Dynamic Mechanism Design for Markets with Strategic Resources

Swaprava Nath¹ Onno Zoeter² Yadati Narahari¹ Chris Dance²

¹ Indian Institute of Science, Bangalore ² Xerox Research Centre Europe

Conference on Uncertainty in Artificial Intelligence

July 15, 2011

- Task difficulties (Low,Medium,High) and team efficiencies (Low,Medium,High) follow Markov chain.
- Task for central planner: assign teams to tasks in each round, balancing completed task rewards, costs, and future efficiency levels.
- If difficulties and efficiencies are known to planner, this is a Markov decision problem (MDP).

- Task difficulties (Low,Medium,High) and team efficiencies (Low,Medium,High) follow Markov chain.
- Task for central planner: assign teams to tasks in each round, balancing completed task rewards, costs, and future efficiency levels.
- If difficulties and efficiencies are known to planner, this is a Markov decision problem (MDP).

- Task difficulties (Low,Medium,High) and team efficiencies (Low,Medium,High) follow Markov chain.
- Task for central planner: assign teams to tasks in each round, balancing completed task rewards, costs, and future efficiency levels.
- If difficulties and efficiencies are known to planner, this is a Markov decision problem (MDP).

- Task difficulties (Low,Medium,High) and team efficiencies (Low,Medium,High) follow Markov chain.
- Task for central planner: assign teams to tasks in each round, balancing completed task rewards, costs, and future efficiency levels.
- If difficulties and efficiencies are known to planner, this is a Markov decision problem (MDP).

This talk: task difficulties and team efficiencies (elements in the state of the MDP) are *private information* of *strategic agents*: this is a *mechanism design* problem.

MDP notation for our setting

Agents 0 task owner (one for ease of notation) $\{1, \ldots, n\} =: N$ set of resources.

State is concatenation of agent types

$$\begin{array}{lll} \theta_t &=& (\theta_{0,t}, \theta_{1,t}, \dots, \theta_{n,t}) \\ \theta_{i,t} &:& i \text{'s type, e.g. } \theta_{i,t} \in \{L, M, H\} \end{array}$$

Action is an assignment of resources to tasks

 $a_t \in 2^N$ for our 1 task example.

State transition function is Markov and independent per agent

$$F(\theta_{t+1}|a_t,\theta_t) = \prod_i F_i(\theta_{i,t+1}|a_t,\theta_{i,t}) .$$

MDP notation for our setting: interdependent valuations

Reward function is sum of all agents' valuations (social welfare)

$$\begin{array}{lll} R(\theta_t, a_t) & = & \displaystyle\sum_{i=0}^n v_i(a_t, \theta_t) \text{ with} \\ v_0(a_t, \theta_t) & \geq & 0 \text{ denoting returns} \\ v_i(a_t, \theta_t) & \leq & 0 \text{ for } i > 0 \text{ denoting costs} \end{array}$$

Note: valuations are **dependent**, compare with $v_i(a_t, \theta_{i,t})$.

E.g. task owner's return depends on task difficulty and team strength.

Consider infinite horizon problem with discount parameter δ .

Controller's goal is to determine and execute optimal (static) policy π^*

$$\begin{split} W^*(\theta_t) &= \max_{a} \left[R(a, \theta_t) + \delta \mathbb{E}_{a, \theta_t} W^*(\theta_{t+1}) \right] \quad (\textit{maximal social welfare}) \\ \pi^*(\theta_t) &\in \arg \max_{a} \left[R(a, \theta_t) + \delta \mathbb{E}_{a, \theta_t} W^*(\theta_{t+1}) \right] \,. \end{split}$$

Markets with strategic resources

In our strategic setting everything remains common knowledge, except $\theta_t,$

```
\theta_{i,t} is only observed by i.
```

We consider a *quasi-linear setting*: agents care about sum of discounted utilities:

$$\begin{split} \sum_{t=0}^{\infty} \delta^t u_{i,t} & \text{with} \\ u_{i,t} &= v_{i,t} + p_{i,t} \quad (\textit{utility}) \\ p_{i,t} &> 0 \quad \text{possible } \textit{payment} \text{ from controller to agent} \\ p_{i,t} &< 0 \quad \text{possible payment from agent to controller.} \end{split}$$

Mechanism designer's goals

Design a repeated game with information exchange

that achieves

Efficiency (EFF): mechanism yields $W^*(\theta_t)$ under equilibrium reporting strategies.

