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Abstract
Elections involving a large voter population often lead to outcomes
that surprise many. A better prediction of the true outcome helps
reduce the adverse effect of surprise on the economy of a sizable
population. This paper starts from the basic observation that individ-
uals in the underlying population build estimates of the distribution
of preferences of the whole population based on their immediate
neighbors in the underlying social network. The outcome of the
election leads to a surprise if these local estimates contradict the
outcome of the election for some fixed voting rule. To get a quan-
titative understanding, we propose a novel mathematical model
of the setting where the individuals in the population and their
connections are described by a random graph with connection prob-
abilities that are biased based on the preferences of the individuals.
Each individual also has some estimate of the bias in their connec-
tions. The connection model is inspired by the homophily effect in
social networks.

We show that the election outcome leads to a surprise if the
discrepancy between the estimated bias and the true bias in the
local connections exceeds a certain threshold, and confirm the phe-
nomenon that surprising outcomes are associated only with closely
contested elections. We consider large elections with networked vot-
ers and compare standard voting rules based on their performance
on surprise. Our results show that the rules have different behavior
for different parts of the population. It also hints at an impossibility
result that any reasonable voting rule will be less surprising for all
parts of a population. To attest some of our theoretical predictions,
we experiment with the large dataset of UK-EU referendum (a.k.a.
Brexit).
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• Networks→ Online social networks; • Applied computing
→ Voting / election technologies;
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1 Introduction

Recent times have witnessed quite a few elections whose outcomes
are widely considered as surprises.1 News reports covered the un-
precedented impact on trade, national economies, and job markets
because of the results of the elections (e.g., Brexit [39], US presiden-
tial elections [35], UK parliamentary election [40, 41] etc.). It was
attributed to the fact that many people and the market were unpre-
pared for such an outcome. It has impacted not only the economy
and made the stock markets unpredictable, the social impact was
also paramount. It was clear that the social connections – either
online or offline – and the mass communication media – print or
electronic – that are important factors in opinion building, have a
localized effect which does not give a holistic idea of the outcome
of an election. This effect is more prominent in the online social
networks, since communities in social networks inevitably group
similar people together and it is easy to ignore biases. Having a
large number of friends in an online social network may solidify
the belief that the local observation is quite a representative sample
than what actually is true. This raises a natural question:

“Can the surprise/shock in an election be explained by
the social network structure or the biases in the percep-
tion of the voters?”

In this paper, we address this question by proposing a model of
the social network formation and voters’ perception of the win-
ner. We show that the answer cannot be obtained from an analysis
that focuses on only the network structure or only the voter per-
ception. For instance, if we consider only network structure, the
following example shows that any perception about the connection
probability will always leave at least half the population surprised.

Example 1 (Limitation of a structure-based conclusion).
Suppose in a population of n (even) voters with two candidates (red
and blue), n/2 are red (meaning they prefer red over blue) and the
rest n/2 are blue. The voting rule is plurality.2 Suppose the network
structure is such that each voter is connected with every other voter
that has the same color as hers, but is connected to exactly n/2 − 1
voters of the other color. If she perceives the winner just by counting
the majority at her own neighborhood, then every voter will ‘think’
that her favorite candidate wins, and no matter how tie is broken to
1We define surprise from the perspective of a voter, and it is the event where the
candidate most likely to win according to the voter’s estimate did not win. All our
conclusions are based on this binary definition of surprise. We note that there can be
other notions of surprise that is cardinal and considers the difference of the estimated
vote share from the actual, which may lead to a different conclusion.
2In plurality voting rule. every voter votes for her favorite candidate and the candidate
with most number of votes win.
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select the winner, half the population will always be surprised at the
outcome.

Clearly, the example can be adapted if the voters discount the
number of voters of their own color (given the fact that they are
more likely to be connected with a similar colored voter) to yield the
same conclusion. Moreover, if there are more than two candidates, an
extension of the construction above will lead to a surprise of the voters
in the classes where the actual winner (in plurality voting over all
voters) is not their favorite candidate.

So, it is clear that a worst case analysis over the social network
structure will always lead to surprise in election – which is hardly
the case in practice – elections with unsurprising outcomes are in
fact quite common. Later in the paper, we discuss how error in voter
perception alone also cannot give rise to surprise. Our approach
takes into account both these factors simultaneously and provides
conditions when a typical voter is surprised. In fact, there are some
counterarguments claiming that some of these elections cannot be
called ‘surprising’ given a correct model of voter perception (e.g.,
[27] for Brexit).

We adopt a Bayesian approach that assumes a random generative
model of the voters and the social network, and show that an error
in estimating the parameters of the generative process may lead to
surprises.

1.1 Our Approach and Results
Let us define the voter generation and social network formation
process a bit more formally. Consider a set of m candidates and
n voters. A class of a voter is identified by a specific linear order
over the candidates representing their preference – hence there
arem! classes. Each voter is picked i.i.d. from a fixed probability
distribution of belonging to a class. Once the voters are generated,
social network among the voters are formed according to a stochas-
tic block model, which is inspired by the homophily (like minded
individuals are more likely to form social links) observed in so-
cial networks. This is a general version of an Erdös-Renyi random
graph model, where the vertices are partitioned into classes and
the edge creation probabilities (which can be different) are defined
only among the classes – hence every node of a class connects to
every other node in another class with the same probability. In
our model, an intra-class connection probability pii is assumed
to be larger than an inter-class connection probability pi j (where
i and j are indices for classes). For a specific voting rule r , that
aggregates the individual preferences into the choice of a candidate,
e.g., plurality, which selects the candidate that maximum number
of voters place on the top of their preferences, and a realization
of the voters’ preferences denoted by the set V , there is a winner
which we represent using wT (V , r ). Since every voting rule we
consider are anonymous, i.e., winner does not change even if the
voter identities are changed, the winner is determined just by the
number of voters in each class. Therefore, V in wT (V , r ) can be
replaced by ®N = (N1,N2, . . . ,Nm!), where Nj is the number of
voters in class j. The perceived winner of voter v is dependent on
her estimates of the number of voters in different classes, denoted
by N̂v := (N̂v

1 , N̂
v
2 , . . . , N̂

v
m!), and is given by wP (N̂

v , r ). Voter v
is surprised whenwP (N̂

v , r ) , wT ( ®N , r ). We call surprise to be the
probability of this event. Voter v estimates N̂v

j by taking the ratio

of her observed neighbors of class j with her estimated connection
probability with class j . This estimation neutralizes her observation
bias had the estimates been perfect.

