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Abstract

The impossibility result by Jehiel and Moldovanu says that in a setting
with interdependent valuations, any efficient and ex-post incentive compat-
ible mechanism must be a constant mechanism. Mezzetti circumvents this
problem by designing a two stage mechanism where the decision of alloca-
tion and payment are split over the two stages. This mechanism is elegant,
however keeps a major weakness. In the second stage, agents are weakly
indifferent about reporting their valuations truthfully: an agent’s payment
is independent of her reported valuation and truth-telling for this stage is
by assumption. We propose a modified mechanism which makes truthful
reporting in the second stage a strict equilibrium.
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1. Introduction

In the classical independent private values model (Mas-Colell et al., 1995),
each agent observes her valuation which depends on the allocation and her
own private type. One can design efficient, dominant strategy incentive com-
patible mechanisms in this setting, e.g., the VCG mechanism achieves these
properties. However, in many real world scenarios where agents collabora-
tively solve a problem, e.g., joint projects in multinational companies, or
large distributed online projects, such as crowdsourcing experiments like the
DARPA red balloon challenge (Pickard et al., 2011), the valuation of an agent
depends on the private types of other agents as well. The model where the
valuation of an agent for an allocation depends not only on her private type
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but also on the types of other agents, is the interdependent value model and
has also received a great deal of attention in the literature (Krishna, 2009).

The interdependent value model poses a more difficult challenge for mech-
anism design. In increasing generality, Maskin (1992), Jehiel and Moldovanu
(2001), and Jehiel et al. (2006) have shown that the efficient social choice
function cannot generically be ex-post implemented. Ex-post implementa-
tion requires agents to be truthful about their own type reports when all
others are reporting their types truthfully. This is a strong negative result
- it rules out the existence of a mechanism that takes type reports from the
agents and yields an allocation and a payment rule which satisfies ex-post
incentive compatibility and efficiency. However, Mezzetti (2004) has shown
that these goals can be achieved if the mechanism designer can split the
allocation and payment decisions into two stages. The agents report their
types in Stage 1, and the designer implements an allocation based on that.
Then, each agent observes her own valuation and reports the values to the
designer in Stage 2. The designer then proposes a payment based on the
two-stage reports. This mechanism is called generalized Groves mechanism
and in the Nash equilibrium the allocation is efficient. However, a drawback
of the mechanism pointed out by Mezzetti (2004) is that the agents are in-
different between truth-telling and lying in Stage 2. Hereafter, we will refer
to this mechanism as the classic mechanism.

In this paper, we propose a mechanism called Value Consistent Pivotal
Mechanism (VCPM) that overcomes this difficulty. In particular it proposes
a different set of payments from the classic mechanism in Stage 2 which makes
it a strict ex-post Nash equilibrium for each agent to reveal her valuation
truthfully at this stage.

The question may arise whether this mechanism hurts some other prop-
erties of the classic mechanism. Since VCPM yields the same payoff to the
agents as that of the classic in equilibrium, it continues to satisfy all the
properties that the classic mechanism satisfies in equilibrium. For example,
we show that in a restricted problem domain, a refinement of our mechanism
satisfies individual rationality (IR) as it is satisfied by the classic mechanism.
However, truth-telling in the classic mechanism is also a subgame perfect
equilibrium. On the contrary, truth-telling need not be a subgame perfect
equilibrium in VCPM. We illustrate this with an example.

The rest of the paper is organized as follows. In Section 2, we intro-
duce the model and define certain properties. In Section 3, we present the
mechanism and discuss its properties. We conclude the paper in Section 4.
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2. Model and Definitions

Let the set of agents be denoted by N = {1, · · · , n}. Each agent observes
her private type θi ∈ Θi. Let Θ = ×i∈NΘi denote the type profile space where
θ ≡ (θ1, · · · , θn) be an element of Θ. We will denote the type profile of all
agents except agent i by θ−i ≡ (θ1, · · · , θi−1, θi+1, · · · , θn) ∈ Θ−i. Types are
drawn independently across agents and each agent can only observe her own
type and does not know the types of other agents. We consider a standard
quasi-linear model. Therefore, the payoff ui of agent i is the sum of her value
vi and transfer pi.