Truthfulness (Incentive compatibility) (EPIC): it is optimal for *i* to report $\theta_{i,t}$ truthfully when asked.

Voluntary participation (Individual rationality) (EPIR): agents stand to gain something from participating (non-negative utilities).

We consider (provide proofs for) *ex-post* equilibria: agent *i* does not make assumptions about other agent's types, but *does* assume that other agents report truthfully.

Strictly speaking within period ex-post to emphasizes that agents can't foresee the future.

Where does this work fit in?

Valuations	STATIC	DYNAMIC	
Independent	VCG Mechanism	Dynamic Pivot Mechanism	
	(Vickery, 1961;	(Bergemann and	
	Clarke, 1971;	Välimäki, 2010)	
	Groves, 1973)	(Athey and Segal, 2007)	
		(Cavallo et al., 2006)	
Dependent	Generalized VCG		
	(Mezzetti, 2004)		

- VCG guarantees
 - DSIC (stronger than EPIC), EFF, under certain conditions EPIR
- GVCG guarantees
 - EPIC, EFF, under certain conditions EPIR
- DPM guarantees
 - ▶ EPIC, EFF, EPIR, in non-exchange economies, budget balanced

Where does this work fit in?

Valuations	STATIC	DYNAMIC	
Independent	VCG Mechanism Dynamic Pivot Mech		
	(Vickery, 1961; (Bergemann and		
	Clarke, 1971;	Välimäki, 2010)	
	Groves, 1973)	(Athey and Segal, 2007)	
		(Cavallo et al., 2006)	
Dependent	Generalized VCG	Generalized	
	(Mezzetti, 2004)	Dynamic Pivot Mechanism	

- VCG guarantees
 - DSIC (stronger than EPIC), EFF, under certain conditions EPIR
- GVCG guarantees
 - EPIC, EFF, under certain conditions EPIR
- DPM guarantees
 - ▶ EPIC, EFF, EPIR, in non-exchange economies, budget balanced
- GDPM guarantees
 - ► EPIC, EFF, EPIR, but requires more reports from agents than DPM

The Interdependent Value Setting

- If values are dependent, *Efficiency* and *Truthfulness* cannot be guaranteed with single stage mechanisms even in static setting ¹
 - Without imposing any voluntary participation or budget constraints
- Need to split the decisions of allocation and payment²

¹P. Jehiel and B. Moldovanu. Efficient Design with Interdependent Valuations. *Econometrica*, (69):1237–1259, 2001.

²Claudio Mezzetti. Mechanism Design with Interdependent Valuations: Efficiency. *Econometrica*, 2004.

The Interdependent Value Setting

- If values are dependent, *Efficiency* and *Truthfulness* cannot be guaranteed with single stage mechanisms even in static setting ¹
 - Without imposing any voluntary participation or budget constraints
- Need to split the decisions of allocation and payment²

¹P. Jehiel and B. Moldovanu. Efficient Design with Interdependent Valuations. *Econometrica*, (69):1237–1259, 2001.

²Claudio Mezzetti. Mechanism Design with Interdependent Valuations: Efficiency. *Econometrica*, 2004.

The Generalized Dynamic Pivot Mechanism (GDPM)

- The task is to design the allocation and payments on the reported types and values
- > The allocation maximizes the social welfare taking reports as truth,

$$a^*(\hat{\theta}_t) \in \arg\max_{a_t} \mathbb{E}_{a_t, \hat{\theta}_t} \left[\sum_{i \in N} v_i(a_t, \hat{\theta}_t) + \delta \mathbb{E}_{\theta_{t+1}|a_t, \hat{\theta}_t} W(\theta_{t+1}) \right]$$

The payment to agent i at t is given by,

$$p_i^*(\hat{\theta}_t, \hat{v}_t) = \underbrace{\sum_{j \neq i} \hat{v}_{j,t} + \delta \mathbb{E}_{\theta_{t+1}|a^*(\hat{\theta}_t), \hat{\theta}_t} W_{-i}(\theta_{t+1})}_{\text{Expected discounted sum of returns to}} - \underbrace{W_{-i}(\hat{\theta}_t)}_{\text{Const. indep. of } \hat{\theta}_{i,t}}$$

other agents, based on *reported* valuations and *allocation* for this round

Main Theorem

Theorem

GDPM is efficient, within period ex-post incentive compatible, and within period ex-post individually rational.

