
Harmonious Balanced Partitioning of a Network of Agents
Pulkit Agarwal

Indian Institute of Technology Bombay

Mumbai, India

200050113@iitb.ac.in

Harshvardhan Agarwal

Indian Institute of Technology Bombay

Mumbai, India

200050050@iitb.ac.in

Vaibhav Raj

Indian Institute of Technology Bombay

Mumbai, India

200050148@iitb.ac.in

Swaprava Nath

Indian Institute of Technology Bombay

Mumbai, India

swaprava@iitb.ac.in

ABSTRACT

We consider the problem of balanced partitioning, i.e., dividing 𝑛

agents into 𝑘 groups of almost equal size (⌊𝑛/𝑘⌋ or ⌈𝑛/𝑘⌉), where the
agents form a friendship network, ensuring various fairness and

efficiency criteria. The utility of an agent is the count of its friends

in the same group as itself. When partitions into two groups are

considered, we show that approximate envy-freeness related to the

maximum degree of the graph can be obtained via a linear-time

algorithm for arbitrary graphs. We also show that envy-freeness

and core properties can be extended along with Pareto optimality

in arbitrary graphs for such partitions. We then concentrate on

the case of grid graphs having nodes on the 2D integer lattice, and

demonstrate the impossibility of perfect envy-freeness. However,

weaker guarantees like envy-freeness up to two friends are achiev-

able for balanced 𝑘-partitions in a computationally efficient manner.

We show that certain such balanced partitions belong to an exact

and an approximate core when considering balanced 2-partitions.

KEYWORDS

Graphs; Balanced partition; Envy-freeness; Pareto optimality; Core.

ACM Reference Format:

Pulkit Agarwal, Harshvardhan Agarwal, Vaibhav Raj, and Swaprava Nath.

2025. Harmonious Balanced Partitioning of a Network of Agents. In Proc.

of the 24th International Conference on Autonomous Agents and Multiagent

Systems (AAMAS 2025), Detroit, Michigan, USA, May 19 – 23, 2025, IFAAMAS,

11 pages.

1 INTRODUCTION

Consider a school hosting a large sports event wheremultiple teams,

formed from its students, compete for an overall prize. In such

competitions, players are typically divided into (almost) equally-

sized teams at random. However, a crucial aspect of team sports is

the need for coordination among teammates, which adds an extra

layer of complexity to the task.

Our study models situations like the one described above. Sup-

pose we have symmetric friendship relations among 𝑛 agents, rep-

resented by a network. The goal is to divide these 𝑛 agents into 𝑘

groups of nearly equal size, with an agent’s utility defined as the

This work is licensed under a Creative Commons Attribution Inter-

national 4.0 License.

Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2025), Y. Vorobeychik, S. Das, A. Nowé (eds.), May 19 – 23, 2025, Detroit, Michigan,

USA.© 2025 International Foundation for Autonomous Agents andMultiagent Systems

(www.ifaamas.org).

number of friends they have within their own group. We call such

a division a balanced 𝑘-partition (BP-𝑘). In the example above, the

higher utility of an agent in a partition is informally equivalent to

the agent being able to coordinate better with their teammates.

This problem of partitioning agents in an undirected friendship

network into groups of almost equal size was introduced by Li

et al. [17]. They posed it as an extension of the stable roommates

problem [14], which requires an even number of agents and limits

group size to exactly two agents. This problem typically considers

preference profiles for each agent over all others. However, under

our formulation, we focus only on binary preferences (friend or

not), which are useful in practice where it may not be possible to

obtain a full preference profile. Numerous works have also studied

the three-dimensional generalization [2, 8, 13, 18, 19], where groups

of three are formed.

Envy-freeness (EF) and efficiency in balanced 𝑘-partitions of

graphs are natural considerations in this context. We begin by an-

alyzing general graphs, establishing EF guarantees based on the

maximum vertex degree. Our investigation reveals that even the

seemingly simpler case of 2-partitions presents substantial tech-

nical challenges. However, graph bisections are crucial in various

real-world applications, such as team partitions in sports, biolog-

ical partitioning, and educational group formation, highlighting

their practical importance. While Li et al. [17] conducted an in-

depth study on trees, these structures are less representative of

typical friendship networks. Consequently, we shift our focus to

grid graphs, which offer more analytical tractability and stronger

guarantees. Their unique combinatorial properties require the de-

velopment of techniques distinct from those used by Li et al. [17].

They are also highly relevant in practical applications. For instance,

Feldmann [10] emphasizes their importance in optimizing data dis-

tribution for parallel computing. Additionally, they serve as useful

models for cities, where households (represented as agents) may

prefer to be grouped with their neighbors for local activities such

as cleanliness drives or community events.

1.1 Our Contributions

Our work builds on the framework established by Li et al. [17],

but introduces several key differences. We emphasize the role of

graph structures, refine the concept of envy to make it more robust,

and focus on balanced partitions meeting specific fairness criteria.

Additionally, we examine Pareto optimality alongside envy-freeness

and core, both individually and in combination.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Table 1: Summary of the results. The notation BP-𝑘 denotes a balanced 𝑘-partition, EF-𝑟 implies that no agent envies another

by more than 𝑟 , and GrG denotes a grid graph. For detailed definitions of the properties, please see Section 2.

Results Guarantee

General Graphs

∀𝐺 = (𝑉 , 𝐸), ∃ a EF-(max{Δ(𝐺) − 2, 2}) BP-2 (Theorem 1) O(|𝑉 | + |𝐸 |) algorithm (Algorithm 3)

∀𝐺 = (𝑉 , 𝐸) and ∀ 𝑟 ⩾ 0, 𝛼 ⩾ 1, 𝛽 ⩾ 0,

1. ∃ EF-𝑟 BP-2 =⇒ ∃ (EF-𝑟 + PO) BP-2
2. ∃ (𝛼, 𝛽)-core BP-2 =⇒ ∃ ((𝛼, 𝛽)-core + PO) BP-2 Existence

3. ∃ ((𝛼, 𝛽)-core + EF-𝑟) BP-2
=⇒ ∃ ((𝛼, 𝛽)-core + EF-𝑟 + PO) BP-2

(Theorems 2 and 3)

Grid Graphs

∀𝐺 = (𝑉 , 𝐸) ∈ GrG, ∃ a EF-2 BP-𝑘 , ∀𝑘 ⩾ 2 (Theorem 4) O(|𝑉 | log(|𝑉 |)) algorithm
∀𝐺 = (𝑉 , 𝐸) ∈ GrG, ∃ a EF-2 BP-2 in (1, 1)-core (Theorem 5) (Algorithm 4)

∀𝐺 = (𝑉 , 𝐸) ∈ GrG, ∃ a BP-2 in (1, 0)-core (Theorem 6) Existence (Algorithm 5)

For any graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 𝑛, we present a linear-time

algorithm that constructs a BP-2 satisfying EF-(max{Δ(𝐺) − 2, 2})
for any arbitrary graph, where Δ(𝐺) is the maximum degree of any

vertex in𝐺 , and EF is defined in Definition 4. This result: (1) partially

addresses the open question in [17] by proving the existence of a

EF-2 BP-2 for graphs with Δ(𝐺) ⩽ 4, (2) improves the best-known

result regarding the existence of a EF-(O(
√
𝑛)) BP-2 [17] for graphs

where Δ(𝐺) ≪
√
𝑛, and (3) establishes a link between biconnected

components and graph partitioning, offering a potential direction

for future research on this problem. We also show that every graph

admits a Pareto optimal (PO) BP-2 that can be constructed without

compromising its fairness (EF) and stability (core) criteria.

For the special class of grid graphs, we show that a EF-2 BP-𝑘

can always be found via an efficient algorithm. For 𝑘 = 2, the same

algorithm returns a BP-2 that satisfies the additional guarantee of

being in the (1, 1)-core (as defined in Definition 5). Furthermore,

we prove that for grid graphs, a BP-2 in (1, 0)-core always exists.
Table 1 highlights our major contributions.

1.2 Related Works

In the literature, most works have focused on finding minimum-cut

balanced and unbalanced partitions [1, 11, 15, 21]. Li et al. [17] used

min-cut partitions for a number of their results on the existence

of balanced partitions in the core. Recent studies on balanced 2-

partitioning of graphs (or graph bisections) have also looked at com-

putational complexity and approximations of partitions in which

every node has at least 𝐻 neighbors in its own group [4, 5, 20]. If

𝐻 is not constant, and is instead set to half of each node’s degree,

this aligns with Nash stability. Unlike these works, we develop an

efficient algorithm to approximate the 𝐻 = 1 case, which is used to

prove that a EF-2 BP-2 exists for all graphs with Δ(𝐺) ⩽ 4.

A different dimension along which existing literature has var-

ied is finding partitions with bounded group sizes. Levinger et al.

[16] demonstrated the NP-completeness of the utility maximiza-

tion problem in this setup, proposed a poly-time approximation

algorithm for the task, and further explored stability through the

notion of the core. Boehmer and Elkind [7] formulated the group-

partitioning task from the viewpoint of diversity preferences, where

agents belong to exactly one of two groups and each agent has a

weak preference order on the composition of their group. Our work

differs from these tasks both due to the complexity of forming a

fixed-size coalition, and the presence of a direct binary preference

order over all the participants. An orthogonal study was also done

by Bilò et al. [6], that considered the notion of swap stability in fixed-

size group partitions, defined as a partition in which no agent can

improve its utility by swapping places with another agent without

decreasing the utility of the other agent. Even though the underly-

ing model is the same, our fairness notions differ significantly, with

the notion of envy-freeness being stronger than swap stability as

the latter does not allow swaps (or transfers) in which the utility of

an agent increases at all.

One of the most overlooked aspects in balanced partitioning is

that of Pareto optimality. Aziz et al. [3] were the first to introduce

Pareto optimality in the context of coalition formation games, pre-

senting various results on its computational intractability across

different game classes, while Li et al. [17] only demonstrated that

some of their BP-𝑘 algorithms fail to achieve PO. To the best of our

knowledge, this is the first work to investigate the existence of PO

bisections alongside other fairness guarantees.

2 PRELIMINARIES

Define [ℓ] = {1, 2, . . . , ℓ}. Consider a group of agents (denoted by

set 𝑉 with |𝑉 | = 𝑛) connected via an undirected graph 𝐺 = (𝑉 , 𝐸),
where each edge (𝑖, 𝑗) ∈ 𝐸 represents that 𝑖 and 𝑗 are neighbors

in 𝐺 . The degree of node 𝑖 in 𝐺 is denoted by 𝑑𝐺 (𝑖), and Δ(𝐺) =
max𝑖∈𝑉 𝑑𝐺 (𝑖) denotes the maximum degree of the graph 𝐺 . The

set of neighbors of agent 𝑖 in 𝐺 is denoted by 𝑁𝐺 (𝑖). The subgraph
of 𝐺 induced by a set of vertices 𝑆 ⊆ 𝑉 is denoted by 𝐺 [𝑆].

