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Abstract

This thesis looks into the economics of crowdsourcing using game theoretic modeling. The art

of aggregating information and expertise from a diverse population has been in practice since a

long time. The Internet and the revolution in communication and computational technologies

have made this task easier and given birth to a new era of online resource aggregation, which is

now popularly referred to as crowdsourcing. Two important features of this aggregation tech-

nique are: (a) crowdsourcing is always human driven, hence the participants are rational and

intelligent, and they have a payoff function that they aim to maximize, and (b) the participants

are connected over a social network which helps to reach out to a large set of individuals. To

understand the behavior and the outcome of such a strategic crowd, we need to understand the

economics of a crowdsourcing network. In this thesis, we have considered the following three

major facets of the strategic crowdsourcing problem.

(i) Elicitation of the true qualities of the crowd workers: As the crowd is often unstructured

and unknown to the designer, it is important to ensure if the crowdsourced job is indeed

performed at the highest quality, and this requires elicitation of the true qualities which

are typically the participants’ private information.

(ii) Resource critical task execution ensuring the authenticity of both the information and the

identity of the participants: Due to the diverse geographical, cultural, socio-economic rea-

sons, crowdsourcing entails certain manipulations that are unusual in the classical theory.

The design has to be robust enough to handle fake identities or incorrect information

provided by the crowd while performing crowdsourcing contests.

(iii) Improving the productive output of the crowdsourcing network: As the designer’s goal

is to maximize a certain measurable output of the crowdsourcing system, an interesting

question is how one can design the incentive scheme and/or the network so that the system

performs at an optimal level taking into account the strategic nature of the individuals.

In the thesis, we design novel mechanisms to solve the problems above using game theoretic

modeling. Our investigation helps in understanding certain limits of achievability, and provides

design protocols in order to make crowdsourcing more reliable, effective, and productive.
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Chapter 1

Introduction

Individuals and organizations often face the challenge of executing tasks for which they

do not have enough resources or expertise. Outsourcing tasks to experts at a cost helps

them execute the tasks without procuring extra resources. The idea of outsourcing for

commercial purposes started in the late twentieth century and is actively in practice for

businesses even today. However, with the advent of the Internet, outsourcing has become

even more convenient. Online social networks have given access to a huge crowd with

plenty of diverse expertise. Today it is easy to find a group of people to collectively

solve a problem or generate a web content by aggregating collective knowledge, which is

known as crowdsourcing in literature. Examples of crowdsourcing applications are many,

and we will discuss a few in this chapter. Even though the concept looks appealing

and innovative, there are certain challenges in designing the crowdsourcing protocols that

ensure authenticity of the solutions, individuals, and their strategies.

This thesis addresses the question of designing efficient crowdsourcing mechanisms when

the crowd consists of rational and intelligent participants. Since the majority of crowd-

sourcing applications involve tasks and payments to be routed online, these applications

use techniques from computer science. On the other hand, to analyze the behavior of

the strategic participants and to design efficient crowdsourcing protocols, one needs to

leverage the concepts of game theory and mechanism design, two classic tools from the

microeconomic theory. This thesis considers certain interesting theoretical questions in

strategic crowdsourcing problem, and provides answers that help explain the limits of

achievability and provide design prescriptions for efficient crowdsourcing.

1.1 Crowdsourcing: An Introduction

According to the Merriam-Webster Dictionary, crowdsourcing is the practice of obtaining needed

services, ideas, or content by soliciting contributions from a large group of people, and especially

1



from an online community, rather than from traditional employees or suppliers. Howe [36]

coined the term crowdsourcing in an article written in the Wired magazine in 2006. It is

a portmanteau of ‘crowd’ and ‘outsourcing’. Though initially the term was used to refer to

a generalized version of outsourcing, a lot of effort has gone in designing a more efficient

crowdsourcing mechanism, and at the same time, to find what is its most exhaustive definition.

Recently, Estellés-Arolas and González-Ladrón-de Guevara [27] provided a definition which is

quite detailed in terms of the functioning of crowdsourcing.

“Crowdsourcing is a type of participative online activity in which an individual, an

institution, a non-profit organization, or company proposes to a group of individ-

uals of varying knowledge, heterogeneity, and number, via a flexible open call, the

voluntary undertaking of a task. The undertaking of the task, of variable complex-

ity and modularity, and in which the crowd should participate bringing their work,

money, knowledge and/or experience, always entails mutual benefit. The user will

receive the satisfaction of a given type of need, be it economic, social recognition,

self-esteem, or the development of individual skills, while the crowdsourcer will ob-

tain and utilize to their advantage that what the user has brought to the venture,

whose form will depend on the type of activity undertaken.”

Crowdsourcing came to much limelight after it was used extensively in the online social media.

However, there have been many examples of historical usage of crowdsourcing. We mention a

few of them here.

1.1.1 Early Day Example: The Oxford English Dictionary

The Oxford English

Dictionary.

