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Abstract

Elections involving a very large voter population often lead to outcomes that surprise many.
This is particularly important for the elections in which results affect the economy of a sizable
population. A better prediction of the true outcome helps reduce the surprise (or shock) and
keeps the voters prepared. This paper starts from the basic observation that individuals in the
underlying population build estimates of the distribution of preferences of the whole population
based on their local neighborhoods. The outcome of the election leads to a surprise/shock if
these local estimates contradict the outcome of the election for some fixed voting rule. To get
a quantitative understanding, we propose a simple mathematical model of the setting where
the individuals in the population and their connections (through geographical proximity, social
networks etc.) are described by a random graph with connection probabilities that are biased
based on the preferences of the individuals. Each individual also has some estimate of the bias
in their connections.

We show that the election outcome leads to a surprise if the discrepancy between the esti-
mated bias and the true bias in the local connections exceeds a certain threshold, and confirm
the phenomenon that surprising outcomes are associated only with closely contested elections.
We compare standard voting rules based on their performance on surprise and show that they
have different behavior for different parts of the population. It also hints at an impossibility that
a single voting rule will be less surprising for all parts of a population. Finally, we experiment
with the UK-EU referendum (a.k.a. Brexit) dataset to see a real-world effect of estimation errors
on surprise.

1 Introduction

Recent times have witnessed quite a few elections whose outcomes are widely considered as sur-
prises. News reports covered the unprecedented impact on trade, national economies, and job
markets because of the results of the elections (e.g., Brexit (News, 2016), US presidential elec-
tions (Independent, 2016), UK parliamentary election (News, 2017b,a) etc.) particularly because
many people and the market were unprepared for such an outcome. It has impacted not only the
economy and made the stock markets unpredictable, the social impact was also paramount. It was
clear that the social connections — either online or offline — and the mass communication media —
print or electronic — that are important factors in opinion building, have a localized effect which
does not give a holistic idea of the outcome of an election. This effect is more prominent in the
online social media, since communities in social media inevitably group similar people together
and it is easy to ignore biases. Having a large number of friends on an online social network may



solidify the belief that the local observation is quite a representative sample than what actually is
true. This raises a natural question:

“Can the surprise/shock in an election be explained by the social network structure or
the biases in the perception of the voters?”

In this paper, we address this question by proposing a model of the social network formation and
voters’ perception of the winner. We show that the answer cannot be obtained from an analysis
that focuses entirely on the network structure or the voter perception. For instance, if we consider
only network structure, the following example shows that any perception about the connection
probability will always have at least half the population surprised.

ExaMPLE 1 (Limitation of a structure-based conclusion) Suppose in a population of n
(even) voters with two candidates (red and blue), n/2 are red (meaning they prefer red over blue)
and the rest /2 are blue. The voting rule is plurality. Suppose the network structure is such that
each voter is connected with every other voter that has the same color as hers, but is connected to
exactly /2 — 1 voters of the other color. If she perceives the winner just by counting the majority at
her own neighborhood, then every voter will ‘think’ that her favorite candidate wins, and no matter
how the winning candidate is chosen, half the population will always be surprised at the outcome.

Clearly, the example can be adapted if the voters discount the number of voters of their own color
(given the fact that they are more likely to be connected with a similar colored voter) to yield the
same conclusion. Moreover, if there are more than two candidates, an extension of the construction
above will lead to a surprise of the voters in the classes where the actual winner (in plurality voting
over all voters) is not their favorite candidate.

So, it is clear that a worst case analysis over the social network structure will always lead to surprise
in election — which is hardly the case in practice — elections with unsurprising outcomes are in fact
quite normal. Later in the paper, we discuss how error in voter perception alone also cannot
give rise to surprise. Therefore, the approach that explains surprise must take into account both
these factors simultaneously. In fact, there are some counterarguments claiming that some of these
elections cannot be called ‘surprising’ given a correct model of voter perception (e.g., Economist
(2016) for Brexit).

We, therefore, adopt a Bayesian approach to address the question of surprise that considers
the structure generation and voter perception jointly. We assume a random generative model of
the voters and the social network, and show that an error in estimating the parameters of the
generative process may lead to surprises.

1.1 Our Approach and Results

Let us define the voter generation and social network formation process a bit more formally. Con-
sider a set of m candidates and n voters. A class of a voter is identified by a specific linear order
over the candidates — hence there are m! classes. Each voter is picked i.i.d. from a fixed probability
distribution of belonging to a class. Once the voters are generated, social network among the voters
are formed according to a stochastic block model. This is a general version of an Erdos-Renyi ran-
dom graph model, where the vertices are partitioned into classes and the edge creation probabilities
(which can be different) are defined only among the classes — hence every node of a class connects
to every other node in another class with the same probability. In our model, an intra-class con-
nection probability p is assumed to be larger than an inter-class connection probability ¢q. For a



specific voting rule r, e.g., plurality, and a realization of the voters V', there is a winner which we
represent using wp(V, 7). Since every voting rule we consider are anonymous, i.e., winner does not
change even if the voter identities are changed, the winner is determined just by the number of
voters in each class. Therefore, V' in wy(V,r) can be replaced by N = (N1, Na, ..., Ny,1), where N;
is the number of voters in class j. The perceived winner of voter v is dependent on her estimates
of the number of voters in different classes, denoted by NV = (Nf, N; e ,Nﬁb!), and is given by
wp(N”,r). Voter v is surprised when wp(N”,r) # ’LUT(N,T’). We call surprise as the probability
of this event. Voter v estimates ]\7;’ by taking the ratio of her observed neighbors of class j with
her estimated connection probability with class j. This estimation neutralizes her observation bias
had the estimates been perfect.