Definition 1 (𝑘-partition). A𝑘-partition of a graph𝐺 = (𝑉 , 𝐸)
is a set of 𝑘 mutually exclusive and exhaustive subsets of𝑉 . Formally,

it is the collection 𝑍 = {𝑍1, 𝑍2, . . . , 𝑍𝑘 } s.t.

𝑍ℓ ⊆ 𝑉 ,∀ℓ ∈ [𝑘], 𝑍ℓ1 ∩ 𝑍ℓ2 = ∅,∀ℓ1 ≠ ℓ2, and
⋃
ℓ∈[𝑘]

𝑍ℓ = 𝑉

Definition 2 (Balanced 𝑘-partition). A balanced 𝑘-partition

𝑍 = {𝑍1, 𝑍2, . . . , 𝑍𝑘 } of a graph𝐺 = (𝑉 , 𝐸) is a 𝑘-partition satisfying
|𝑍ℓ | ∈ {⌊𝑛/𝑘⌋ , ⌈𝑛/𝑘⌉} ,∀ℓ ∈ [𝑘].

Wewill use the shorthand BP-𝑘 tomention a balanced𝑘-partition.

The set of neighbors of agent 𝑖 in a𝑘-partition𝑍 is given by𝑁𝑍
𝐺
(𝑖) =

{ 𝑗 ∈ 𝑁𝐺 (𝑖) : 𝑖, 𝑗 ∈ 𝑍ℓ , for some ℓ ∈ [𝑘]}. The utility of agent 𝑖 in

a 𝑘-partition 𝑍 is defined as 𝑢𝐺
𝑖
(𝑍) = |𝑁𝑍

𝐺
(𝑖) |, i.e., the number

of neighbors of 𝑖 in 𝐺 that belong to the same subset as 𝑖 in the

partition 𝑍 . Wherever it is clear from context, we will drop 𝐺 from

every notation that uses it. The subset in which agent 𝑖 belongs in a

balanced 𝑘-partition𝑍 is denoted by𝑍−1 (𝑖), i.e.,𝑍−1 (𝑖) = ℓ, s.t. 𝑖 ∈
𝑍ℓ .

Define a swapping partition of a given 𝑘-partition 𝑍 between two

agents 𝑖 and 𝑗 as the new 𝑘-partition 𝑍 ′ such that

𝑍 ′
𝑍 −1 (𝑖) = (𝑍𝑍 −1 (𝑖) \ {𝑖}) ∪ { 𝑗}

𝑍 ′
𝑍 −1 (𝑗) = (𝑍𝑍 −1 (𝑗) \ { 𝑗}) ∪ {𝑖}

𝑍 ′
𝑍 −1 (𝑝) = 𝑍𝑍 −1 (𝑝) , ∀𝑝 ∈ 𝑉 \ {𝑖, 𝑗}.

In other words, the swapping partition 𝑍 ′ swaps the subsets in

which agents 𝑖 and 𝑗 belonged in 𝑍 . We will denote the swapping

partition 𝑍 ′ with the notation swap(𝑍, 𝑖, 𝑗). It is easy to see that,

swap(𝑍, 𝑖, 𝑗) is non-trivial only when 𝑍−1 (𝑖) ≠ 𝑍−1 (𝑗), i.e., 𝑖 and
𝑗 are in different subsets of 𝑍 .

Define a transfer partition of a given 𝑘-partition 𝑍 for agent

𝑖 to another subset 𝑍ℓ , ℓ ≠ 𝑍−1 (𝑖), |𝑍ℓ | < |𝑍𝑍 −1 (𝑖) | as the new

𝑘-partition 𝑍 ′ such that

𝑍 ′
𝑍 −1 (𝑖) = 𝑍𝑍 −1 (𝑖) \ {𝑖}

𝑍 ′ℓ = 𝑍ℓ ∪ {𝑖}
𝑍 ′𝑝 = 𝑍𝑝 , ∀𝑝 ≠ 𝑍−1 (𝑖), ℓ .

In simpler terms, the transfer moves an agent 𝑖 from its original

larger subset to a smaller subset. We will denote such a transferred

partition 𝑍 ′ with the notation tran(𝑍, 𝑖, ℓ).
We start off with an observation, used in defining envy.

Observation 1. Given a pair of agents (𝑖, 𝑗) and a BP-𝑘 𝑍 ,

swap(𝑍, 𝑖, 𝑗) is also a BP-𝑘 . Also, if |𝑍𝑍 −1 (𝑗) | < |𝑍𝑍 −1 (𝑖) |, then
tran(𝑍, 𝑖, 𝑍−1 (𝑗)) is also a BP-𝑘 , and

𝑢𝑖

(
tran(𝑍, 𝑖, 𝑍−1 (𝑗))

)
⩾ 𝑢𝑖 (swap(𝑍, 𝑖, 𝑗))

Proof. Note that both swap and tran are 𝑘-partitions. Here,

swap is a BP-𝑘 as the sizes of all subsets in the new partition remain

the same. And tran is a BP-𝑘 as we transfer node 𝑖 from a larger

subset of size ⌈𝑛/𝑘⌉ to a smaller subset of size ⌊𝑛/𝑘⌋, which simply

exchanges the sizes of these subsets. Finally, taking 𝑍−1 (𝑗) = ℓ ,

𝑢𝑖 (tran(𝑍, 𝑖, ℓ)) =
{
𝑢𝑖 (swap(𝑍, 𝑖, 𝑗)) + 1 ; (𝑖, 𝑗) ∈ 𝐸
𝑢𝑖 (swap(𝑍, 𝑖, 𝑗)) ; (𝑖, 𝑗) ∉ 𝐸

since 𝑗 is in 𝑖’s subset after tran, but not after swap. □

We can now define envy and envy-freeness as follows.

Definition 3 (Envy). In a BP-𝑘 𝑋 , an agent 𝑖 has an envy 𝑟 ⩾ 0

towards another agent 𝑗 if

(1) case |𝑋ℓ𝑗 | < |𝑋ℓ𝑖 | : 𝑢𝑖 (tran(𝑋, 𝑖, ℓ𝑗)) − 𝑢𝑖 (𝑋) = 𝑟 .
(2) case |𝑋ℓ𝑗 | ⩾ |𝑋ℓ𝑖 | : 𝑢𝑖 (swap(𝑋, 𝑖, 𝑗)) − 𝑢𝑖 (𝑋) = 𝑟 .

where ℓ𝑖 = 𝑋
−1 (𝑖) and ℓ𝑗 = 𝑋 −1 (𝑗).

The definition says that if agent 𝑖 thinks that a swap or transfer

with another agent outside its own subset in a partition can increase

its utility, then it is envious of that agent. Here, if tran is possible,

then it is preferred over swap, as that yields a weakly better utility

for the agent (Observation 1).

Definition 4 (EF-𝑟). For 𝑟 ⩾ 0, a BP-𝑘 𝑋 is called envy-free up

to 𝑟 (EF-𝑟), if for every pair of agents 𝑖, 𝑗 ∈ 𝑉 , 𝑖 envies 𝑗 by at most 𝑟 .

Li et al. [17] only considered swaps as part of their definition of

envy, but because of Observation 1, Definition 4 provides stronger

assurances against any form of envy. This also ensures that all our

results still hold in purview of the definition used by Li et al. [17].

This adjustment was primarily motivated by the fact that when an

agent envies their neighbor, it is because they see their neighbor’s

group as better and would prefer to join it if possible. The utility

gained from being with the neighbor is merely a bonus, as it still

resolves their initial envy. We also make another useful observation

about envy below.

Observation 2. If agent 𝑖 envies agent 𝑗 by 𝑟 > 0 in BP-𝑘 𝑋 , then

𝑋 −1 (𝑗) ≠ 𝑋 −1 (𝑖) and 𝑖 has at least 𝑟 neighbors in 𝑋𝑋 −1 (𝑗) .

Proof. Since agent 𝑖 has an envy 𝑟 > 0 towards agent 𝑗 in BP-

𝑘 𝑋 , utility of agent 𝑖 increases from its current utility 𝑢𝑖 (𝑋) by
𝑟 . This increase can either occur by a tran or a swap operation

performed by 𝑖 from 𝑋𝑋 −1 (𝑖) to 𝑋𝑋 −1 (𝑗) (and these two subsets

must be different). In both cases, it is necessary that there exist at

least 𝑟 neighbors of 𝑖 in 𝑋𝑋 −1 (𝑗) . □

Definition 5 (Core). For 𝛼 ⩾ 1, 𝛽 ⩾ 0, a BP-𝑘 𝑋 is said to be

in (𝛼, 𝛽)-core if there does not exist another BP-𝑘 𝑋 ′ and an index

ℓ ∈ [𝑘] s.t. ∀𝑖 ∈ 𝑋 ′
ℓ
, 𝑢𝑖 (𝑋 ′) > 𝛼 · 𝑢𝑖 (𝑋) + 𝛽 .

This definition only requires the utility of agents in𝑋 ′
ℓ
to increase.

If, for some BP-𝑘 𝑋 , such a coalition 𝑋 ′
ℓ
exists, we call 𝑋 ′

ℓ
an (𝛼, 𝛽)-

blocking coalition of BP-𝑘 𝑋 . Wherever clear from context, we

simply call 𝑋 ′
ℓ
a blocking coalition.

A BP-𝑘 is said to be in the core for graph 𝐺 if it satisfies (1, 0)-
core property as defined above. For 𝑘 = 2, the existence of core

means that there is no other BP-2 (𝑆,𝑉 \ 𝑆), such that the utility

of all nodes in 𝑆 strictly increases in this new partition. Also note

that (1, 0)-core is stronger than (𝛼, 𝛽)-core for any other choice of

𝛼 ⩾ 1, 𝛽 ⩾ 0.

Definition 6 (Pareto Optimal). A BP-𝑘 𝑋 is called Pareto

optimal (PO), if there does not exist another BP-𝑘 𝑋 ′ such that for

all nodes 𝑖 ∈ 𝑉 , we have 𝑢𝑖 (𝑋 ′) ⩾ 𝑢𝑖 (𝑋), and the strict inequality

holds for at least one node 𝑗 ∈ 𝑉 .
If 𝑋 is not Pareto optimal, then the BP-𝑘 𝑋 ′ is called a Pareto

improvement to partition 𝑋 .

2.1 Graphs of interest

In this section, we provide a brief review of certain types of graphs

and their properties that will be used later in the paper. We use the

standard graph-theoretic terminology. Let 𝐺 be the complement

of graph 𝐺 . We denote by 𝐾𝑛,𝐶𝑛 , and 𝑃𝑛 , the complete undirected

graph on 𝑛 vertices, a simple cycle with 𝑛 vertices, and a path graph

with 𝑛 vertices respectively. Also, we define the comb graph
1
on

1
The name of this graph comes from the fact that it can be drawn like a comb.

2𝑛 vertices as 𝑃𝑛
⊙

𝐾1, i.e., the graph constructed by connecting 𝑛

vertices in a path, each of which is connected to a pendant edge.

This graph consists of 2𝑛 − 1 edges, and is denoted by comb𝑛 .