With this setup, our first result (Theorem 2) shows that form = 2,
if a ratio of the estimated connection probabilities stay within a
threshold, a voter is not surprised with high probability (i.e., sur-
prise asymptotically approaching zero as n → ∞). However, if the
threshold is crossed, the voter is surprised w.h.p. A corollary of this
result is that if the original distribution of the voters was very biased
towards one class (‘overwhelming majority for one candidate’), then,
even with erroneous connection probability estimates, a voter will
never be surprised w.h.p. This result shows that voters’ perception
error is not solely responsible for surprise. Together with Exam-
ple 1, we conclude that social connection and voter perception are
intertwined reasons for surprise in elections.

The theorem also shows that surprise is a phenomenon of a closely
contested election.3 Later, we generalize our results for more than
two candidates. As a first approach, we present the case with three
candidates in §3.1. However, the method clearly generalizes with
similar assumptions to similar conclusions with more candidates.
Unlike the case with two candidates, for three candidates, one can
consider different voting rules and compare their performances
w.r.t. surprise. We consider three prominent voting rules (that are
scoring rules). Our next result (Theorem 4) shows that for different
classes of voters, different rules perform better in terms of surprise
– and hints that there may not be a single surprise-optimal voting
rule for all classes of voters. However, we find it interesting that the
performance is not proportional to the distribution of the mass in
the scoring rules4 since in certain class of the voters, both plurality
and veto perform better than Borda voting. All voting rules are
explained when presented.

Though the theoretical results in §3 use the estimates of the
connection probabilities and show that the correctness of those
estimates w.r.t. the true values may surprise a voter, we do not
explicitly mention how the voters arrive at these estimates. In
§4, we consider a real dataset (UK-EU referendum, a.k.a. Brexit)
and consider a realistic model of network formation and voters’
winner anticipation, that is a realistic instantiation of our theoretical
model. We investigate the effect of intra and inter-class connection
probabilities, and the effect of noisy observation of their estimates
on surprise. We find that the conclusions in those results show a
resemblance with some of the theoretical predictions.

1.2 Related Work
Online social media is omnipresent in our digital lives, and they
have significant influence on public events like national or state
elections [7]. The effect has already been observed in the social net-
works literature [38], and questions have been raised on whether
the network structure should be considered in elections [8]. Since
people express their opinion on social media, analysis of social net-
works provides prediction on outcomes [46]. A stream of research
investigates how artificial intelligence can change the opinion of
the population [4, 33, e.g.].
3This is a consequence of our definition of surprise, which is a binary notion as defined
before.
4A scoring rule is a voting rule where every position in a preference is given a score
and the candidate with the maximum aggregate score wins.
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On the other hand, public elections are one of the cornerstones
of research in social choice theory, which deals with decision making
with multiple intelligent agents. In the computational social choice
and multi-agent systems literature, there had been several notions
to measure the ‘goodness’ of elections. For example, margin of
victory, defined as the smallest number of voters who can alter
the outcome of an election by voting differently [5, 13, 24, 25, 49],
provides a quantitative threshold of surprising outcomes in terms
of the voter population. A related literature exists for bribery in
election [6, 20, 28, 31, 37, e.g.], complexity of manipulative attacks [1,
9, 12, 17–19, 21–23, 32, 43, e.g.], and query complexity [11, 15, 16,
e.g.].

Surprise in election, to the best of our knowledge, has not been
formally studied in either of the above two strands of literature.
There is a relevant body of literature on surprise in political econ-
omy. Ely et al. [29] formally define suspense and surprise in a dy-
namical model and provide a design approach to maximize either
of them for a Bayesian audience. Our definition of surprise (the
outcome is contrary to a voter’s belief) is closely related in spirit,
and is adapted to a single-shot decision. Similarly, in sports tourna-
ments, it is important to design the schedule so that the games are
highly competitive and results are unpredictable [10, 42]. In fact,
information design, where a social planner aims to maximize the
unpredictability of a contest has been investigated in various con-
texts (see, e.g., a recent survey by Bergemann and Morris [2]). But
in election outcomes stability is of prime importance [26, 44, 45].
The social connection model in our paper is inspired by stochastic
block model. This model has a long tradition of study in the social
sciences and computer science [34, 36, 48]. Therefore, in this paper,
we approach the question of surprise in election using well studied
models of social connection and surprise, and introduce a voter
perception model to present insightful results.

2 Model

Let [k] ≜ {1, . . . ,k}. Let N = [n] be the set of voters, and
M = {a1, . . . ,am } be the set of candidates. Every voter has an
ordinal preference over the candidates, and we assume that these
preference relations are total orders, i.e., transitive, anti-symmetric,
and complete. We assumem << n, which is representative of real
elections. Since the number of preference orders can be at mostm!,
we partition the voters into disjoint classes identified by Pk ,k ∈ C ,
with C = [m!] being the indices of the classes. Voters in a given
class share the same preference order. Let ®N := (|Pk |,k ∈ C) denote
the vector of the number of voters in each class. With a slight abuse
of notation, we will refer to the preference of the voters in Pk also
with the same notation.

Every voter is associated with class Pj with probability ϵj in-
dependently from other voters, where ϵj ∈ [0, 1], ∀j ∈ C , and∑
j ∈C ϵj = 1. We assume that the ϵj ’s are unknown to the voters.