With this setup, our first result (Theorem 2) shows that for m = 2, if a ratio of the estimated
connection probabilities stay within a threshold, a voter is not surprised with high probability (i.e.,
surprise asymptotically approaching zero as n — oo). However, if the threshold is crossed, the
voter is surprised w.h.p. A corollary of this result is that if the original distribution of the voters
was very biased towards one class (‘overwhelming magjority for one candidate’), then, even with
erroneous connection probability estimates, a voter will never be surprised w.h.p. This result shows
that voter perception error is not solely responsible for surprise. Together with Example 1, we
conclude that social connection and voter perception are intertwined reasons for surprise.

Having observed that surprise is a phenomenon of a closely contested election, we generalize
our results for more than two candidates. As a first approach, we present the case with three
candidates in §4.1. However, the method clearly generalizes to similar conclusions with more
candidates. Unlike the case with two candidates, for three candidates, one can consider different
voting rules and compare their performances w.r.t. surprise. We consider three prominent voting
rules (that are scoring rules). Our next result (Theorem 4) shows that for different classes of
voters, different rules perform better in terms of surprise. However, we find it interesting that the
performance is not proportional to the distribution of the mass in the scoring rules since in certain
class of the voters, both plurality and veto perform better than Borda voting.

Though the theoretical results in §4 use the estimates of the connection probabilities and show
that the correctness of those estimates w.r.t. the true values may surprise a voter, we do not
explicitly mention how the voters arrive at these estimates. In §5, we consider a real dataset
(UK-EU referendum, a.k.a. Brexit) and consider a realistic model of network formation and voters’
winner anticipation. In particular, we investigate the effect of intra and inter-class connection
probabilities, and the effect of noisy observation of their estimates on surprise. The conclusions in
those results show a resemblance with the theoretical predictions.

2 Related Work

Public elections and their outcomes had been one of the cornerstones of research in social choice
theory and political economy. Ely et al. (2015) formally define suspense and surprise in a dynam-
ical model and provide a design approach to maximize either of them for a Bayesian audience.
The motivation for the dynamical model comes from the examples of mystery novels, political
primaries, casinos, game shows, auctions, and sports. Our definition of surprise (the outcome is
contrary to a voter’s belief) is closely related in spirit, and is adapted to a single-shot decision.
It is indeed of interest to design sports tournaments so that the games are highly competitive
and results are unpredictable (Dagaev and Suzdaltsev, 2015; Olson and Stone, 2014). More gener-



ally, information design where a social planner’s goal is to maximize his payoff has been investi-
gated in various contexts (see, e.g., a recent survey by Bergemann and Morris (2017)). Similarly,
stability in election outcomes is of prime importance in the study in social choice (Pattanaik,
1973; Dummett and Farquharson, 1961; Rubinstein, 1980). In computational social choice the-
ory, margin of victory, defined as the smallest number of voters who can alter the outcome of an
election by voting differently (Xia, 2012; Dey and Narahari, 2015), provides a quantitative thresh-
old of surprising outcomes in terms of the voter population. A little different but related lit-
erature exists for bribery in election (Faliszewski et al., 2006; Elkind et al., 2009; Mattei et al.,
2013; Bredereck et al., 2016, e.g.) and complexity of manipulative attacks (Bartholdi et al., 1989;
Conitzer et al., 2007; Faliszewski et al., 2014; Parkes and Xia, 2012, e.g.). On the other hand, we
use stochastic block model to represent connections between voters. This model has a long tradi-
tion of study in the social sciences and computer science (Karrer and Newman, 2011; Holland et al.,
1983; Wasserman and Faust, 1994). Therefore, in this paper, we approach the question of surprise
in election using well studied models of social connection and surprise, and introduce a realistic
model of voter perception to get insightful results.

3 Model

Let [k] £ {1,...,k}. Let N = [n] be the set of voters, and M = {a1,...,a,} be the set of
candidates. Every voter has an ordinal preference over the candidates, and we assume that these
preference relations are total orders, i.e., transitive, anti-symmetric, and complete. We assume
m << n, which is representative of real elections. Since the number of preference orders can be
at most m!, we partition the voters into disjoint classes identified by Py, k € C, with C' = [ml]
being the indices of the classes. Voters in a given class share the same preference order. Let
N := (|Py],k € C) denote the vector of the number of voters in each class. With a slight abuse of
notation, we will refer to the preference of the voters in P also with the same notation.