Biconnected graphs. A biconnected graph𝐺 = (𝑉 , 𝐸) with |𝑉 | > 1

is a connected graph for which the subgraph 𝐺 [𝑉 \ {𝑣}] remains

connected for all 𝑣 ∈ 𝑉 .

Definition 7 (𝑠𝑡-Numbering). An 𝑠𝑡-numbering of 𝐺 = (𝑉 , 𝐸)
with |𝑉 | = 𝑛 > 1 and two vertices 𝑠, 𝑡 ∈ 𝑉 is a mapping from 𝑉 to

𝑁 = [𝑛], such that the source 𝑠 is labeled 1, the sink 𝑡 is labeled 𝑛,

and every vertex 𝑖 = 2, . . . , 𝑛 − 1 is adjacent both to some vertex ℎ < 𝑖

and to some vertex 𝑗 > 𝑖 .

It is well known that for any biconnected graph with any

arbitrarily chosen source 𝑠 and sink 𝑡 , an 𝑠𝑡−numbering ex-

ists and can be found in linear time [9]. We treat 𝑆 =

st-numbering(𝐺, source, sink) as a procedure that returns the

above mapping, i.e. 𝑆 (𝑣) denotes the label of some 𝑣 ∈ 𝑉 in this

𝑠𝑡-numbering. When the procedure is called without a sink argu-

ment, it is understood that any arbitrary vertex (different from the

source) in 𝐺 can be used as the sink. The utility of 𝑠𝑡-numbering

comes from the following observation.

Observation 3. Consider a biconnected graph 𝐺 = (𝑉 , 𝐸) with
an arbitrary node 𝑣 ∈ 𝑉 and 𝑆 = st-numbering(𝐺, source = 𝑣). For
any positive integer 𝑘 with 𝑉𝑘 = {𝑣 ∈ 𝑉 | 𝑆 (𝑣) ⩽ 𝑘}, subgraphs
𝐺 [𝑉𝑘] and 𝐺 [𝑉 \𝑉𝑘] are connected graphs.

Proof. We show that 𝐺 [𝑉𝑘] is connected for all 𝑘 ⩾ 1, and the

result for the other subgraph follows simply by reversing the source

and the sink in the 𝑠𝑡-numbering of 𝐺 . By Definition 7, any node

in 𝑉𝑘 labeled 𝑖 > 1 also has a neighbor in 𝑉𝑘 with a smaller label

ℎ < 𝑖 . This ensures that every node labeled 𝑖 > 1 has a path joining

it to the node labeled 1. Thus,𝐺 [𝑉𝑘] forms a connected graph. □

A connected graph that is not a biconnected graph will have cut

vertices, i.e. a vertex whose removal causes the graph to become

disconnected. A biconnected component is a maximal biconnected

subgraph in a graph.

Definition 8 (Block-Cut Tree). Any connected graph decom-

poses into a tree with biconnected components (or blocks) and cut

vertices as vertices, called the block-cut tree of the graph, where the

blocks are attached to shared cut vertices.

Hopcroft and Tarjan [12] gave a linear-time algorithm to find

the block-cut tree for any connected graph.

Definition 9 (Leafy-Cut Vertex). A leafy-cut vertex in a

rooted block-cut tree is a cut vertex that does not have any other

cut vertex as its descendant.

A leafy-cut vertex 𝑧 has a non-zero number of descendants which

can be partitioned into sets of vertices 𝑏1, . . . , 𝑏𝑘 (𝑘 ⩾ 1) such that

∀𝑖 ∈ [𝑘], |𝑏𝑖 | > 0 and 𝐺 [𝑏𝑖 ∪ {𝑧}] is a biconnected graph. We refer

to each 𝑏𝑖 as a biconnected block.

Grid graphs. A grid graph is a collection of nodes on the integer

2D coordinate lattice with possible edges between them only if the

nodes are adjacently placed on the lattice.

Definition 10 (Grid Graph). 𝐺 = (𝑉 , 𝐸) is a grid graph if we

can create mappings 𝑋 : 𝑉 → Z and 𝑌 : 𝑉 → Z such that for each

pair of nodes 𝑖, 𝑗 ∈ 𝑉 , where (𝑋 (𝑖), 𝑌 (𝑖)) ≠ (𝑋 (𝑗), 𝑌 (𝑗)),
[(𝑖, 𝑗) ∈ 𝐸] =⇒ [|𝑋 (𝑖) − 𝑋 (𝑗) | + |𝑌 (𝑖) − 𝑌 (𝑗) | = 1] ,

where 𝑋 and 𝑌 are the mappings to the 𝑥 and 𝑦-coordinates of the

nodes on the lattice.

Wewill denote the set of grid graphs with GrG. We are now ready

to present the main results.

3 MAIN RESULTS: GENERAL GRAPHS

We first look at envy-freeness and Pareto optimality properties for

arbitrary graphs. For both these properties, we will need a lemma

that formally shows the necessary and sufficient conditions for the

existence of a EF-𝑟 BP-2 2
.

Lemma 1. A BP-2 𝑋 in 𝐺 = (𝑉 , 𝐸) is EF-𝑟
(1) if

|𝑁𝑋 (𝑖) | ⩾ 𝑑 (𝑖) − 𝑟
2

, ∀𝑖 ∈ 𝑉 , and, (1)

(2) only if

|𝑁𝑋 (𝑖) | ⩾ 𝑑 (𝑖) − 𝑟 − 1
2

, ∀𝑖 ∈ 𝑉 . (2)

We state the conditions 1 and 2 separately since both of them

will be used for proving the upcoming results.

Proof. (Condition 1: sufficiency): Let 𝑋 be a BP-2. Suppose

𝑋 is not EF-𝑟 . Hence, ∃𝑖, 𝑗 ∈ 𝑉 such that 𝑖 has an envy > 𝑟

towards 𝑗 . Case 1: |𝑋𝑋 −1 (𝑖) | > |𝑋𝑋 −1 (𝑗) |: here the violation of

EF-𝑟 implies 𝑢𝑖 (tran(𝑋, 𝑖, 𝑋 −1 (𝑗))) − 𝑢𝑖 (𝑋) > 𝑟 . This implies,

(𝑑 (𝑖) − |𝑁𝑋 (𝑖) |) − |𝑁𝑋 (𝑖) | > 𝑟 . This violates the condition in

Equation (1). Case 2: |𝑋𝑋 −1 (𝑖) | ⩽ |𝑋𝑋 −1 (𝑗) |: here the violation of

EF-𝑟 implies 𝑢𝑖 (swap(𝑋, 𝑖, 𝑗)) −𝑢𝑖 (𝑋) > 𝑟 . Here, two subcases can
occur, (a) 𝑖 and 𝑗 are neighbors in 𝐺 : then (𝑑 (𝑖) − |𝑁𝑋 (𝑖) | − 1) −
|𝑁𝑋 (𝑖) | > 𝑟 (the additional −1 appears since 𝑗 also changes its

subset in a swap), and (b) 𝑖 and 𝑗 are not neighbors in 𝐺 : then

(𝑑 (𝑖) − |𝑁𝑋 (𝑖) |) − |𝑁𝑋 (𝑖) | > 𝑟 . Both these subcases violate the

condition in Equation (1).

(Condition 2: necessity): Suppose 𝑋 is a EF-𝑟 BP-2. This implies

that ∀𝑖, 𝑗 ∈ 𝑉 , 𝑖 has an envy ⩽ 𝑟 towards 𝑗 . Now consider the

cases 1 and 2 above. Carrying out similar calculations we get that

(𝑑 (𝑖) − |𝑁𝑋 (𝑖) |) − |𝑁𝑋 (𝑖) | ⩽ 𝑟 for case 1 and the second subcase

of case 2. But for the first subcase of case 2 (where (𝑖, 𝑗) ∈ 𝐸),
we get (𝑑 (𝑖) − |𝑁𝑋 (𝑖) | − 1) − |𝑁𝑋 (𝑖) | ⩽ 𝑟 . Hence the condition
that satisfies all these conditions (and hence necessary) is given by

Equation (2). □

We are now ready to present the results.

3.1 Envy-Freeness

Theorem 1. For every graph 𝐺 , there exists a BP-2 that is EF-

(max{Δ(𝐺) − 2, 2}), which can be found in linear time.

Wefirst derive a corollary of Lemma 1 to get a sufficient condition

for Theorem 1.

2
From now on, we will omit𝐺 from our notations when it is clear from the context.

Algorithm 1 BiconnPart: Biconnected Partition

Input: Biconnected graph 𝐺 = (𝑉 , 𝐸), integers 𝑟, 𝑏
Require: 𝑟, 𝑏 > 1; 𝑟 + 𝑏 = |𝑉 |
Output: 𝑋 = {R,B}, |R | = 𝑟
1: 𝑦, 𝑧 ← arbitrary nodes in 𝑉 , 𝑦 ≠ 𝑧;

2: 𝑆 ← st-numbering(𝐺, source = 𝑦, sink = 𝑧)
3: R ← {𝑣 ∈ 𝑉 | 𝑆 (𝑣) ⩽ 𝑟 }, B ← 𝑉 \ R
4: return 𝑋 = {R, B}

Lemma 2. A BP-2 𝑋 of 𝐺 = (𝑉 , 𝐸) is EF-(max{Δ − 2, 2}) if for
all nodes 𝑖 ∈ 𝑉 , at least one of the following two conditions holds:

(1) 𝑑 (𝑖) ⩽ 2, or (2) |𝑁𝑋 (𝑖) | ⩾ 1.

Proof. For 𝑑 (𝑖) ⩽ 2, we know that
𝑑 (𝑖)−2

2
⩽ 0 ⩽ |𝑁𝑋 (𝑖) |.

Otherwise |𝑁𝑋 (𝑖) | ⩾ 1 ⩾ 𝑑 (𝑖)−(Δ−2)
2

. Thus, ∀𝑖 ∈ 𝑉 , |𝑁𝑋 (𝑖) | ⩾
𝑑 (𝑖)−max{Δ−2,2}

2
. Following condition 1 of Lemma 1, we conclude

that 𝑋 is EF-(max{Δ − 2, 2}). □

By Lemma 2, to obtain a EF-(max{Δ − 2, 2}) BP-2, it suffices to

ensure that every vertex with degree > 2 has at least 1 neighbor

in the same group. For simplicity, we refer to the two subsets of

the partition by the colors red and blue. We construct the BP-2

sequentially, first for biconnected graphs, then for connected graphs,

and finally for arbitrary graphs.

Lemma 3. For any biconnected graph 𝐺 = (𝑉 , 𝐸) and 𝑟, 𝑏 > 1

with 𝑟 + 𝑏 = |𝑉 |, Algorithm 3 returns a 2-partition 𝑋 = (R,B) with
|R | = 𝑟, |B| = 𝑏 s.t. |𝑁𝑋 (𝑖) | ⩾ 1, ∀𝑖 ∈ 𝑉 .

