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Abstract

Most peer-evaluation practices rely on the evaluator’s goodwill and model them as po-
tentially noisy evaluators. But what if graders are competitive, i.e., enjoy higher utility
when their peers get lower scores? We model the setting as a multi-agent incentive design
problem and propose a new mechanism, PEQA, that incentivizes these agents (peer-graders)
through a score-assignment rule and a grading performance score. PEQA is designed in such
a way that it makes grader-bias irrelevant and ensures grader-utility to be monotonically
increasing with the grading-precision, despite competitiveness. When grading is costly
and costs are private information of the individual graders, a modified version of PEQA
implements the socially optimal grading-choices in equilibrium. Data from our classroom
experiments is consistent with our theoretical assumptions and show that PEQA outper-
forms the popular median mechanism, which is used in several massive open online courses
(MOOCs).

1. Introduction

A peer-evaluation process aggregates assessments from peers to judge the quality of submit-
ted work. Scientific communities use peer-evaluation for reviewing the quality of articles
and grant proposals (Campanario, 1998). Coursera and EdX, that offer Massive Open
Online Courses (MOOCs) to 94 million learners1, use peer-grading to evaluate submitted
assignments. Many in-person classes are also adopting it and its growing popularity can be
explained by the following three reasons. First, it simplifies and accelerates the evaluation
and grading process. Second, it improves learning outcomes of the participating students
(Sadler & Good, 2006). Third, it easily scales to large classes.

There is, however, a scope for skepticism about the accuracy of peer-graded outcomes. A
grader might be unmotivated to evaluate diligently when peer-grading is effort-intensive and
unincentivized. She might also be biased in her evaluations if she cares about her relative
success within peers.2 This creates perverse incentives for peer-graders. In an anonymous
survey that we ran on the students of a reputed technical institute in India, 49% of the

1Numbers from Coursera’s and EdX’s 2020 impact reports.
2When students are evaluated on a curve, students naturally care about their relative performance vis-à-

vis peers. Even when evaluated on an absolute grading scale, students care about their relative performance
due to the role it plays in admission into jobs or higher studies.
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549 respondents expected that their fellow students would grade aggressively to reduce the
scores of others, and thereby try to improve their relative class-ranking.3

We study the problem of incentivizing peer-graders, while allowing for competitive and
strategic behavior. In our model, students take an exam4 and then peer-grade each others’
exams. Thus, every student has dual roles: (i) the student role, where she takes an exam
that gets evaluated, and (ii) the grader role, where she evaluates others. As is the norm
in most MOOC courses that utilize peer-grading, a student’s total course-score is the sum
of their own exam score (aggregated from peer-reports) and a score based on their peer-
grading performance. To model competitive students, we assume that their utility is linearly
increasing in their total course-score and linearly decreasing in their peers’ total course-
scores.

To model strategic grading, we adapt the widely used PG1 model of Piech et al. (2013)
to a strategic environment. Piech et al. (2013) introduce PG1 as a statistical model of
peer-grading and use it for estimating and correcting for grader bias and reliability (inverse
of variance) in a large-scale data mining exercise.5 PG1 assumes that each paper has a
true score and any peer-grader’s bias and reliability are drawn randomly from a known
distribution. We instead assume that each peer-grader strategically chooses the reliability
of the independent, noisy signals that they observe about the true score. By choosing a
higher reliability, they can observe a more accurate signal. Graders can then decide to
add a bias of their choice to their observed signal while reporting their assessment. Graders
who care about their relative success within peers might purposefully bias their evaluations.
They may also choose to receive less reliable signals.

What is the set of desiderata one could ask for a mechanism in this setup? At a
minimum, the mechanism should make bias irrelevant and incentivize reliable grading. Also,
the aggregation rule over peer reports should assign a final score that is close to the true
score. To simplify, we initially assume that more reliable grading (lower variance) does not
come at an extra cost to the peer-grader.

We propose a new mechanism, Peer Evaluation with Quality Assurance (PEQA), that
ensures that (Theorem 1):

▷ Assigned scores and grader’s utility are bias-insensitive (Definition 2). Thus, graders
have no incentive to introduce a bias, and bias does not affect the grading process.

▷ Choosing higher grading reliability ensures monotonically higher utility to the grader,
despite her competitiveness. This holds for all actions of her co-graders. (reliability
monotonicity, Definition 3).

How should one aggregate the peer reports to ensure accuracy of assigned scores? A
candidate score-assignment function is one that minimizes the expected squared error, i.e,
the squared distance between the assigned score and the true score of a paper. In Equa-
tion (30) of Appendix C, we show that under the distribution-assumptions of Piech et al.
(2013), a reliability-weighted average of the de-biased peer reports minimizes squared error.

3Ideally, we would also ask students if they themselves would do the same while grading peers, but
students are likely to under-report such activity.

4We use the terms exam, paper, and answerscript interchangeably in this paper.
5The authors mention: “we present the largest peer grading networks analysed to date with over 63,000

peer grades. ... we present, in order of increasing complexity, three statistical models that we have found to
be particularly effective”. PG1 is the first one of this three models.
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PEQA’s score-assignment function closely approximates the squared-error minimizer (see Ap-
pendix D), while uniquely and flexibly satisfying the monotonic relation between utility and
reliability (Theorem 2).

In Section 6, we address if PEQA satisfies the more ambitious desiderata of implementing
a “preferred level” of grading among competitive peer-graders, while accounting for the
cost of grading reliably. We assume that students face an additional disutility (cost) from
grading that increases with their reliability. How much effort should one ask students to
exert? Reliability is desirable, but it might be prohibitively costly for students to spend all
their time on grading! We define the net student welfare (Equation (11)) from the game as
the difference between the social benefit and the aggregate cost of reliability. Under this
setup, we show that:

▷ A modified version of PEQA implements Nash equilibria of the peer-grading game (with
private costs) in which graders grade at the welfare-optimal level of reliability (Theo-
rem 4).

▷ The modified PEQA maintains the same ranking among the students as the original PEQA
(Lemma 2).

The close connection between a grader’s grading performance score and her marginal contri-
bution to the student welfare, under PEQA, makes these possible. Alternative performance
bonus schemes that do not use the idea of marginal social contributions, e.g., the one that
compares and punishes graders whose peer-grading scores differ from the true scores, cannot
satisfy these properties.

How does the mechanism PEQA work? The teaching staff evaluate a small subset of the
total number of papers (called probes). Each grader is assigned K > 2 (K even) papers
(with K/2 probes) and they never grade their own paper. The probes are used to estimate
the biases and reliabilities of the peer-graders so that the non-probe papers can be properly
calibrated.6 The peer-graders cannot tell apart the probes from the non-probes. PEQA

compares the grader’s and the teaching staff’s evaluations of the probes to estimate each
grader’s bias and reliability. This requires two identifying assumptions: that the teaching
staff can observe the true scores on the probe papers, and, that the graders grade identically
on probes and non-probes. The estimated grader-bias is subtracted from the peer-reports
to de-bias the reports. PEQA’s score-assignment function assigns a weighted average of the
de-biased grader-reports, with the weights being the inverse square-root of the estimated
grader-variance. Thus, reports from high variance graders play a smaller role in the finally
assigned score.

We allow students to raise regrading requests, after seeing their score. The teaching
staff regrade such papers and assign them the true score. We assume that students raise
these requests in a self-serving way: only when the student knows that her peer-graded
score was lower than the true score. In the discussion following Theorem 1 in Section 5, we
explain how PEQA utilizes the regrading requests and competitive preferences to incentivize
reliable grading.

The schematic diagram of the stages of PEQA is shown in Figure 1.

Theoretical assumptions are often only an approximation of reality. To test some of
our theoretical assumptions and to see how easily our mechanism could be implemented

6This is in spirit of the mechanism design with verification (e.g., (Li, 2020)) where the incentives of the
agents depend on the agents’ performance on the verification.
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Figure 1: Schematic diagram of the PEQA mechanism decomposed into four phases. A
typical non-probe paper is denoted by j here.

in practice, we ran a classroom experiment (Section 7). Students enrolled in a computing
course were asked to peer-grade a weekly class-quiz and were incentivized by PEQA. We
independently graded all the exams to evaluate their true-scores. Compared to the true
scores, PEQA assigned scores that were remarkably accurate: only 1 out of 41 sub-quizzes
had a wrong score. Thus, despite the simplifying theoretical assumptions, the mechanism
does very well consequentially.

Data from our PEQA sessions (Tables 1 to 3) is consistent with two of our assumptions.

1. The bias and variance were indeed not different across probes and non-probes under
PEQA: students were not able to discern one from the other (Hypothesis 4).

2. Grade-manipulations, whenever present, reduced scores instead of inflating scores. This
rejects the existence of collusive (i.e., the opposite of competitive) graders (Hypothesis 1).

We ran a second competitive session under a Median mechanism, which is currently
the most popular mechanism used in MOOCs.7 In our experiments, PEQA mechanism out-
performed Median mechanism in terms of allocating accurate final scores (Hypothesis 3).
These differences were statistically significant.

Related Work

The existing research on peer-evaluation mechanisms can be broadly divided into three
strands. The first strand of literature abstracts away any strategic motives of the peer-
evaluators. Instead of providing a mechanism to incentivize strategic evaluators, they
propose how the grader reports could be aggregated efficiently (Caragiannis, Krimpas, &

7Coursera and EdX use the median score for aggregation, as reported on Coursera and EdX websites.
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Voudouris, 2015, 2020; Cho & Schunn, 2007; De Alfaro & Shavlovsky, 2014; Fiez, Shah,
& Ratliff, 2020; Hamer, Ma, & Kwong, 2005; Kulkarni, Socher, Bernstein, & Klemmer,
2014; Noothigattu, Shah, & Procaccia, 2021; Paré & Joordens, 2008; Piech et al., 2013; Ra-
man & Joachims, 2014; Shah, Bradley, Parekh, Wainwright, & Ramchandran, 2013; Wang,
Stelmakh, Wei, & Shah, 2021; Wright, Thornton, & Leyton-Brown, 2015; Zarkoob, d’Eon,
Podina, & Leyton-Brown, 2022).

The second strand of literature is based on peer-prediction approaches. These mecha-
nisms incentivize coordination on similar evaluation reports by punishing evaluations that
do not match each other. Thus, they do not necessarily incentivize accuracy (Dasgupta
& Ghosh, 2013; Dhull, Jecmen, Kothari, & Shah, 2022; Faltings, Li, & Jurca, 2012; Jurca
& Faltings, 2009; Lev, Mattei, Turrini, & Zhydkov, 2023; Miller, Resnick, & Zeckhauser,
2005; Prelec, 2004; Shnayder, Agarwal, Frongillo, & Parkes, 2016; Waggoner & Chen, 2014;
Witkowski, Bachrach, Key, & Parkes, 2013; Witkowski & Parkes, 2013). Any such mecha-
nism introduces uninformative equilibria alongside the truth-telling one (Jurca & Faltings,
2009; Waggoner & Chen, 2014).8 More recent developments make the truthful equilibrium
Pareto dominant, i.e., the truthful equilibrium is (weakly) more rewarding to every agent
than any other equilibrium (Dasgupta & Ghosh, 2013; Kamble, Shah, Marn, Parekh, & Ra-
machandran, 2015; Radanovic & Faltings, 2015; Shnayder et al., 2016; Witkowski & Parkes,
2013). Shah (2022) provides a contemporary survey on the current solutions and challenges
in peer-review.

The final strand consists of hybrid approaches where the true quality of some of the
peer-assessed material can be found, for e.g, via evaluating a part of the materials by the
mechanism designer (teaching staff in case of MOOCs) herself. Graders are then rewarded
for agreement with the designer-agreed report (Dasgupta & Ghosh, 2013; Gao, Wright, &
Leyton-Brown, 2016; Jurca & Faltings, 2005). Our mechanism also utilizes the feature that
the true scores on a small subset of assignments can be revealed at a small cost. However,
additionally, we address new and practical features of the peer-grading probem: we allow
for competitive graders, we solve the efficient allocation problem under costly grading, and
we allow regrading requests.

Alon, Fischer, Procaccia, and Tennenholtz (2011) and Holzman and Moulin (2013) study
situations where peers have to choose a subset amongst themselves for a reward. The
challenge here is to incentivize the peers to reveal their private information unselfishly. In
particular, the goal is to guarantee that what peers report does not affect their chances of
winning or getting selected. In these settings, there is no need to incentivize peers to gather
information that is ‘objective’ (e.g., true score on an exam) and verifiable at a cost. There
is also no need to ensure that peers enjoy higher utility when their gathered information
is more precise. Finally, peers are purely selfish: they do not care about who wins in case
they do not win themselves. Thus, by debriding the reports from personal winning chances,
the mechanism makes the peers indifferent between all reports.

Cai, Daskalakis, and Papadimitriou (2015) consider a setting where data-sources (e.g.,
human labelers) can be paid monetarily to get their estimation of f(xi) at points xi allocated
to them. The end goal is to estimate an exogenously provided f using a given estimator f̂ .
Data-sources can observe a noisy version of f(xi) with the noise decreasing in their effort,

8In particular, when the information is costly to obtain, it is generally easier for the agents to resort to
coordinating on an uninformative low-effort equilibrium.
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and they maximize the difference between the payment and the cost of the effort. They show
that under their VCG-like payment mechanism and the assumption of a “well-behaved” f̂ ,
the dominant strategy for a data-source is to reveal its observation correctly and always
participate in the data-providing exercise. Cai et al. (2015)’s data-sources naturally have
no competitive preferences, like our graders do.

2. Peer-grading Mechanism

2.1 Definition

Each student i ∈ N = {1, . . . , n} has written an exam, and is also a participant in the
peer-grading process. Thus N = {1, . . . , n} represents both the set of papers to be graded
and the set of graders. We use i as the index for a grader and j as the index for a paper. For
simplicity of exposition, we assume that each paper has only one question for evaluation.
This is not a limitation. In Section 8, we discuss how the analysis of this section can be
easily extended to multiple questions per exam.

Our mechanism would instruct the teaching staff to evaluate a fixed number ℓ(<< n) of
these papers so that their true grades are known. These papers are called the probe papers.
Let G(j) denote the set of peer-graders of paper j and G−1(i) := {k ∈ N : i ∈ G(k)} denote
the set of papers assigned to evaluator i. The set Pi ⊂ G−1(i) and NPi = G−1(i) \ Pi

denotes respectively the probe and non-probe papers assigned to i. Both true and reported
scores belong to R. The co-graders of individual i are CGi = ∪j∈NPiG(j) \ {i}. We assume
that the co-graders of i grade at least one common non-probe paper with i.