The association is represented by the mapping σ : N → C , which
maps the voter identities to the class indices. A random social net-
work is formed with these voters by a stochastic block model which
is represented by a |C | × |C | symmetric matrix P = [pjk ], where pjk
denotes the connection probability between the classes of voters Pj
and Pk . In this connection model, the probability of connections for
every voter in a class with every voter in another class is identified

by a single parameter, which may change for a different pair of
classes. The resulting graph is denoted by G = (N ,E), where E is
the edge set. The edge creation process is independent among each
other and also is independent with the voter-to-class association
process. We assume a regularity among the connection probabilities
for which we need to define a distance metric.5 The Kendall-Tau
(KT) distance between two preference orderings Pj and Pk is the
minimum number of adjacent flip of candidates needed to reach
one from the other. Clearly, this is a valid distance metric. We call
the pjk ’s regular if they are monotone decreasing with increasing
KT distance between Pj and Pk – which means that the voters
with more dissimilar preferences are less likely to be connected.
We assume that a voter knows the preferences of her immediate
neighbors (on the social network) perfectly, but does know the
preferences of the other voters.

A voterv ∈ Pj estimates these connection probabilities which are
denoted by p̂jk for all k ∈ C . We assume that the voters’ estimated
p̂jk ’s are also regular. At this point, we do not assume a model on
how the voters reach their estimates. In §4, we consider a specific
model of estimates for the experiments where voters take weighted
average of their own observations and a noisy version of the true
global distribution. The next section deals with how the errors in
these estimates can affect a voters perception of the winner. We
will consider only deterministic voting rules.
Voters’ winner perceptionmodel: Voterv estimates the number
of voters in class Pk by dividing the number of her own neighbors
in that class on G, defined as Nbrkv := {t : (v, t) ∈ E, t ∈ Pk }, with
her estimated p̂σ (v)k . Hence voter v’s estimated number of voters
in class Pk is,

N̂ k
v =


1

p̂σ (v )k
|Nbrkv | if k , σ (v),

1
p̂σ (v )σ (v )

|Nbrσ (v)v | + 1 otherwise,
(1)

Note that if the p̂σ (v)k ’s were accurate, by strong law of large
numbers, this estimate gives the right number of voters in each
class asymptotically almost surely.

The voters now have randomly realized preferences and con-
nections with each other. Also, every voter v has an estimate of
the number of voters in different classes, and therefore, under a
given (anonymous) voting rule r , her perceived winner is denoted
bywP (N̂

v , r ), where N̂v := (N̂v
1 , N̂

v
2 , . . . , N̂

v
|C |

). The true winner

for the same realization is denoted by wT ( ®N , r ). A voter is sur-
prised when her perceived winner is different from the true winner,
defined formally as follows.

Definition 1 (Event of Surprise). An event of surprise of a
voter v for a specific realization of the voter preferences and social
graph is the event where the voter’s perceived winner is not the true
winner, i.e., the event Sv such that,

Srv := {wP (N̂
v , r ) , wT ( ®N , r )}. (2)

We will call the probability of this event as surprise of voter v
under voting rule r , denote by surprv := P(Srv ).

5A valid distance metric is one that is (1) non-negative, (2) symmetric, and (3) obeys
triangle inequality.
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Note that, the event of surprise is specific to a voter, but every
voter in a given class has same surprise in this model, while vot-
ers in different classes may have different surprises for the same
parameters.
Metric to compare voting rules: Let the event of some
candidate b (, wT ( ®N , r )) beating the true winner wT ( ®N , r )

be defined as Beatrv (b,wT ( ®N , r )) := {b beatswT ( ®N , r ) in r }.
The event of surprise, therefore, can be written as Srv =

∪b,wT ( ®N ,r )Beat
r
v (b,wT ( ®N , r )). For the chosen parameters, de-

fine the most probable false beating candidate as brv
∗ ∈

argmaxb,wT ( ®N ,r ) P(Beat
r
v (b,wT ( ®N , r ))), with ties broken arbitrar-

ily. Using the union bound and the fact that the probability of an
union of events is always larger than that of the largest probability
of the individual events, we get,

P(Srv ) = surprv ∈ [ℓrv , (m − 1)ℓrv ],

where ℓrv = P(Beatrv (b
r
v
∗,wT ( ®N , r ))).

(3)

It is enough to analyze the event Beatrv (brv ∗,wT ( ®N , r )) and consider
the quantity MPFBrv := ℓrv , which we will call themost probable false
beating (MPFB) factor, to compare between different voting rules,
since surprise can vary at most by a constant factor of this MPFB
factor. In the following sections, we will see that the effect of the
number of voters on this factor is in the exponent. Since the number
of voters is large, the conclusions on surprise are entirely dictated
by the growth or decay of the MPFB factor.

3 Theoretical Results
In this section, we first analyze the setting with two candidates to
get a better insight. The set of candidates isM = {a1,a2} and the
classes are P1 = a1 ≻ a2 and P2 = a2 ≻ a1. WLOG, we assume that
ϵ1 =

1
2 + ϵ and ϵ2 =

1
2 − ϵ with 0 < ϵ < 1/2. For two candidates, all

standard voting rules yield the same winner as the plurality rule,
and therefore, we will be considering only plurality in the case of
two candidates. We first show that candidate a1 emerges as winner
in plurality w.h.p.

Theorem 1. When voters fall in class P1 and P2 w.p. 1
2 + ϵ and

1
2 − ϵ respectively, with 0 < ϵ < 1/2, P(wT ( ®N , Plu) = a2) ⩽ e−

√
n/2

for sufficiently large n.

Owing to paucity of space, we refer the reader to the full version
of this paper [14] for the proof.

Since candidate a1 turns out to be the true winner w.h.p., we will
consider only the conditional probability that a2 is the perceived
winner given a1 being the true winner, which will approximately
be equal to surprise for large n.