Proof. Algorithm 1 adds the first 𝑟 vertices in an 𝑠𝑡-numbering

of𝐺 to setR. UsingObservation 3,𝐺 [R] and𝐺 [𝑉 \R] are connected
graphs, which ensures that every vertex in𝑉 has at least 1 neighbor

in the same group (since |R |, |𝑉 \ R| > 1). □

For connected graphs 𝐺 = (𝑉 , 𝐸), we use their rooted block-cut

tree T to color the graph appropriately in Algorithm 3. We first

color all vertices in 𝑉 blue, and then change the color of 𝑟 > 1

vertices to red to get a desired 2-partition 𝑋 . Here, in each iteration

(starting at Line 6 of Algorithm 3), we color all the biconnected chil-

dren blocks of some leafy-cut vertex red (Line 12), till 𝑟 nodes have

been colored red. Lemma 4 deals with the case when the remaining

nodes, which are to be colored red, fit within the subtree of a leafy-

cut vertex 𝑧 (Line 17). In this case, we call the SelectPairsFirst

procedure given in Algorithm 2, which colors some of the nodes

red in this subtree of 𝑧, while satisfying Equation (3) below for

all nodes. The coloring is done by using an 𝑠𝑡-numbering of the

biconnected blocks with the source as node 𝑧.

Lemma 4. For a connected graph 𝐺 = (𝑉 , 𝐸) and its rooted block-
cut tree T , let 𝑧 be a leafy-cut vertex in T with biconnected blocks

{𝑏𝑖 }𝑘𝑖=1 as its children. Then for any 1 < 𝑟 ⩽ Σ𝑘
𝑖=1
|𝑏𝑖 |, 𝑏 > 1, 𝑟 +𝑏 =

|𝑉 |, ∃ 2-partition𝑋 = (R,B) with |R | = 𝑟, |B| = 𝑏 such that∀ 𝑖 ∈ 𝑉 ,

either 𝑑 (𝑖) = 1, or |𝑁𝑋 (𝑖) | ⩾ 1 (3)

Also, for any 𝑗 ∈ [𝑘],

|𝑏 𝑗 | = 1 and 𝑏 𝑗 ⊆ B =⇒ 𝑧 ∈ B

Algorithm 2 SelectPairsFirst

Input:

Connected graph 𝐺 = (𝑉 , 𝐸)
Block-cut tree T , leafy-cut vertex 𝑧 of T
List of children biconnected blocks {𝑏𝑖 }𝑘𝑖=1, integers 𝑟, 𝑏

Require: 1 < 𝑟 ⩽ Σ𝑘
𝑖=1
|𝑏𝑖 |, 𝑏 > 1, 𝑟 + 𝑏 = |𝑉 |

Output: R ⊆ 𝑉 such that |R | = 𝑟
1: 𝑆 𝑗 ← st-numbering(𝐺 [𝑏 𝑗 ∪ {𝑧}], source = 𝑧), ∀𝑗 ∈ [𝑘]
2: last_blue[𝑗] ← |𝑏 𝑗 |, ∀𝑗 ∈ [𝑘]
3: // Make 𝑟 even by allotting an odd number of nodes to R
4: if 𝑟 is odd then

5: if ∃ 𝑗 ∈ [𝑘] s.t. |𝑏 𝑗 | = 1 then

6: last_blue[𝑗] ← 0; 𝑟 ← 𝑟 − 1
7: else if ∃ 𝑗 ∈ [𝑘] s.t. |𝑏 𝑗 | ⩾ 3 then

8: last_blue[𝑗] ← |𝑏 𝑗 | − 3; 𝑟 ← 𝑟 − 3
9: else if |𝑏 𝑗 | = 2 for all 𝑗 ∈ [𝑘] then
10: R ← ⋃⌊𝑟/2⌋

𝑖=1
𝑏𝑖 ∪ {𝑧}; return R

11: end if

12: end if

13: PHASE I: Color Pairs

14: idx ← 1 // First loop to color pairs red

15: while 𝑟 > 0 & idx ⩽ 𝑘 do

16: remaining← last_blue[idx]
17: // Note that ‘reqd’ is even, hence pairs

18: reqd← min (𝑟, 2 ⌊remaining/2⌋)
19: last_blue[idx] ← remaining − reqd
20: 𝑟 ← 𝑟 − reqd; idx← idx + 1
21: end while

22: PHASE II: Color Remainders

23: idx ← 1 // Second loop to color remaining odd blocks

24: while 𝑟 > 0 & idx ⩽ 𝑘 do

25: remaining← last_blue[idx]
26: // Note that ‘reqd’ will be either 0 or 1

27: reqd← min (𝑟, remaining)
28: last_blue[idx] ← remaining − reqd
29: 𝑟 ← 𝑟 − reqd; idx← idx + 1
30: end while

31: R ← ∅; idx ← 1 // Adding assigned red nodes to R
32: while idx ⩽ 𝑘 do

33: R ← R ∪ {𝑣 ∈ 𝑏
idx
| 𝑆

idx
(𝑣) > last_blue[idx]}

34: end while

35: return R

This 2-partition can be found in O(|𝑉 | + |𝐸 |) time using the

SelectPairsFirst

(
𝐺,T , 𝑧, {𝑏𝑖 }𝑘𝑖=1, 𝑟 , 𝑏

)
procedure in Algorithm 2.

Proof. We use Algorithm 2 to show the existence of the desired

2-partition. In particular, we show that if R is the output of Algo-

rithm 2, and B = 𝑉 \ R, 𝑋 = (R,B), then Equation (3) holds for

all 𝑖 ∈ 𝑉 , and Lemma 4 holds for all 𝑗 ∈ [𝑘]. We first color the

complete graph blue, and then change the color of 𝑟 vertices to red.

Consider an arbitrary 𝑗 ∈ [𝑘]. Let 𝑆 𝑗 denote the 𝑠𝑡-numbering

of 𝐺 [𝑏 𝑗 ∪ {𝑧}] with 𝑧 as the source vertex. Also, let last_blue[𝑗]
denote the last blue node in the coloring of block 𝑏 𝑗 in order of

its 𝑠𝑡-numbering 𝑆 𝑗 . In other words, at any instant, all nodes in

{𝑣 ∈ 𝑏 𝑗 | 𝑆 𝑗 (𝑣) ⩽ last_blue[𝑗]} are colored blue. Thus, decreasing
the value of last_blue[𝑗] is equivalent to coloring some nodes in

𝑏 𝑗 red. Let 𝐶 = ∪𝑘
𝑖=1
𝑏𝑖 . We first show that every 𝑣 ∈ 𝐶 satisfies

Equation (3). Consider the following two cases for 𝑟 .

(1) 𝑟 is even:We start with Phase 1 (Line 13). In each iteration, we

color an even number of nodes (denoted by reqd in Line 18)

from 𝑏 𝑗 red for some 𝑗 ∈ [𝑘], i.e. the last reqd nodes in 𝑆 𝑗
are colored red. Let 𝑏𝑅 = {𝑣 ∈ 𝑏 𝑗 | 𝑆 𝑗 (𝑣) > last_blue[𝑗]},
which is the set of red-colored nodes in 𝑏 𝑗 . By Observation 3,

𝐺 [𝑏𝑅] and 𝐺 [(𝑏 𝑗 ∪ {𝑧}) \ 𝑏𝑅] are connected graphs. Note

that |𝑏𝑅 | is even (i.e. |𝑏𝑅 | ≠ 1), so any node in 𝑏𝑅 has a same-

colored neighbor. And any node in 𝑏 𝑗 \ 𝑏𝑅 has either 𝑧 as its

neighbor or another node from 𝑏 𝑗 \𝑏𝑅 as neighbor. Since 𝑧 is

blue-colored, every node in 𝑏 𝑗 \ 𝑏𝑅 also has a same-colored

neighbor. Thus, after Phase 1 ends, every descendant of 𝑧

has a same-colored neighbor. Also, we color at most 𝑟 nodes

red by the end of Phase 1 (ensured by Line 18).

If 𝑟 nodes were not colored red by the end of Phase 1, then

we move to Phase 2 (Line 22). Note that if more nodes need

to be colored red after Phase 1, then every 𝑏𝑖 , 𝑖 ∈ [𝑘] has at
most 1 blue node. In each iteration, we choose some 𝑗 ∈ [𝑘]
with |𝑏 𝑗 | odd, and color the remaining blue node 𝑣 in 𝑏 𝑗 red

(the number of nodes to be colored red is denoted by reqd
in Line 27, such that reqd ⩽ 1). This is done till 𝑟 nodes

get colored red. If |𝑏 𝑗 | = 1, then the node 𝑣 ∈ 𝑏 𝑗 satisfies
Equation (3) (as𝑑 (𝑣) = 1). Else the whole set𝑏 𝑗 is colored red,

and since 𝐺 [𝑏 𝑗] forms a connected graph (Observation 3),

so all nodes in 𝑏 𝑗 will have a same-colored neighbor. Finally,

note that the two phases will end after coloring exactly 𝑟

nodes red, since 𝑟 ⩽ |𝐶 |.
(2) 𝑟 is odd: We start at Line 4. If ∃ 𝑗 ∈ [𝑘] with |𝑏 𝑗 | = 1 (Line 5),

then we color the only vertex 𝑣 ∈ 𝑏 𝑗 red. Since 𝑑 (𝑣) = 1, 𝑣

satisfies Equation (3). And we can color the remaining graph

according to 𝑟 even case. Otherwise, if ∃ 𝑗 ∈ [𝑘] with |𝑏 𝑗 | ⩾ 3

(Line 7), then we color the last 3 nodes in the order of 𝑆 𝑗 red,

i.e. 𝑏𝑅 = {𝑣 ∈ 𝑏 𝑗 | 𝑆 𝑗 (𝑣) > |𝑏 𝑗 | − 3} is colored red (we can

do so since 𝑟 ≠ 1). By Observation 3, 𝑏𝑅 forms a connected

graph, so that every node in 𝑏𝑅 has a same-colored neighbor.

The remaining graph can again be colored using the 𝑟 even

method. Finally, if the above two conditions do not hold,

then we must have |𝑏𝑖 | = 2, ∀𝑖 ∈ [𝑘] (Line 9). In this case,

we color the first (𝑟−1)/2 biconnected blocks red, along with

node 𝑧. Then every 𝑏𝑖 , ∀𝑖 ∈ [𝑘] has 2 neighboring nodes

of the same color, ensuring that both of these nodes satisfy

Equation (3).

Thus, the output of Algorithm 2 returns a 2-partition𝑋 = (R,B)
such that |R | = 𝑟 and every descendant of node 𝑧 satisfies Equa-

tion (3). We now show that Equation (3) holds for all nodes in𝑉 \𝐶
as well, and Lemma 4 holds for all 𝑗 ∈ [𝑘]. Consider the color of
node 𝑧 in partition 𝑋 .