Assuming that peer-reported scores are real numbers, a peer-grading mechanism M is the
tuple ⟨G, r, t⟩, where
▷ G is the assignment function G : N → 2N that maps papers to graders.
▷ r : ×j∈NR|G(j)| → Rn is the score-assignment function, where the jth component rj(·) is

the function assigning the final score of paper j based on the scores reported by G(j).
▷ t : ×i∈NR|G−1(i)| → Rn is the peer-grading performance score function, where the ith

component ti(·) is the function that yields the peer-grading performance score to grader
i.

Since every student i has dual roles in peer-grading as explained in Section 1, ri and ti are
the mechanism-assigned scores corresponding to her student and grader roles. For example,
in a course that has 80 points on the exam and 20 points on peer grading performance, a
student might score ri = 60 and ti = 15 on those two respectively. Her total course-score
would be 75 out of 100.

2.2 Model of the True and Reported Scores

Let F(0, 1) be any general distribution with a support of (−∞,∞), a differentiable density
function f(·), mean zero, and variance one. We use F(a, b2) to denote the distribution of
the random variable a+ bX where X ∼ F(0, 1).

We generalize the PG1 model of true score, bias, and reliability (Piech et al., 2013) to a
strategic environment. We make two major changes. First, we replace their assumptions of
normality with distribution F(a, b2). Second, instead of assuming that bias and reliability
are drawn randomly and independently from Normal and Gamma distributions respectively,
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we make each a strategic choice by the peer-graders. Subject to these changes, the following
features in our model resemble the PG1 model.

▷ The true score yj for paper j is distributed as F(µ, 1/γ), for all j ∈ N . This distribution
is known from historical data of past examinations.

▷ Peer-graders do not see yj but after they choose their reliability τi ∈ R>0 and bias bi,
they observe an independent draw from F(yj , 1/τi). Higher is 1/τi, noisier is the draw.
We will use 1/τi and σ

2
i interchangeably.

▷ For the same grader i, the signals from two different papers j1 and j2 are independent
draws from F(yj1 , 1/τi) and F(yj2 , 1/τi) respectively.

▷ Graders then add the bias bi ∈ R to the signal before reporting. The reported score

of paper j by grader i is ỹ
(i)
j . Conditional on the true score yj , it is distributed as

f(ỹ
(i)
j |yj) ∼ F(yj + bi, 1/τi). Thus, ỹ

(i)
j = yj + bi + σieij where eij ∼ F(0, 1).

▷ We have used the same distribution F for both the true scores yj and the score observed

by the grader i, i.e., ỹ
(i)
j , to keep the model simpler and similar to PG1. However, this

is not critical to our results. In particular, (a) we can have two different distributions

for these two sets of random variables, and (b) the distribution of the observed score ỹ
(i)
j

can be different from each grader i. None of these will affect the main conclusions of this
paper.

▷ We have overloaded the notation ỹ to denote both individual grades and grade vectors.

The grades of a paper j given by its graders G(j) is denoted by ỹ
G(j)
j = (ỹ

(i)
j , i ∈ G(j)).

The dynamics of the grading process is shown in Figure 2. We define reliability as the

Has an infinite support (Piech et al. 
(2013) has a normal distribution)

bias reliabilityIndependent Peer-graders 
of paper

Figure 2: Peer-reports’ generation process.

inverse of noise variance. Bias originates from a strategic manipulation or from non-strategic
(generous or strict) grading-habits. In this paper, we would assume that the grader chooses
her bias and reliability.

We assume that a grader grades all papers (probes and non-probes) with the same bias
and reliability. This assumption is natural if the graders cannot identify the probes from
the non-probes. Additionally, if a class uses multiple assignments (exams and problem sets)
over the whole semester, then, the performance in any anonymized peer-graded assignment
j ∈ G−1(i)’s that i grades, reveals very little to i about j’s identity and overall class-
rank over the semester. Thus, i might feel equally competitive across all assignments she
evaluates. We use the shorthand θi = (bi, τi) ∈ R × R>0 to denote grader i’s strategic
choices.
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2.3 Other primitives of our mechanism

We have already defined a general peer-grading mechanism in Section 2.1. In this section,
we fine-tune the ⟨G, r, t⟩ functions for our proposed mechanism.

Paper assignment rule G∗(·)
Every paper is graded by at least one grader, and every grader grades at least two probe and
one non-probe papers. Thus, (a) G∗(j) ̸= ∅ and j /∈ G∗(j), ∀j ∈ N , (b) |Pi| ⩾ 2, ∀i ∈ N ,
and (c) NPi ̸= ∅, ∀i ∈ N . The graders know the proportion of probe and non-probe papers
assigned to them, but cannot tell them apart.

Grade assignment and performance scores

The mechanism compares the peer-graded scores (ỹ
(i)
j ) with true scores (yj) on the probe

papers Pi, to statistically estimate the error parameters θ̂i = (b̂i, τ̂i) ∈ R × R>0 of each

grader i. In the following, we use ỹ
(i)
j = yj + bi + σieij where eij ∼ F(0, 1). First,

b̂i =

∑
j∈Pi

(ỹ
(i)
j − yj)
|Pi|

=

∑
j∈Pi

(yj + bi + σieij − yj)
|Pi|

= bi +

∑
j∈Pi

(σieij)

|Pi|
. (1)

Similarly,

τ̂i =
|Pi| − 1∑

j∈Pi
(ỹ

(i)
j − (yj + b̂i))2

=
|Pi| − 1∑

j∈Pi
(yj + bi + σieij − (yj + bi +

∑
j∈Pi

(σieij)

|Pi| ))2

=
|Pi| − 1∑

j∈Pi
(σieij − (

∑
j∈Pi

(σieij)

|Pi| ))2
=

|Pi| − 1

σ2i

(∑
j∈Pi

(eij − (

∑
j∈Pi

(eij)

|Pi| ))2
) .

(2)

Therefore,
√
τ̂i ∝ 1

σi
, where the proportionality constant is a function of the realized values

of the random variables yjs and ỹ
(i)
j s. The estimated parameters are used in assigning

performance-scores to papers and performance scores to peer-graders.

Definition 1 (Score and Accuracy) We define the score-assignment rule and the ac-
curacy as follows.

▷ The score-assignment function r = (rj : j ∈ N) is inverse standard-deviation weighted
de-biased mean (ISWDM) if for every non-probe paper j, it assigns

r∗j (ỹ
G(j)
j , θ̂G(j)) =

√
γµ+

∑
i∈G(j)

√
τ̂i(ỹ

(i)
j − b̂i)√

γ +
∑

i∈G(j)

√
τ̂i

, (3)

where ỹ
(i)
j is the evaluation by the ith peer-grader and (b̂i, τ̂i) are her estimated parame-

ters. Score r∗ assigns the instructor-verified grade on every probe paper.
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▷ The accuracy of paper j, at a score r∗j and true score yj, is

W ∗
j (ỹ

G(j)
j , θ̂G(j), yj) = R(r∗j (ỹ

G(j)
j , θ̂G(j)), yj), (4)

where ỹ
G(j)
j is the vector of peer-evaluated scores reported on paper j, θ̂G(j) is the vector of

evaluated error-parameters for the relevant graders G(j), and R : R2 → R is a continuous
reward function that measures the closeness of the true score yj and the given score r∗j .
Formally, R(x1, y1) < R(x2, y2) if |x1 − y1| > |x2 − y2| for all x1, x2, y1, y2 ∈ R. We
assume that R(x, x) = 0 ⩾ R(x, y) = R(y, x) for all x, y ∈ R. One example of such a
function would be R(x, y) = −(x − y)2, which calculates the squared error in assigned
scores.

▷ The accuracy of a score r∗j for paper j without grader i when the true score is yj is

denoted by W
(−i)∗
j =W ∗

j (ỹ
G(j)\{i}
j , θ̂G(j)\{i}, yj) where W

∗
j (·) is defined as above.

The parameters γ and µ are the parameters of the prior as defined by the PG1 model of
Piech et al. (2013) (see Section 2.2), and b̂i and τ̂i are the estimated bias and reliability of
grader i.

We will use the shorthands W ∗
j and W

(−i)∗
j for the accuracies with and without agent i

respectively when the arguments of such functions are clear from the context.
The ISWDM score-assignment function takes a weighted average of the prior mean µ

and the de-biased (subtracting the estimated bias from the reported scores) reported scores.
De-biasing ensures that the biases of the graders do not affect the finally assigned grade.
The weight is chosen to be the square-root of reliability, which is the inverse of the variance
for that grader. Higher the estimated reliability, higher is the weight on a grader.

Without incentive concerns, a statistician would have suggested a score-assignment func-
tion that would minimize the expected squared distance between the assigned score and true
score on exam j, conditional on the true bias and variance parameters. Then, those true
parameters could be approximated by the estimated bias and variance. In Equation (30) of
Appendix C, we show that under the strong distribution-assumptions of Piech et al. (2013),
such a score-assigment function on exam j would come from the class of weighted average
(WA) score-assignment functions:

rWA
j (ỹ

G(j)
j , θ̂G(j)) =

λ0µ+
∑

i∈G(j) λi(ỹ
(i)
j − b̂i)

λ0 +
∑

i∈G(j) λi
, (5)

where λ0, λi ⩾ 0,∀i ∈ N , not all zero. In particular, the parameters turn out to be λ0 = γ
and λi = τ̂i, ∀i ∈ N (note the difference with λi =

√
τ̂i in Equation (3); see Appendix C for

details). Here, µ is the prior mean of all papers, and the term (ỹ
(i)
j −b̂i) is the de-biased score

on paper j from grader i. This is indeed the expected (social) reward maximizer (ERM),
with the reward function R(x, y) := −(x− y)2 as given below:

rERM
j (ỹ

G(j)
j , θ̂G(j)) ∈ argmax

xj∈R
E
yj | ỹ

G(j)
j ;θ̂G(j)

R(xj , yj). (6)

However, in Theorem 2 we will show that in the class of WA score-assignment functions,
ISWDM uniquely satisfies certain desirable properties. But, despite not being exactly the
ERM, ISWDM does not compromise the expected accuracy (Wj) much (see Appendix D).
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Regrading Requests

We consider peer-grading mechanisms that allow regrading requests. We assume that when
a regrading request is raised, the instructor regrades the paper herself and assigns the true
score on the paper. We also assume that the students know the true scores on their own
papers and only raise a regrading request when they expect it to raise their score further.

Assumption 1 Student j knows yj and raises a regrading request only if r∗j < yj.

In the next section, we lay down the peer-graders’ incentive structure and the desirable
properties of a mechanism.

3. Incentives and Design Desiderata

Individual Preferences. We assume that every individual i cares about (a) her total
score (sum of her exam score ri and peer-grading performance score ti), and potentially,
also about (b) the total scores of the other individuals. To model a potentially competitive
grader who also cares about (b), we assume that her utility is increasing in (a), weakly
decreasing in (b).

For agent i in mechanism M = ⟨G, r, t⟩, the utility is given by

uMi = ri + ti −

 ∑
j∈N\{i}

wij · (rj + tj)

 , (7)

where wij ⩾ 0. We nest the standard case of non-competitive graders under wij = 0. This
linear formulation of competitive preferences can be interpreted as an approximation of
more complicated formulations, and it allows theoretical tractability.9

In this section, we will assume that a more reliable grading does not come at any extra
cost for the peer-grader, and hence we exclude such a cost component from the utility
expression. The objective here is to understand whether a peer-grading mechanism can
reward more reliable grading monotonically, despite the presence of competitive preferences,
and when increasing costs are not at play: we define the desirable properties accordingly.
One could have considered costs of grading to be increasing in reliability. We do this in
Section 6, and the desiderata change accordingly.

Note that a few uncertainties are resolved after grader i chooses her decision variables
(bi, τi) and before r∗ and t∗ are computed by the mechanism: (a) the true score yj on paper
j realizes, (b) the decision variables (bk, τk) are chosen by co-grader k (i.e., the strategic

uncertainty), (c) the scores are reported by grader i, ỹ
(i)
j for paper j, which is realized

from (ỹ
(i)
j |yj) ∼ F(yj + bi, 1/τi) and (d) the score on paper j is reported by a co-grader k,

which is realized from (ỹ
(k)
j |yj) ∼ F(yj + bk, 1/τk). We define two desirable properties of

peer-grading mechanisms. The properties consider the grader i’s expected utility from the
choice of strategies she makes. All expectations are taken only with respect to uncertainties

9This also takes care of the case where i feels competitive against only a subset of her classmates who
have had higher/comparable scores with her in the past experience. Student i would assign wij > 0 to only
those individuals to her utility function.
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(a) and (c), i.e., the distribution of i’s grade-evaluation process (ỹ
(i)
j |yj) ∼ F(yj + bi, 1/τi)

and the distribution of yj . The properties hold for any ex-post realization of the other
uncertainties (b) and (d), and there is no expectation taken on them. This is why both
properties are defined as ex-post.

Definition 2 (Ex-Post Bias Insensitivity (EPBI)) A peer-grading mechanism M =
⟨G, r, t⟩ is ex-post bias insensitive (EPBI) for grader i, if the expected utility of grader i
is independent of her bias bi, irrespective of the biases and reliabilities of other graders
j ∈ N \{i}, and reported scores of the other graders. Define the following shorthand for the
expectation, Ei,bi,τi ≡ Eyj , j∈G−1(i)Eỹ

(i)
j |yj∼F(yj+bi,1/τi), j∈G−1(i)

.10 Then we can mathemati-

cally define EPBI as

Ei,bi,τi u
M
i (ỹ

(i)
j , ỹ

(−i)
j , yj) = Ei,b′i,τi

uMi (ỹ
(i)
j , ỹ

(−i)
j , yj),

∀{ỹ(k)j , bk, τk}k ̸=i,j∈G−1(i),∀τi, ∀b′i ̸= bi. (8)

A peer-grading mechanism M is EPBI, if it is EPBI for all participants i ∈ N .

