc, and then return arg minS∈Fc maxT∈Fc d(S, T ).

Our first goal is to come up with a useful characteriza-
tion of the space of consistent utility profiles V (~ρ). For the
input methods we study in this paper, we can in fact de-
scribe V (~ρ) using linear constraints. Observe that V (~ρ) =
V (ρ1)×· · ·×V (ρn) where V (ρi) = {v > 0 : vBρi} is the
set of m-dimensional utility functions consistent with voter
i’s input ρi. Hence, we simply need to describe each V (ρi)
using linear constraints.
For a ranking by value σi, we use:

V (σi) =

 vi ∈ Rm+ :∑
a∈A vi(a) = 1,

vi(σ
−1
i (k)) > vi(σ

−1
i (k + 1)), ∀k ∈ [m− 1]


For a ranking by value for money σi, we use:

V (σi) =


vi ∈ Rm+ :∑

a∈A vi(a) = 1,
vi(σ

−1
i (k))

c
σ
−1
i

(k)

> vi(σ
−1
i (k+1))

c
σ
−1
i

(k+1)

,∀k ∈ [m− 1]

 .

For a knapsack vote κi, we use:

V (κi) =

 vi ∈ Rm+ :∑
a∈A vi(a) = 1,∑
a∈κi vi(a) >

∑
a∈S vi(a), ∀S ∈ Fc


For a threshold approval vote τi elicited using threshold t,
we use:

V (τi) =

{
vi ∈ Rm+ :∑

a∈A vi(a) = 1,
vi(a) > t, ∀a ∈ τi, ∧ vi(a) 6 t, ∀a ∈ A \ τi

}

Note that the polytope for knapsack votes has exponen-
tially many constraints, while the other polytopes have poly-
nomially many constraints. This polytope is the only part
of our generic algorithm that is dependent on the input for-
mat.Generically, let A(~ρ) ~v 6 b(~ρ) be the set of linear con-
straints describing V (~ρ).

Our next goal is to use this characterization of V (~ρ) to
compute d(S, T ) for specific S, T ∈ Fc. Note that

d(S, T ) = max
sw(T,~v)

sw(S,~v)
subject to A(~ρ) ~v 6 b(~ρ).

This is a standard linear-fractional program, which can be
converted to a linear program using the famous Charnes-
Cooper transformation (Charnes and Cooper 1962) as fol-
lows.



Let xS , xT ∈ {0, 1}m denote the characteristic vectors
of S and T , respectively. Let xS , xT ∈ {0, 1}n·m be vec-
tors consisting of n concatenated copies of xS and xT , re-
spectively. Similarly, let v ∈ Rn·m+ denote the concatena-
tion of vectors ~v1 through ~vn. Then, sw(S,~v) = 〈xS , v〉 and
sw(T,~v) = 〈xT , v〉. Hence,

d(S, T ) = max
〈xT , v〉
〈xS , v〉

subject to
A(~ρ) ~v 6 b(~ρ)

~v > 0.

Finally, creating two new variables, a vector y =
v/〈xS , v〉 and a scalar z = 1/〈xS , v〉, yields the following
equivalent linear program.

LP (~ρ, S, T ) : max 〈xT , y〉
subject to
A(~ρ) y 6 b(~ρ) · t
〈xS , y〉 = 1

y > 0, t > 0.

The complete algorithm for resolving the deterministic
optimal aggregation rule on an input profile ~ρ is given as
Algorithm 1.

Data: Input profile ~ρ
Result: A set S ∈ Fc yielding the least distortion
dist[S] = 0, ∀S ∈ Fc
for S ∈ Fc do

for T ∈ Fc, T 6= S do
dist[S] = max(dist[S], LP (~ρ, S, T ))

end
end
return arg minS∈Fc dist[S]

Algorithm 1: Computing the worst-case optimal determin-
istic rule

C.2 Randomized Rules
Using a similar line of argument as before, it is easy to see
that the optimal randomized aggregation rule returns the fol-
lowing distribution over feasible sets of alternatives:

arg min
p∈∆(Fc)

max
T∈Fc

max
~v∈V (~ρ)

sw(T,~v)∑
S∈Fc pS · sw(S,~v)

.