(1) 𝑧 ∈ B : Note that 𝐺 [𝑉 \𝐶] is also a connected graph (since

𝑧 is a cut vertex). And every node 𝑣 ∈ 𝑉 \ 𝐶 with 𝑣 ≠ 𝑧 is

also colored blue. If |𝑉 \ 𝐶 | > 1, then every node in 𝑉 \ 𝐶
has a same-colored blue neighbor. Otherwise, we must have

𝑉 = 𝐶∪{𝑧}. Since 𝑏 > 1, there must be at least 1 blue node in

Algorithm 3 ConnPart: Block – Cut Partition

Input: Connected graph 𝐺 = (𝑉 , 𝐸), integers 𝑟, 𝑏
Require: 𝑟, 𝑏 > 1; 𝑟 + 𝑏 = |𝑉 |
Output: 𝑋 = {R,B}, |R | = 𝑟 , |B| = 𝑏
1: if 𝐺 is biconnected then

2: return BiconnPart(𝐺, 𝑟, 𝑏)
3: end if

4: T ← BlockCutTree(𝐺) rooted at a cut vertex 𝑐

5: R ← ∅; 𝑉rem ← 𝑉

6: StartLoop:

7: 𝑧 ← Arbitrary leafy-cut vertex of T [𝑉rem]
8: 𝑧 has 𝑘 biconnected blocks 𝑏1, 𝑏2, . . . , 𝑏𝑘 as children

9: 𝐶 ← ⋃𝑘
𝑖=1 𝑏𝑖 // 𝑏𝑖 does not contain 𝑧, ∀𝑖 ∈ [𝑘]

10: if 𝑟 > |𝐶 | + 1 then
11: // Color all children of 𝑧 red, and trim the graph

12: R ← R ∪𝐶; 𝑟 ← 𝑟 − |𝐶 |; 𝑉rem ← 𝑉 \ R
13: goto StartLoop

14: else if 𝑟 = |𝐶 | + 1 then
15: // Color 𝑧 and all its children red

16: R ← R ∪𝐶 ∪ {𝑧}
17: else if 𝑟 < |𝐶 | + 1 then
18: 𝐺 ← 𝐺 [𝑉rem]; T ← T [𝑉rem]
19: // If 𝑟 is odd, we first color odd nodes to make 𝑟

20: // even. Pairs are then selected from the 𝑏𝑖 ’s.

21: // Finally, an odd element of some 𝑏𝑖 ’s may be

22: // chosen till the requirement of 𝑟 nodes is met.

23: R ← R ∪ SelectPairsFirst(𝐺,T , 𝑧, {𝑏𝑖 }, 𝑟 , 𝑏)
24: end if

25: return 𝑋 = (R, 𝑉 \ R)

𝐶 . As we color nodes red from the end in the 𝑠𝑡-numbering

of the biconnected blocks in 𝐶 , some blue node 𝑣 ∈ 𝐶 must

be a neighbor of 𝑧, as desired.

(2) 𝑧 ∈ R : This can only happen when |𝑏𝑖 | = 2, ∀𝑖 ∈ [𝑘]
(Line 9). Thus, if ∃ 𝑗 ∈ [𝑘] with |𝑏 𝑗 | = 1, then we must have

𝑧 ∈ B, proving Lemma 4. Since 𝑟 > 1, 𝑧 will have a same-

colored red neighbor in 𝑏1. Let𝑉𝐵 = 𝑉 \ (𝐶 ∪ {𝑧}). Then the

graph 𝐺 [𝑉𝐵] is a blue-colored connected graph. If |𝑉𝐵 | > 1,

then each node in𝑉𝐵 will also have a same-colored neighbor

in 𝑉𝐵 . Otherwise, if |𝑉𝐵 | = 1, then this node 𝑣 ∈ 𝑉𝐵 satisfies

𝑑 (𝑣) = 1.

Thus, the output of Algorithm 2 satisfies all the conditions given in

this Lemma.

(Complexity): To see why Algorithm 2 finishes in O(|𝑉 | + |𝐸 |) time,

note that it requires finding the 𝑠𝑡-numbering of each biconnected

block (which is a linear-time operation), and simply iterating over

the blocks in phases 1 and 2. □

Lemma 5 provides a complete characterization of the output of

Algorithm 3 for any connected graph 𝐺 .

Lemma 5. For any connected graph 𝐺 = (𝑉 , 𝐸) and 𝑟, 𝑏 > 1

with 𝑟 + 𝑏 = |𝑉 |, Algorithm 3 returns a 2-partition 𝑋 = (R,B) s.t.
|R | = 𝑟, |B| = 𝑏 and ∀𝑖 ∈ 𝑉 , Equation (3) holds.

Figure 1: Block-cut tree T rooted at a cut vertex 𝑐, with some

leafy-cut vertex 𝑧 having children biconnected blocks {𝑏𝑖 }𝑘𝑖=1.

Proof. If𝐺 is biconnected, then Algorithm 3 returns the output

of Algorithm 1 (in Line 2). In this case, we get the desired property of

the 2-partition from Lemma 3. Suppose𝐺 is not biconnected. Let T
be the block-cut tree of 𝐺 rooted at some cut vertex 𝑐 . Suppose 𝑧 is

the chosen leafy-cut vertex on Line 7, with𝑘 ⩾ 1 biconnected blocks

{𝑏𝑖 }𝑘𝑖=1 as children. An example of this setup is shown in Figure 1.

Also let 𝐶 = ∪𝑘
𝑖=1
𝑏𝑖 , and note that |𝐶 | ⩾ 1 (since every biconnected

block has at least 1 vertex). Here, the graph being partitioned is

𝐺 [𝑉rem] (initially, 𝑉rem = 𝑉). In each iteration (Line 6), there are 3

possible situations:

Case 1: 𝑟 ⩽ |𝐶 | : We apply the SelectPairsFirst proce-

dure (Line 23). By Lemma 4, every 𝑖 ∈ 𝑉rem must have either

𝑑𝐺 [𝑉rem] (𝑖) = 1 or |𝑁𝑋 (𝑖) | ⩾ 1. If Equation (3) is not satisfied

by 𝑖 in the final partition 𝑋 of 𝐺 , then the second condition cannot

hold, giving 𝑑𝐺 [𝑉rem] (𝑖) = 1 (i.e. |𝑏 𝑗 | = 1) and 𝑑𝐺 (𝑖) > 1. Thus,

𝑖 is a cut vertex in 𝐺 , and so it will have a pre-colored red child

(from some previous iteration). If 𝑖 is red, then this child is a same-

colored neighbor of 𝑖 . Else if 𝑖 is blue, then Lemma 4 gives that its

parent 𝑧 must also be blue. Hence, we reach a contradiction in both

situations, and every node 𝑖 ∈ 𝑉rem satisfies Equation (3).

Case 2: 𝑟 = 1+ |𝐶 | : 𝑧 and all its children are colored red (Line 16).

Note that𝐺 [𝐶∪{𝑧}] and𝐺 [𝑉rem\(𝐶∪{𝑧})] are red and blue colored
connected graphs respectively, each having size > 1. Thus, every

node in 𝑉rem has at least 1 neighbor in the same group, satisfying

Equation (3).

Case 3: 𝑟 > 1+ |𝐶 | : Color all nodes in𝐶 red (Line 12), and reduce

𝑟 to 𝑟 ′ = 𝑟 − |𝐶 |. For any 𝑗 ∈ [𝑘], there are 2 cases:
(1) |𝑏 𝑗 | > 1, so that every node 𝑖 ∈ 𝑏 𝑗 has a same-colored red

neighbor in 𝑏 𝑗 (since 𝐺 [𝑏 𝑗] is connected).
(2) |𝑏 𝑗 | = 1, so that there is only one node 𝑣 ∈ 𝑏 𝑗 . If 𝑑𝐺 (𝑣) =

1 (i.e. 𝑣 is only joined to 𝑧 in 𝐺), then 𝑣 already satisfies

Equation (3). Otherwise, if 𝑣 is a cut vertex in 𝐺 , then 𝑣

(which is colored red) must have a pre-colored red child

(from some previous iteration), giving |𝑁𝑋 (𝑣) | ⩾ 1.

Thus, Equation (3) holds for all 𝑖 ∈ 𝐶 . The graph is now trimmed to

𝐺 ′ = 𝐺 [𝑉rem \𝐶], which is still a connected graph. And the problem
reduces to finding a 2-partition 𝑋 ′ = (R′,B′) in this connected

graph 𝐺 ′ with |R′ | = 𝑟 ′, |B′ | = 𝑏 (where 𝑟 ′, 𝑏 are still > 1 and

𝑟 ′ < 𝑟). We now repeat the same procedure for this subgraph. □

Lemmas 2 and 5 together give the desired BP-2 for connected

graphs, as given in Lemma 6 below.

Lemma 6. For any connected graph𝐺 = (𝑉 , 𝐸), there exists a BP-2
𝑋 = (R,B) with |R | ≥ |B| saitsfying EF-(max{Δ − 2, 2}).

Proof. By Lemmas 2 and 5, for any connected graph with |𝑉 | ⩾
4, taking |R | = 𝑟 = ⌈ |𝑉 |/2⌉ in Algorithm 3 returns the desired EF-

(max{Δ − 2, 2}) BP-2. And, if |𝑉 | ⩽ 3, then Observation 2 ensures

the existence of a EF-2 BP-2 (since any node has ⩽ 2 neighbors, so

it cannot have envy > 2). □

Proof. (of Theorem 1) Divide an arbitrary graph 𝐺 into its con-

nected components 𝑐1, 𝑐2, . . . , 𝑐𝑚 . For 𝑗 ∈ [𝑚], let 𝐺 𝑗 =
⋃𝑗

𝑖=1
𝑐𝑖 ,

with 𝐺𝑚 = 𝐺 . We will use induction on 𝑗 ∈ [𝑚] to get a EF-

(max{Δ−2, 2}) BP-2 for all𝐺 𝑗 . By Lemma 6,𝐺1 has such a partition.

For the inductive step, suppose the desired BP-2 𝑋 exists for 𝐺 𝑗−1
(𝑗 > 1). If there are more blue nodes in 𝑋 than red nodes, then color

𝑐 𝑗 as per Lemma 6, with at least as many red nodes as blue nodes.

Else color 𝑐 𝑗 using the same algorithm and then reverse its colors

so that it has more blue nodes than red nodes. This ensures that

the absolute difference between the number of red and blue nodes

in this new 2-partition of 𝐺 𝑗 = 𝐺 𝑗−1 ∪ 𝑐 𝑗 is at most 1, giving us

a BP-2 of 𝐺 𝑗 . Also, since the partition in each component is EF-

(max{Δ − 2, 2}) and there are no edges between components, this

final BP-2will also be EF-(max{Δ−2, 2}), completing the induction

and our proof for Theorem 1.

(Complexity): As per the above proof, to find the final BP-2, we

have to run Algorithm 3 for each 𝑐 𝑗 , 𝑗 ∈ [𝑚] once. Algorithm 3

requires finding the block-cut tree of a connected graph and the

𝑠𝑡-numbering within different biconnected components, both of

which are linear-time algorithms. Algorithm 2 is also called only

once (in Line 23 of Algorithm 3), and it is also linear time according

to Lemma 4. This ensures that for each connected component of

𝐺 , Algorithm 3 runs in linear time, making the overall algorithm

finish in O(|𝑉 | + |𝐸 |) time. □

3.2 Pareto Optimality

Theorem 2. For every graph 𝐺 with a BP-2 𝑋 that is EF-𝑟 for

some 𝑟 ⩾ 0, there exists a BP-2 𝑋 ′ that is EF-𝑟 and PO.