Definition 3 (Ex-Post Reliability Monotonicity (EPRM)) A peer-grading mecha-
nism M = ⟨G, r, t⟩ is ex-post reliability monotone (EPRM) for grader i, if her utility
is monotonically increasing with her reliability, irrespective of the biases and reliabilities
chosen by the other graders j ∈ N \ {i}, and the scores reported by the different graders.
Mathematically (using the same shorthand as in Definition 2),

Ei,bi,τi u
M
i (ỹ

(i)
j , ỹ

(−i)
j , yj) > Ei,bi,τ ′i

uMi (ỹ
(i)
j , ỹ

(−i)
j , yj),

∀τi > τ ′i ,∀{ỹ(k)j , bk, τk}k ̸=i,j∈G−1(i), ∀bi. (9)

A peer-grading mechanism M is EPRM, if it is EPRM for all participants i ∈ N .

Both these properties are in some ways stronger than a dominant strategy version of the
above definitions, as they hold for all realizations of uncertainties (b) and (d), as described
on the last page.

We are now in a position to present the central mechanism of this paper.

4. The PEQA mechanism

Algorithm 1 shows the detailed steps of PEQA. For a simpler exposition of the algorithm,
we provide a little non-rigorous description of PEQA in Algorithm 2 in the appendix.

10Note that the shorthand Ei,bi,τi explicitly means expectation with respect to yj and ỹ
(i)
j |yj distributions.
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Algorithm 1 PEQA mechanism

Require: Parameters µ, γ of F , α of the per-
formance score, probe set P with |P | = ℓ ∈[
K
2 + 1, n

K
2 +1

]
(K ⩾ 2, even, is the number

of papers assigned to each grader)
1: (G(j), j ∈ N)← computeG(N), where G(j):

graders of j

Require: Reported scores {ỹ(i)j , i ∈ G(j), j ∈
N} given by the assigned graders G

2: Calculate b̂i =
∑

j∈Pi
(ỹ

(i)
j −yj)

|Pi| ,

τ̂i =
|Pi|−1∑

j∈Pi
(ỹ

(i)
j −(yj+b̂i))2

3: Tentative score of the paper j ←
r∗j (ỹ

G(j)
j , θ̂G(j)) (via ISWDM, Equation (3))

4: Publish grades, invite regrading requests
5: After regrading period ends
6: for each paper j ∈ N do
7: if paper j has regrading request then
8: yj = true grade as checked by an in-

structor
9: else

10: yj = r∗j

11: (ti, i ∈ N)← computet(ỹ, θ̂), where ti: per-
formance score of i

1: function computeG(N):
2: for each grader i ∈ N do
3: G−1(i) = ∅
4: for paper k ∈ {i+1, . . . , i+1+K/2} do
5: G−1(i)← G−1(i) ∪ (k mod ℓ)
6: G−1(i)← G−1(i) ∪ (ℓ+ k mod (n− ℓ))
7: return G
8: end function

1: function computet(ỹ, θ̂):
2: t := (ti, i ∈ N)← 0
3: for each paper j ∈ N \ P do
4: Calculate W ∗

j (Equation (4))
5: for each grader i ∈ G(j) do
6: Calculate W

(−i)∗
j given by

W ∗
j (ỹ

G(j)\{i}
j , θ̂G(j)\{i}, yj) using Equa-

tion (4)

7: ti ← ti + α(W ∗
j −W

(−i)∗
j )

8: return t
9: end function

In short, the algorithm description specifies the three functions of a peer-grading mech-
anism ⟨G, r, t⟩ as defined in Section 2.1. The papers are assigned to the graders in a specific
way. The assigned score on a paper is a weighted average (with appropriately chosen
weights). Finally, the grading performance score is the marginal contribution of the grader
towards the accuracy. The following lemma shows that the computeG function almost
evenly distributes the non-probe papers.

Lemma 1 In computeG, no agent gets her own paper for grading. Also, every non-probe
paper is assigned to at least K

2 and at most K
2 + 1 graders.

In the next section, we present our results on PEQA.

5. Properties of PEQA

Our first result shows that PEQA satisfies both the properties mentioned in Section 3, as
long as the students care more about their own scores than others’ scores.

Theorem 1 If
∑

k∈N\{i}wik ⩽ 1,∀i ∈ N , then PEQA is EPBI and EPRM for all α > 0.

The expression
∑

k∈N\{i}wik denotes the sum of the relative weights assigned by i to
other peers’ total scores. We believe that

∑
k∈N\{i}wik ⩽ 1 is an intuitive restriction on
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competitive preferences: Even competitive graders care more about their own score than
they care about other’s scores.11

A direct consequence of this result is that a grader will have no incentive in putting a
deliberate upward or downward bias in this competitive environment and also will find it
in her interest to maximize her reliability.

All the rk terms (for k = i and k ̸= i) in the utility expression (Equation (7)) would
be replaced by max{r∗k, yk} where r∗k is the mechanism assigned score. This is due to how
regrading requests are raised (Assumption 1) and because the instructor is assumed to give
the correct score yk when a regrading request is received.

To make the proofs easily readable, we provide an intuition of the main ideas here. The
complete details are available in Appendix B.

The EPBI result is driven by how the score-assignment function de-biases the grades
through the estimated grader bias. Though the bias estimates from probes are noisy, in
expectation, they are correct and are identical across probes and non-probes. Thus grader
i’s bias cannot lower other’s assigned final scores. We show that bias also does not effect the
post-regrading expected score max{r∗j (·), yj}. Thus biasing reports does not provide any
competitive incentives. Her grading performance score depends only on the assigned final
scores on the papers she graded, and hence it is unaffected by bias too. EPBI is independent
of the condition on wiks.

Intuitively, two forces drive the EPRM result.

▷ The link between i’s grading performance score and her marginal contribution to accurate
grading plays a crucial role. A lower grading reliability of i ∈ G(j) invariably lowers i’s
marginal contribution to accurate score-assignment on paper j. This lowers i’s grading
performance score and hence, her total utility.

▷ The score-assignment function and our regrading assumption (see Assumption 1) are
crucial too. As mentioned previously, under our score-assignment function, grader i’s
noisier grading leads to a noisier assigned grade on paper j. The noise moves the assigned
grade above or below the true grade. Higher is the noise, larger is the potential movement
in either direction. Grader i determines the magnitude of the noise, but not the direction
in which the noise moves the assigned grade. By selectively asking for regrades, student
j keeps any undeserved high grades and reverses any low grades that result from the
noise. Thus, i’s noisier grading ends up increasing j’s grades post regrading-requests.
Given i dislikes when j gets higher grades, this decreases i’s utility in expectation. Thus,
i’s competitiveness also fuels i’s desire for an accurate grading.

Deriving the EPRM condition requires a bound on wiks. This is because the choice of
reliability of grader i affects the final grades of whoever she grades, and the marginal con-
tributions (thus, grading performance scores) of her co-graders. We show that the condition
on wiks is sufficient to ensure that the collective weight on other’s grading performance scores
never outweighs a competitive student’s regard for her own performance score, irrespective
of other’s actions and noise. In the proof, we also show that the sufficient condition on the
wik’s can be further weakened to a sum over only her co-graders. We kept the condition as
mentioned in the theorem statement for simplicity and explainability.

11This expression is zero for the non-competitive grader who only cares about her own grades.
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The relative weight α that an instructor assigns in PEQA (see Step 7 of the computet
function in Algorithm 1) on the peer-grading performance score, determines what percentage
of total grades come from own exam-score versus completing the peer-grading exercise, and
can vary across different instructors and courses. It is, therefore, desirable to have a score-
assignment function that is robust to any choice of the relative weight α while retaining the
two properties above. It turns out that to meet this desirable criterion, the score-assignment
function r∗ given by Equation (3) is crucial since any other score-assignment function in the
weighted-average class would fail to keep the mechanism EPRM for some such percentage
α. What if one allowed some other performance score function t, different from the one
under PEQA? It turns out, “any other score-assignment function fails for some α” stays true
unless we satisfy the necessary condition of the following result, even if one starts with a
different performance score function. This is the main idea of our next uniqueness result.

As a first step, we start with an arbitrary performance score function t, which may be
different from the one in PEQA and is chosen by the instructor. We will show that if that
peer-grading mechanism needs to stay EPRM for all choices of t, then ISWDM is necessary.
This shows why even the ERM score-assigment function (Equation (6)) is not the optimal
choice from the WA class in a world where reliability needs to be incentivized.

Theorem 2 (Uniqueness) Assume for every i ∈ N , ∃j ∈ G−1(i) s.t. wij > 0. Fix
an arbitrary grader i and any performance score function t. The peer-grading mechanism
M = ⟨G, r∗, t⟩, where r∗j ≡ rWA

j , ∀j ∈ N (Equation (5)) is EPRM for grader i for every
peer-grading performance score function t only if λi = κi/σi, where κi > 0 is a factor
independent of σi.

As shown in Equation (2) and the discussion following it, we have
√
τ̂i ∝ 1/σi. Therefore,

in the class of weighted average score computing function, the ISWDM score-assignment
function, used by PEQA uniquely (upto constant multipliers) ensures EPRM for flexible
performance score weight δ > 0. This result shows why our score-assignment function is
special, irrespective of the choice of grading performance scores.

At the risk of oversimplification, here is an intuition about how this result works. For
the class of weighted average (WA) score-assignment functions, let us consider how the
weights affect the post-regrading score.

max
{
rWA
j (ỹ

G(j)
j , θ̂G(j)), yj

}
= yj +max

λ0(µ− yj) +
∑

i∈G(j) λi(ỹ
(i)
j − b̂i − yj)

λ0 +
∑

i∈G(j) λi
, 0


(10)

The first term on the RHS is the true score yj which is independent of grader i’s actions.
We will focus on how grader i’s choices affect the numerator and the denominator of the

second term, which is non-negative. The (ỹ
(i)
j − b̂i− yj) terms are approximately a measure

of the noise present in the signals that grader i observed for paper j, which has a variance of

σ2i . But, λi = κi/σi uniquely makes the product λi(ỹ
(i)
j − b̂i − yj) independent of grader i’s

chosen σi, for all values of σi. This is true for all her co-graders too. Hence the numerator
is independent of the variance of the graders, which is the first step of the proof.

The denominator is the sum of positive numbers. The term λi = κi/σi guarantees that
when σi increases the whole fraction increases. Thus, noisier grading ends up increasing the
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post-regrading score max
{
rWA
j (ỹ

G(j)
j , θ̂G(j)), yj

}
. In the proof, we formalize this intuition,

while accounting for what information is available to grader i when she contemplates how
her actions affect post-regrading scores.

Finally, we investigate the complexity of PEQA, which happens to be linear in the number
of the agents and the papers each grader grades.

Theorem 3 The worst-case complexity of computing PEQA is O(nK).

6. Welfare Under Costly Reliability

In this section, we extend our analysis to how PEQA deals with social welfare in a world where
increasing reliability is costly to the grader. We calculate student welfare by subtracting
the total reliability-cost from the sum of the grading-accuracy of all exams. We show that
a modification of the grading performance score t∗ of PEQA implements the student welfare-
optimal level of costly reliability.

Costly reliability. As before, we assume that each paper has a single question.12 All
graders face the same reliability-cost function c while grading that paper/question.

The estimated reliability for grader i, τ̂i, is computed from her performance on the
probe papers. Reliability is bounded above, i.e., τi ∈ [0, τ̄ ],∀i ∈ N . We summarize our
assumptions below.

1. The cost c : [0, τ̄ ]→ R⩾0 is convex, increasing, and equal for all graders i ∈ N .
2. The course instructor does not know c, only the graders do.
We simplify grader utility by assuming a uniform weight for the other-regarding com-

ponent (wij = w,∀ i, j ∈ N) and is a common knowledge.

Student welfare of grading. For a non-probe paper, we assume that the social planner
(e.g., the instructor) cares about two dimensions of welfare: (a) the accuracy of the final
score (measured by the reward function R(r∗j , yj)) and (b) the total cost of grader-reliability.

We presume that if the social planner was aware of the cost functions of grading, she
would have recommended a joint strategy profile (τi, τ−i) that maximizes some linear com-
bination of the reward and cost factors, which we call the student welfare. Define the set of
all non-probe papers to be NP := ∪i∈NNPi. Then, the student welfare of grading all the
papers is formally written as

β
∑
j∈NP

EyjE(ỹ
(k)
j |yj)∼F(yj+bk,1/τk),k∈G(j)

R(r∗j (ỹ
G(j)
j , θ̂G(j)), yj)−K

∑
i∈N

c(τi), (11)

where β > 0 determines the relative weight between the two factors. The first term in the
above expression excludes the probe papers which are accurately graded (by assumption)
and are independent on τi’s. However, the second term considers all papers since the graders
incur costs for both probes and non-probes.

Aligning social and individual incentives. When the costs are private information,
PEQA ensures that students exert welfare-optimal reliability in an equilibrium. There are
three challenges on the way to aligning social and individual incentives. We discuss these
below along with their solutions.

12In Section 8, we sketch how the analysis can be easily extended to multiple questions per exam.
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▷ An instructor would care about the accuracy in grade-allocation, but how to make peer-
graders care about the same? PEQA’s grading performance score forces students to inter-
nalize accuracy in their decisions by paying each grader their marginal contribution to
accuracy.

▷ Each competitive grader wants lower scores for others as part of her other-regarding
utility. This is not aligned with the student welfare of grading and becomes a source
of externality. We solve this by suggesting a modified grading performance score below,
that additionally compensates graders for any potential losses from their other-regarding
utility.

▷ The solution to the point above presents a new challenge. The other-regarding utility
component would be different for each grader i, as their reference groups N \ {i} would
naturally be different. Thus they will be compensated different amounts. Would this
change the ordinal ranking of students in the class from that of PEQA? We show that the
answer is no (Lemma 2).

Modified grading performance score. Let the post-regrading request score be gi =
max{ri, yi}. We propose the modified grading performance score

πi := ti + w
∑

j∈N\{i}

(gj + πj), (12)

where ti is the original PEQA grading performance score. The additional terms on the RHS
compensate for the other-regarding component in grader i’s utility. Though this simplifies
the net utility of grader i, the simplicity comes at a price: if i and j are co-graders then
πi has been described as a function of πj and vice-versa! How is the designer supposed
to decide the values of πi and πj given the interdependency? We show that πi has an
alternative expression that is independent of πjs.