We will consider a two stage mechanism similar to that of Mezzetti (2004),
because of the impossibility result by Jehiel and Moldovanu (2001). We call
this mechanism Value Consistent Pivotal Mechanism (VCPM).

In Stage 1, agents are asked to report their types, and after that the
mechanism designer chooses an alternative from the set A via the allocation
function a : Θ → A. We denote the reported types by θ̂, hence, the allocation
for such a report is given by a(θ̂).

All agents then experience the consequence of the allocation via the val-
uation function which is defined by vi : A×Θ → R, for all i ∈ N . Note: the
value function is different from the independent private value setting, where
it is a mapping vi : A×Θi → R. This difference makes mechanism design in
interdependent value settings difficult as discussed in Section 1.

In Stage 2, agents report their experienced valuations; transfers given by
pi : Θ× R

n → R, ∀i ∈ N are then decided by the designer. If the reported
valuations are v̂ ∈ R

n, the transfer to agent i is given by pi(θ̂, v̂).
The two stage mechanism VCPM is graphically illustrated in Figure 1.
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Figure 1: Graphical illustration of VCPM.
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2.1. Definitions

As discussed earlier, in the paper we will consider only two stage mech-
anisms, where in Stage 1, agents report their types and in Stage 2, their
experienced valuations. The allocation decision is made after Stage 1 and
the payment after Stage 2. It is, therefore, necessary to define the notions of
efficiency, truthfulness, and voluntary participation, in this setting.

We consider only quasi-linear domains where the payoff is the sum of the
valuation and transfer. A mechanism M in this domain is fully characterized
by a tuple of allocation and payment 〈a, p〉. For a truthful mechanism in
this setting, we need to ensure that it is truthful in both stages. In Stage 1,
truthfulness implies that the agents report their true types. In the second
round, the valuation is a function of the allocation chosen in Stage 1. Here
truthfulness would mean that they report their observed valuations due to
that allocation.

The true type profile is given by θ. With a slight abuse of notation, we
represent the true valuation vector by v = (v1(a(θ), θ), · · · , vn(a(θ), θ)) under
mechanism M = 〈a, p〉 . Let us denote the payoff of agent i by uM

i (θ̂, v̂|θ, v)
under mechanism M when the reported type and value vectors are θ̂ and
v̂ respectively, while the true type and value vectors are given by θ and v.
Therefore, due to the quasi-linear assumption, the payoff is given by,

uM
i (θ̂, v̂|θ, v) = vi(a(θ̂), θ) + pi(θ̂, v̂).

Definition 1 (Efficiency (EFF)). A mechanism M = 〈a, p〉 is efficient if
the allocation rule maximizes the sum valuation of the agents. That is, for
all θ,

a(θ) ∈ argmax
a∈A

∑

j∈N

vj(a, θ).

Definition 2 (Ex-post Incentive Compatibility (EPIC)). A mechanism
M = 〈a, p〉 is ex-post incentive compatible if reporting the true type and val-
uation is an ex-post Nash equilibrium of the induced game. That is, for all
true type profiles θ = (θi, θ−i) and true valuation profiles v = (vi, v−i) =
(vi(a(θ), θ), v−i(a(θ), θ)), and for all i ∈ N ,

uM
i ((θi, θ−i), (vi(a(θ), θ), v−i(a(θ), θ))|θ, v)

≥ uM
i ((θ̂i, θ−i), (v̂i, v−i(a(θ̂i, θ−i), θ))|θ, v), ∀θ̂i, v̂i.
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Definition 3 (Ex-post Individual Rationality (EPIR)). A mechanism
M = 〈a, p〉 is ex-post individually rational if the payoff of each agent in
the true type and valuation profile is non-negative. That is, for all i ∈ N ,
θ = (θi, θ−i), and v = (vi, v−i) = (vi(a(θ), θ), v−i(a(θ), θ)),

uM
i (θ, v|θ, v) ≥ 0.