First, we introduce an additional continuous variable z
representing the optimal distortion achieved, and reformu-
late the problem as follows:

min
p,z

z

subject to

max
~v∈V (~ρ)

{
sw(T,~v)− z ·

∑
S∈Fc

pS · sw(S,~v)

}
6 0,∀T ∈ Fc

(11)

p ∈ ∆(Fc).
At this point, it is possible to handle the constraints in (11)
by formulating the problem in terms of the vertices of the
polytope V (~ρ). Instead, we turn to a two-stage algorithm
in the spirit of the cutting-set approach of Mutapcic and
Boyd (2009).

Our algorithm performs a binary search on z, the optimal
distortion. For every value of z, an iterative two-stage proce-
dure determines whether there exists a distribution p whose
distortion on the input profile ~ρ is at most z. If such a p ex-
ists, then the current value of z serves as an upper bound on
the least possible value of z. Otherwise, it serves as a lower
bound on the least possible value of z.

We now describe the two-stage iterative procedure that
tests the existence of a distribution with distortion at most
z. At iteration t of the procedure, the algorithm checks if
a feasible pt exists subject to the simplex constraints de-
scribing V (~ρ), and a small number of previously violated
constraints that have been added thus far, defined by Ct−1.
We use C0 = ∅. In other words, the problem at iteration t,
denoted CF(z, Ct−1), is to check the feasibility of the fol-
lowing set of constraints:

sw(T,~v)− z ·
∑
S∈Fc

pS · sw(S,~v) 6 0, ∀(~v, T ) ∈ Ct−1

p ∈ ∆(Fc).

If no feasible pt exists, the current value of z is the new lower
bound, and we proceed to the next step in our binary search
over z. If a feasible pt exists, we check if it violates any
constraint from (11) by solving the following linear program
(which serves as an oracle) for every T ∈ Fc:

max sw(T,~v)− z ·
∑
S∈Fc

ptS · sw(S,~v)

s.t. ~v ∈ V (~ρ)

 LP(T, z, pt, ~ρ)

If the objective value exceeds 0, a violated constraint is
found and added to Ct−1 to form Ct. If the objective value
is at most 0, the current value of pt is indeed a distribution
with distortion at most the current value of z. We use this
value as an upper bound in our binary search, and proceed.

This complete procedure is summarized in Algorithm 2.
It is known that each round of binary search over z, which
iteratively uses the oracle to add violated constraints, will
terminate, since it adds at most a constraint for every set T
and every vertex of V (~ρ).

D Additional empirical results

In this section we provide a more detailed representation of
the results summarized in §4, and investigate the usefulness
of learning the optimal threshold from holdout data.

Figure 1 in §4 presented the average welfare ratio of ten
different approaches to participatory budgeting, where the
average was taken over 3 independent trials in each of two
datasets. First, we present the results for each dataset sep-
arately. The results for the Boston 2015 and 2016 datasets
are presented in Figures 2 and Figure 3, respectively. The



Data: Input profile ~ρ, tolerance TOL
Result: A probability distribution in ∆(Fc)
lo=1, hi=100, z = (hi+lo)/2
while hi− lo > TOL do
C0 = ∅
t = 0
robustFeasibleFlag← false
while robustFeasibleFlag is false do

robustFeasibleFlag← true
t← t+ 1
Ct = Ct−1

if CF(z, Ct−1) is feasible then
pt ← optimal solution of CF(z, Ct−1)
for T ∈ Fc do

if optimum of LP(T, z, pt, ~ρ) exceeds 0
then

ṽ ← optimal solution of
LP(T, z, pt, ~ρ)
Ct ← Ct ∪ (ṽ, T )
robustFeasibleFlag← false

else
∗comment∗ Constraint for T is
satisfied

end
end
if robustFeasibleFlag then

hi = z
end

else
lo = z

end
end
z = (hi+lo)/2

end
return pt, hi

Algorithm 2: Computing the optimal randomized aggre-
gation rule

former dataset contains 4-approval votes, whereas the latter
dataset contains knapsack votes.
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Figure 2: Average welfare ratios for the Boston 2015 dataset
containing 4-approval votes.
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Figure 3: Average welfare ratios for the Boston 2016 dataset
containing knapsack votes.

We can see that some of the trends highlighted in §4 are
reflected across both datasets. First, approaches based on
deterministic distortion-minimizing aggregation rules, ex-
cluding the one using knapsack votes, still outperform their
randomized counterparts. Further, among these approaches,
the one using threshold approval votes has the most consis-
tent performance, achieving the lowest average welfare ratio
for the Boston 2015 dataset and the second lowest for the
Boston 2016 dataset. Second, the approaches currently used
in real-world elections (namely, “Gr Knap” and “Gr 4-Ap”)
perform worse than most other approaches, and have high
variance in their performance.