πi =
ti + w

∑
j∈N\{i} gj + wπ

1 + w
, (13)

where, π =
t+ w(n− 1)g

1− w(n− 1)
, and t =

∑
i∈N

ti, g =
∑
i∈N

gi, w ̸=
1

n− 1
. (14)

The game of peer-grading. The modified PEQA mechanism induces a game among the
peer-graders after all the answerscripts of the exam have been submitted. The players (the
graders) choose their reliabilities as their strategies to maximize their utility. Grader i’s
utility is given by

ui = gi + πi − w
∑

j∈N\{i}

(gj + πj)−
∑

j∈G−1(i)

c(τi) = gi + ti −Kc(τi), (15)

where K is the total number of papers graded by i (including probes). Thus, πi nullifies
the other-regarding component of utility.

The score assignment and performance score functions, that map players’ strategies to
players’ utilities, are also common knowledge. Players simultaneously choose their reliabil-
ities τi, i ∈ N to maximize their expected utility.

The following result shows that π := (πi, i ∈ N) retains the same order of course-scores
as the original score functions (ti, i ∈ N).
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Lemma 2 (Order Invariance) Fix a profile of player strategies and true scores in the
peer-grading game. The modified PEQA performance score π retains the same order among
the students as the original PEQA performance score t.

Proof : Consider two students i and k where i received more total score in mod-
ified PEQA than k. We show that it is equivalent to i getting more total score
than k in original PEQA. We show this in the following equivalent implications:

gi + πi > gk + πk ⇔ gi +
ti+w

∑
j∈N\{i} gj+wπ

1+w > gk +
tk+w

∑
j∈N\{k} gk+wπ

1+w ⇔ gi+ti+w(g+π)
1+w >

gk+tk+w(g+π)
1+w ⇔ gi + ti > gk + tk. ■

The next result shows that π := (πi, i ∈ N) implements the student welfare-optimal
level of reliability in a pure Nash equilibrium. The proportion of non-probe papers (which
is fixed once the mechanism is announced) is denoted by pNP.

Theorem 4 If the instructor uses the modified grading score πi and sets α = β
K , every

maxima of the expected student welfare is a Pure Strategy Nash Equilibrium (PSNE) of the
induced game among the peer-graders.

Proof : Step 1: i’s τi-dependent utility component for grading paper j, is related to the
accuracy of paper j minus the cost of grading it.

As shown in Equation (15), πi already compensates for the other-regarding component
and makes it inconsequential. The residual performance score ti in Equation (15) is the

sum of performance scores tji from each paper j ∈ G−1(i). Now, tji = α(W ∗
j −W

(−i)∗
j ), and

W
(−i)∗
j do not depend on i’s reliability τi. Hence the part of the i’s utility expression that

depends on τi and is related to grading paper j is:

αW ∗
j − c(τi) = αR(r∗j (ỹ

G(j)
j , θ̂G(j)), yj)− c(τi), (16)

where ỹ
G(j)
j is the profile of all scores given by G(j). Thus it depends potentially on the

bias and reliability of co-graders, which are chosen strategically and simultaneously.
Step 2: Under πi and α = β

K , i’s reliability-dependent utility is, in expectation, com-
pletely aligned with the student welfare.

Only non-probes have W ∗
j ̸= 0. Grader i, who is uncertain whether paper j is a probe

versus a non-probe paper, assigns a probability pNP to any paper being a non-probe. For
any choice of bias and reliability by all the graders, the expected accuracy on paper j is

EyjE(ỹ
(k)
j |yj)∼F(yj+bk,1/τk),k∈G(j)

R(r∗j (ỹ
G(j)
j , θ̂G(j)), yj).

13 From the analysis of Theorem 1,

we know that this expression is independent of bias under PEQA. Therefore, for simplicity,
we assume that every grader strategizes only on her reliability. To emphasize the strategic
and simultaneous choice of reliability, we denote the expected accuracy above using the
shorthand R̄(τi, τ−i). Hence, for any reliability profile chosen by the set of graders on paper
j, the part of the expected utility of grader i that depends on τi is

U j
i (τi, τ−i) = α · pNP · R̄(τi, τ−i)− c(τi). (17)

13The distributions of these random variables are common knowledge of the graders.
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When α = β
K , grader i maximizes U j

i (τi, τ−i) = β pNP
K R̄(τi, τ−i)− c(τi).

Similarly, after taking the expectation w.r.t. the true and observed scores of the pa-
pers and graders respectively, the student welfare (Equation (11)) can be rewritten as
β
∑

j∈NP R̄(τi, τ−i)−K
∑

i∈N c(τi). Note that R̄(τi, τ−i) is independent of j and hence the

expression can be simplified to β |NP | R̄(τi, τ−i)−K
∑

i∈N c(τi).

Step 3: Let τ∗ = (τ∗k , k ∈ G(j)) maximize student welfare. Then, it must be that
β pNP

K R̄(τ∗i , τ
∗
−i) − c(τ∗i ) ⩾ β pNP

K R̄(τi, τ
∗
−i) − c(τi) for any alternative τi of player i ∈ N ,

where pNP = |NP |
n . This is because any alternative τi that increases her expected utility

would also increase the student welfare at τ∗, creating a contradiction. Thus, if all except
i choose τ∗−i, player i cannot do any better than choosing τ∗i . Thus, τ∗ = (τ∗k , k ∈ G(j)) is
a PSNE of this game. ■

Instructors who believe that equilibrium is too restrictive a solution concept, could fall
back upon our EPRM result (Theorem 1). Consider a grader operating under bonus ti with
utility:

ui = gi + ti − w
∑

j∈N\{i}

(gj + πj)︸ ︷︷ ︸
=:vi

−Kc(τi) = vi −Kc(τi), (18)

Assuming an interior optimal, the grader chooses τi such that dvi
dτi

= K dc(τi)
dτi

. EPRM
guarantees that the LHS is always positive, irrespective of beliefs about other graders.
Thus, the LHS can be increased by scaling up ti to αti for α > 114, to adjust reliability
upwards, whenever necessary.

In the next section, we present our experimental study that tests some of our hypotheses
made in the earlier results and verifies its practical usability.

7. Experimental study

The theoretical desirability of PEQA is established on restrictive assumptions about the
domain of true and given scores, player utilities, and strategies. These assumptions approx-
imate reality instead of describing it. How well does PEQA perform in a real-life exercise,
where the scores and signals come from a bounded interval, or when player’s utilities are
competitive but not necessarily linear? This motivated our small PEQA experimental study.

Data from the PEQA study also help us investigate if two of our modeling assumptions
are violated in reality: if bias and reliability are indeed identical in probes and non-probes,
and, if competitive (wij ⩾ 0) preferences are a good model of the peer-grader behavior.

In a separate experimental study, we also run the median mechanism, that assigns the
median peer-grader report without any performance score. It is the most popular mechanism
used currently in MOOCs. We investigate the trade-off between the theoretical desirability
of PEQA against the simplicity of the median mechanism. 15

14In Step 3 of the proof of Theorem 1, we show dti
dτi

> 0.
15All data and code are available via: https://www.cse.iitb.ac.in/~swaprava/papers/Codes Peer

Grading.zip
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7.1 Experimental Design

We ran two experimental sessions: one with the median scoring mechanism (27 students),
another with the PEQA mechanism (42 students). We recruited students through two open-
calls to undergraduate students enrolled in a computing course (Prog101). The open calls
did not contain any particulars of the two sessions. Every student who signed up for
participation was assigned to one of the two sessions. An example view of the peer-grader
while grading a paper is provided in Appendix F.

The experimental environment is not an exact replication of model assumptions, rather
a replication of how a real-life peer-grading scenario would look like. In many classes,
instructors grade on a curve: final numerical scores are converted to letter-grades (A to D)
based on relative rankings. Grading on a curve creates a competitive classroom-environment
that we wanted to replicate. We told participants that their total score is the sum of their
peer-evaluated score and grading performance score. We paid students by the relative
ranking of their total scores in the class, in both the sessions. The students who ranked
in the first quartile of the total scores received M 650,16 the next three quartiles received
M 450, M 250, and M 50 respectively. They also received a show-up fee of M 50, irrespective
of their total score. The monetary payments were placeholders for grades A to D in a class
that grades on a curve: high relative performance resulted in high rewards.17

In the median mechanism session, the grading performance scores of all students were
set to zero. The total-score ranking was identical to their peer-evaluated-score ranking.
Thus, a student could decrease others’ scores on the peer-evaluation task to increase her
relative ranking and payment.

The PEQA session used the PEQA assignment and grading performance scores. Thus,
manipulation on the peer-evaluation task risked getting a lower performance and total
score, which would result in a lower payment.

The instructions and incentive-scheme, included in Appendix E, were explained in detail
before each of the sessions began. In both sessions, we used numerical examples in our
explanation. For PEQA, we showed the relation between performance score and grading
reliability through a graph and verbally summarized the monotonic relationship.

We conducted both sessions during the weekly Prog101 labs, that happen in a large
computer lab. Given this was a programming class, all questions being graded had objective
criteria for being correct or incorrect. Further, the same questions were graded under both
mechanisms. Our study lies at the intersection of Lab and Field experiments. We are
interested in peer-grading behavior and the students are our population of interest. In this
study, we observed our population of interest in their naturally occurring environments, like
in Field experiments.

In both sessions, we asked students to peer-grade the same weekly class-quiz. We par-
titioned each quiz into three sub-quizzes (by treating one(two) question(s) of the quiz as a
sub-quiz18), and divided each session into three rounds. In every round, the students were
asked to peer-grade five sub-quizzes (each corresponding to one of five of her anonymous

16M = Indian Rupee (|), a difference of M 200 is significant for a student.
17The ethics committee did not allow us to use university grades in the Prog101 class as incentives. They

were worried that the students might feel coerced to provide us consent about accessing their data for our
research, if we made the peer-grading part of the course-grading.

18The quiz had more than three questions.
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peers). At the end of each round, students saw: (a) how peers had evaluated her perfor-
mance on the sub-quiz, (b) her assigned score (median-scoring or PEQA), and (c) how her
co-graders that round had evaluated the sub-quiz.

Within every sub-quiz, some (and not all) of the questions were ‘regradable’. The stu-
dents could raise a regrading request for only those questions at the end of the session. In
the PEQA sessions, only the regradable questions were incentivized by the grading perfor-
mance score. The non-regradable questions used the same assignment function but did not
have any grading performance score.

We also graded all the papers ourselves (the instructor graded all of them), and we
considered these scores to be the true scores. The difference between mechanism assigned
scores and true scores is a measure of the quality of these mechanisms.

7.2 Hypotheses and results

Bias is calculated by subtracting the peer-assigned score from the true score. It measures
the average direction and magnitude of manipulation. PEQA assumes that bias is zero or
positive: students generally do not manipulate scores upwards (i.e., do not collude). The
alternative hypothesis, that we would like to reject, would be that graders manipulate
grading scores favorably for each other, implying a negative bias:

Hypothesis 1 Score-manipulation is collusive.

Our second hypothesis suggests that bias should be maximum in the last round for
two reasons. First, most repeated interactions have an end-game effect: selfish behavior
unravels when no future interactions remain. Second, students who have experienced score-
manipulation by others might retaliate as a punishment or reciprocal strategy in the later
rounds of the treatment.

Hypothesis 2 Bias is maximum in the last round.

In Tables 1 and 2, we summarize the bias in individual grading behavior in the three
rounds of both treatments. To compare across questions and rounds, we normalize bias by
the total score of the corresponding question.

Total Avg bias (% of Total grade)

Students Round grade regradable non-regradable

Median 27

1 1+1 -0.4% -0.6%

(-4%,3.2%) (-3.1%,1.9%)

2 2+2 1.7% 1.2%

(-1%,4.4%)) (-0.8%,3.1%)

3 2+2 16.6% 16.4%

(12%,21.2%) (12%,20.7%)

Table 1: Average bias from 3 rounds grading under the Median mechanism. We report the
95% confidence intervals below the averages.
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Total Avg bias (% of Total grade)

Students Round grade regradable non-regradable

PEQA 42

1 1+1 -0.6% -0.5%

(-2%,1%) (-1.9%,0.9%)

2 2+2 0.6% -0.3%

(0%,1.2%) (-1.2%,0.6%)

3 2+2 15.8% 15%

(12.3%,19.2%) (11.2%,18%)

Table 2: Average bias from 3 rounds grading under the PEQA mechanism. We report the
95% confidence intervals under the averages.

In each round, every student graded a regradable and a non-regradable question.19 The
average bias is statistically identical to zero for the first two rounds, and significantly positive
in the third round. This is true for both the regradable and non-regradable questions. Thus,
the bias is either zero, or positive, and we can reject Hypothesis 1. The average bias (and
the average absolute value of bias) is also significantly higher in the third round, based on
t-tests with p-values smaller than .001. This holds for both regradable and non-regradable
questions.

The lack of any bias, as evidenced by the tight confidence interval around 0, in the
first two rounds parallels the results on honest reporting from the “die-roll in person and
report” studies (Fischbacher & Föllmi-Heusi, 2013; Mazar, Amir, & Ariely, 2008). In these
studies, subjects roll a die privately, self-report the outcome, and get paid based on the
report. Fischbacher and Föllmi-Heusi (2013) report that only 20% of people lie to the
fullest extent, 39% choose to be honest, and a sizable proportion cheats only marginally.
Lying aversion (Dufwenberg & Dufwenberg, 2018), caring about lie-credibility, and a notion
of self-concept maintenance (Mazar et al., 2008) are potential reasons for why people do
not lie completely even under full anonymity.

How do the two mechanisms perform? The median assignment rule, due to its robust-
ness to outliers, is immune to insincere grading as long as only a minority of graders are
insincere. PEQA is bias invariant (EPBI), incentivizes effort, and should outperform the
Median mechanism. We use the accuracy of the mechanism-assigned scores as a metric of
relative performance. Given students graded most insincerely in the third round, we use
this round to test Hypothesis 3.

Hypothesis 3 PEQA assigns accurate final scores. In the presence of strategic manipula-
tion, the final score assigned under PEQA is closer to the true scores, than that assigned
under median-scoring.

In Table 3, we present the means of fractional-difference and squared fractional-difference
between the mechanism-assigned score and true score. Thus, for the former we calculate
dj = (true scorej−mechanism assigned scorej)/total scorej on student j’s third-round sub-
quiz, and then take the average over all j. Similarly, the latter is the average of d2j . We find
the true score on an exam by grading it ourselves.

19We wanted to check if students manipulate grades more when questions are non-regradable. We do not
find any statistically significant effect.
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The average difference between true and mechanism assigned scores is 14.8% under
Median and only -1.2% under PEQA. The negative sign indicates that PEQA assigned slightly
higher scores than the true score. Both difference and squared difference are significantly
smaller under PEQA. Under the median mechanism, the difference and squared difference
were equal because dj almost always took values of 0 or 1.