Proof. Suppose some graph 𝐺 has a BP-2 𝑋 that is EF-𝑟 . If 𝑋 is

PO, then we are done. Otherwise, we perform a sequence of Pareto

improvements to𝑋 till we get a PO BP-2𝑋 ′. We claim that𝑋 ′ is EF-
𝑟 . Suppose 𝑋 ′ is not EF-𝑟 . Then by condition 1 of Lemma 1, ∃𝑖 ∈ 𝑉
such that 𝑑 (𝑖) − 𝑟 > 2|𝑁𝑋 ′ (𝑖) |. Since all variables in this inequality

are natural numbers, this implies that 𝑑 (𝑖) − 𝑟 − 1 ⩾ 2|𝑁𝑋 ′ (𝑖) |
or |𝑁𝑋 ′ (𝑖) | ⩽ 𝑑 (𝑖)−𝑟−1

2
. However, since 𝑋 is EF-𝑟 , by condition 2

of Lemma 1, we have |𝑁𝑋 (𝑖) | ⩾ 𝑑 (𝑖)−𝑟−1
2

. The partition 𝑋 ′ is
obtained by sequential Pareto improvements from 𝑋 , and hence

|𝑁𝑋 (𝑖) | ⩽ |𝑁𝑋 ′ (𝑖) |. Combining these three inequalities, we get

|𝑁𝑋 (𝑖) | = 𝑑 (𝑖) − 𝑟 − 1
2

= |𝑁𝑋 ′ (𝑖) |. (4)

Suppose the BP-2’s are given by 𝑋 = (R,B) and 𝑋 ′ = (R′,B′),
andWLOG 𝑖 ∈ R,R′. From Equation (4), we have (𝑑 (𝑖)− |𝑁𝑋 (𝑖) |)−
|𝑁𝑋 (𝑖) | = 𝑟 + 1, i.e., ‘the number of blue (B) neighbors of 𝑖’ minus

‘the number of red (R) neighbors of 𝑖’ is 𝑟+1. Consider the following
two possible cases.

(1) |B| = ⌊𝑛/2⌋ < ⌈𝑛/2⌉: According to Definition 3, 𝑖 can apply a

tran operation from R to B and increase its utility by 𝑟 + 1,
which contradicts 𝑋 being EF-𝑟 .

(2) |B| = ⌈𝑛/2⌉: Consider an arbitrary node 𝑗 ∈ B and a pos-

sible swap of 𝑖 with 𝑗 . If 𝑗 is not a neighbor of 𝑖 , then

on swapping groups with 𝑗 , the utility of 𝑖 increases by

𝑟 + 1, which contradicts 𝑋 being EF-𝑟 . So every 𝑗 ∈ B can

only be a neighbor of 𝑖 , or equivalently, B = 𝑁 (𝑖) \ 𝑁𝑋 (𝑖).
But, we also have |𝑁𝑋 (𝑖) | = |𝑁𝑋 ′ (𝑖) |, which gives ⌈𝑛/2⌉ =
|𝐵 | = 𝑑 (𝑖) − |𝑁𝑋 (𝑖) | = 𝑑 (𝑖) − |𝑁𝑋 ′ (𝑖) | ⩽ |B′ |, where
the last inequality comes from the fact that the blue neigh-

bors of 𝑖 must be at most the whole of B′. Since 𝑋 ′ is a
BP-2, |B′ | is also bounded from above by ⌈𝑛/2⌉, and hence

|B′ | = 𝑑 (𝑖) − |𝑁𝑋 ′ (𝑖) | = ⌈𝑛/2⌉ ⇒ B′ = 𝑁 (𝑖) \ 𝑁𝑋 ′ (𝑖).
Thus, we have |R′ | = ⌊𝑛/2⌋, which means that only the

swap operation is possible for 𝑖 in 𝑋 ′. Pick an arbitrary

𝑗 ′ ∈ B′ for 𝑖 to swap with. This swap leads to a change

in utility of 𝑖 from |𝑁𝑋 ′ (𝑖) | to 𝑑 (𝑖) − |𝑁𝑋 ′ (𝑖) | − 1, which is

𝑑 (𝑖) − 2|𝑁𝑋 ′ (𝑖) | − 1 = 𝑟 . This contradicts the fact that 𝑖 has
an envy > 𝑟 with some 𝑗 ′ ∈ B′.

Since both conclusions above lead to a contradiction, our original

assumption on𝑋 ′ not being EF-𝑟 must be false, and𝑋 ′ is the desired
PO EF-𝑟 partition. □

Theorem 3. Consider an arbitrary graph 𝐺 that has a BP-2 𝑋

which belongs to the (𝛼, 𝛽)-core for some 𝛼 ⩾ 1, 𝛽 ⩾ 0.

(1) Then there exists a PO BP-2 𝑋 ′ in the (𝛼, 𝛽)-core.
(2) If 𝑋 is also EF-𝑟 for some 𝑟 ⩾ 0, there exists a BP-2 𝑋 ′ in the

(𝛼, 𝛽)-core, which is both EF-𝑟 and PO.

Proof. Part 1: Assume, for contradiction, that 𝑋 is not PO. Let

𝑋 ′ be PO partition obtained by sequentially improving 𝑋 (as we

did for Theorem 2). Suppose 𝑋 ′ is not in (𝛼, 𝛽)-core. Then there

exists a blocking coalition 𝑆 of size either ⌊𝑛/𝑘⌋ or ⌈𝑛/𝑘⌉ such that

for the BP-2 𝑌 = (𝑆,𝑉 \ 𝑆), 𝑢𝑖 (𝑌) > 𝛼 · 𝑢𝑖 (𝑋 ′) + 𝛽 for all 𝑖 ∈ 𝑆 .
But, by construction, 𝑢𝑖 (𝑋 ′) ⩾ 𝑢𝑖 (𝑋) since 𝑋 ′ was obtained by

sequentially improving 𝑋 . Hence, 𝑆 is also a blocking coalition for

BP-2 𝑋 , which contradicts the fact that 𝑋 is in (𝛼, 𝛽)-core.
Part 2: Now, suppose 𝑋 is also EF-𝑟 . Construct 𝑋 ′ in a similar

way as part 1. Part 1 shows that 𝑋 ′ will be in the (𝛼, 𝛽)-core. By
Theorem 2, 𝑋 ′ will also be EF-𝑟 . □

Discussion: While we examine the interplay between different

fairness notions in the theorems above, it is essential to recognize

that each of these properties remains important in its own right. For

instance, a PO BP-2 in the core is not guaranteed to hold the envy-

freeness guarantees we determined in Theorem 1. To illustrate

this, for any 𝑚 ⩾ 3, consider constructing the graph 𝐺𝑚 with

2(𝑚 + 1) vertices comprising of a disjoint 𝐾𝑚 and 𝐾𝑚+1, and a

vertex 𝑣 ∉ 𝐾𝑚 ∪ 𝐾𝑚+1 connected to exactly 𝑚 vertices of 𝐾𝑚+1.
Partition 𝐺𝑚 into two groups, one consisting of 𝐾𝑚 and 𝑣 , and the

other one with 𝐾𝑚+1. If 𝑣 ′ ∈ 𝐾𝑚+1 is the vertex that 𝑣 is not joined
to, then 𝑣 envies 𝑣 ′ by𝑚 = Δ(𝐺) − 1, even though this BP-2 is PO

and in the core.

Algorithm 4 L2R: Left-to-Right

Input: 𝐺 = (𝑉 , 𝐸) ∈ GrG, partition size 𝑘 ⩾ 2

Output: BP-𝑘 𝑋 of 𝐺

1: Suppose |𝑉 | = 𝑛 such that 𝑛 = 𝑞 · 𝑘 + 𝑟, 0 ⩽ 𝑟 < 𝑘
2: // Arrange nodes from left-top to right-bottom

3: Sort nodes in 𝑉 using (𝑥,−𝑦) as key
4: // First 𝑟 groups have ⌈𝑛/𝑘⌉ nodes
5: // Next (𝑘 − 𝑟) groups have ⌊𝑛/𝑘⌋ nodes
6: for cnt = 1 to 𝑘 do

7: 𝑋cnt ← ∅; num← 1

8: size← ⌈𝑛/𝑘⌉ if cnt ⩽ 𝑟 else ⌊𝑛/𝑘⌋
9: while num ⩽ size do

10: 𝑣 ← left uppermost node in 𝑉 ; 𝑉 ← 𝑉 \ {𝑣}
11: 𝑋cnt ← 𝑋cnt ∪ {𝑣}; num← num + 1
12: end while

13: end for

4 MAIN RESULTS: GRID GRAPHS

In Section 3, we saw the fairness and efficiency guarantees for

general graphs. These results have their limitations owing to the

arbitrary structure of the graphs. We focus on grid graphs in this

section to investigate whether a relatively simpler graph structure

can yield stronger fairness and stability properties. In the following

two subsections, wewill consider envy-freeness and core properties,

respectively, for GrGs.

4.1 Envy-Freeness

We start this section by showing the incompatibility of BP-𝑘 and

EF-0 for all 𝑘 ⩾ 2 even in GrGs.

Example 1. For any 𝑘 ⩾ 2, the graph 𝐺𝑘 = comb𝑘+1 ∪ 𝐾𝑘−2
consisting of a comb graph with 2(𝑘 + 1) vertices and 𝑘 − 2 isolated
vertices, has no EF-0 BP-𝑘 . To see why, note that each subset in a BP-𝑘

𝑋 of 𝐺𝑘 must have 3 nodes. Let 𝑆1 be the set of nodes with degree

1. As |𝑆1 | = 𝑘 + 1 and there are 𝑘 groups, ∃ 𝑖, 𝑗 ∈ 𝑆1 that are in the

same group 𝑋ℓ (say). But if 𝑋 is EF-0, then every node in 𝑆1 must

have their only neighbor in the same subset. This would imply that

|𝑋ℓ | ⩾ 4 (𝑖, 𝑗 and their 1 neighbor each), which is a contradiction. □

However, if the EF guarantee is relaxed to EF-2, we show that

there is an efficient algorithm (Algorithm 4) to find a BP-𝑘 in GrGs,
for any 𝑘 ⩾ 2. The algorithm traverses the grid graph column-wise

along the integer lattice Z2 from the left-top corner to the right-

bottom corner, placing a contiguous sequence of traversed vertices

in one subset of the partition.
3
The traversal is continued until

there is no vertex left. This method first creates 𝑛 (mod 𝑘) such
subsets of size ⌈ |𝑉 |/𝑘⌉, and then remaining subsets of size ⌊ |𝑉 |/𝑘⌋.
An example of a BP-2 created by Algorithm 4 is shown in Figure 2.

Theorem 4. For all 𝑘 ⩾ 2 and 𝐺 = (𝑉 , 𝐸) ∈ GrG, Algorithm 4

returns a EF-2 BP-𝑘 𝑋 in O(|𝑉 | log(|𝑉 |)) time.