Every voter is associated with class P; with probability €; independently from other voters,
where €; € [0,1], Vj € C, and Zjec €; = 1. We assume that the ¢;’s are unknown to the voters.
The association is represented by the mapping ¢ : N — C, which maps the voter identities to the
class indices. A random social network is formed with these voters by a stochastic block model
which is represented by a |C| x |C| symmetric matrix P = [p;;], where p;; denotes the connection
probability between the classes of voters P; and Pj. The resulting graph is denoted by G = (N, E),
where E is the edge set. The edge creation process is independent among each other and also
is independent with the voter-to-class association process. We assume a regularity among the
connection probabilities for which we need to define the Kendall-Tau distance as follows.

DEFINITION 1 (Kendall-Tau Distance) The Kendall-Tau (KT) distance between two preference
orderings P;j and Py, is the minimum number of adjacent flip of candidates needed to reach one from
the other.

Clearly, this is a valid distance metric. We call the p;i’s regular if they are monotone decreasing
with increasing KT distance between P; and Py, — which means that the voters with more dissimilar
preferences are less likely to be connected. We assume that a voter knows the preferences of her
immediate neighbors (on the social network) perfectly, but does know the preferences of the other
voters.



A voter v € P; estimates these connection probabilities which are denoted by p;;, for all k € C.
We assume that the voters’ estimated p;;’s are also regular. At this point, we do not assume a
model on how the voters reach their estimates. In §5, we consider a specific model of estimates for
the experiments where voters take weighted average of their own observations and a noisy version
of the true global distribution. The next section deals with how the errors in these estimates can
affect a voters perception of the winner. We will consider only deterministic voting rules.

Voters’ winner perception model: Voter v estimates the number of voters in class P by
dividing the number of her own neighbors in that class on G, defined as Nbr¥ := {t : (v,t) € E,t €
Py}, with her estimated py(,),. Hence voter v’s estimated number of voters in class Py is,

o m\Nbrk\ if k # o(v), 0
v Bt ) - )\Nbra(v | +1 otherwise,

Note that if the py(,),’s were accurate, by strong law of large numbers, this estimate gives the right
number of voters in each class asymptotically almost surely.

We now have a setup where the voters have randomly realized preferences and connections with
each other. Also, every voter v has an estimate of the number of voters in different classes, and
therefore, under a given (anonymous) voting rule r, e.g., plurahty, Borda etc., she can perceive the
winner which is denoted by wp(NV,r), where NV := (N¥,NJ, ... N|C‘) The true winner for the

same realization is denoted by wT(N ,T).

By this definition, both the perceived and true winners are random variables, since the associa-
tion of a voter to a class and the formed social network are random. A voter is surprised when her
perceived winner is different from the true winner, defined formally as follows.

DEFINITION 2 (Event of Surprise) An event of surprise of a voter v for a specific realization of
the voter preferences and social graph is the event where the voter’s perceived winner is not the true
winner, i.e., the event S, such that,

ST = {wp(N?,r) # wpr(N,r)}. (2)

We will call the probability of this event as surprise of voter v under voting rule r, denote by
surp; = P(S}).

Note that, the event of surprise is specific to a voter and different voters in different P’s may
have different surprises for the same parameters.

Metric to compare voting rules: Consider the event of surprise closely.  Let the
event of some candidate b (# wr(N,r)) beating the true winner wr(N,r) be defined as
Beat” (b, wr(N,r)) := {b beats wp(N,r) in r}. The event of surprise, therefore, can be written
as S), = Ub¢wT(ﬁ7T)BeatZ(b,wT(]V,T)). For the chosen parameters, define the most probable false

beating candidate as b," € argmax, Lwr (M) P(Beat” (b, wr(N,r))), with ties broken arbitrarily. Us-
ing the union bound and the fact that the probability of an union of events is always larger than
that of the largest probability of the individual events, we get,

P(S]) = surp, € [(;, (m —1){;],

. 3
where ¢, = P(Beat,,(b,*, wp(N,r))). ?)



It is enough to analyze the event Beat” (b"*, wp (N, 7)) and consider the quantity MPFB!, := ¢’ which
we will call the most probable false beating (MPFB) factor, to compare between different voting
rules, since surprise can vary at most by a constant factor of this MPFB factor. In the following
sections, we will see that the effect of the number of voters on this factor is in the exponent. Since
the number of voters is large, the conclusions on surprise are entirely dictated by the growth or
decay of the MPFB factor.

4 Theoretical Results

In this section, we first analyze the setting with two candidates to get a better insight. The set of
candidates is M = {aj, a2} and the classes are P; = a; > az and P, = ag = a;. WLOG, we assume
that ¢ = % 4+ e and €5 = % — e with 0 < e < 1/2. For two candidates, all standard voting rules
yield the same winner as the plurality rule, and therefore, we will be considering only plurality in
the case of two candidates. We first show that candidate a; emerges as winner in plurality w.h.p.