Median PEQA Median-d Median-p

Mean Difference 14.8% -1.2% 0% 0%
Mean Squared Difference 14.8% 0.6% 0% 0.5%

N 27 42 27 27

Table 3: Difference and squared-difference. The first two columns are from Median mecha-
nism and PEQA. The last two columns are from an ablation study where we used the Median
data, but additionally debiased the reports (Median-d), or additionally ran the PEQA as-
signment function on the reports along with debiasing (Median-p).

The median mechanism assigned lower than true grade (assigned a 1 instead of a 2) for
15% (4 out of 27) of the sub-quizzes. In comparison, the PEQA mechanism was (almost)
always point-precise: only one sub-quiz (out of 42) assigned a grade of 0.5 points higher.
Thus, the proportion of cases with incorrect grades is significantly smaller under the PEQA

mechanism at p-value of p = .03.20 The number of regrading requests in the median and
PEQA sessions were 4/27 and 3/42 respectively, a difference that is not statistically significant.

We also ran an ablation study where we removed parts of the Median mechanism and re-
placed it with features of the PEQA to understand why the latter works better. We randomly
chose two of the five sub-quizzes that Median subjects graded in each round, and treated
them as probes, and the rest as non-probes.21 We estimated each grader’s bias and reliability
from those probes. For our first ablation rule, we apply the Median assignment rule on the
debiased scores to create a synthetic set of scores (Median-d). For our second ablation rule,
we apply the ISWDM score assignment function (Equation 3) to the scores reported. This
means, we debiased the scores, as well as weighted the debiased scores by the square root of
the reliability of the respective graders, to create another synthetic set of scores (Median-p).
The Median-d scores should outperform the Median scores if Median graders were introduc-
ing significant bias. Further, the Median-p scores should outperform the Median-d scores if
graders varied on their reliability, and hence weighing graders differently was valuable.

We report the performance of both ablation rules in Table 3, in terms of the mean
difference and mean squared difference between the true scores and the assigned scores.
The ablation study reveals that both Median-d and Median-p scores perform as well as
PEQA22, which implies that introducing bias was the main reason that the original Median
mechanism performed poorly as compared to PEQA. This is perhaps explained by the fact
that the peer-grading sessions were run during a regular lab session, where students were
under supervision and hence could not neglect grading duties to indulge in more entertaining

20We used a one-sided Equality of proportions hypothesis test
21The results are not sensitive to which sub-quizzes are chosen are probes.
22There was no statistical difference between any pair of them.
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activities (for example, browsing social media). Thus, students were equally attentive across
both incentive schemes, and their only form of manipulation was introducing a bias.

One of the crucial assumptions of PEQA was that bias and noise are invariant across
probes and non-probes used in that mechanism. An alternative scenario would be one
where graders somehow figured out which are the probes, then gamed the system by ma-
nipulating scores on the non-probes, while not manipulating scores on the probes. The
relevant hypothesis, where PEQA assumption would fail, would be:

Hypothesis 4 Bias is higher in non-probes than in probes.

To test this, we pooled across all three rounds, and all questions where PEQA incentives
were used, to maximize power. In a t-test, we could reject this hypothesis with the p-value
of 0.09.

8. Discussions and limitations

The assumption of one question per exam, used in Sections 2 and 6 can easily be generalized
to multiple questions per exam.

For Section 2, the definitions and analysis, done for one question per paper, can be
extended for multiple questions per paper assuming that agent i has a bias biq and reliability
τiq for question q (which can be different from that of a different question q′, but same for
question q on all the papers she grades j ∈ G−1(i)). The definitions of EPBI and EPRM,
and PEQA will be updated accordingly by indexing the question q of paper j as (j, q). For
EPBI, the equalities will be for all questions q of paper j and for all papers j that agent i
grades. For EPRM, the inequalities will be for two reliabilities τiq > τ ′iq for each question
q for each paper j. PEQA will similarly get updated by calculating this pair (j, q)’s score-
assignment function and performance score function.

The setup of Section 6 can be generalized to multiple questions per exam by calculating
both the reward23 from accurate grading and the student welfare of grading (Equation (11))
question-wise. To see this, assume that question q on any exam has a reliability-cost function
cq (which can be different for a different question q′).24 If agent i chooses a reliability τiq
question q, she will face a corresponding cost cq(τiq). The total student welfare calculated
for that question will be the reward minus the total cost (across all graders) of grading for
that question. Next, one needs to extend the analysis presented in Section 6 to maximize
the sum of student welfare for each question over all the exams.

Like all mechanisms, PEQA has its limitations. For example, it relies on the assumption
that a grader grades all papers with the same bias and reliability. Among other things,
this requires that the graders cannot distinguish probe versus non-probe papers. While
the assumption has been utilized in other papers (Gao et al., 2016; Piech et al., 2013), it
is definitely a strong assumption which might no longer hold if the the same set of probe
papers are reused repeatedly. However, this issue can be handled using a set of synthetic
papers used as probes. These are certain papers which are manufactured by the course staff
with known marks (i.e., known mistakes for example) and deliberately mixed in the set of

23This is the distance between the true score and given score.
24For instance, in a physics exam, a question on the general theory of relativity is more difficult to grade

than that on Newton’s laws of motion.
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probe papers. The advantages of synthetic papers are (a) the marks are already known,
hence they do not need grading, (b) they can be created in large numbers with little cost,
(c) these papers can help create the required ratio of the probes and non-probe papers so
that the students cannot tell apart the probes from the non-probes.25

Another way for the assumption to fail would be if grader-assigned grades depend on
the true quality of the papers. It is possible that graders only negatively grade good papers,
but when a paper is clearly bad, they do not care. We suggest a partial solution which can
perhaps be implemented and tested in future work: PEQA can be extended so that subjects
are assigned probe papers of both high and low quality, so that for each individual we have
two measures of bias, one when they grade high quality papers and another when they grade
low quality papers. Then, those measurements can be used while debiasing the non-probe
papers that have been assigned high and low scores respectively.

9. Conclusion

We introduce a new mechanism, PEQA, that uses a score-assignment rule and grading per-
formance scores to incentivize graders. Our mechanism is robust to grader’s competitive
preferences. The rule and the performance score guarantee unbiased grades. They also
guarantee that any grader’s utility increases monotonically with her grading reliability, ir-
respective of her competitiveness and how her co-graders act. Our assignment rule is unique
in its class to satisfy this utility-reliability monotonicity while allowing flexibility in how
large performance scores need to be. When grading is costly, a special version of PEQA im-
plements socially optimal reliability-choices in an equilibrium of the peer-evaluation game
among co-graders. Finally, in our classroom experiments, PEQA assigns accurate final scores
and outperforms the popular median mechanism.

10. Ethics statement

This paper provides a method for efficient peer-grading with the option of raising regrading
requests if students are dissatisfied with their peer-graded scores. Peer-grading is a practice
widely used in MOOCs. In our method, since the students get a chance to ask for regrades,
it does not deny any student from getting a just and fair grade.

All exam papers in the experiments of this paper and also in the proposed method
for future use are given to the peer-graders after removing every identifiable information.
Hence, students grade answerscripts without knowing whose answerscript it is. We planned
it that way to preserve the privacy of the individuals.

The related literature (Sadler & Good, 2006, e.g.) shows that peer-grading improves
learning of the students in addition to their regular learning through a course. In our
proposed method, the instructor holds the decision on how much weight of the total score
of an exam/quiz should be given for peer-grading, e.g., about 10% or less. This is not
unusual since such small course weights are often given to several related activities of a
course, e.g., class participation or scribing lectures, etc.

25If a probe is sent to the same number of peer-graders as that of a non-probe, this will create the ideal
situation where the probes will be impossible to distinguish from non-probes.
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Appendices

Appendix A. Simpler description of PEQA

Algorithm 2 gives the description.

Algorithm 2 PEQA

1: Inputs: (1) the parameters µ and γ of the priors on yj , ∀j ∈ N , which is distributed
as F(µ, 1/γ), (2) the reported scores ỹN

P of the graders on the probe papers, and (3)
reported scores ỹN

N\P on the non-probe papers.

2: Set the probe set P with |P | = ℓ, a pre-determined constant ⩽ n
K
2
+1

, where K (even)

is the number of papers assigned to each grader.
3: G = G∗: every grader i ∈ N is assigned K

2 probe and K
2 non-probe papers, in such a

way that every non-probe paper is assigned to at least K
2 and at most K

2 + 1 graders.
This is always possible by assigning the (n−ℓ) non-probe papers to (n−ℓ) graders with
each paper assigned to exactly K

2 graders. The rest ℓ graders can be assigned to the
same (n−ℓ) papers arbitrarily such that these papers get at most one additional grader
(since ℓK2 ⩽ n− ℓ). Note that this is the reason ℓ cannot be larger than n/(K/2 + 1).
Ensure that a grader does not get her own paper for evaluation.

4: Estimate b̂i, τ̂i,∀i ∈ N as given in Section 2.3.
5: r: the score of the paper j is given by the ISWDM r∗ (Equation (3)).
6: At this stage, students may request for regrading. Instructor learns the correct grade
yj for the papers which came for regrading. For other papers, yj = r∗j is assumed.

7: t: the performance score to grader i for grading paper j ∈ NPi is given by tji =

α(W ∗
j −W

(−i)∗
j ), where α > 0 is a constant chosen at the designer’s discretion. The

total performance score to grader i is therefore ti =
∑

j∈NPi
tji .

Appendix B. Omitted Proofs

B.1 Proof of Lemma 1

Since K ⩾ 2, ℓ ⩽ n
K
2
+1

⩽ n
2 . Hence, there are more non-probe papers than probes. Also,

since ℓ ⩾ K
2 + 1 and computeG gives grader i gives K/2 probe and K/2 non-probe papers

starting from i+1, the grader can never get her own paper. To see this, note that the papers
are given in a round-robin manner individually within the pools of probe and non-probe
papers. Since the probes are fewer in number, it is sufficient to argue that probe paper i
does not go to agent i. This is obvious since ℓ ⩾ K

2 +1. For the non-probes, the round-robin
cycle is larger and therefore the non-assignment of a paper to the same agent is maintained.

Now, consider the coverage issue of each non-probe paper by the graders. We will call
a grader a probe(non-probe) grader if her paper is a probe(non-probe). Since the (n − ℓ)
non-probe agents get a round-robin assignment of size K/2 from the non-probe papers,
each of these papers is covered by exactly K/2 non-probe graders. Additionally, there are
ℓ probe graders and each of them gets K/2 non-probe papers. Therefore, ℓK2 more graders
are uniformly assigned on the non-probe papers. But since ℓ ⩽ n

K
2
+1

, i.e., ℓK2 ⩽ (n − ℓ),
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each non-probe paper may get covered by one extra probe grader. This proves that each
non-probe paper has a grader coverage of at least K/2 and at most K/2 + 1.

B.2 Proof of Theorem 1

By Assumption 1, the student knows her yj perfectly and if r∗j ⩾ yj , she does not raise a
regrading request. PEQA will assume r∗j to be the true score and design the peer-grading
performance score accordingly when there is no regrading request. The student asks for
regrading only if r∗j < yj . The utility of grader i after the regrading requests have been
addressed is (we have omitted the arguments of the functions in Equation (7) where it is
understood) therefore

ui(·) = max{r∗i (·), yi}+ ti −

 ∑
j∈G−1(i)

wij max{r∗j (·), yj}+
∑

k∈CGi\{i}

wiktk

− ϕ(·) (19)

We decomposed the utility expression to gather together the terms that are affected by the
grading (and hence, the choices of bi, τi) of student i. They are (a) the exam scores of the
papers graded by i (first term in the parentheses), and (b) the peer-grading performance
score of the co-graders of i (second term in the parentheses). The function ϕ is the remaining
part of ui that is independent of i’s grading. Hence, taking expectation for agent i as defined
in Definition 2, we get

Ei,bi,τi ui(·) = max{r∗i (·), yi}+ Ei,bi,τi ti

−

 ∑
j∈G−1(i)

wijEi,bi,τi max{r∗j (·), yj}+
∑

k∈CGi\{i}

wikEi,bi,τi tk

− ϕ(·) (20)

We prove that PEQA is EPBI and EPRM in four steps. First, we observe that the first term
on the RHS is independent of the values of bi and τi. In the second step, we show that each
summand max{r∗j (·), yj} in the first summation term is independent of bi and decreasing in
τi. The third step shows that ti is independent of bi and increasing in τi, and the fourth step
shows that this conclusion is true even for ti−

∑
k∈CGi\{i}wiktk for the sufficient condition

of the theorem.

Step 1: max{r∗i (·), yi} is independent of the values of bi and τi. This is obvious since
student i does not grade her own paper and hence she has no control on the grade given by
PEQA on her paper.

Step 2: Each individual term Ei,bi,τi max{r∗j (·), yj} is independent of bi and increas-
ing in σi. Note that Ei,bi,τi ≡ Eyk∼F(µ,1/γ), k∈G−1(i)Eỹ

(i)
k |yk∼F(yk+bi,1/τi), k∈G−1(i)

. Now, as

the processes that determine the true scores and thence the reported scores conditional on
the true on exams j ∈ G−1(i) are all mutually independent, for any fixed exam j graded by
i, Ei,bi,τi max{r∗j (·), yj} simplifies to Eyj∼F(µ,1/γ)Eỹ

(i)
j |yj∼F(yj+bi,1/τi)

max{r∗j (·), yj}.
Next, recall that the score-assignment function for PEQA is ISWDM (Definition 1)

r∗j (ỹ
G(j)
j , θ̂G(j)) =

√
γµ+

∑
i∈G(j)

√
τ̂i(ỹ

(i)
j − b̂i)√

γ +
∑

i∈G(j)

√
τ̂i

.
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The final grade after regrading is

max{r∗j (·), yj} = max{r∗j (·)− yj , 0}+ yj . (21)

Grader i’s estimated bias is given by b̂i =

∑
k∈Pi

(ỹ
(i)
j −yj)

x , where x = |Pi|. In PEQA, we use
the same number K/2 as |Pi|, for all i. Hence, x = K/2, is a constant in our analysis.