Proof. Assume, for contradiction, that BP-𝑘 𝑋 (returned by

Algorithm 4) is not EF-2. Then ∃𝑖, 𝑗 ∈ 𝑉 such that 𝑖 envies 𝑗 by

at least 3. By Observation 2, 𝑖 has at least 3 neighbors in 𝑋𝑋 −1 (𝑗) .

3
Here traversal is done over all vertices that exist in the graph on the lattice irrespective

of whether they are joined by an edge or not.

Figure 2: Partitioning done by Algorithm 4 (L2R) for 𝑘 = 2.

Define 𝑁𝑇𝐿 (𝑖) as the set of neighbors (can be empty) to the top

and left of 𝑖 in the integer lattice Z2. Formally, if 𝑖 = (𝑥,𝑦) on
the lattice, then 𝑁𝑇𝐿 (𝑖) = {(𝑥,𝑦 + 1), (𝑥 − 1, 𝑦)} ∩ 𝑁 (𝑖). Similarly

define 𝑁𝐵𝑅 (𝑖) = {(𝑥,𝑦 − 1), (𝑥 + 1, 𝑦)} ∩ 𝑁 (𝑖) as the neighbors of 𝑖
that lie to the bottom and right of 𝑖 . Note that |𝑁𝐵𝑅 (𝑖) |, |𝑁𝑇𝐿 (𝑖) | ⩽
2. Since at least 3 neighbors of 𝑖 are in the same subset, by the

pigeonhole principle, ∃ 𝑢 ∈ 𝑁𝑇𝐿 (𝑖), 𝑣 ∈ 𝑁𝐵𝑅 (𝑖) such that both

nodes 𝑢 and 𝑣 belong to the same subset 𝑋𝑋 −1 (𝑗) of the partition
returned by Algorithm 4. But then all nodes visited between 𝑢 and

𝑣 in Algorithm 4 should also be in 𝑋𝑋 −1 (𝑗) , which includes 𝑖 . This

leads to a contradiction.

(Complexity): For the time complexity, note that Algorithm 4

sorts 𝑉 in O(|𝑉 | log(|𝑉 |)) time, and then linearly iterates through

all the vertices in this sorted order, making the whole algorithm

complete in O(|𝑉 | log(|𝑉 |)) time. □

4.2 Core

Theorem 5. For every 𝐺 = (𝑉 , 𝐸) ∈ GrG, there is a polynomially

computable EF-2 BP-2 that lies in the (1, 1)-core.

Consider the partition𝑋 returned by Algorithm 4 (L2R) on a GrG
𝐺 = (𝑉 , 𝐸) for 𝑘 = 2. From Theorem 4, no node has more than 2

neighbors in the other subset in𝑋 , i.e., for all 𝑖 ∈ 𝑉 ,𝑢𝑖 (𝑋) ⩾ 𝑑 (𝑖)−2.
We classify the nodes into three categories, based on their neighbors

in the other group.

Definition 11. Let 𝑋 = L2R (𝐺 = (𝑉 , 𝐸), 𝑘 = 2). Then we call a

node 𝑖 ∈ 𝑉 , (1) an internal node if 𝑢𝑖 (𝑋) = 𝑑 (𝑖), (2) an edge node if

𝑢𝑖 (𝑋) = 𝑑 (𝑖) − 1, and (3) a corner node if 𝑢𝑖 (𝑋) = 𝑑 (𝑖) − 2.

For instance in Figure 2, 𝐷 is an internal node, 𝐵 is an edge node

and 𝐿 is a corner node.

Observation 4. There can be at most 2 corner nodes. If both exist,

there must be an edge between them, and they cannot share a common

neighbor.

Proof. Let 𝑋 = (R,B). Let 𝑐𝑅 ∈ R be the bottom-most node

in the rightmost column of R, and 𝑐𝐵 ∈ B be the uppermost node

in the leftmost column of B. Then 𝑐𝐵 will be visited immediately

after 𝑐𝑅 in the traversal done in Algorithm 4. For any 𝑖 ∈ R, 𝑖 ≠ 𝑐𝑅 ,
𝑖 will have at most 1 neighbor in B (a neighbor in B can only lie

to its right). So the only possible corner node in R is 𝑐𝑅 . Similarly,

for any 𝑗 ∈ B, 𝑗 ≠ 𝑐𝐵 , 𝑗 will have at most 1 neighbor in R (that

can lie to its left), making 𝑐𝐵 the only possible corner node in B.
Thus, there are at most 2 corner nodes. Finally, if both 𝑐𝑅 and 𝑐𝐵 are

Algorithm 5 CoreL2R: Core Left-to-Right

Input: 𝐺 = (𝑉 , 𝐸) ∈ GrG
Output: BP-2 𝑋 of 𝐺

1: 𝑋 ← L2R(𝐺,𝑘 = 2); // Algorithm 4

2: if noBlocking(𝑋) then return 𝑋

3: else

4: 𝑆 = blockingSet(𝑋) ; 𝑋 ′ = (𝑆, 𝑉 \ 𝑆)
5: if noBlocking(𝑋 ′) then return 𝑋 ′

6: else

7: 𝑆 ′ = blockingSet(𝑋 ′); return (𝑆 ′, 𝑉 \ 𝑆 ′)
8: end if

9: end if

corner nodes, then they must be joined to each other to ensure that

each of them has 2 neighbors in the other subset. And, since there

can be no 𝐶3 in a grid graph, the 2 adjacent corner nodes cannot

share a common neighbor. □

We first give a lemma that will aid us in proving Theorem 5.

Lemma 7. No internal or edge node can be a part of a (1, 1)-
blocking coalition in BP-2 𝑋 .

Proof. For a node 𝑖 to be a part of a (1, 1)-blocking coalition

𝑆 (Definition 5), we must have 𝑢𝑖 ((𝑆,𝑉 \ 𝑆)) > 𝑢𝑖 (𝑋) + 1, which
gives𝑢𝑖 (𝑋) ⩽ 𝑑 (𝑖) −2 (since the utility of 𝑖 is bounded above by the
degree). This is only possible for corner nodes (Definition 11). □

Proof. (of Theorem 5) According to Theorem 4, BP-2 𝑋 re-

turned by Algorithm 4 is already EF-2. For the sake of contradiction,

suppose a (1, 1)-blocking coalition 𝑆 exists in partition 𝑋 . Using

Lemma 7, we see that only the corner nodes can be a part of 𝑆 ,

which gives |𝑆 | ⩽ 2 (using Observation 4). So any vertex in 𝑆

can have at most 1 neighbor in 𝑆 . Thus, for any 𝑖 ∈ 𝑆 , we have

𝑢𝑖 ((𝑆,𝑉 \𝑆)) ⩽ 1 ⩽ 𝑢𝑖 (𝑋) +1, which is a contradiction. This proves

that such a blocking coalition 𝑆 cannot exist, and so the BP-2 re-

turned by Algorithm 4 is both EF-2 and in the (1, 1)-core. □

Discussion: For arbitrary graphs, Li et al. [17] showed that when

𝑘 ⩾ 3, a BP-𝑘 in the (1, 0)-core may not exist, with the graph 𝐶𝑘+1
as the desired counter-example. Since odd cycles can not exist in

GrGs, the same example does not work when 𝑘 is even. So for even

𝑘 , we can instead consider 𝑃𝑘+1 as an instance of a GrG that has

no BP-𝑘 in (1, 0)-core (the same proof works). Thus, for 𝑘 ⩾ 3,

there may be no BP-𝑘 in (1, 0)-core even for GrGs. Li et al. [17] also
raised an open problem about the existence of a BP-2 belonging

to (1, 0)-core in arbitrary graphs. We show that for GrGs, we can
always find such a partition.

Theorem 6. For every 𝐺 ∈ GrG, Algorithm 5 returns a BP-2 that

belongs to (1, 0)-core.

Consider Algorithm 4 (L2R) for 𝑘 = 2, which returns a BP-2

𝑋 . Suppose it is not in the core (otherwise we have the required

partition). Then there exists a blocking coalition 𝑆 in our partition

𝑋 . Let 𝑋 ′ = (𝑆,𝑉 \ 𝑆) be another BP-2. As per Definition 5, for

a node 𝑖 to be a part of 𝑆 , we must have 𝑢𝑖 (𝑋 ′) > 𝑢𝑖 (𝑋). Thus,
its utility in 𝑋 ′ must strictly increase over that in 𝑋 . We have the

following lemma.

Lemma 8. No internal node can lie in the blocking coalition 𝑆 as

defined above. Also, if an edge node 𝑗 ∈ 𝑆 , then all of its neighbors

are also in 𝑆 (i.e., 𝑁 (𝑗) ⊆ 𝑆).

Proof. An internal node has all neighbors of the same color as

itself, so its utility cannot increase any further. Thus, it cannot be

part of 𝑆 . Suppose an edge node 𝑗 ∈ 𝑆 . Since 𝑢 𝑗 (𝑋 ′) ⩾ 𝑢 𝑗 (𝑋) + 1 =
𝑑 (𝑗), and the utility of 𝑗 is also bounded above by 𝑑 (𝑗), we get

equality here, i.e. 𝑢 𝑗 (𝑋 ′) = 𝑑 (𝑗) (all neighbors of 𝑗 are in 𝑆). □

Proof. (of Theorem 6) If 𝑋 ′ is in core then we have the desired

partition. Otherwise, there is some blocking coalition 𝑆 ′ in 𝑋 ′ as
well. Consider any 𝑖 ∈ 𝑆 ′. There are 2 possible scenarios:

Case 1: 𝑖 ∈ 𝑆 ′ ∩ 𝑆 : then 𝑢𝑖 ((𝑆 ′,𝑉 \ 𝑆 ′)) > 𝑢𝑖 (𝑋 ′) > 𝑢𝑖 (𝑋) =⇒
𝑢𝑖 ((𝑆 ′,𝑉 \ 𝑆 ′)) ⩾ 𝑢𝑖 (𝑋) + 2. This is only possible for corner nodes,

as only they can have 2 neighbors from the other group in 𝑋 . And,

if a corner node 𝑖 is in 𝑆 ′, then all its neighbors must also be in 𝑆 ′

to ensure the above condition (since 𝑢𝑖 (𝑋) = 𝑑 (𝑖) − 2).
Case 2: 𝑖 ∈ 𝑆 ′ ∩ 𝑇 : then 𝑢𝑖 ((𝑆 ′,𝑉 \ 𝑆 ′)) ⩾ 𝑢𝑖 (𝑋 ′) + 1, which

means that 𝑖 must have at least 1 neighbor ∈ 𝑆 so that its utility can
increase from that in 𝑋 ′. Call any such neighbor 𝑗 . As per Lemma 8,

𝑗 cannot be an internal node. If it is an edge node, all its neighbors

will also be in 𝑆 (Lemma 8), which would imply that it cannot have

a neighbor 𝑖 ∈ 𝑇 . So the only option left is 𝑗 being a corner node,

i.e. 𝑖’s neighbors in 𝑆 can only be corner nodes. Since a node cannot

be a common neighbor of two corner nodes (Observation 4), 𝑖 will

have exactly one neighbor in 𝑆 . Thus, to increase the utility of 𝑖 in

(𝑆 ′,𝑉 \ 𝑆 ′), all neighbors of 𝑖 must also be in 𝑆 ′.
In both the cases above, we see that any 𝑖 ∈ 𝑆 ′ must have all its

neighbors also in 𝑆 ′, implying that there is no edge between 𝑆 ′ and
𝑉 \ 𝑆 ′. Then the BP-2 (𝑆 ′,𝑉 \ 𝑆 ′) is in the core, as desired. □

5 CONCLUSIONS AND FUTUREWORK

We design efficient algorithms for approximately envy-free bal-

anced partitions and establish existential results on stable and

Pareto optimal partitions. Our findings raise several key questions:

• Can EF-2 BP-2 be shown to exist in all biconnected graphs

and extended to connected graphs via block-cut trees?