Subset Allocation (SA). Later in this paper, we will focus on a problem
domain named subset allocation, where the allocation set is the set of all
subsets of the agents, i.e., A = 2N . In such a setting, we assume that the
valuation of agent i is given by,

vi(a, θ) =

{

vi(a, θa) if i ∈ a,

0 otherwise.
(1)

We use θa to denote the type vector of the allocated agents, i.e., θa =
(θj)j∈a, ∀a ∈ A. This means that when agent i is not selected, her valu-
ation is zero, and when she is selected, the valuation depends only on the
types of the selected agents. This restricted domain is relevant for distributed
projects in organizations, where the skill level of only the allocated agents
matter in the value achieved by the other allocated agents. The skill levels of
all the workers/employees participating in the project impact the success or
failure of the project, and the reward or loss is shared by the participants of
the project. This and several other examples of collaborative task execution
falls under the SA domain, which makes it interesting to study.

3. Main Results

With the dynamics of the mechanisms as in Figure 1, the mechanism
design problem is to design the allocation and the transfer rules. In VCPM,
we adopt the following allocation and transfer rules.
Stage 1: Agents report types θ̂ = (θ̂i, θ̂−i). The allocation is chosen as,

a∗(θ̂) ∈ argmax
a∈A

∑

j∈N

vj(a, θ̂). (2)

Stage 2: Agents report valuations v̂. The transfer to agent i, i ∈ N is,

p∗i (θ̂, v̂) =
∑

j 6=i

v̂j − g(v̂i, vi(a
∗(θ̂), θ̂))− hi(θ̂−i). (3)
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Where hi is any arbitrary function of θ̂−i, and g(x, ℓ) is a non-negative func-
tion of x with a unique zero at ℓ. An example of the function g(x, ℓ) would
be (x− ℓ)2.

Algorithm 1 VCPM

Stage 1:

for agents i = 1, . . . , n do

agent i observes θi;
agent i reports θ̂i;

end for

compute allocation a∗(θ̂) according to Eq. (2);
Stage 2:

for agents i = 1, . . . , n do

agent i observes vi(a
∗(θ̂), θ);

agent i reports v̂i;
end for

compute payment to agent i, p∗i (θ̂, v̂), Eq. (3);

The stages of the mecha-
nism are shown in algorith-
mic form in Algorithm 1.
The difference between this
mechanism with that of
Mezzetti’s is that we charge
a tax to the agent i for not
being consistent with Stage
1 of type reports. Note that
the value function is com-
mon knowledge. Together
with the reported type vec-
tor θ̂, the designer can com-
pute the value vi(a

∗(θ̂), θ̂) in
Eq. (3). The amount of
tax is positive whenever the
agents valuation announcement are inconsistent with the value computed
according to their reported types in Stage 1. We will show in the following
theorem that this modification in the transfer makes VCPM truth-telling a
strict best-response in Stage 2.

Theorem 1. VCPM is EFF and EPIC. In particular, reporting the valua-
tions truthfully in Stage 2 of this mechanism is a strict best-response for each
agent.

Proof: The allocation rule of VCPM given by Eq. (2) ensures efficiency by
construction. Therefore, we are only required to show that the mechanism
is ex-post incentive compatible.

To show that VCPM is ex-post incentive compatible, without loss of
generality, let us assume that all agents except agent i are reporting their
types and valuations truthfully in the two stages. Let us assume that the
true types are given by θ = (θi, θ−i). Hence, under these assumptions, θ̂ =
(θ̂i, θ−i). The value reports in Stage 2 is dependent on the allocation in the
first. Hence, for the agents j 6= i, who are truthful, the value reports are
given by, v̂j = vj(a

∗(θ̂), θ). As defined earlier, we denote the payoff of agent
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i by ui((θ̂i, θ−i), (v̂i, v−i(a(θ̂), θ))|θ, v) when all agents except i report their
types and values truthfully, and the true type and value profiles are θ and v.
The payoff of agent i is given by,

uVCPM

i ((θ̂i, θ−i), (v̂i, v−i(a
∗(θ̂), θ))|θ, v)