Given our model of peer-reports, ỹ
(i)
j = yj + bi + nij , where nij ∼ F(0, 1/τi) is a noise

term. Hence, it is easy to show that b̂i = bi +

∑
k∈Pi

nik

x and 1
τ̂i

= σ̂2i =

∑
k∈Pi

(nik− 1
x

∑
nik)

2

x ,

where nik ∼ F(0, σ2i ).
Substituting these values we get the expression for

r∗j (·)− yj =
√
γ(µ− yj) +

∑
l∈G(j)

√
τ̂l(nlj −

∑
k∈Pl

nlk

x )
√
γ +

∑
l∈G(j)

√
τ̂l

. (22)

Note that zj =
√
γ(µ−yj) is a F(0, 1) variable, that is independent of all the other variables

in the expression. In the following, we take the expectation of the term max{r∗j (·)− yj , 0}
w.r.t. zj and show that it is independent of bi and increasing in σi = 1/

√
τi, which implies

that irrespective of the values of the other graders’ biases and reliabilities, it is best for
grader i to reduce her σi to increase this component of her utility (since the term comes
with a negative sign in the utility expression).

Note that among other things, this also means that we are changing the order of expecta-
tions in Eyj∼F(µ,1/γ)Eỹ

(i)
j |yj∼F(yj+bi,1/τi)

max{r∗j (·), yj}. We are first taking the expectation

Eyj∼F(µ,1/γ) after a change of variable zj =
√
γ(µ− yj), and we call this term Ij . Then, we

take expectation of Ij w.r.t. E
ỹ
(i)
j |yj

, which is the same as integrating w.r.t nij .
26

Ij = Ezj max{r∗j (·)− yj , 0}

=

∫ ∞

−
∑

l∈G(j)

√
τ̂l(nlj−

∑
k∈Pl

nlk

x
)

zj +
∑

l∈G(j)

√
τ̂l(nlj −

∑
k∈Pl

nlk

x )
√
γ +

∑
l∈G(j)

√
τ̂l

f(zj)dzj + 0

=
1

√
γ +

∑
l∈G(j)

√
τ̂l

∫ ∞

−
∑

l∈G(j)

√
τ̂l(nlj−

∑
k∈Pl

nlk

x
)

zj + ∑
l∈G(j)

√
τ̂l(nlj −

∑
k∈Pl

nlk

x
)

×
f(zj)dzj

=
1

√
γ +

∑
l∈G(j)

√
τ̂l

∫ ∞

0
vjf(vj −

∑
l∈G(j)

√
τ̂l(nlj −

∑
k∈Pl

nlk

x
))dvj

=
1

√
γ +

∑
l∈G(j)

√
τ̂l

∫ ∞

0
vjf

vj − ∑
l∈G(j)\{i}

√
τ̂l(nlj −

∑
k∈Pl

nlk

x
)

−
√
τ̂i(nij −

∑
k∈Pi

nik

x
)

)
dvj

26If the original integrand is integrable, its absolute value must also be integrable, and thus one can use
Fubini’s theorem to change the order of expectation.
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=
1

√
γ +

∑
l∈G(j)

√
τ̂l

∫ ∞

0
vjf

vj − ∑
l∈G(j)\{i}

√
τ̂l(nlj −

∑
k∈Pl

nlk

x
)

− (mij −
∑

k∈Pi
mik

x )σi√∑
k∈Pi

(mik− 1
x

∑
mik)2

x σ2i

 dvj

=
1

√
γ +

∑
l∈G(j)\{i}

√
τ̂l + 1/

√∑
k∈Pi

(mik− 1
x

∑
mik)2

x σi

×

∫ ∞

0
vjf(vj −

∑
l∈G(j)\{i}

√
τ̂l(nlj −

∑
k∈Pl

nlk

x
)− (mij −

∑
k∈Pi

mik

x )√∑
k∈Pi

(mik− 1
x

∑
mik)2

x

)dvj (23)

In the third equality, we have substituted vj = zj +
∑

l∈G(j)

√
τ̂l(nlj −

∑
k∈Pl

nlk

x ), and in the

fifth equality, we substituted nik = mik · σi. Since nik ∼ F(0, σ2i ), we get mik ∼ F(0, 1).
Note that f is the density of a F(0, 1) random variable. Hence the whole expression within
the integral is independent of σi. It is easy to see that the pre-multiplied term is increasing in
σi. Hence, we conclude that the integral Ij is independent of bi and increasing in σi = 1/

√
τi.

For any integral outside Ij over any nik =mik
×σi, we perform a change of variable

to make it an integral over mik, and there are no extra σi terms originating there as
fnik

(nik)dnik=fmik
(mik)dmik.

27

Step 3: The expected value of tji is independent of bi and decreasing in σi. We
assumed in Section 2 that the reward function is decreasing in the difference |r∗j − yj | and
the mechanism assigns reward to be zero when r∗j > yj . Hence, we calculate the condition
on yj when the reward is non-zero.

r∗j (ỹ
G(j)
j , θ̂G(j)) ⩽ yj ⇐⇒

√
γµ+

∑
l∈G(j)

√
τ̂l(ỹ

(l)
j − b̂l)√

γ +
∑

l∈G(j)

√
τ̂l

⩽ yj

⇐⇒ √
γµ+

∑
l∈G(j)

√
τ̂l(ỹ

(l)
j − b̂l) ⩽ yj(

√
γ +

∑
l∈G(j)

√
τ̂l)

⇐⇒ yj
√
γ ⩾
√
γµ+

∑
l∈G(j)

√
τ̂l(ỹ

(l)
j − b̂l − yj) =

√
γµ+

∑
l∈G(j)

√
τ̂l(nlj −

∑
k∈Pl

nlk

x
)

⇐⇒ yj ⩾
√
γµ+ Z +

√
τ̂i(nij −

∑
k∈Pi

nik

x )
√
γ

, where Z =
∑

l∈G(j)\{i}

√
τ̂l(nlj −

∑
k∈Pl

nlk

x
)

=

√
γµ+ Z
√
γ

+
(mi −

∑
k∈Pi

mik

x )σi

√
γ

√∑
k∈Pi

(mik− 1
x

∑
mik)2

x σ2i

Note that the RHS is independent of σi. Hence the limits of the integral where the reward
R is non-zero is also independent of σi.

27Note that as Fnik (σix) = Fmik (x), differentiation on both sides gives σifnik (σix) = fmik (x), where F
and f are the CDF and PDF respectively.
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By definition, theW
(−i)∗
j component of the performance score is independent of bias and

reliability of grader i. Hence, we only consider the first component which is dependent on
the bias and reliability of grader i. We will consider the integral only w.r.t. yj to compute

tji and we just showed that the limits of this integral is independent of σi. Hence, if we
show that the reward function R(r∗j , yj) is independent of bi and decreasing in σi, then we
are done. Consider the argument of the reward function

r∗j − yj =
√
γ(µ− yj) +

∑
l∈G(j)

√
τ̂l(nlj −

∑
k∈Pl

nlk

x )
√
γ +

∑
l∈G(j)

√
τ̂l

=
[
√
γ(µ− yj) +

∑
l∈G(j)\{i}

√
τ̂l(ỹ

(l)
j − b̂l − yj)]

√∑
k∈Pi

(nik− 1
x

∑
l∈Pi

nil)2

x + (nj − 1
x

∑
l∈Pi

nil)

(
√
γ +

∑
l∈G(j)\{i}

√
τ̂l)

√∑
k∈Pi

(nik− 1
x

∑
l∈Pi

nil)2

x + 1

=
Z−i

√∑
k∈Pi

(mik− 1
x

∑
l∈Pi

mil)2

x · σi + σi · (mj − 1
x

∑
l∈Pi

mil)

X−i

√∑
k∈Pi

(mik− 1
x

∑
l∈Pi

mil)2

x · σi + 1

(24)

In the last equality, we substituted Z−i = [
√
γ(µ− yj) +

∑
l∈G(j)\{i}

√
τ̂l(ỹ

(l)
j − b̂l − yj)] and

X−i = (
√
γ+
∑

l∈G(j)\{i}
√
τ̂l). As before, we substituted nik = mik·σi. Since nik ∼ F(0, σ2i ),

we get mik ∼ F(0, 1). We see that the absolute value of the above expression is independent
of bi and increasing in σi. Hence R(r

∗
j , yj) is independent of bi and decreasing in σi.

Step 4: tji −
∑

k∈CGj
i\{i}

wikt
j
k is independent of bi and decreasing in σi for∑

k∈N\{i}wik ⩽ 1.

First, we show that tji − t
j
k is independent of bi and decreasing in σi. This is because W

∗
j

cancels and this difference reduces to W
(−k)∗
j −W (−i)∗

j . The second term is independent of
bi and σi. The first term is independent of bi and decreasing in σi by the same argument
as step 3, with the set of graders reduced to N \ {k}.

Observe that, in the utility of grader i, the difference in these two performance score
terms appear as follows.

ti − wik ·
∑

k∈CGi\{i}

tk =
∑

j∈NPi

tji − wik ·
∑

k∈CGj
i\{i}

tjk

 .

Consider the terms in the parentheses on the RHS.

tji − wik ·
∑

k∈CGj
i\{i}

tjk = ·
∑

k∈CGj
i\{i}

wik · (tji − t
j
k) + (1−

∑
k∈CGj

i\{i}

wik)t
j
i .

Both terms in the RHS is independent of bi and decreasing in σi as we have already shown
and since

∑
k∈CGj

i\{i}
wik ⩽

∑
k∈N\{i}wik ⩽ 1. (Note that the first inequality can also be

written as ⩽ maxi∈N maxA⊂Fi
K/2

∑
k∈Awik, since |CGj

i | ⩽ K/2+1, which proves the other

version of the theorem with a weaker sufficient condition.)
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Combining all steps, we have shown that the expected utility of grader i, where the
expectation is taken as Ei,bi,τi is independent of bi and decreasing in σi. Hence these two
properties hold for any choice of actions by the other graders. Hence we have proved that
PEQA is EPBI and EPRM.

B.3 Proof of Theorem 2

Since the given condition of the theorem is an arbitrary performance score function t, we
choose some performance score function t′ and take t ≡ δt′, where δ > 0 is arbitrary. We
use the δ as a scaling factor, which can be increased or decreased arbitrarily to leverage the
arbitrary choice of a performance score function. We will show that for every δ > 0, the
claim of the theorem holds as discussed below.

Consider the utility expression for agent i with peer-grading performance score weight
δ (we consider only the component of ui(·) that depends on agent i’s bias and reliability,
from Equation (20))

ui(·) = max{rWA
i (·), yi}+ δt′i −

∑
j∈G−1(i)

wij ·max{rWA
j (·), yj} − δ

∑
k∈CGi\{i}

wik · t′k

= max{rWA
i (·), yi} −

∑
j∈G−1(i)

wij ·max{rWA
j (·), yj}+ δ

t′i − ∑
k∈CGi\{i}

wik · t′k

 (25)

Taking expectation, we get

Ei,bi,τi ui(·) = max{rWA
i (·), yi} −

∑
j∈G−1(i)

wij · Ei,bi,τi max{rWA
j (·), yj}︸ ︷︷ ︸

+ δEi,bi,τi

t′i − ∑
k∈CGi\{i}

wik · t′k

 (26)

The first term on the RHS, i’s own grade, is independent of σi. Hence, we will focus on the
other two terms.

We will show that for all realizations of the random variables as defined in EPRM
(Definition 3), and for all values of δ, the utility is monotone decreasing in σi only if
λi(σi) = κi/σi. For brevity of notation, we will use λi to denote the function where the
argument is clear from the context.

We claim that for EPRM to hold for all δ, it is necessary that the second term of
Equation (26) (including the negative sign) is monotonically non-increasing in σi for all
realizations of the random variables. Suppose not, i.e., there exists some σ′i, where the
second term is increasing in σi. Then at that σ′i, there exists a δσ′

i
> 0, sufficiently small,

such that the sign of the derivative (w.r.t. σi) of the expected utility (LHS of Equation (26))
is determined by the sign of the derivative of the second term. This implies that the overall
utility will be increasing in σi for that choice of δσ′

i
> 0 at σ′i. This violates EPRM. Hence

the claim.

With that background, our objective is now to show that each underbraced individual
term inside the second term in the RHS of Equation (26), Ei,bi,τi max{r∗j (·), yj}, is mono-
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tonically non-decreasing in σi only if λi(σi) = κi/σi.
28 Define the following terms to shorten

the forthcoming expressions.

K1 = λ0 +
∑

l∈G(j)\{i}

λl, Kj =
∑

l∈G(j)\{i}

λl

(
nlj −

∑
k∈Pl

nlk

x

)
, K3j = mij −

∑
k∈Pi

mik

x
.

We follow the same set of arguments, particularly on changing the order of expectation
and subsequent simplification, as we did after Equation (21). Consider the second term in
Equation (26). Using Equation (21), we reduce the expression for paper j in the sum into
the difference term and consider its expectation w.r.t. zj = λ0(µ−yj), which is a λ0√

γF(0, 1)
random variable, to get a similar expression like Equation (23) as follows. We ignore the
positive constant λ0√

γ as it does not play a role in determining the sign of the variation.

Ij = Ezj∼F(0,1)max{r∗j (·)− yj , 0} =
1

K1 + λi
×
∫ ∞

0
vjf(vj −Kj −K3jλi)dvj

To find the change w.r.t. σi, we take its partial derivative and find
∂Ij
∂σi

to be

−K3j

(
∂(λi·σi)

∂σi

)
(K1 + λi) ·

∫∞
0 vjf

′(vj −Kj −K3jλi)dvj −
(
∂(λi)
∂σi

)
·
∫∞
0 vjf(vj −Kj −K3jλi)dvj

(K1 + λi)
2

Note that K1 is positive, while Kj and K3j can take any sign. To ensure that the expression
above is non-negative for all values of the realized random variables, it is necessary and
sufficient that

∂(λi · σi)
∂σi

= 0, and
∂(λi)

∂σi
⩽ 0. (27)

This is because the second integral in the numerator is always positive. Therefore, the
above condition is equivalent to λi = κi/σi, where κi > 0 is a factor independent of σi. This
concludes the proof.

B.4 Proof of Theorem 3

We compute the complexity of PEQA with reference to the steps in Algorithm 1.

▷ Line 1 requires running computeG function which will compute the set of graders for
each paper. This step takes O(nK) time.

▷ In Line 2, computation of b̂i and τ̂i for a grader i is O(K) since a grader is given K/2
probe papers. So the total time complexity for n graders is O(nK).