Proof ingredients: The allocation and payment is chosen such that

- ► If everyone reported true $\theta_{i,t}$'s, each would have got their marginal contribution, $W(\theta_t) W_{-i}(\theta_t)$ as the payoff (check for time instant t).
- ► Goal: to show that reporting true $\theta_{i,t}$'s maximizes *i*'s payoff, given everyone else is reporting truth (EPIC).
- At t, player i cares about,
 - Current stage payoff, $v_i(a_t, \theta_t) + p_i^*(\hat{\theta}_t, \hat{v}_t)$ and,
 - Future payoffs, i.e., the expected discounted sum of the value + payment from t + 1 to ∞ .
 - From time t + 1, the expected discounted sum of payoff of agent i is W(θ_{t+1}) − W_{-i}(θ_{t+1}), assuming agents report truthfully from t + 1.

Putting together, agent i's utility is,

 $v_i(a_t, \theta_t) + p_i^*(\hat{\theta}_t, \hat{v}_t) + \mathbb{E}_{\theta_{t+1}|a_t, \theta_t} \left(W(\theta_{t+1}) - W_{-i}(\theta_{t+1}) \right)$

• This is maximized at the true θ_t reports (proved in paper).

The use of second phase reports

Proof ingredients:

Necessity of the second reporting phase:

Controller can only influence assignment.
With the second reporting phase, *i* can only influence his payoff via the assignment, i.e. his utility is of a form

$$f(a^*(\hat{\theta}_{i,t}))$$
.

Since controller optimizes what i cares about, truthfulness is optimal.

Without second phase, payment to i would be based on

 $v_{j,t}(a_t, \hat{\theta}_{i,t}, \theta_{-i,t}) \quad (j' \text{s predicted value, based on } i' \text{s report}),$ instead of

 $\hat{v}_{j,t}$ (j's reported value, which is independent of i's report). What controller optimizes has form

$$f(a^*(\hat{\theta}_{i,t}), \hat{\theta}_{i,t})$$
,

hence i has a richer optimization problem than the controller, and might strategically manipulate his report $\hat{\theta}_{i,t}$.

Why care? A naïve alternative mechanism

Is obtaining efficiency straightforward?

Consider an alternative naïve mechanism

- > The allocation maximizes the social welfare taking reports as truth.
- Task owner pays K to every assigned team (independent of outcome).

If you were Carol, would you report your low effectiveness state?

Simulation Setting

- 3 players: 1 Task owner (Image owner), 2 Teams (Annotators)
- ► $\theta_{i,t} \in \{L, M, H\}$ corresponding to the difficulty/effectiveness levels for all agents: $3^3 = 27$ possible states.
- Value structure represents law of diminishing returns.
- Transition probability matrices reflect risk of reduction in effectiveness when assigned, probability of recovery when not assigned.
- Annotators are symmetric, we need to study only one.

Simulation Results

Truthfulness:

Simulation Results (Contd.)

Comparison with a Naïve Mechanism (CONST):

Simulation Summary

Payment consistency (PC): task owners only make payments, teams only receive payments.

Budget balance (BB): controller does not need to inject money into the exchange.

	EFF	EPIC	EPIR	PC	BB
GDPM	\checkmark	\checkmark	\checkmark	×	X
CONST	×	×	×	\checkmark	\checkmark

All of these properties may not be simultaneously satisfiable

Discussion

Strategic extensions of dynamic decision problems are very important in practical problems.

We have presented a dynamic mechanism for exchange economies.

It is (within period, ex-post) truthful, efficient, and voluntary participatory but not budget balanced, payment consistent

in a setting with

independent type transitions, and dependent valuations.

See also Cavallo et al. '09 who consider dynamic problems with dependent type transitions, and independent valuations.

Future work: complete this space and determine (im)possibilities.

What extra opportunities are there in the infinite discounted case over the single round setting?

Questions?