= vi(a
∗(θ̂i, θ−i), θ) + pi((θ̂i, θ−i), (v̂i, v−i))

= vi(a
∗(θ̂i, θ−i), θ) +

∑

j 6=i

vj(a
∗(θ̂i, θ−i), θ)− g(v̂i, vi(a

∗(θ̂), θ̂))− hi(θ−i)

≤ vi(a
∗(θ̂i, θ−i), θ) +

∑

j 6=i

vj(a
∗(θ̂i, θ−i), θ)− hi(θ−i)

=
∑

j∈N

vj(a
∗(θ̂i, θ−i), θ)− hi(θ−i)

≤
∑

j∈N

vj(a
∗(θi, θ−i), θ)− hi(θ−i)

= vi(a
∗(θ), θ) +

∑

j 6=i

vj(a
∗(θ), θ)− hi(θ−i)

= uVCPM

i (θ, v|θ, v)

The first and second equalities are by definition and by substituting the
expression of transfer (Eq. (3)). The first inequality comes since we are
ignoring a non-positive term. The third equality is via simple reorganization
the terms. The second inequality comes by definition of the allocation rule
(Eq. (2)). The rest of the steps are simple reorganization of the expressions.
The last equality is due to the fact that the function g is zero when v̂i =
vi(a

∗(θ), θ). Hence, we prove that VCPM is ex-post incentive compatible.
Let us explain that in this ex-post Nash equilibrium of this game, report-

ing values truthfully in Stage 2 is a strict best-response. This is because,
when types are reported truthfully in Stage 1, the second term in the ex-
pression of the transfer for agent i (Eq. (3)) is reduced to g(v̂i, vi(a

∗(θ), θ)).
This term is minimized (thereby the payoff to agent i is maximized) when
v̂i = vi(a

∗(θ), θ), which is the true report. Hence, truthful report in stage
two of VCPM is a strict best-response. ✷

3.1. Comparison with the Classic Mechanism

It is reasonable to ask whether the proposed mechanism VCPM that
achieves the strict Nash equilibrium in Stage 2, continues to satisfy all other
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desirable properties that the original mechanism given by Mezzetti (2004)
used to satisfy. Since we prove that VCPM is EPIC, truthful reporting
is an ex-post Nash equilibrium, and in that equilibrium, the penalty term
g(v̂i, vi(a

∗(θ̂), θ̂)) in the expression of the transfer (Eq. (3)) is zero. Therefore,
the allocation and the transfer in this truthful equilibrium are exactly the
same as in the classic mechanism, and so is the payoff of each agent. So,
any property that the classic mechanism used to satisfy in the ex-post Nash
equilibrium will continue to hold even for VCPM. In addition, the truthful
reporting in Stage 2 a strict best-response.

In the next section, we illustrate one such desirable property, namely the
ex-post individual rationality, and show that under a restricted domain, a
refined VCPM satisfies this property as does the classic mechanism.

It is important to note that the weak indifference in Stage 2 of the classic
mechanism guarantees that truth reporting also a subgame perfect equilib-
rium. The strict EPIC of VCPM comes at the expense of subgame perfec-
tion. We illustrate this in the section following the next with an example.

3.2. VCPM and Ex-post Individual Rationality

In this section, we investigate the incentives for individuals to participate
in this game. We consider the subset allocation (SA) domain. Hence, A =
2N . Let us define the social welfare as,

W (θ) = max
a∈A

∑

j∈a

vj(a, θa). (4)

Similarly, the social welfare excluding agent i is given by,

W−i(θ−i) = max
a
−i∈A−i

∑

j∈a
−i

vj(a−i, θa
−i
), (5)

where A−i = 2N\{i}. Notice that in the SA domain A−i ⊆ A, and therefore
we make the following observation,

Observation 1. In SA problem domain, with W and W−i defined as in
Eqs. (4) and (5), W (θ) ≥ W−i(θ−i).