28Note that, in case one of the underbraced terms (Ei,bi,τi max{r∗j (·), yj}) of Equation (26) is de-
creasing for some exam j∗ and for some realization of the random variables of the graders except i (i.e.,

{ỹ(k)
j , bk, τk}k ̸=i) on that exam j∗, one could replicate the same realizations of the same random variables

for all the other exams j ∈ G−1(i) \ {j∗}. Then, the Ei,bi,τi max{r∗j (·), yj} terms would be decreasing for
all j ∈ G−1(i).
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▷ In Line 3, the computation of score for paper j, i.e., rj , is O(K) since every non-probe
paper is given to at most K/2 + 1 graders as from the computeG function. So, the
total time to compute scores of all the papers is O(nK).

▷ Lines 4, 5 do not contribute to the computational complexity.

▷ In the for loop of Line 6, the computation of yj , ∀j ∈ N would require O(n) com-
plexity.

▷ In Line 11, we claim that calculating computet takes O(nK) time. After that getting
performance for each grader is just O(n).

Lemma 3 computet can be calculated in O(nK) time.

Proof : the computation of W ∗
j can be retrieved in O(1) since we can store the r∗j

result computed in Line 3 (and the corresponding accuracy W ∗
j ) in a hash map. Note

that we can calculate r
(−i)∗
j ∀i ∈ G(j) in O(K) as well if we precompute the numerator

and denominator of r∗j in O(K) time and then subtract the grader i’s contribution

(
√
τ̂i(ỹ

(i)
j − b̂i)) from the precomputed numerator and denominator (subtract

√
τ̂i)

in O(1) time to calculate r
(−i)∗
j . By doing so, the computation of W

(−i)∗
j ,∀i ∈ G(j)

takes O(K) time. Hence, the computation of tji ,∀i ∈ G(j) takes O(K) time. Com-

puting this quantity for all non-probe papers, i.e., tji , ∀i ∈ G(j),∀j ∈ N \ P will take
O(nK) time. Therefore, the computation of ti∀i ∈ N would just take O(nK) time. ■

Hence, the overall time complexity of PEQA is O(nK).

Appendix C. Calculation of rERM
j (ỹ

G(j)
j ; θ̂G(j)) under PG1 (Piech et al.,

2013) model:

Below, we find a score-assignment function rERM
j (ỹ

G(j)
j , θ̂G(j)) that would maximize a

quadratic reward function, i.e., that would minimize the expected squared distance be-
tween the assigned score and true score on exam j. We will calculate the expression w.r.t.
the true error parameters θ. Then, given θ is not observed, we will approximate θ with the
estimated value of the same parameters, i.e., θ̂ to find a new expression.

To calculate rERM
j (ỹ

G(j)
j ;θG(j)), we first need to calculate the conditional distribution

of the true score yj , ψ(yj |ỹG(j)
j ; bG(j), τG(j), µ, γ) under the PG1 (Piech et al., 2013) model,

where ψ(·) is the density of the normal distribution with the mean and variance given by
that model. For the convenience of the reader, we restate the PG1 model below.

Model PG1 (grader bias and reliability) This model puts prior distributions over the
latent variables and assumes for example that while an individual grader’s bias may be
nonzero, the average bias of many graders is zero. Specifically,

(Reliability) τv ∼ G(α0, β0) for every grader v,
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(Bias) bv ∼ N (0, 1/η0) for every grader v,

(True score) su ∼ N (µ0, 1/γ0) for every user u,

(Observed score) zu ∼ N (su + bv, 1/τv) for every observed peer grade su,

where G and N refers to the gamma and normal distributions respectively with appropriate
hyperparameters. The hyperparameters α0, β0, η0, µ0, γ0 are the hyperparameters for the
priors over reliabilities, biases, and true scores, respectively.

Hence, the conditional distribution of the true score yj , ψ(yj |ỹG(j)
j ; bG(j), τG(j), µ, γ) is

calculated as follows.

ψ(yj |ỹG(j)
j ; bG(j), τG(j), µ, γ) =

ψ(yj ;µ, γ)ψ(ỹ
G(j)
j |yj ; bG(j), τG(j))∫

yj
ψ(yj ;µ, γ)ψ(ỹ

G(j)
j |yj ; bG(j), τG(j))dyj

∝ ψ(yj ;µ, γ)ψ(ỹG(j)
j |yj ; bG(j), τG(j))

∝ ψ(yj ;µ, γ)
∏

i∈G(j)

ψ(ỹ
(i)
j |yj ; bi, τi)

∝ exp

(
− 1

2
γ(yj − µ)2 +

∑
i∈G(j)

(
− 1

2
τi(ỹ

(i)
j − (yj + bi)

)2)

∝ exp

(
− 1

2

[
γ(yj − µ)2 +

∑
i∈G(j)

τi
(
ỹ
(i)
j − (yj + bi)

)2])
The expression inside the exponent is quadratic. We consider the exponent as follows.

γ(yj − µ)2 +
∑

i∈G(j)

τi
(
ỹ
(i)
j − (yj + bi)

)2
= const.+ γ(y2j − 2yjµ) +

∑
i∈G(j)

τi

(
(yj + bi)

2 − 2ỹ
(i)
j (yj + bi)

)
= const.+

(
γ +

∑
i∈G(j)

τi

)
y2j − 2

(
γµ+

∑
i∈G(j)

τi(ỹ
(i)
j − bi)

)
yj ,

= const.+R

(
yj −

1

R

(
γµ+

∑
i∈G(j)

τi(ỹ
(i)
j − bi)

))2

(where, R = γ +
∑

i∈G(j)

τi)

Therefore the resultant distribution is Gaussian:

ψ(yj |ỹG(j)
j ; bG(j), τG(j), µ, γ) ∼ N

(
γµ+

∑
i∈G(j) τi(ỹ

(i)
j − bi)

γ +
∑

i∈G(j) τi
,

1

γ +
∑

i∈G(j) τi

)

E
yj |ỹ

G(j)
j ;bG(j),τG(j)

[yj ] =
γµ+

∑
i∈G(j) τi(ỹ

(i)
j − bi)

γ +
∑

i∈G(j) τi
(28)
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Now we are in a position to calculate rERM
j (ỹ

G(j)
j ;θG(j)). The reward function is R(xj , yj) =

−(xj − yj)2 where xj is the estimated score and yj is the true score for paper j. The score-
assignment rule expected reward maximizer (ERM) is given below.

rERM
j (ỹ

G(j)
j ;θG(j)) = argmax

xj∈S

∫
yj

ψ(yj |ỹG(j)
j ; bG(j), τG(j))R(xj , yj)dyj

where bi, τi are the estimated bias and reliabilities ∀i ∈ G(j)

= argmax
xj∈S

[
−
∫
yj

ψ(yj |ỹG(j)
j ; bG(j), τG(j))(xj − yj)2dyj

]
= argmin

xj∈S

∫
yj

ψ(yj |ỹG(j)
j ; bG(j), τG(j))(xj − yj)2dyj

Let gj(xj) =
∫
yj
ψ(yj |ỹG(j)

j ; bG(j), τG(j))(xj − yj)2dyj . Hence we need to find xj that mini-

mizes gj(xj). The first and second order conditions are given as follows.

∂gj(xj)

∂xj
=

∂

∂xj

[∫
yj

ψ(yj |ỹG(j)
j ; bG(j), τG(j))(xj − yj)2dyj

]

=

∫
yj

∂

∂xj

[
ψ(yj |ỹG(j)

j ; bG(j), τG(j))(xj − yj)2dyj
]

= 2

∫
yj

ψ(yj |ỹG(j)
j ; bG(j), τG(j))(xj − yj)dyj

= 2xj

∫
yj

ψ(yj |ỹG(j)
j ; bG(j), τG(j))dyj − 2

∫
yj

yjψ(yj |ỹG(j)
j ; bG(j), τG(j))dyj

= 2xj − 2E
yj |ỹ

G(j)
j ;bG(j),τG(j)

yj

∂gj(xj)

∂xj
= 0⇔ xj = E

yj |ỹ
G(j)
j ;bG(j),τG(j)

yj

∂2gj(xj)

∂x2j
= 2 > 0

The first and second order conditions show that xj = E
yj |ỹ

G(j)
j ;bG(j),τG(j)

yj is a global minima.

Hence

rERM
j (ỹ

G(j)
j ;θG(j)) = E

yj |ỹ
G(j)
j ;bG(j),τG(j)

yj =
γµ+

∑
i∈G(j) τi(ỹ

(i)
j − bi)

γ +
∑

i∈G(j) τi
. (29)

The last equality follows from Equation (28).
Replacing θ with the estimated parameters, i.e., θ̂, we get,

rERM
j (ỹ

G(j)
j ; θ̂G(j)) = E

yj |ỹ
G(j)
j ;b̂G(j),τ̂G(j)

yj =
γµ+

∑
i∈G(j) τ̂i(ỹ

(i)
j − b̂i)

γ +
∑

i∈G(j) τ̂i
. (30)
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Appendix D. Comparison of Mean Squared Error under ERM (squared
error minimizer) and ISWDM (PEQA)

Expected reward maximizer (ERM) minimizes the squared error by definition (Equa-
tion (6)). Thus, WERM

j − W ISWDM
j ⩾ 0, where the reward function R in the definition

of Wj (Equation (4)) is the negative of the squared error. How worse does ISWDM (PEQA)
perform w.r.t. accuracy? To understand that, we run a simulation.

We consider a paper graded by 5 peer-graders– we call this a set of grader-reports. The
graders are symmetric, i.e., have the same bias and reliabilities. To abstract away from the
estimation process that is identical across ERM and ISWDM, we assume that the estimated
bias and reliability are equal to the true values.

The simulations are run w.r.t. Piech et al. (2013). We generate 100 i.i.d. true scores
with the parameters µ = 1, γ = 16. For each generated true score, for a fixed bias and
reliabilty (b̄, τ̄), we generate 100 i.i.d sets of grader-reports, each set having the report of 5
graders with (b̄, τ̄). We calculate the fractional difference d = (WERM

j −W ISWDM
j )/|WERM

j |
for each of the 1002 observations with (b̄, τ̄).

To study the effect of bias, we vary the bias between 0 and 1 in steps of 0.1, keeping
reliability fixed at 10.5. In Figure 3, for each bias b ∈ {0, 0.1, .., 1} on the x-axis, we plot the
mean and standard error of the observed ds under (b̄ = b, τ̄=10.5). Similarly, to study the
effect of reliability, for each τ ∈ {6, 7, .., 15} on the x-axis, we plot the mean and standard
error of the observed ds under (b̄ = 0.5, τ̄ = τ).

It shows that the average sub-optimality is small. It is insensitive to bias (roughly 25%)
and monotonically decreasing in reliability.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Bias (symmetric)

−1.0

−0.5

0.0

0.5

1.0

1.5

6 7 8 9 10 11 12 13 14 15
Reliability (symmetric)

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

Figure 3: Normalized sub-optimality ((WERM
j −W ISWDM

j )/|WERM
j |) with increasing bias

and reliability.

Appendix E. Instructions provided to the human subjects (Section 7)

The instructions for both the mechanisms were as follows.
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E.1 Median Mechanism Instructions

First, please register yourself on: [registration link] and solve the problem29 therein. The
example there would help you understand how your decisions map into your final payments,
through the median-mechanism and payment system used in this study. This is a study
on peer-grading. You should read the following instructions carefully, as they would help
you perform successfully in the study. In this study, each of you will be asked to grade
the assignments of five anonymous students in this room. Similarly, your own assignment
would be graded by five anonymous students from this room. Your peer-graded marks
and the relative ranks in this peer-grading exercise only determine your payment from this
session. It will not be used to determine your actual score for your final grade in the course.
The assignment score used towards your university grades will be provided to you by the
instructor (i.e., tutors or myself) later.

Would I know whose exam papers I might be grading / correcting? You would
not have this information. We will take maximal precautions to make sure that the grader
or the assignment-owner’s identities are anonymous to each other during and after this
session. Further you would also not know which other four participants are grading the
same papers as you. Thus, this procedure is double-blind. We will provide you a solution
manual to help you in the grading process. Follow the explanation of the questions and
correct answers presented before the study. Please be respectful and encouraging in the
grading process. Scores should reflect the learner’s understanding of the assignment and
points should not be deducted for difficulties with language or differences in opinion or for
using a different but correct methodology.

How are the final grades on my own assignment decided? All five peer-graders indepen-
dently assign you grades on all of the questions (there are 5 in total, all worth 2 points).
Then for each question-part your final grade is the median of those five grades. For ex-
ample, if on the second round of peer-grading, the five graders assign you 0, 1, 1.5, 2, and
2 respectively, then your final assigned grade on that question would be 1.5. We would
calculate your grades on all the questions separately by the above median-method, and
then aggregate those median grades from all the questions. For example, if there are five
questions and the median grades on the questions are 0, 1, 1.5, 2 and 2 respectively, then
the total grade on the assignment is 6.5.

How does one calculate the median of five numbers? Sort the numbers in increasing
order and the third highest number would be the median.

Can I dispute my peer-assigned grades? Yes, for certain questions you can, and for
others you cannot. In case you think your true grade is different than the grade that has
been assigned to you on these questions, you can privately indicate that on a form, that
would be sent at the end of the peer-grading and that will immediately notify us. We would
then reassign you the grade the Teaching staff had assigned to your assignment previously.
This whole process would be completed in a click of a button and you would be shown your
updated grade in a matter of seconds. Please note that once a dispute is lodged, your grade
would become the Teaching Staff assigned grade irrespective of whether that results in an
increase or decrease over your original grade.

29The problem tests the participant’s understanding of median and similar simple techniques.
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How are my payments decided? Every participant would get a show up fee of M 50
for participating in and completing this session. You would also get an additional amount
depending on your ranking in the pool of ‘n’ participants today. The ranking would be
done in decreasing order of the final grades assigned to you all on the whole assignment.
A ranking of x means that there are (x-1) other people who have a strictly higher grade
than you. The additional amount would be equal to M 650 for the top 25% (first quartile)
ranked students, M 450 for the next 25% (second quartile) ranked students, M 250 for the
third quartile ranked students, and M 50 for the bottom quartile students. If the number of
students that scored the same overlaps to two or more different quartiles, then all of them
get the average payment of those quartiles. E.g., suppose 7 students got the same marks,
and 3 students are in first quartile while 4 are in second quartile – then all 7 get M 600
(average of M 700 and M 500). Hence, in this study, the higher you are in the ranking
based on your peers’ judgment (and a potential review), higher is your total payment.