There are a few differences between the results on the
two datasets. Somewhat surprisingly, Greedy Knapsack per-



forms significantly better on knapsack votes induced from
random utility profiles drawn to be consistent with real 4-
approval votes, than on real knapsack votes. In fact, all
knapsack-votes-based approaches perform poorly on real
knapsack votes. This can be explained partly by the fact
that we measure performance in expectation over utility pro-
files drawn to be consistent with the true votes, and the
families of utility profiles consistent with 4-approval votes
(Boston 2015 dataset) and with knapsack votes (Boston
2016 dataset) are very different.

D.1 Is it useful to learn the threshold?
Recall that in our experiments, when using threshold ap-
proval votes, we select the threshold that achieves the best
performance on a holdout/training set, and use it to evaluate
performance of threshold approval votes on the test set. Let
us describe our approach in a bit more detail.
Our approach for threshold selection: We partition the vot-
ers in the Boston 2015 and 2016 datasets into two equal
parts: a training set, and a test set. We then generate train-
ing instances from the training set and test instances from
the test set via an identical process: we sample r input pro-
files consisting of n voters drawn at random from the pop-
ulation, draw k random utility profiles consistent with each
input profile, and use these utility profiles to induce an in-
put profile in the desired vote format. Note that we need to
generate artificial votes from real votes because real votes
are in a format different than the one desired — in this case,
threshold approval votes. This additional step is not required
in practice once sufficiently many real votes are elicited in
the desired format for training purpose.

Next, we take all possible threshold values from 0 to 1 at
intervals of 0.05, and compute the average distortion across
all threshold approval vote profiles generated achieved by
each threshold value. We select the threshold value that
achieves the least average distortion. Importantly, note that
we use distortion — which is only a function of the input
profile — rather than the average welfare ratio to select the
optimal threshold value. Hence, this method is robust, and
does not use any knowledge of the distribution of utility pro-
files that we later use in evaluating performance.

Finally, we use this optimal threshold value when evaluat-
ing the performance (average welfare ratio) of threshold ap-
proval votes, in conjunction with both the deterministic and
the randomized distortion-minimizing aggregation rules.

While threshold approval votes with deterministic aggre-
gation rule achieves excellent performance with this method
of threshold selection, it is not immediately clear whether
the threshold selection was useful. Indeed, learning a thresh-
old is only useful if the optimal threshold value remains rea-
sonably consistent across the instances. We now investigate
the usefulness of threshold selection in multiple ways.

First, Figure 4 shows the average distortion achieved by
different values of the threshold on the training instances,
when used in conjunction with the deterministic and the
randomized distortion-minimizing aggregation rules. Recall
that the final threshold value we select is the one that mini-
mizes this measure. For every threshold value on the x-axis,
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Figure 4: Average distortion achieved by different threshold
values in threshold approval votes.

the error bars indicate the range that contains the distortion
on 95% of the training instances. We do not plot threshold
values above 0.4 as the distortion is non-decreasing beyond
this point.

We observe that the thresholds values that lead to the
smallest average distortion are exactly those with the small-
est variation across instances. Interestingly, the average dis-
tortion of different values of the threshold is wildly differ-
ent under the deterministic aggregation rule, but rather sim-
ilar under the randomized aggregation rule. This effect per-
haps manifests itself in the improved performance of thresh-
old approval votes with deterministic aggregation than with
randomized aggregation in all of our experiments; see Fig-
ures 1, 2 and 3.
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Figure 5: Percentage of instances for which different thresh-
old values are optimal.

Next, we measure the usefulness of training the threshold
value in a different way. In Figure 5, we plot the empiri-



cal distribution of the optimal threshold value, i.e., for each
threshold value, we plot the percentage of training instances
in which that value led to the minimum distortion across all
threshold values. It is clear that for both deterministic and
randomized aggregation rules, the distribution of the opti-
mal threshold value is (quite strongly) centered at 0.1. In
fact, the optimal threshold value was in [0.075, 0.15] in more
than 80% of the training instances.

The consistency with which a single threshold value (0.1)
remains the optimal value suggests that learning this value
from the holdout set is very likely to be helpful in achieving
superior performance.

Finally, we note that the datasets we used contain votes
over 10 alternatives. That is, m = 10. Interestingly, this
makes the empirically optimal threshold value 1/m, which
is precisely the value for which we achieve the best perfor-
mance in the worst case in our theoretical results (see Theo-
rem B.7).