Theorem 2 (Surprise for two candidates). When voters fall
in class P1 and P2 w.p. 1

2 +ϵ and
1
2 −ϵ respectively, with 0 < ϵ < 1/2,

we have the following.
For voter v in P1:
(i) if p̂11

p̂12
>

p11
p12

1/2+ϵ
1/2−ϵ , then P(wP (N̂

v , Plu) = a2 | wT ( ®N , Plu) =

a1) ⩾ 1−2e−2
(
p̂11p̂12
p̂11+p̂12

)2√
n
for large enoughn; hence, surpPluv

n→∞
→ 1,

i.e., voter v is surprised w.h.p.
(ii) if p̂11

p̂12
<

p11
p12

1/2+ϵ
1/2−ϵ , then P(wP (N̂

v , Plu) = a2 | wT ( ®N , Plu) =

a1) ⩽ e
−2

(
p̂11p̂12
p̂11+p̂12

)2√
n
for large enough n; hence, surpPluv

n→∞
→ 0,

i.e., voter v is not surprised w.h.p.
For voter v in P2:
(i) if p̂22

p̂21
<

p22
p21

1/2−ϵ
1/2+ϵ , then P(wP (N̂

v , Plu) = a2 | wT ( ®N , Plu) =

a1) ⩾ 1−2e−2
(
p̂22p̂21
p̂22+p̂21

)2√
n
for large enoughn; hence, surpPluv

n→∞
→ 1,

i.e., voter v is surprised w.h.p.
(ii) if p̂22

p̂21
>

p22
p21

1/2−ϵ
1/2+ϵ , then P(wP (N̂

v , Plu) = a2 | wT ( ®N , Plu) =

a1) ⩽ e
−2

(
p̂22p̂21
p̂22+p̂21

)2√
n
for large enough n; hence, surpPluv

n→∞
→ 0,

i.e., voter v is not surprised w.h.p.

Proof. We prove the result only for the case when v ∈ P2,
since the other case is symmetric. Define θ = 1/2 + ϵ . Let the
random graph formed according to the stochastic model is denoted
by G = (N ,E). For i ∈ [2], let Xi be the set of voters denoting the
neighbors ofv that belong to class Pi . Hence,v’s estimated number
of voters in classes P1 and P2 are |X1 |

p̂21
and |X2 |

p̂22
+ 1 respectively.

The additional one voter in the estimate of P2 comes from voter v
counting herself. Hence

|X1 |

p̂21
=

1
p̂21

∑
u ∈N
I({(vu) ∈ E} ∩ {u ∈ P1}), (4)

|X2 |

p̂22
=

1
p̂22

∑
u ∈N \{v }

I({(vu) ∈ E} ∩ {u ∈ P2}). (5)

Taking expectations over these quantities, we get,

E

(
|X1 |

p̂21

)
=

1
p̂21

∑
u ∈N

P(u ∈ P1) · P((vu) ∈ E) | u ∈ P1)

= n θ
p21
p̂21

and,

E

(
|X2 |

p̂22

)
=

1
p̂22

∑
u ∈N \{v }

P(u ∈ P2) · P((vu) ∈ E) | u ∈ P2)

= (n − 1) (1 − θ )
p22
p̂22
.

Define a new random variable, Z := |X2 |
p̂22
+ 1− |X1 |

p̂21
. Its expectation

is

EZ = (n − 1)(1 − θ )
p22
p̂22
+ 1 − nθ

p21
p̂21

= (n − 1)
(

1
2
− ϵ

)
p22
p̂22
+ 1 − n

(
1
2
+ ϵ

)
p21
p̂21

= n

[((
1
2
− ϵ

)
p22
p̂22

−

(
1
2
+ ϵ

)
p21
p̂21

)
+

1
n

(
1 −

(
1
2
− ϵ

)
p22
p̂22

)]
. (6)

From the definition of Z , it is clear that

Pr(wP (N̂
v , Plu) = a2 | wT ( ®N , Plu) = a1) = Pr(Z > 0).

We first consider the case when p̂22
p̂21
>

p22
p21

·
1/2−ϵ
1/2+ϵ .

The first term in the bracket in Equation (6) is negative since
p̂22
p̂21
>

p22
p21

·
1/2−ϵ
1/2+ϵ , by assumption. Let−ℓ =

(
1
2 − ϵ

)
p22
p̂22

−

(
1
2 + ϵ

)
p21
p̂21

.
Hence the whole expression of Equation (6) is negative for n >
max{0,

(
1 −

(
1
2 − ϵ

)
p22
p̂22

)
/ℓ} =: n0. Hence, EZ is negative for suffi-

ciently large n. Note from Equations (4) and (5) that Z can also be
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written as the sum over the differences of the indicator functions.
We will use Hoeffding’s bound since the random variables in the
sum are independent. The maximum of every term in that sum of
indicators that represent Z can be 1/p̂22 and the minimum can be
−1/p̂21, hence the maximum difference between each of the sum-
mands is (p̂22 + p̂21)/p̂22p̂21. Now from Hoeffding’s inequality, we
have

Pr(Z − EZ > t) ⩽ e
−2

(
p̂22p̂21
p̂22+p̂21

)2
· t

2
n . (7)

Plugging in t = n3/4, we get that the probability of Z >

EZ + n3/4 is at most e−2
(
p̂22p̂21
p̂22+p̂21

)2√
n . Let n1 := inf{n > 0 :((

1
2 − ϵ

)
p22
p̂22

−

(
1
2 + ϵ

)
p21
p̂21

)
+ 1

n

(
1 −

(
1
2 − ϵ

)
p22
p̂22

)
+ 1

n1/4 < 0}. The

number n1 is guaranteed to exist since p̂22
p̂21
>

p22
p21

·
1/2−ϵ
1/2+ϵ , by as-

sumption. Therefore for all n > n1, Z is greater than a negative

quantity with probability at most e−2
(
p̂22p̂21
p̂22+p̂21

)2√
n . Since {Z > 0} ⊂

{Z > −ve}, we have that ∀n > n1, Pr(Z > 0) ⩽ e
−2

(
p̂22p̂21
p̂22+p̂21

)2√
n .