How do the grades you submit affect your own payment? The grades you submit
obviously do not affect your own grade, because you are never grading your own paper, but
they can still affect your own payment. Your grading would potentially affect the grades
of others, and that can change the relative rank between you and the person(s) you are
grading. For example, when you assign someone a higher grade, that might change the
median grade they are assigned, and thus move them to a higher rank than you. Similarly,
when you give them a lower grade, it might move them to a relatively lower rank than you.
Obviously, both of these scenarios would affect the final payments of both you and the other
person, as everyone is paid according to the final rankings.

Time-line for the study in chronological order:

▷ Stage 0: The whole assignment to be graded is broken up into 3 small parts, that would
be peer-graded in three stages. The total grade from the whole assignment determines
your final ranking and payment. At this stage, you are expected to complete the
questionnaire successfully.

▷ Stage 1: Every one of you peer-grades the first part of the assignment of 5 of your
peers. Therefore, for any question you are grading in this stage, you know that 4
other anonymous participants are also grading that question. Also, the first part of
your own assignment is also being peer-graded by 5 other participants. One part of
these questions will have options for regrading, while the other part will not (it will
be mentioned in the response sheet, but all regrading requests will be collected at the
end of stage 3).

▷ Feedback Stage 1: For each paper you graded in Stage 1, we will show you the grades
assigned by you and the 4 other anonymous graders. We will also show you how part
1 of your own assignment got graded by the assigned graders.

▷ Stage 2: Similar to Stage 1, now part 2 of the assignment gets peer-graded. But the
papers are now sent to a new random set of peer-graders. One part of these questions
will have options for regrading, while the other part will not (it will be mentioned in
the response sheet, but all regrading requests will be collected at the end of stage 3).

▷ Feedback Stage 2: Feedback of Stage 2 (similar to Stage 1) observed.
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▷ Stage 3: Similar to Stage 2 (one part has regrading requests, the other does not), now
part 3 of the assignment gets peer-graded.

▷ Feedback Stage 3: Feedback of Stage 3 (similar to Stages 1 and 2) is sent to all
students, along with their tentative total score. You may raise regrading requests for
the part that is regradable (as mentioned above). Any regrading requests that are
lodged will be acted on. Performance on the whole assignment is aggregated, and
the final ranking and payments are sent via email. To finish the study, complete the
survey that comes in the last email. Study ends.

Is my data confidential? Yes, your data is completely confidential. Before observing
and analyzing the collected data, we would be removing every personal identifier from the
data, so that none of the decisions can be traced back to the individual who made the
decision.

The first practice example tests you on your understanding of the mechanism how the
peer-grading leads to your final grade, rank, and payment. You must complete this practice
example with a score of 80% or more (i.e., correctly answer at least 4 questions out of 5).
You will get one chance only, so please do this carefully. Failing this, you would be asked
to leave this session with a M 20 reward.

Important: Please do not communicate with any other participants during
this session. For the grading, open one file at a time, finish grading, submit
the grade in the google form and then move on. Please keep seated even if
you are done with grading before time. If you have any questions, please raise
your hand and one of us will come by to answer your query. Please use your
university domain email id throughout this session. Please come remembering
your google id/password, since that may be needed for some form filling.

E.2 PEQA Instructions

Before you begin, please register yourself on: [registration link]. Submit the form only once.

This is a study on peer-grading. In this study, each of you will be asked to grade five
anonymous assignments. Similarly, your own assignment would be graded by a certain num-
ber of anonymous students from this room. Your peer-graded marks and your performance
in the peer-grading exercise will only determine your payment from this session. It will not
be used to determine your actual score for your final grade in the course. The assignment
score used towards your university grades will be provided to you by the instructor (i.e.,
tutors or myself) later.

Would I know whose exam papers I might be grading / correcting? You would
not have this information. We will take maximal precautions to make sure that the grader
or the assignment-owner’s identities are anonymous to each other during and after this
session. Further you would also not know which other four participants are grading the
same papers as you. Thus, this procedure is double-blind. We will provide you a solution
manual to help you in the grading process. Follow the explanation of the questions and
correct answers presented before the study. Please be respectful and encouraging in the
grading process. Scores should reflect the learner’s understanding of the assignment and
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points should not be deducted for difficulties with language or differences in opinion or for
using a different but correct methodology.

How are the final grades on my own assignment decided? Your peer-graders
independently assign you grades on all of the questions. Then for each question your final
grade is decided by running it through a new mechanism called PEQA (Peer Evaluation
with Quality Assurance). This is a mechanism which is designed to remove the individual
biases in grading, and selectively weight and reward graders by how precise they are (details
to follow). We would calculate your grades on all the questions separately by the above
method, and then aggregate those grades from all the questions. In each round, you will have
some regradable and non-regradable questions. For the regradable part, you will earn
the peer-given score computed through PEQA and an additional PEQA reward for grading.
For the non-regradable part, you will only receive the peer-given score computed through
PEQA, but no additional reward for grading.

Can I dispute my peer-assigned grades? Yes, for certain questions you can, and for
others you cannot. In case you think your true grade is different than the grade that has
been assigned to you on these questions, you can privately indicate that on a form, that
would be sent at the end of the peer-grading and that will immediately notify us. We would
then reassign you the grade the Teaching staff had assigned to your assignment previously.
This whole process would be completed in a click of a button and you would be shown your
updated grade in a matter of seconds. Please note that once a dispute is lodged, your grade
would become the Teaching Staff assigned grade irrespective of whether that results in an
increase or decrease over your original grade.

What is the PEQA mechanism? Let us describe PEQA in short in the following two steps:
Step 1 Probes: Out of the five questions you (a grader) grade, two are randomly assigned
to be probes (rest three are non-probes). On the probe papers, we would directly assign
the teaching staff assigned grades and also use the teaching staff assigned grades to get an
estimate of your individual average deviation (or bias) and variance in the assignments you
graded. We will do this for all the graders. For a grader who on average, assigns a grade
higher than the true-grade, the estimated deviation would be negative, and otherwise would
be positive.
Step 2 Non-Probes: The non-probes would be graded using the information from, (i) the
assigned grades of all the graders, and (ii) the estimated average deviation (or bias) and
variance of grading by peer-graders in Step 1. The assigned scores would be “de-biased”
using the information in 2.
Here is a numerical example that goes through these two steps. Suppose on the five questions
you graded, the first two questions are randomly assigned as probes (this is for illustration
only, the actual probes will be interspersed and not the first two, and you won’t know which
are the probes).
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Paper Status Score you True Deviation Bias=Avg of
assigned (A) Score (B) (A-B) Deviation

1 Probe 3 3 3-3=0 0+(−.5)
2 = −.25

2 Probe 2.5 2 2-2.5=-.5

3 3.5

4 4

5 2

On the probe questions, your evaluation would be compared with the evaluation done
by the course instructors (True score), to calculate an average deviation in your grading.
We would then use this to calculate the variance of your deviation.

Paper Score you True Deviation Bias=Avg Variance of
assigned Score Deviation Deviation

1 Probe 3 3 3-3=0 −.25
(0+.25)2+(−.5+.25)2

2
2 Probe 2.5 2 2-2.5=-.5 = .0625

3 3.5

4 4

5 2

Suppose the (bias,variance) pairs of the other two graders, who are also grading question
4, are (.25, .05) and (-.5,.2) respectively. Suppose the scores they had assigned to the same
Q4 was 3 and 2 respectively, while you have given 4 to that question.

Then, the final grade on Q4 (a typical non-probe question) would be calculated as (k1
and k2 are some appropriately chosen constants)

assigned score =
k1 +

1√
.0625

(4 + (−.25)) + 1√
.05

(3 + .25) + 1√
.2
(2 + .5)

k2 +
1√

.0625
+ 1√

.05
+ 1√

.2

When we assign the final grade on any non-probe question, we will “de-bias” the reports
from all the graders by subtracting out the bias, and also selectively over-weight the in-
formation from the low-variance graders. We consider the inverse of the square-root of
your variance as your precision of grading, and use this precision to weight your as-
signed score on this paper. The accuracy of the mechanism assigned score is given by
−(assigned score-true score)2.

If you were not one of the graders, and the mechanism only assigned scores using the
reports of the other graders,

assigned score without you =
k1 +

1√
.05

(3 + .25) + 1√
.2
(2 + .5)

k2 +
1√
.05

+ 1√
.2

The new accuracy is −(assigned score without you-true score)2. Now, your PEQA per-
formance score from peer-grading question 4 would be calculated as the difference between
the accuracy with you, and the accuracy without you. This is intuitively equivalent to you
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getting paid for your relative contribution in your group towards making the final assigned
grade accurate. The more accurate the assigned score is, when you are included
in the group of graders, the higher would be your performance score!

The PEQA performance score on each question you have graded that is worth x points,
is assigned on the scale of [0, x2 ]. So, in round 1, where each regradable question is worth
one point, and you grade a total of 3 non-probe questions, the maximum PEQA performance
score you could get is 3× 0.5 = 1.5 and the minimum is 0.

This PEQA grade and performance scores have the following properties:

Bias Invariance: Suppose you had reported grades of 3+x, 2.5+x, 3.5+x, 4+x, and
2+x, on all the questions instead, and thus had an individual deviations x points higher
than before. This would have no effect on the PEQA performance scores, as it would be
de-biased as described above. This is a mathematical property of the mechanism described.

With the new reported grades, your average deviation is changed to −.25−x from −.25.
The +x and −x cancel out in the expression of the assigned score, leaving it unchanged.

assigned score =
k1 +

1√
.0625

(4 +�x+ (−.25−�x)) +
1√
.05

(3 + .25) + 1√
.2
(2 + .5)

k2 +
1√

.0625
+ 1√

.05
+ 1√

.2

Clearly the assigned score without you also cannot change if your bias
changes, so your expected PEQA performance score cannot change here!

Precision Monotonicity: For every set of (bias, variance) your co-graders might
have, your expected PEQA performance score from the peer-grading task is monotonically
increasing in your grading-precision (precision is the inverse square-root of your variance).
This is a mathematical property that can be easily showed by using calculus and statistics.
Thus the more precisely you evaluate a paper in the peer-grading task, (or alternatively the
lower your grading variance) the higher your peer-grading score.

Here is a graph that shows how the PEQA performance score changes with the Precision
for a grader, who is grading alongside with two graders, one of highest precision and one of
lowest precision.

How do you calculate −(assigned score-true score)2? If there is no regrading re-
quest, then we would assume that true score=assigned score, and this value is zero. If
there are regrading requests, then we would evaluate the paper ourselves and assign the
course-instructor assigned score as true score to calculate the value.

What is my consolidated score? Your consolidated score is the sum of (i) the score
on your own assignment (consolidated score from the regradable and non-regradable parts),
and (ii) your PEQA performance score (peer-grading score). For example, if the peer-assigned
score (computed via PEQA) on your own assignment is x, and your peer-grading score is y,
your consolidated score is x+y.

How are my payments decided? Every participant would get a show-up fee of M 50
for participating in and completing this session. You would also get an additional amount
depending on your ranking in the pool of ‘n’ participants today, based on the consolidated
score. The ranking would be done in decreasing order of the final grades (i.e.,
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the consolidated score) assigned to you all on the whole assignment. A ranking
of x means that there are (x-1) other people who have a strictly higher consolidated score
than you. The additional amount would be equal to M 650 for the top 25% (first quartile)
ranked students, M 450 for the next 25% (second quartile) ranked students, M 250 for the
third quartile ranked students, and M 50 for the bottom quartile students. If the number
of students that scored the same overlaps to two or more different quartiles, then all of
them get the average payment of those quartiles. For example, suppose 13 students out of
a population of 40 got 10/10, then all 13 get M (700 × 10 + 500 × 3)/13 = 654 – the next
rank starts from 14. Hence, in this study, the higher is your consolidated score, higher is
your total payment.

How do the grades you submit affect your own payment? The grades you submit
obviously do not affect your own grade, because you are never grading your own paper, but
they can still affect your own payment, in two ways.
1) By affecting the grade of others: Your grading could potentially affect the grades
of others, only if the question is chosen as non-probe question, and consequently that can
change the relative rank between you and the person(s) you are grading. For example,
when you assign someone a higher/ lower grade on a question that is chosen as a non-probe
question, that might change the PEQAassigned quiz score (and thus the consolidated score)
they are assigned, and thus affect the relative rankings. But, note that Bias Invariance
result described above already tells you that a different bias would not change the
expected quiz scores of any peers.
2) By affecting your peer-grading score: Assigning a higher/ lower score on any ques-
tion, could change your payments in two ways. If this happened on a question that was
chosen as probe, we would be calculating your precision and bias to a different number,
and a lower (respectively higher) precision would result in a lower (respectively
higher) marginal impact of your peer-grading reports, and hence, a lower (re-
spectively higher) peer-grading score (and hence lower consolidated score) for
you. If this was a non-probe question instead, then you might be able to change the peer-
graded score on that paper, depending on how much weight we assign to your evaluation.

Is my data confidential? Yes, your data is completely confidential. Before observing
and analyzing the collected data, we would be removing every personal identifier from the
data, so that none of the decisions can be traced back to the individual who made the
decision.

You would be given a questionnaire of three questions that tests you on your knowledge
of calculation of median. Failure in answering at least two correctly out of those three
questions would disqualify you from participation in this study. In this case you would be
asked to leave this session with a M 20 reward. Important: Please do not communicate
with any other participants during this session. For the grading, open one file at a time,
finish grading, submit the grade in the google form and then move on. Please keep seated
even if you are done with grading before time. If you have any questions, please raise your
hand and one of us will come by to answer your query. Please use your university domain
email id throughout this session. Please come remembering your google id/password, since
that may be needed for some form filling.
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(a) Sample paper (b) Answer key

Figure 4: A typical view of the peer-grader.

Appendix F. View of a typical paper by the peer-graders

Figure 4 shows a typical view of the peer-graders for a specific paper. The paper was
chosen such that it has both subjective and objective components. During the experiments,
a few emails are sent to the individual peer-graders. The first email provides the set of
papers to be graded by them along with a sketch of solutions (as shown in the figure). The
second email is sent after the peer-grades are available and asks if the student wants to
place a regrading request. The final email gives the final scores after regrading the paper
(if requested) and their final bonus scores (monetary payments in the experiment).

All data and code of this paper are available at: https://www.cse.iitb.ac.in/

~swaprava/papers/Codes Peer Grading.zip
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