THEOREM 1 When voters fall in class Py and Py w.p. %—Fe and %—e respectively, with 0 < e < 1/2,
P(wr(N,Plu) = ag) < e~ V™2 for sufficiently large n.

Proof: Let X; denote the number of voters in P;, i € [2]. Hence

X;=) HvePR} icl2

veEN

Define,
Z:=Xy-X1=) [{vePR}-HveP} =) Z,.
veEN vEN
Where Z, :=I{v € P,} —I{v € P}, v € N are i.i.d. RVs taking values —1 w.p.  + € and 1 w.p.
3 —e. Clearly, {wr(N,Plu) = a3} = {Z > 0}. We see that EZ = —2ne. Using Hoeffding
bound, we get

+2

Pr(Z-EZ>t)<e 2n.

Pick t = n3/4. Then for n > -5, EZ 4+ n3/* = —2ne + n3/* 0. Hence, for n >

16647 we get

1
16€%°

Pr(wp(N,Plu) = as) < Pr(Z > 0) < Pr(Z = EZ + n¥/4) < e 7.

Since the candidate a; turns out to be the true winner w.h.p., we will consider only the conditional
probability that as is the perceived winner given a; being the true winner, which will approximately
be equal to surprise for large n.

THEOREM 2 (Surprise for two candidates) When voters fall in class Py and Ps w.p. %4—6 and

% — € respectively, with 0 < € < 1/2, we have the following.

> For voter v in Py,



. - _of _P11P12
—if gi; > zi; %?F:, then P(wp(NV,P1lu) = agy ] wr(N,Plu) =a;) > 1—2e 2(1’11“’12) Ve

for large enough n; hence, surpt'® nzpe 1, , voter v is surprised w.h.p.

- - _of _P11P12
—if §g < B }g*; then P(wp(NV,Plu) = ag | wr(N,Plu) = a1) < e (FBz) va for

large enough n; hence, surp’™ 2200, i e., voter v is not surprised w.h.p.

> For voter v in P,

N o _ P22021
~ i < B ey Plup(NY,PLu) = a3 | wr(N,PLu) = o) > 1 - 2¢ (3 ) V7

for large enough n; hence, surpt™ "= 1, i.e., voter v is surprised w.h.p.

. 2
~ — _ P22P21
- 1@12, then P(wp(N",Plu) = az | wp(N,Plu) = a1) < e (st v for

large enough n; hence, surpt™® "= 0, i.e., voter v is not surprised w.h.p.

Proof: We prove the result only for the case when v € P, since the other case is symmetric.
Define §# = 1/2 + e. Let the random graph formed according to the stochastic model is denoted by
G = (N, E). For i € [2], let X; be the set of voters denoting the neighbors of v that belong to class
P;. Hence, v’s estimated number of voters in classes P; and P, are 5(71' and 5(722' + 1 respectively.

The additional one voter in the estimate of P» comes from voter v counting herself. Hence

—|X1| = —1 VU U

o 2 Mo € B} fue P, (4)
—‘X2‘ = —1 VU U
mQ—ﬁmw%@f“<)€E““ e By)). (5)

Taking expectations over these quantities, we get,

X1
<| 1)— ZPuePl ((vu)EE)\uePl):nH]?21 and,
P21 P21 welN P21

[Xo[) _ 1 - Pl(vy " i oy D22
E(m>—m%g@fwe&>m<>aw|e&>< -0 22

Define a new random variable, Z := [Xz2] +1 - D.ST, o expectation is

P22 D21

EZ = (n—1)(1— 022 +1 - nel2
D22 P21

1 P22 <1 )pzl
—tn—-1)(=— el
( )<2 >P22 2 D21

1 D22 (1 >p21> 1 < (1 >p22>]
n ——e|=—=—(z+¢€]= +—=11—-(z—€]= . 6
[<<2 > P22 2 D21 n 2 P22 ©)
P P 1/2—¢
pz? > pz? 1/2+€"

The first term in the bracket in Equation (6) is negative since

P22 ~ P22 S 1/2—c
D21 pa1 1/24€’

Let —¢ = (% —¢) % - ( +¢€) k& 5. Hence the whole expression of Equation (6) is negative for

by assumption.




n > max{0, (1 —(3-¢ g;;) Jl} =: ng. Hence, EZ is negative for sufficiently large n. Note
from Equations (4) and (5) that Z can also be written as the sum over the differences of the
indicator functions. We will use Hoeffding’s bound since the random variables in the sum are
independent. The maximum of every term in that sum of indicators that represent Z can be 1/pao
and the minimum can be —1/ps;, hence the maximum difference between each of the summands is
(P22 + Pa1)/Dazpa1. We have,

. N _of P22p 2
Pr(wp (N, Plu) = a5 | wr(N,Plu) = 1) < Pr(Z — BZ > ) < ¢ 2(7558) 7. (7)