We now consider the case when p̂22
p̂21
<

p22
p21

1/2−ϵ
1/2+ϵ . We leverage the

calculations we did for the previous case. Because of the assumption
p̂22
p̂21
<

p22
p21

·
1/2−ϵ
1/2+ϵ , EZ is positive for large n (Equation (6)). Using

Hoeffding’s inequality, we have

Pr(|Z − EZ | ⩽ t) ⩾ 1 − 2e−2
(
p̂22p̂21
p̂22+p̂21

)2
· t

2
n .

Since {|Z − EZ | ⩽ t} =⇒ {Z ⩾ EZ − t}, the probability
of the event on the RHS is at least that of the LHS. With the
following choice of t , we show that the RHS implies {Z > 0}
for large n. Plugging in t = n3/4 and defining n2 := inf{n >
0 :

((
1
2 − ϵ

)
p22
p̂22

−

(
1
2 + ϵ

)
p21
p̂21

)
+ 1

n

(
1 −

(
1
2 − ϵ

)
p22
p̂22

)
− 1

n1/4 > 0},
which is guaranteed to exist by assumption, we get the desired
conclusion for all n > n2. This completes the proof. □

Corollaries. Theorem 2 captures the determining factors for sur-
prise in plurality voting. Few conclusions are in order.

If an agent’s estimated p̂’s were perfect, then the agent is never
surprised w.h.p., since then the ratios will always satisfy the ‘not
surprised’ condition of Theorem 2.

Surprise may happen when ϵ is small, i.e., the winning margin
is small. This is because, the surprise-determining thresholds for
pj j/pjk s in Theorem 2 are very close to the actual ratios pj j/pjk s
and a small error of the voter in estimating these connection pa-
rameters may lead to surprise. However, when the winning margin
is large, e.g., ϵ is large enough such that p22

p21
1/2−ϵ
1/2+ϵ < 1 and if the

p̂’s are also regular, i.e., p̂22 > p̂21, then no agent in P2 will be sur-
prised. This shows that elections with an overwhelming majority
can hardly be surprising. Surprise is a phenomenon only of a closely
contested election.

3.1 Three Candidates
We now consider the problem with three candidates. In this setting,
different voting rules give rise to different winners and therefore
it is possible to distinguish them w.r.t. the surprise metric. In this
section, we will compare three voting rules, namely plurality, Borda,
and veto (explained below), based on the factor MPFBrv (Equation (3))

because of the reason explained right after the equation in §2. A
collection ofm-dimensional vectors ®sm = (α1,α2, . . . ,αm ) ∈ Rm

with α1 ⩾ α2 ⩾ · · · ⩾ αm and α1 > αm for everym ∈ N defines a
voting rule (called scoring rule) — a candidate receives a score of
αi from a vote if it is placed at the i-th position in that vote, and
the score of a candidate is the sum of the scores it receives from all
the votes. The winners are the candidates with the maximum score.
The score vectors for the plurality, Borda, and veto voting rules are
(1, 0, . . . , 0), (m − 1,m − 2, . . . , 1, 0), and (1, . . . , 1, 0) respectively.
Scoring rules remain unchanged if we multiply every αi by any
constant λ > 0 and/or add any constant µ. Hence, we assume
without loss of generality that, for 3 candidates, the Borda score
vector is (2/3, 1/3, 0) and the veto score vector is (1/2, 1/2, 0) to ensure
that

∑3
i=1 αi = 1 for all the rules.

We chose these three voting rules because (1) they are most
frequently used, and (2) the distribution of scores in these rules has
wide variety – the whole score concentrated at the top alternative
for plurality, (almost) equally distributed for veto, and in between
these two extremes for Borda.

For two candidates, we have seen that surprise occurs only in
closely contested elections. Hence to compare the voting rules in
this section, we consider that the voters are uniformly distributed
over the |C | preference classes.

Assumption 1 (Uniform Population). Every voter belongs to
exactly one class of preference in {Pk : k ∈ C} with uniform proba-
bility.

We also assume that the voters’ estimates of the connection
probabilities are consistently higher than their true values as the KT
distance increases between the preference class of the voter and the
class of her neighbor, i.e., pi j/p̂i j ’s are decreasing in distKT(Pi , Pj ).
The motivation is to capture the fact that people often consider their
local neighborhood to be representative of the global population,
leading to an uniform p̂i j ’s for all i, j ∈ C . Since the true connection
probabilities are regular, i.e., decreasing in distKT(Pi , Pj ), it gives
rise to a monotone estimation error.

Assumption 2 (Monotone Estimation Error (MEE)). The
ratio of the true connection probability to the estimated one de-
creases with the KT distance, i.e., pkℓp̂kℓ

⩾
pkp
p̂kp

when distKT(Pk , Pℓ) <

distKT(Pk , Pp ) when v ∈ Pk .

In the proof of our main result in this section, we will use a
quantitative version of the central limit theorem due to Berry [3]
and Esseen [30]. The following exposition is from Tao [47].

Theorem 3 (Berry-Esseen). Let X be a random variable with
mean µ, unit variance, and finite third moment. Let Zn =

∑n
i=1 Xi
√
n

,
where Xi ’s are i.i.d. copies of X . Then we have Pr[Zn > λ] = Pr[G >
λ] + O(E |X |3/

√
n), uniformly for all λ ∈ R, where G ≡ Normal(µ, 1),

and the implied constant in O(·) is absolute and does not depend on
the distribution of X .

This theorem gives a quantitative guarantee on the deviation
of the cumulative distribution function of the random variable Zn
from that of a normal random variable with mean same as X and
unit variance.

With the assumptions as mentioned above, we present our main
result for three candidates in the following theorem. Informally, this
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theorem compares plurality, Borda, and veto voting rules based on
MPFB factor. Since surprv = Θ(MPFBrv ) (Equation (3)), we conclude
that a lower MPFB factor gives a lower surprise.