• For arbitrary graphs, can consecutive (1, 0)-blocking coali-
tions (as in Algorithm 5) reach a BP-2 in (1, 0)-core within
O(Δ(𝐺)) steps?
• Does every GrG admit a EF-1 BP-𝑘?We provide partial results

on this in Appendix A.

• Can a PO BP-2 from Theorems 2 and 3 be found efficiently,

and can this extend to BP-𝑘 for (𝑘 ⩾ 3)?

ACKNOWLEDGMENTS

The supports of a MATRICS grant (MTR/2021/000367) and a Core

Research Grant (CRG/2023/001442) from SERB, Govt. of India, a

TCS grant (MOU/CS/10001981-1/22-23), and an IIT Bombay grant

(2022058) are gratefully acknowledged.

REFERENCES

[1] Konstantin Andreev and Harald Räcke. 2004. Balanced Graph Partitioning. In

Proceedings of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms

and Architectures (Barcelona, Spain) (SPAA ’04). Association for Computing Ma-

chinery, New York, NY, USA, 120–124. https://doi.org/10.1145/1007912.1007931

[2] EstherM. Arkin, SangWonBae, Alon Efrat, KazuyaOkamoto, Joseph S.B.Mitchell,

and Valentin Polishchuk. 2009. Geometric stable roommates. Inform. Process.

Lett. 109, 4 (2009), 219–224. https://doi.org/10.1016/j.ipl.2008.10.003

[3] Haris Aziz, Felix Brandt, and Paul Harrenstein. 2013. Pareto optimality in coalition

formation. Games and Economic Behavior 82 (2013), 562–581. https://doi.org/10.

1016/j.geb.2013.08.006

[4] Cristina Bazgan, Zsolt Tuza, and Daniel Vanderpooten. 2010. Satisfactory graph

partition, variants, and generalizations. European Journal of Operational Research

206, 2 (2010), 271–280. https://doi.org/10.1016/j.ejor.2009.10.019

[5] Freya Behrens, Gabriel Arpino, Yaroslav Kivva, and Lenka Zdeborová. 2022.

(Dis) assortative partitions on random regular graphs. Journal of Physics A:

Mathematical and Theoretical 55, 39 (2022), 395004.

[6] Vittorio Bilò, Gianpiero Monaco, and Luca Moscardelli. 2022. Hedonic games

with fixed-size coalitions. In Proceedings of the AAAI Conference on Artificial

Intelligence, Vol. 36. 9287–9295.

[7] Niclas Boehmer and Edith Elkind. 2020. Stable Roommate Problem with Diversity

Preferences. In Proceedings of the Twenty-Ninth International Joint Conference

on Artificial Intelligence, IJCAI-20, Christian Bessiere (Ed.). International Joint

Conferences on Artificial Intelligence Organization, 96–102. https://doi.org/10.

24963/ijcai.2020/14 Main track.

[8] Ágnes Cseh, Michael McKay, and David Manlove. 2022. Envy-freeness in 3D

Hedonic Games. arXiv preprint arXiv:2209.07440 (2022). arXiv:2209.07440 [cs.GT]

[9] J. Ebert. 1983. st-Ordering the vertices of biconnected graphs. Computing 30

(1983), 19–33. https://api.semanticscholar.org/CorpusID:6570953

[10] Andreas Feldmann. 2012. Balanced Partitions of Grids and Related Graphs. Ph.D.

Dissertation.

[11] Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA.

[12] John Hopcroft and Robert Tarjan. 1973. Algorithm 447: Efficient Algorithms

for Graph Manipulation. Commun. ACM 16, 6 (jun 1973), 372–378. https:

//doi.org/10.1145/362248.362272

[13] Chien-Chung Huang. 2007. Two’s Company, Three’s a Crowd: Stable Family and

Threesome Roommates Problems. In Algorithms – ESA 2007, Lars Arge, Michael

Hoffmann, and Emo Welzl (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

558–569.

[14] Robert W Irving. 1985. An efficient algorithm for the “stable roommates” problem.

Journal of Algorithms 6, 4 (1985), 577–595. https://doi.org/10.1016/0196-6774(85)

90033-1

[15] B. W. Kernighan and S. Lin. 1970. An efficient heuristic procedure for partitioning

graphs. The Bell System Technical Journal 49, 2 (1970), 291–307. https://doi.org/

10.1002/j.1538-7305.1970.tb01770.x

[16] Chaya Levinger, Amos Azaria, and Noam Hazon. 2023. Socially Aware Coalition

Formation with Bounded Coalition Size. arXiv preprint arXiv:2008.06179 (2023).

arXiv:2306.01378 [cs.GT]

[17] Lily Li, Evi Micha, Aleksandar Nikolov, and Nisarg Shah. 2023. Partition-

ing Friends Fairly. In Proceedings of the Thirty-Seventh AAAI Conference on

Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications

of Artificial Intelligence and Thirteenth Symposium on Educational Advances

in Artificial Intelligence (AAAI’23). AAAI Press, Article 644, 8 pages. https:

//doi.org/10.1609/aaai.v37i5.25713

[18] Michael McKay. 2022. Algorithmic aspects of fixed-size coalition formation. PhD

Thesis. University of Glasgow.

[19] Michael McKay and David Manlove. 2021. The Three-Dimensional Stable Room-

mates Problem with Additively Separable Preferences. In Algorithmic Game

Theory, Ioannis Caragiannis and Kristoffer Arnsfelt Hansen (Eds.). Springer In-

ternational Publishing, Cham, 266–280.

[20] Dor Minzer, Ashwin Sah, and Mehtaab Sawhney. 2023. On Perfectly Friendly

Bisections of Random Graphs. arXiv preprint arXiv:2305.03543 (2023).

[21] Renata Sotirov. 2018. Graph bisection revisited. Annals of Operations Research

265 (2018), 143–154.

https://doi.org/10.1145/1007912.1007931
https://doi.org/10.1016/j.ipl.2008.10.003
https://doi.org/10.1016/j.geb.2013.08.006
https://doi.org/10.1016/j.geb.2013.08.006
https://doi.org/10.1016/j.ejor.2009.10.019
https://doi.org/10.24963/ijcai.2020/14
https://doi.org/10.24963/ijcai.2020/14
https://arxiv.org/abs/2209.07440
https://api.semanticscholar.org/CorpusID:6570953
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/362248.362272
https://doi.org/10.1016/0196-6774(85)90033-1
https://doi.org/10.1016/0196-6774(85)90033-1
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://arxiv.org/abs/2306.01378
https://doi.org/10.1609/aaai.v37i5.25713
https://doi.org/10.1609/aaai.v37i5.25713

Figure 3: Case 1

Figure 4: Case 2

Figure 5: Case 3

APPENDIX

A EF-1 BP-2 IN GRID GRAPHS

In this section, we show that an EF-1 BP-2 exists for GrGs with
an odd number of nodes. For odd graphs, the two groups to be

formed by the partition will have different numbers of nodes(
|𝑉 | − 1

2

and

|𝑉 | + 1
2

)
. This relaxes the partitioning problem by

introducing the freedom of switching the group of a single node

belonging to the larger group.

Theorem 7. For every 𝐺 = (𝑉 , 𝐸) ∈ GrG with |𝑉 | = 𝑛 and 𝑛

mod 2 = 1, there exists an EF-1 BP-2 that can be found inO(𝑛 log(𝑛))
time complexity.

Proof. We start with Algorithm 4 (𝐿2𝑅) and make some mod-

ifications based on different cases that arise. According to Obser-

vation 2, the only nodes that can violate the EF-1 property are the

corner nodes, since the remaining nodes can have at most 1 neigh-

bor in the other subset (Definition 11). Before proceeding to the

intricate casework, it is important to note that Algorithm 4 will

provide a BP-2 𝑋 in which the group on the left side (say colored

red) will have more nodes than the other group (say colored blue).

Thus, we have the option to switch the color of a single red node

in 𝑋 to blue.

We call a node conflicting if it does not satisfy EF-1 property (i.e.

its envy towards some other node is greater than 1). A corner node

𝑖 is conflicting only when it has exactly two neighbors and both

belong to the other group. Since if 𝑖 has a neighbor in the same

subset (i.e. 𝑢𝑖 (𝑋) ⩾ 1), then its utility on joining the other subset

will have to change to at least 3, which is not possible.

• Case 1 : Red corner node 𝐴 is conflicting.

Simply switching the color of this conflicting node resolves

the issue, as shown in Figure 3. In the resulting partition, 𝐴

is no longer conflicting, and the other possible corner node

(i.e. 𝐸) can also not be conflicting.

• Case 2 : Only the blue corner node 𝐸 is conflicting, and

switching the color of the red node directly above (i.e. 𝐴)

resolves the issue.

As shown in Figure 4, after switching the color of node𝐴, the

new possible corner nodes so formed will be 𝐴 and the node

(say 𝐵) above it. 𝐴 will have at least 1 neighbor in the same

subset (i.e. 𝐸). The case where node 𝐵 becomes conflicting is

handled in Case 3 below.

• Case 3 : Only the blue corner node 𝐸 is conflicting, and

switching the color of the red node directly above (i.e. 𝐴)

does not resolve the issue.

Figure 5 shows the scenario in which simply switching the

color of vertex 𝐴 can result in the node above it becoming

conflicting. Here, node 𝐵 will have two neighbors 𝐴 and 𝐶

belonging to the other group (after switching the color of

𝐴), and none in its own group. For this case, constructing

the boundary as shown in the last diagram of Figure 5 (i.e.

switching the groups of 𝐸 and 𝐵 from the original BP-2 𝑋)

resolves the issue since no node is now conflicting.

Thus, in all scenarios, we can find a BP-2 in which no node

violates the EF-1 condition, as desired. □

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Preliminaries
	2.1 Graphs of interest

	3 Main Results: General Graphs
	3.1 Envy-Freeness
	3.2 Pareto Optimality

	4 Main Results: Grid Graphs
	4.1 Envy-Freeness
	4.2 Core

	5 Conclusions and Future Work
	Acknowledgments
	References
	A EF-1 BP-2 in Grid Graphs