P 2
_ P22P21

Plugging in ¢t = n3/4, we get that the probability of Z > EZ + n®/* is at most e <ﬁ22+ﬁ21) ‘/ﬁ. Let

ny :=inf{n > 0: <(%—6)%—( +¢€) g;) —I—%(l—(%—e)%) —I—# < 0}. The number n; is

D22 > P22, 1/2—¢

P21 p21 1/24€’

guaranteed to exist since by assumption. Therefore for all n > nq, Z is greater

P22P21

2
than a negative quantity with probability at most e <ﬁ22+ﬁ21> V™ Since {Z >0} C {Z > —ve},

we have that Vn > nq, Pr(Z > 0) < _2<P222+5;1> Ve

We now consider the case when % < g 2? }g;i We leverage the calculations we did for the

P22 _ p22 1/2—¢
previous case. Because of the assumption 22 < £22. 2752,

EZ is positive for large n (Equation (6)).
Using Equation (7), we have,

S 2
D22P21 ) 2

Pr(wp(NY,P1lu) = as | wp(N,Plu) = a;) < Pr(|Z —EZ| <t) > 1— 26_2<ﬁ22+ﬁ21 "

This implies that the probability of Z > EZ — t is at least the quantity on the RHS

of the above inequality. Again, plugging in t = n%* and defining ny := inf{n > 0
<(% — e) % - ( + 6) 531) + % (1 - (— - e) 533) - # > 0}, which is guaranteed to exist by
assumption, we get the desired conclusion for all n > ng. This completes the proof. |

Corollaries. Theorem 2 captures the determining factors for surprise in plurality voting. Few
conclusions are in order.

1. If an agent’s estimated p’s were perfect, then the agent is never surprised w.h.p., since then
the ratios will always satisfy the ‘not surprised’ condition of Theorem 2.

2. Surprise may happen when € is small, i.e., the winning margin is small. This is because,
the surprise-determining thresholds for p;;/p;rs in Theorem 2 are very close to the actual
ratios pj;j/p;rs and a small error of the voter in estimating these connection parameters may
lead to surprise. However, when the winning margin is large, e.g., € is large enough such
that pr }g; < 1 and if the p’s are also regular, i.e., P22 > pPo1, then no agent in P will be
surprised. This shows that elections with an overwhelming majority can hardly be surprising.
Surprise is a phenomenon only of a closely contested election.




4.1 Three Candidates

We now consider the problem with three candidates. In this setting, different voting rules give
rise to different winners and therefore it is possible to distinguish them w.r.t. the surprise metric.
In this section, we will compare three commonly used voting rules, namely plurality, Borda, and
veto, based on the factor MPFB], (Equation (3)) because of the reason explained right after the
equation. One can easily extend the results of this section for more than three candidates with
similar conclusions.

For two candidates, we have seen that surprise occurs only in closely contested elections. Hence
to compare the voting rules in this section, we consider that the voters are uniformly distributed
over the |C| preference classes.

AssuMPTION 1 (Uniform Population) FEvery voter belongs to exactly one class of preference in
{Py : k € C} with uniform probability.

We also assume that the voters’ estimates of the connection probabilities are consistently higher
than their true values as the KT distance increases between the preference class of the voter and the
class of her neighbor, i.e., p;;j/p;;’s are decreasing in distgr(F;, Pj). The motivation is to capture
the fact that people often consider their local neighborhood to be representative of the global
population, leading to an uniform p;;’s for all ¢, 7 € C. Since the true connection probabilities are
regular, i.e., decreasing in distgr(F;, Pj), it gives rise to a monotone estimation error.

AssuMPTION 2 (Monotone Estimation Error) The ratio of the true connection probability
to the estimated one decreases with the KT distance, i.e., B > LI distgr(Py, Pr) <

7 Pre Drp
distgr (P, Pp) when v € Py.

To keep the analysis simple, we assume a special case of regular connection probabilities and MEE.
There are only two kinds of connection probabilities: intra-class, denoted by p and inter-class,
denoted by ¢ < p — with the inter-class probability being same for all classes. Hence, with MEE,
we have p/p > ¢/.

In the proof of our main result in this section, we will use a quantitative version of the central
limit theorem due to Berry (1941) and Esseen (1942). The following exposition is from Tao (2010).

THEOREM 3 (Berry-Esseen) Let X be a RV with mean p, unit variance, and finite third moment.

n

Let Z,, = %, where X;’s are i.i.d. copies of X. Then we have
Pr[Z, > A = Pr[G > \] + O(BIXP/ym),

uniformly for all X € R, where G = Normal(u, 1), and the implied constant in O(-) is absolute and
does not depend on the distribution of X.

This theorem gives a quantitative guarantee on the deviation of the cumulative distribution function
of the random variable Z,, from that of a normal random variable with mean same as X and unit
variance.

With the assumptions as mentioned above, we now present our main result for three candidates.

THEOREM 4 Consider |M| = 3, let v be any voter.