Theorem 4. Consider |M | = 3, and voters are generated from an
uniform population. Let v be any voter.

(i) Ifv ranks the true winner at the first position, then MPFBPluv ⩽
MPFBBorv ⩽ MPFBVetv w.h.p.

(ii) If v ranks the true winner at the second position, then
MPFBVetv ⩽ MPFBBorv ⩽ MPFBPluv w.h.p.

(iii) If v ranks the true winner at the last position, then MPFBVetv ⩽
MPFBBorv and MPFBPluv ⩽ MPFBBorv w.h.p.

Discussion: This result gives us a fine grained information regard-
ing the performance on surprise of different voting rules in different
voter classes. It is also clear that among these standard voting rules
there is no single rule that reduces surprise for all sections of vot-
ers. But we find it interesting that the performance on surprise is
not proportional to the distribution of scores in the rules, since in
case (iii), Borda, that has non-extreme distribution of scores per-
forms worse than both the other two rules having extreme score
distributions.

Proof. Let M = {a1,a2,a3}. We label the classes as shown in
Table 1. Each voter belongs to class Pk w.p. 1/6 in the uniform pop-
ulation model (Assumption 1). WLOG, assume that the candidate
a2 wins the election w.h.p., i.e., the overall score is highest for a2 in
every rule, and ties are broken in favor of a2. Let (s1, s2, 0) be a nor-

Class Preferences Class Preferences
P1: a1 ≻ a2 ≻ a3 P4: a2 ≻ a3 ≻ a1
P2: a1 ≻ a3 ≻ a2 P5: a3 ≻ a1 ≻ a2
P3: a2 ≻ a1 ≻ a3 P6: a3 ≻ a2 ≻ a1

Table 1: Preference classes for 3 candidates

malized scoring rule vector with s1 + s2 = 1 and s1, s2 ⩾ 0. Hence,
the vector is (1, 0, 0), (2/3, 1/3, 0), and (1/2, 1/2, 0) respectively for
Plu, Bor, and Vet. For a voter v , let ŝv (a1), ŝv (a2), ŝv (a3) be the
random variables denoting the estimated scores for the candidates
a1,a2, and a3 perceived by v .

For every rule r and voter v , we are interested in the differences
of these estimated scores, i.e., ŝv (aj ) − ŝv (a2), j = 1, 3, since a
positive value of this expression implies that a false beating event
has occurred. The maximum probability of these two events is
MPFBrv .

With the voters’ winner perception model, each of these esti-
mated scores of v can be written as a sum over the indicator RVs
that another voter belong to a specific preference class and they are
connected to v (with appropriate scaling with p̂kl if v ∈ Pk and the
other voter is in Pl ). Hence, we can write the difference in the esti-
mated scores as ŝv (a1) − ŝv (a2) =

∑
u ∈N \{v } Xu,a1−a2 + δv,a1−a2

and ŝv (a3) − ŝv (a2) =
∑
u ∈N \{v } Xu,a3−a2 + δv,a3−a2 , where we

clearly distinguish the contribution of voter v in the differences
with the variable δv,aj−a2 , j = 1, 3. We denote the summation
on the RHS in each equality with the shorthand S−v,aj−a2 :=∑
u ∈N \{v } Xu,aj−a2 , j = 1, 3. The expression Xu,a1−a2 (resp.

Xu,a3−a2 ) is the indicator random variable denoting voter u’s con-
tribution to the difference in the score of a1 (resp. a3) and a2 if u
is connected to v . We detail out the exact expressions of Xu,aj−a2
when we consider the following cases.
Case 1: v ∈ P1 or v ∈ P6 (i.e., when v ranks the winner at the
second position): We only consider v ∈ P1, since the analysis for
v ∈ P6 is symmetric. For v ∈ P1, the expression of Xu,a1−a2 turns
out as follows for u ∈ N \ {v}.
Xu,a1−a2 =

(s1 − s2)

(
1
p̂11
I({(u,v) ∈ E} ∩ {u ∈ P1}) −

1
p̂12
I({(u,v) ∈ E} ∩ {u ∈ P3})

)
+ s2

(
1
p̂12
I({(u,v) ∈ E} ∩ {u ∈ P5}) −

1
p̂12
I({(u,v) ∈ E} ∩ {u ∈ P6})

)
+ s1

(
1
p̂12
I({(u,v) ∈ E} ∩ {u ∈ P2}) −

1
p̂12
I({(u,v) ∈ E} ∩ {u ∈ P4})

)
.

Note that these are i.i.d. random variables for u ∈ N \ {v}, whose
mean and variances are as follows.

E[Xu,a1−a2 ] = (s1 − s2)(p11/6p̂11 − p12/6p̂12) ⩾ 0

We get the equality due to Assumption 1 and the inequality due to
Assumption 2. We also have

E[X 2
u,a1−a2 ] = (s1 − s2)

2 (
p11/6p̂2

11 + p12/6p̂2
12

)
+ (s2

1 + s
2
2)p12/3p̂2

12.

Hence

var(Xu,a1−a2 ) = E[X
2
u,a1−a2 ] −

(
E[Xu,a1−a2 ]

)2

= (s1 − s2)
2
(
p11

6p̂2
11
+

p12

6p̂2
12

−

(
p11
6p̂11

−
p12
6p̂12

)2
)
+

p12

3p̂2
12
(s2

1 + s
2
2).

For u ∈ N \ {v}, define the normalized random variable

X̄u,a1−a2 = Xu,a1−a2/
√
var(Xu,a1−a2 ).

Clearly, E[X̄u,a1−a2 ] = E[Xu,a1−a2 ]/
√
var(Xu,a1−a2 ) and

var(X̄u,a1−a2 ) = 1. We can now apply Theorem 3 for large
n to get

Pr[S−v,a1−a2 + δ1,a1−a2 > 0 | v ∈ P1]

= Pr

[
S−v,a1−a2√

nvar(Xu,a1−a2 )
+

δ1,a1−a2√
nvar(Xu,a1−a2 )

> 0 | v ∈ P1

]
= Pr

[
Gv,a1−a2 > −δ1,a1−a2/

√
nvar(Xu,a1−a2 )

]
+ O (1/

√
n)

= Pr[Gv,a1−a2 ⩾ 0] + O (1/
√
n) .