This is because, a−i ∈ A−i ⊆ A. Therefore, while choosing allocation a

that yields the social welfare including agent i, the designer has the choice
of choosing all a−i’s as well. Therefore, the social welfare including agent i
will always dominate that excluding her.
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Let us refine the VCPM to yield rVCPM by redefining the allocation
(Eq. (2)) in stage one as follows.

arVCPM(θ̂) ∈ argmax
a∈A

∑

j∈a

vj(a, θ̂a). (6)

We also redefine the payment (Eq. (3)) in stage two as follows.

prVCPM

i (θ̂, v̂) =
∑

j∈arVCPM(θ̂)\{i}

v̂j − g(v̂i, vi(a
rVCPM(θ̂), θ̂))−W−i(θ̂−i). (7)

Note that the hi function in the VCPM is replaced by W−i in rVCPM.
The following Corollary is now immediate from Theorem 1 and Observation 1.

Corollary 1. In the SA problem domain, rVCPM is EFF, EPIC, and
EPIR.

Proof: Since rVCPM is a special case of VCPM and SA is a restricted
domain, the results of VCPM holds in this setting too. Therefore from
Theorem 1, we conclude that rVCPM is EFF and EPIC. Now, in the ex-
post Nash equilibrium, the payoff of agent i is given by,

urVCPM

i (θ, v|θ, v) = vi(a
rVCPM(θ), θarVCPM(θ)) + prVCPM

i (θ, v)

= vi(a
rVCPM(θ), θarVCPM(θ))

+
∑

j∈arVCPM(θ)\{i}

vj(a
rVCPM(θ), θarVCPM(θ))−W−i(θ−i)

=
∑

j∈arVCPM(θ)

vj(a
rVCPM(θ), θarVCPM(θ))−W−i(θ−i)

= W (θ)−W−i(θ−i) ≥ 0, (c.f. Observation 1).

The first three equalities are by definition and simple reorganization of the
terms. The fourth equality is by the definition of W (θ) (Eq. (4)) and
arVCPM(θ) (Eq. (7)). The inequality is due to Observation 1. Hence, rVCPM

is ex-post individually rational. ✷

3.3. VCPM and Subgame Perfect Equilibrium

In this section, we show with an example that truth reporting in VCPM

is not a subgame perfect equilibrium (SPE). 1

1We thank an anonymous referee for raising this point and providing the example.
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Example 1. Let us consider two alternatives a1 and a2 and three agents,
i = 1, 2, 3. Let Θ1 = Θ2 = {0, 2}, and Θ3 = φ (i.e., agents 1 and 2 have two
types each, agent 3 has no private information). Assume, vi(a1, θ) = 0, for
all i and θ, v1(a2, θ) = θ1+2θ2, v2(a2, θ) = 2θ1+θ2, v3(a2, θ) = −3, for all θ.
The efficient allocation under VCPM is, a∗(θ) = a1, if θ1 = θ2 = 0, and a2
otherwise. Let us assume, hi ≡ 0 for simplicity. Under VCPM, no matter
what was reported in Stage 1, the unique best reply for each agent is to report
a value, v̂i = vi(a

∗(θ̂), θ̂). Now suppose that the true types are θ1 = θ2 = 0
and that agent 2 truthfully reports in Stage 1, i.e., θ̂2 = 0 and then reports
v̂2 = v2(a

∗(θ̂), θ̂) (as it must in a SPE).
If agent 1 reports the truth, i.e., θ̂1 = 0, then the implemented allocation

is a∗(0, 0) = a1. The allocation gives him zero value, and the second round
transfer to agent 1 is

∑

j 6=1 vj(a1, (0, 0)) = 0. In short, agent 1 obtains a total
utility of zero if he reports his true type.

If he instead lies and reports θ̂1 = 2, then the implemented allocation
is a∗(2, 0) = a2. The allocation still gives him zero value (as the true
types are θ1 = θ2 = 0), but the second round transfer to agent 1 now is
∑

j 6=1 vj(a2, (2, 0)) = 4 − 3 = 1. In short, agent 1 obtains a total utility of
one if he misreports. So, truth-telling in Stage 1 is not a SPE for agent 1.

The classic mechanism is SPE because the payoffs of the agents in Stage
2 are independent of their value reports, thereby making the EPIC weak.
Hence, we can see that there is a trade-off between strict EPIC in Stage 2
and subgame perfection.