(i) If v ranks the true winner at the first position, then MPFBP™ < MPFBE* < MPFB/®* w.h.p.
(it) If v ranks the true winner at the second position, then MPFBY®* < MPFBBOT < MPFBP® w.h.p.

(i) If v ranks the true winner at the last position, then MPFBY®* < MPFBE°T aqnd MPFBP™ < MPFBEC*
w.h.p.

Since surp], = ©(MPFB]) (Equation (3)), we conclude that a lower MPFB factor gives a lower
surprise.
Proof: Let M = {ajy,a2,as}. We prove the theorem in three stages. First, we assume WLOG, that
a specific candidate wins w.h.p. and consider the two ‘false beating’ events where the true winner
is not the perceived winner — for which we consider the difference in the overall scores (as we are
considering only scoring rules) of the other two candidates with that of the true winner. Second,
to compute the probability that these two expressions are positive (which implies that these are
the false beating events), we find the mean and variance of these expressions and normalize the
difference expression with the standard deviation so that the Berry-Esseen theorem can be invoked.
Finally, we find the maximum of the two probabilities to conclude on MPFB], for that voting rule.
We label the classes as shown in Table 1. Each voter belongs to class Py w.p. 1/6 in the uniform
population model (Assumption 1). WLOG, assume that the candidate as wins the election w.h.p.,
i.e., the overall score is highest for as in every rule, and ties are broken in favor of as. Let

Class Preferences H Class Preferences
Pi: a1 >=as > as Py oas=az = aq
Py: ap = a3 > as Ps: asz a1 > ao
Ps: as > a1 - as Ps: asz = as = aq

Table 1: Preference classes for 3 candidates

(s1,52,0) be a normalized scoring rule vector with s; + so = 1 and s1,s9 > 0. Hence, the vector
is (1,0,0), (2/3,1/3,0), and (1/2,1/2,0) respectively for Plu, Bor, and Vet. For a voter v, let
$y(a1), 8y(a2), $y(as) be the random variables denoting the estimated scores for the candidates
a1, a9, and ag perceived by v.

For every rule r and voter v, we are interested in the differences of these estimated scores, i.e.,
5v(aj) — 5y(a2), j = 1,3, since a positive value of this expression implies that a false beating event
has occurred. The maximum probability of these two events is MPFB; .

With the voters” winner perception model, each of these estimated scores of v can be written as
a sum over the indicator RVs that another voter belong to a specific preference class and they are
connected to v (with appropriate scaling with py; if v € P and the other voter is in P;). Hence, we
can write the difference in the estimated scores as §,(a1) — §,(a2) = ZueN\{v} Xu,a1—as + 0v,a1—ao
and 5,(a3) — 8,(a2) = > ,c N\{o} Xu,az—as + Ov,a3—as, Where we clearly distinguish the contribution
of voter v in the differences with the variable 0, 4;-a,, j = 1,3. We denote the summation on the
RHS in each equality with the shorthand S_ 4;—a, = ZueN\{v} Xu,a;—azs J = 1,3. The expression
Xu,a1—as (resp. Xy az—ay) is the indicator random variable denoting voter u’s contribution to the
difference in the score of a; (resp. a3) and ay if u is connected to v. We detail out the exact
expressions of X, 4,4, when we consider the following cases.

Case 1: v € P; or v € Ps (i.e., when v ranks the winner at the second position): We
only consider v € Pj, since the analysis for v € Py is symmetric. For v € Pj, the expression of
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Xu,a1—a, turns out as follows for u € N \ {v}.

Xu,al —az

(51— 52) <];1H({(u,v) € EYn{ue P} — I%H({(u,fu) € BV {ue Pg})>

32 (S-I({(w,0) € B} fu € A - ~UT({(w0) € B} fu e P

+8 <ﬁln({(u,v) cBYn{ucPy)) - I%]I({(u,v) € By {uc P4})> .

Note that these are i.i.d. random variables for v € N\ {v}, whose mean and variances are as follows.
E[Xua1—a) = (81 — $2)(P11/6p11 — P12/6p12) > 0
We get the equality due to Assumption 1 and the inequality due to Assumption 2. We also have
ELX2 ) = (51— 52 (vufoit, + prafosty) + (3 + s3)miafat,.
Hence

var(Xy,a;—ay) = E[X2 ] - (E[XU,G1—G2])2

u,a1—az

2
= (51 — 82)2 <p11 i P12 <p11 _ p12> >+ P12 (s2 + s2).

613%1 613%2 6]511 61512 313%2

For v € N \ {v}, define the normalized random variable

Xu,al—ag = Xu,alfag/\ /var(Xu,aq—ag)-

Clearly, E[Xy q,—a,] = ElXuwar—asl/\/Nar(Xu,a;—ay) and var(Xy q,—q,) = 1. We can now apply Theo-
rem 3 for large n to get

PT[S_MCLI_@ + 51,[11_[12 >0 | RS Pl]
S—U,[ll—CLQ 51,(11—(12
+
Vvar(Xy o —a;)  y/nvar(Xya,—a,)

=Pr [Gvﬂl—az > —(51,1117112/1 /nvar(Xu,al,(Q)] + 0 (1/\/5)
= Pr[Gyay—a, = 0] + O (Y/vn).