(8)

Where Gv,a1−a2 is a normal RV with mean E[X̄u,a1−a2 ] and
unit variance. The last equality follows from the fact that
Pr

[
0 > Gv,a1−a2 > −δ1,a1−a2/

√
nvar(Xu,a1−a2 )

]
= O(1/

√
n) since the

length of the interval
[
−δ1,a1−a2/

√
nvar(Xu,a1−a2 ), 0

]
is O(1/

√
n),

hence the integral of any probability distribution over it is O(1/
√
n).

Similarly, for u ∈ N \ {v}, Xu,a3−a2 is defined as follows.
Xu,a3−a2 =

(s1 − s2)

(
1
p̂12
I({(u,v) ∈ E} ∩ {u ∈ P6}) −

1
p̂12
I({(u,v) ∈ E} ∩ {u ∈ P4})

)
+ s2

(
1
p̂12
I({(u,v) ∈ E} ∩ {u ∈ P2}) −

1
p̂11
I({(u,v) ∈ E} ∩ {u ∈ P1})

)
+ s1

(
1
p̂12
I({(u,v) ∈ E} ∩ {u ∈ P5}) −

1
p̂12
I({(u,v) ∈ E} ∩ {u ∈ P3})

)
.
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Taking expectation, we get

E[Xu,a3−a2 ] = s2(p12/6p̂12 − p11/6p̂11) ⩽ 0

The equality follows due to Assumption 1 and the inequality due to
Assumption 2. Performing similar calculation aswe did forXu,a1−a2 ,
we reach a unit variance normal RV Gv,a3−a2 . However, the mean
of Gv,a1−a2 turns out to be larger than Gv,a3−a2 , which lead to the
conclusion that for large n

Pr[S−v,a1−a2 + δ1,a1−a2 > 0 | v ∈ P1]

⩾ Pr[S−v,a3−a2 + δ1,a3−a2 > 0 | v ∈ P1]

Hence, to find the MPFB factor in this case, we need to compare
the probability of Equation (8) among different voting rules. Since,
the probability reduces to the tail distribution of Gv,a1−a2 which is
a normal RV with unit variance, it is enough to compare the means
of Gv,a1−a2 to compare the MPFB factors. Denoting the means of
Gv,a1−a2 by µrv for voter v under rule r , we get for large enough n

µVetv ⩽ µBorv ⩽ µPluv .

Which implies w.h.p.

MPFBVetv ⩽ MPFBBorv ⩽ MPFBPluv .

The analysis for v ∈ P6 is the same with the roles of candidates
a1 and a3 being reversed. Hence, we have proved claim (ii) of the
theorem.
Case 2: v ∈ P2 or v ∈ P5 (i.e., when v ranks the winner at the
last position): We adopt a similar calculation as Case 1 to get

E[Xu,a1−a2 ] = s1(p11/6p̂11 − p12/6p̂12) ⩾ 0

E[X 2
u,a1−a2 ] = s

2
1(p11/6p̂2

11 + p12/6p̂2
12) + p12/3p̂2

12((s1 − s2)
2 + s2

2)

With notations similar to Case 1, we denote the mean of the nor-
malized variance normal RVGv,aj−a2 by µrv,aj−a2 , j = 1, 3, for the
differences of estimated scores of voter v between candidates aj
and a2, j = 1, 3. Hence

µrv,aj−a2 = E


S−v,aj−a2√

nvar(Xu,aj−a2 )

| v ∈ P2

 , j = 1, 3.

With similar computations, we get for voter v ∈ P2

max{µPluv,a1−a2 , µ
Plu
v,a3−a2 } = max{µVetv,a1−a2 , µ

Vet
v,a3−a2 } ⩽ max{µBorv,a1−a2 , µ

Bor
v,a3−a2 }

Which implies w.h.p.

MPFBVetv ⩽ MPFBBorv and MPFBPluv ⩽ MPFBBorv .

The case for v ∈ P5 is same with the roles of candidates a1 and a3
reversed. Hence, we have proved claim (iii) of the theorem.
Case 3: v ∈ P3 or v ∈ P4 (i.e., when v ranks the winner at
the first position): With notations similar to Case 1, and denot-
ing the mean of the normalized variance normal RV Gv,aj−a2 by
µrv,aj−a2 , j = 1, 3, for the differences of estimated scores of voter v
between candidates aj and a2, j = 1, 3, we have

µrv,aj−a2 = E


S−v,aj−a2

n
√
var(Xu,aj−a2 )

| v ∈ P3

 , j = 1, 3.

With similar computations, we get for voter v ∈ P3

max{µPluv,a1−a2 , µ
Plu
v,a3−a2 } ⩽ max{µVetv,a1−a2 , µ

Vet
v,a3−a2 } ⩽ max{µBorv,a1−a2 , µ

Bor
v,a3−a2 }

Which implies w.h.p.

MPFBPluv ⩽ MPFBBorv ⩽ MPFBVetv .

The case for v ∈ P4 is same with the roles of candidates a1 and a3
reversed. Hence, we have proved claim (i) of the theorem. □

4 Empirical Results

Our theoretical results in §3 use some simplifying assumptions
in the interest of a cleaner analysis. Firstly, we assumed that the
voters have an estimate of the connection probabilities, though we
do not explicitly mention how the voters arrive at these estimates.
In practice, voters anticipate a winner by implicitly estimating the
number of voters voting in favor of the candidate versus voting
against him. There are typically two major sources of information
to a voter: first, via her own neighbors in the (online/offline) social
network, and second via the public broadcasting media – print
or electronic. Secondly, our connection model was following the
stochastic block model that only depends on the voters’ preferences
and had no dependence on the voters’ geographical locations. In
this section, we relax these two simplifying assumptions and from
an empirical viewpoint try to see if the broad theoretical predictions
hold.