3.4. Reduced Form vs State-of-the-World Formulation

In the original paper by Mezzetti (2004), a state-of-the-world variable ω

was introduced, which is realized after the allocation and before the agents
observe their valuations. The valuations are functions of this variable, and
the payment is decided after they report their observed valuations that de-
pend on the realization of ω. The mechanism proposed in that paper is weak
EPIC in Stage 2 since the payment does not depend on the agent concerned’s
Stage 1 report. The EPIC in the first round, however, is with the expecta-
tion over the ω, since the allocation decision is done in Stage 1 and before
ω realizes. In contrast, the reduced form refers to the setting where all the
analysis is done taking expectation over ω. In this paper, we have discussed
the reduced form analysis so far, and now we make a few observations on the
state-of-the-world formulation.
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The state-of-the-world variable ω affects any strict EPIC mechanism in-
cluding VCPM in the following way. It depends on the following cases
regarding what the designer observes.

Case 1: the designer can observe the state-of-the-world ω. In such a case,
by redefining the penalty term to be g(v̂i, vi(a

∗(θ̂), θ̂, ω)), where vi(a
∗(θ̂), θ̂, ω)

is now computable by the designer, we can satisfy the strict EPIC in the
second round for each realization of ω, in addition to satisfying EPIC in the
first round with expectation over ω.

Case 2: the designer cannot observe the state-of-the-world ω, but is able
to decipher it given the agents reports. This is going to hold for a restricted
class of problems. For example, if for each allocation a, type profile θ, and
x ∈ Range(v), there exists at least two agents i1(x) and i2(x) such that both
v−1
i1(x)

(x) and v−1
i2(x)

(x) gives back a, θ, and a unique ω. This implies that, each
state of the world uniquely affects at least two agents in the population. In
such a setting, it is possible for the designer to retrieve the true state-of-the-
world ω from the other agents’ report and use the g function as used in Case
1 above, and make VCPM a strict EPIC in Stage 2 as well.

Case 3: the designer cannot observe the state-of-the-world ω, and is
not able to decipher it given the agents reports. This scenario is difficult for
designing any strict EPIC mechanism. We provide an example where a naive
expectation of g given by,

∫

Ω
g(v̂i, vi(a

∗(θ̂), θ̂, ω)) dω does not work, and leave
a detailed investigation to future work.

Example 2. Suppose, ω can take only two possible states, 1 and 0. The
priors are P(ω = 1) = 0.99, and P(ω = 0) = 0.01. Let us fix an allocation a

and a type profile θ, and let vi(a, θ, ω = 1) = 1, and vi(a, θ, ω = 0) = 0, then
if i observes vi = 0, she might still report vi = 1 because the ω corresponding
to that outcome is a lot more likely. Say g(x, ℓ) = (x− ℓ)2, the agent would
look at minimizing (v̂i − 1)2 × 0.99 + (v̂i − 0)2 × 0.01 which is minimized by
v̂i = 1 even if vi = 0.

The example above clearly shows that there is no easy way to convert a
strict EPIC mechanism in the reduced form into a strict EPIC mechanism
with state-of-the-world formulation. It appears to us that in an unrestricted
interdependent value domain, it may be impossible to design any strict EPIC
mechanism, an investigation which we leave to future work.
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4. Conclusions and Future Work

In this paper, we have considered mechanisms for interdependent valua-
tion settings. The classic mechanism by Mezzetti is ex-post incentive com-
patible for such settings, but in the second stage of valuation reporting is
truthful in the weakest possible sense, as payments to agents are indepen-
dent of their own reported valuations. We improve the classic mechanism
by making truthful reporting in the second stage a strict Nash equilibrium,
though it comes at the cost of subgame perfection of the classic mechanism.
It will be interesting to investigate if these two properties are possible to sat-
isfy together. Our analysis is based on the reduced form formulation of the
classic mechanism. There is another interesting strand of work, which would
include the state-of-the-world formulation as well and find the feasible space
of mechanism design. We conclude our paper keeping these as our potential
future works.
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