=Pr

>0|vePR

(8)

Where G, 4, —q, is @ normal RV with mean E[X,, 4, _4,] and unit variance. The last equality follows
from the fact that Pr [0 > Gy a;—ay > —01-a2/\/mvar(Xua,—ay)| = O(1/v/n) since the length of the
interval [—01.a1-as/\/nvar(Xu.a;—ap), 0] is O(1/vn), hence the integral of any probability distribution
over it is O(1/vn).

Similarly, for u € N\ {v}, Xy a3—a, is defined as follows.

Xu,ag —az
1

12

(51— s2)

7N\
3

I({(u,) € B} N {u c Ps)}) — I%H({(u,v) cE}n{uc P4})>

[

1
+ 89 <ﬁl2}1({(u,v) eE}n{ue P})— EH({(U,’U) eE}n{uc Pl})>

+ 51 < ! I({(u,v) € E}YN{u € Ps}) — AL]I({(’U,,’U) e E}n{uc P3})> .
12 P12

3>
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Taking expectation, we get
E[Xu,ag—az] = 32(1712/61312 - p11/611311) <0

The equality follows due to Assumption 1 and the inequality due to Assumption 2. Performing
similar calculation as we did for X, 4, —q,, We reach a unit variance normal RV G, 4,_4,. However,
the mean of Gy 4, —q, turns out to be larger than G, 4;—4,, Which lead to the conclusion that for
large n

PT[S_MCLI_@ + 51,[11_[12 >0 | RS Pl]
= PT[S—v,ag—ag + 51,(13—(12 >0 | NS Pl]

Hence, to find the MPFB factor in this case, we need to compare the probability of Equation (8)
among different voting rules. Since, the probability reduces to the tail distribution of Gy 4, —a,
which is a normal RV with unit variance, it is enough to compare the means of Gy 4, —q, to compare
the MPFB factors. Denoting the means of Gy, 4, —q, by py, for voter v under rule r, we get for large
enough n

vV B P1
St <t <

Which implies w.h.p.
MPFB!®* < MPFBE°" < MPFBPM™,
The analysis for v € Py is the same with the roles of candidates a1 and ag being reversed.
Hence, we have proved claim (ii) of the theorem.

Case 2: v € P, or v € P5 (i.e., when v ranks the winner at the last position): We adopt
a similar calculation as Case 1 to get

E[Xu,a1—as] = 51(P11/6p11 — P12/6p12) > 0
E[Xzim—az] = 3%(1}11/6;,3%1 + p12/6;i;§2) + p12/313%2((31 - 32)2 + 5%)

With notations similar to Case 1, we denote the mean of the normalized variance normal RV
Gy,a;—ay DY ,uf,,aj_@, j = 1,3, for the differences of estimated scores of voter v between candidates
a; and ao, j = 1,3. Hence

S—v,aj —az

=K

lve P, j=1,3.

T
/Lv,aj—ag
nvar(Xy,a;—ay)

With similar computations, we get for voter v € P,

Plu Plu _ Vet Vet Bor Bor
MaxX{ L,y —az Foag—azt = MAX{Lya) —ays Hvias—an b < MAX{ By —ays P —az b

Which implies w.h.p.
MPFB/®* < MPFB2 and MPFB['™ < MPFBECT.

The case for v € Pj is same with the roles of candidates a1 and ag reversed. Hence, we have proved
claim (iii) of the theorem.
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Case 3: v € Py or v € Py (i.e., when v ranks the winner at the first position): With
notations similar to Case 1, and denoting the mean of the normalized variance normal RV Gy q; -,
bY 1y a;—ays J = 1,3, for the differences of estimated scores of voter v between candidates a; and
as, j = 1,3, we have

) S—U,aj—ag

T
Nv,aj—ag
ny/var(Xu,a; —as)

With similar computations, we get for voter v € P3

lvePs|, j=1,3.

Plu Plu Vet Vet Bor Bor
max{uv7a1 —ag? Nv,a_g—ag} < ma‘x{:u'v,al —a2? Mv,a_g—ag} < ma‘x{uv,al —ag’ Mv,a_g—ag}

Which implies w.h.p.
Pl B Vv
MPFB,'" < MPFB.°" < MPFB)°".

The case for v € Py is same with the roles of candidates a1 and ag reversed. Hence, we have proved
claim (i) of the theorem. [

5 Empirical Results

Our theoretical results in §4 use the estimates of the connection probabilities and show that the
correctness of those estimates w.r.t. the true values may surprise a voter. We do not explicitly
mention how the voters arrive at these estimates. In practice, voters anticipate a winner by im-
plicitly estimating the number of voters voting in favor of the candidate versus voting against him.
There are typically two major sources of information to a voter: first, via her own neighbors in
the (online/offline) social network, and second via the public broadcasting media, e.g., print or
electronic media. If the social network connections form according to a stochastic block model and
the voters’ estimates are governed by the two above effects, does the predictions similar to our
results follow in a real-world example? This is why an empirical study is called for.