We instantiate the voting population with a real election dataset.
We construct the social network of voters depending on their pref-
erences and geographical locations to make the network more real-
istic. We capture a voter v’s estimates of the population of different
classes by taking a weighted average of (1) voter v’s individual
observation, i.e., the number of voters of different classes in v’s
immediate neighborhood and (2) a noisy version of the global (true)
number of voters in each class. Effects (1) and (2) capture a voter’s
private and public observations respectively and give a realistic
view of opinion forming.
Datasets:We use the UK election dataset of EU referendum (popu-
larly known as Brexit)6. The dataset is publicly available and gives
the total count of votes cast by the UK voters that voted either ‘re-
main’ (R) or ‘leave’ (L) the EU. The data consists of approximately
33 million valid votes and is partitioned across 382 regions within
the UK. Each region is identified with the name of the town, city, or
county. We will refer to this dataset as Brexit dataset. We have used
another dataset7 to find the latitude and longitude of these regions.
Since the location dataset gives the latitude-longitude of a town and
the voting constituencies are collection of a number of them, we
have averaged over the towns in a region to find the approximate
centroid of the region. There were few locations (about 18%) whose
information were not available in the location dataset, we have
filled in their location to be the centroid of all the available loca-
tions in the dataset. The Brexit data are suitable for our experiment,
since (a) it has only two candidates for which we have a simple yet
insightful theoretical result (Theorem 2), (b) it is large enough to
draw conclusions on large-scale elections, and (c) the election was
closely contested, (51.9% for L and 48.1% for R).

6https://goo.gl/MtTdIT
7https://www.townslist.co.uk/
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Figure 1: Surprise in Brexit for different intra and inter-class connection probabilities (legends same as Figure 1a).

Approach: In each location, based on the total number of voters
and their votes, we re-created the voters. The connection follows a
random graph model where the probability of connection between
two voters is the average of (a) p1, which is decreasing in the geo-
graphical distance between the voters, and (b) p2, which is p if both
voters are from the same class, and q, otherwise (with p ⩾ q). This
relaxation from the theoretical model allows for a social connec-
tion where two individuals are geographically close despite having
different political opinions.

In this social network, voters perceive the outcome of the election
according to effects (1) and (2) as explained before. For the indi-
vidual observation (effect 1), we assume that a voter can perfectly
observe the true voting preferences of her immediate neighbors
in the graph. The number of voters that voted R or L in the im-
mediate neighborhood gives a distribution of the R and L voters
in the neighborhood including herself. For the global observation
(effect 2), we add a zero mean truncated Gaussian noise to the true
distribution of the votes – the truncated Gaussian is set such that
after the addition of noise, the resulting noisy distribution still re-
mains a valid one, i.e., no probability mass goes negative. We call
the variance of the truncated Gaussian the bias of this observation.
The voter combines these two distributions with weights wI for
the noise-free individual distribution andwG for the noisy global
distribution. Her perceived winner is the one that has larger mass
among the two outcomes in the weighted sum distribution.

Due to the massive scale of the dataset, which takes significant
time to run a single experiment, we have sampled 10, 000 votes
uniformly at random and created a sub-election. In this sub-election,
every individual attempts to connect to 500 other individuals picked
uniformly at random. In this discussion, we consider the surprise of
the voters in the minority class of this sub-election (i.e., the voters
whose favorite candidate does not win – hence they get surprised
when they perceive this candidate to be the winner).

Results: We have three independent parameters that give rise to
surprise: (1) the weight on global observationwG (wI is fixed given
this), (2) the bias on this observation, and (3) the choices of p and q.
To show how these parameters affect surprise, we plot the fraction
of surprised minority population versuswG for different choices of
observation bias of the global distribution. Figure 1a shows such a

plot for a specific choice of p and q. Figures 1a to 1c show similar
information when p/q increases.

Observations. Some results support our theoretical predictions,
even after relaxing our assumptions on network formation and
voter estimates. (i) When the ratio p/q is large, the surprises are
large too. A large p22/p21 implies that more p̂22, p̂21 satisfies the
condition of surprise in part 2 of Theorem 2 (here p22 = p,p21 = q)
– giving rise to a higher surprise. (ii) More bias in the observation
leads to a higher surprise (note, e.g., when wG is close to 1.0 in
Figure 1a). A larger bias gives rise to a larger chance that the ratio of
the estimated number of people voting for and against her favorite
candidate, which is same as the ratio of the estimated p and q, will
be different from p/q – thereby making the condition of surprise in
part 2 of Theorem 2 getting satisfied more likely.

However, we also find few observations surprising. The down-
ward trend of the curve was expected with more weight on global
information – but when there is noise in the global information,
there is an increase and dip in the surprise. Also, each curve shows
a cross-over region, where mixing a more noisy global observation
gives a lower surprise.

5 Discussion

This paper gives a quantitative understanding of why and how
surprise can occur in elections. The results for more than two candi-
dates hint that possibly no single voting rule can reduce the surprise
for all sections of the voters. Our empirical results complement our
assumption on voter’s estimates of connection probabilities.

Several interesting future works can spawn out of this work. The
network structure here is assumed to be of stochastic block model.
However amore natural connectionmodel in social networks follow
power law distribution. We believe that if the stochastic model of
the connections is known to the agents, surprise will exhibit a
similar phenomenon when the estimates of the connection model is
mistaken by the agents beyond a certain point. Also, it is intuitive
that if an agent can observe the preferences of friends’ friends and
so on, they are less likely to be surprised – an extreme case of this
is when an agent can observe all other agents’ preferences (if the
network is strongly connected). A future result may capture this
phenomenon quantitatively.
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Though a more fine-grained model of voter perception and sur-
prise will help better understand the phenomenon, we believe that
a formal study of surprise in elections is essential for mitigating it,
and our work contributes with a starting model in that direction.
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