In this section, we address this question with real datasets. We construct the social network
of voters depending on their preferences and geographical locations to make the network more
realistic. Instead of computing the estimates of connection probabilities explicitly, we directly
capture the estimated population in each class by taking an weighted average of (1) voter v’s
individual observation, i.e., the number of voters of different classes in v’s immediate neighborhood
and (2) a noisy version of the global (true) number of voters in each class. Effects (1) and (2)
capture a voter’s private and public observations respectively and give a realistic view of opinion
forming.

Datasets: We use the UK election dataset of EU referendum (popularly known as Brexit)!. The
dataset is publicly available and gives the total count of votes cast by the UK voters that voted
either ‘remain’ (R) or ‘leave’ (L) the EU. The data consists of approximately 33 million valid votes
and is partitioned across 382 regions within the UK. Each region is identified with the name of
the town, city, or county. We will refer to this dataset as Brexit dataset. We have used another

"https://goo.gl/MtTAIT
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Figure 1: Effect of weight on global observation and observation bias on surprise.

dataset’ to find the latitude and longitude of these regions. Since the location dataset gives the
latitude-longitude of a town and the voting constituencies are collection of a number of them, we
have averaged over the towns in a region to find the approximate centroid of the region. There
were few locations (about 18%) whose information were not available in the location dataset, we
have filled in their location to be some place central to the UK. The Brexit data is suitable for our
experiment, since (a) it has only two candidates for which we have a simple yet insightful theoretical
result (Theorem 2), (b) it is large enough to draw conclusions on large-scale elections, and (c) the
election was closely contested, (51.9% for L and 48.1% for R).

Approach: In each location, based on the total number voters and their votes, we re-created the
voters. The connection follows a random graph model where the probability of connection between
two voters is the average of (a) p1, which is decreasing in the geographical distance between the
voters, and (b) py, which is p if both voters are from the same class, and ¢, otherwise (with p > q).

In this social network, voters perceive the outcome of the election according to effects (1) and
(2) as explained before. For the individual observation (effect 1), we assume that a voter can
perfectly observe the true voting preferences of her immediate neighbors in the graph. The number
of voters that voted R or L in the immediate neighborhood gives a distribution of the R and L
voters in the neighborhood including herself. For the global observation (effect 2), we add a zero
mean truncated Gaussian noise to the true distribution of the votes — the truncated Gaussian is
set such that after the addition of noise, the resulting noisy distribution still remains a valid one,
i.e., no probability mass goes negative. We call the variance of the truncated Gaussian the bias
of this observation. The voter combines these two distributions with weights w; for the noise-free
individual distribution and wg for the noisy global distribution. Her perceived winner is the one
that has larger mass among the two outcomes in the weighted sum distribution.

Due to the massive scale of the dataset, which takes significant time to run a single experiment,
we have sampled 10, 000 votes uniformly at random and created a sub-election. In this sub-election,
every individual attempts to connect to 500 other individuals picked uniformly at random. In this
discussion, we consider the surprise of the voters in the minority class (i.e., the R voters).

*https://www.townslist.co.uk/
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Figure 2: Surprise in Brexit for different intra and inter-class connection probabilities (legends same
as Figure 1).

Results: We have three independent parameters that give rise to surprise: (1) the weight on global
observation wg (wr is fixed given this), (2) the noise on this observation, and (3) choices of p and q.
To show how these parameters affect surprise, we plot the fraction of surprised minority population
versus wg for different choices of observation bias of the global distribution. Figure 1 shows such
a plot for a fixed choice of p and ¢. Figure 2 shows a consolidated information of similar plots for
different choices of p and gq.

Few observations can be made from the results. (i) When the ratio r/q is large, the surprises are
large too. Interestingly, a large P22/ps, implies that more pag, Po1 satisfies the condition of surprise
in part 2 of Theorem 2 (here poe = p,p21 = ¢) — giving rise to a higher surprise. (ii) More bias in
the observation leads to a higher surprise. This too is expected by Theorem 2.
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However, there are a few observations that we find surprising. The downward trend of the
curve was expected with more weight on global information — but when there is noise in the global
information, there is an increase and dip in the surprise. Also, each curve shows a cross-over region,
where mixing a more noisy global observation gives a lower surprise.

6 Discussion

Our results give a quantitative understanding of surprise in elections. We set up a model for
voters’ preference generation, social network creation, and voters’ perception of the winner from
their local neighborhood. Our results for more than two candidates hint that possibly no single
voting rule can reduce the surprise for all sections of the voters. The empirical results complement
our assumption on voter’s estimates of connection probabilities. However, a more fine-grained
model of voter perception will help better understand the surprise phenomenon. We believe that a
thorough understanding of surprise is essential for mitigating it — particularly when such surprises
affect the social, economic, and political decisions of individuals.
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