The Oxford English Dictionary (OED) came into existence through

crowdsourcing, which is arguably one of the earliest examples of this

methodology. In the late nineteenth century, Professor James Murray

was leading a literary project that draws from the knowledge, exper-

tise and time of tens of thousands of volunteers. An open call was

made to the community for contributions by volunteers to index all

words in the English language and example quotations of their usages

for each one. Operating in Oxford, England, he received hundreds of

thousands of slips of paper over the course of several decades, each containing the definition of

a particular English word. To Murray, these contributors were strangers - unpaid, but working

together as one to collate the definitions and origins of every word in the English language [45].
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They received over 6 million submissions over a period of 70 years. The making of the OED is

detailed in the book by Winchester [88]. 1

1.1.2 Early Day Example: The Smithsonian Experience

“Secretary Henry Posts Daily Weather Map in

Smithsonian Building, 1858,” by Louise Rochon

Hoover, Commissioned for the Smithsonian

exhibition at the Chicago Century of Progress

Exhibition in 1933

The Smithsonian Institution, established in 1846

“for the increase and diffusion of knowledge”, is

a group of museums and research centers adminis-

tered by the United States government. One of the

first crowdsourcing projects at the Institution was

the Meteorological Project started by the Smith-

sonian’s first Secretary, Joseph Henry. In 1849, he

set up a network of some 150 voluntary weather

observers all over the country. Within a decade,

the project had more than 600 voluntary observers

and had spread to Canada, Mexico, Latin America,

and the Caribbean. The amateur weather enthu-

siasts submitted monthly reports that were then

analyzed by James H. Coffin, professor of mathe-

matics and natural philosophy at Lafayette College

in Easton, Pennsylvania, and finally published in

1861 in the first of a two volume compilation of climatic data and storm observations based on

the volunteers’ reports [15]. 2

The era of computer networks and the Internet resulting in a communication revolution has

made the job of crowdsourcing easier. A myriad of crowdsourcing applications and platforms

throng the online social media ranging from blogs, opinion polls, user review forums, opensource

softwares, and many more. Here are some examples.

1.1.3 Modern Day Example: Wikipedia

Wikipedia is a classic example of harnessing the knowledge of a crowd.

Conceptualized by opensource stalwart Richard Stallman in Decem-

ber 2000, Wikipedia was officially launched on January 15, 2001 by

Jimmy Wales and Larry Sanger, using the concept and technology of

a ‘wiki’ pioneered in 1995 by Ward Cunningham. As opposed to the

1Image courtesy: http:/ /allthingsd.com
2Image courtesy: Smithsonian Institution Archives Record Unit 7005, Box 186, Folder: 4; Record Unit 95,

Box 11, Folder: 12, Negative Number: 84-207.
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expert based system, the idea of letting the crowd edit and control

the quality of the content revolutionized the content generation process for Wikipedia.

As of May 2013, Wikipedia includes over 26 million freely usable articles in 285 lan-

guages, written by over 39 million registered users and numerous anonymous contributors

worldwide [85]. According to Alexa-Internet [1], Wikipedia is the world’s sixth-most-popular

website, visited monthly by around 11% of all internet users. 1

1.1.4 Modern Day Example: ESP Game

Human image recognition capabilities are much better

than that of a computer. For example, a human ob-

server can look at certain images and clearly figure out

the details of an image, which a machine, equipped with

the most sophisticated image processing algorithm of-

ten is not able to discern. This particular capability is

the key of the game called ESP (extra sensory percep-

tion). In the disguise of a game, the designer can build

a database of images by exploiting certain intrinsic hu-

man skills. The rules of the game is the following. Once logged in, a user is automatically

matched with a random partner from some other part of the Internet. The partners do not

know each other’s identity and they cannot communicate. A same image is shown to both of

them. Their task is to agree on a word that would be an appropriate label for the image. They

both enter possible words, and once the words entered by both partners (not necessarily at the

same time) match, that word becomes a label for the image. In the game, they both get some

points, and move to the next round where they are shown some different image. One can hope

that if two random human labelers label the same image with the same tag, it must be a right

tag for the image. The game was originally conceived by Luis von Ahn of Carnegie Mellon

University [8]. 2

1.1.5 Modern Day Example: Linux and Opensource

Linux is by far the most popular opensource operating system. However, the majority of

this operating system is developed and maintained by the Linux community, which is a set

of individuals interested in developing softwares and disseminating them free of cost along

with their source codes. This is part of the opensource software movement initiated in 1983

1Image courtesy: http://www.wikipedia.org/
2Image courtesy: http://www.espgame.org/
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by Richard Stallman. The defining component of Linux is the Linux kernel, which was first

released on October 5, 1991, by Linus Torvalds.

Since it originated from the GNU project, the Free Software Foundation

prefers the name GNU/Linux. Even today, the philosophy of the operating

system remains to cater people with software that is free and opensource. The

idea is to contribute voluntarily and get the benefits of the contributions from

other people. In other words, this is a collaborative crowdsourcing project that

has revolutionized the operating systems [86]. 1

1.1.6 Modern Day Example: InnoCentive

InnoCentive Inc. is an open innovation com-

pany based in US which acts as a platform

between task posters and task executers, used

usually for large projects with a significant

amount of prize money. The research and

development problems associated with these

projects lie in a broad range of domains such

as engineering, computer science, mathemat-

ics, chemistry, life sciences, physical sciences,

and business. The problems are phrased as “challenge problems” for anyone to solve. In 2006,

Prize4Life partnered with InnoCentive to launch the $1 million ALS Biomarker Prize, which

was a Grand Challenge designed to find a biomarker (a biological indicator) to measure the

progression of ALS - also known as Lou Gehrigs disease - in patients. In February 2011, the $1

million prize was awarded to Dr. Seward Rutkove for his creation and validation of a clinically

viable biomarker. In early 2011, InnoCentive launched four more Grand Challenges on behalf

of Life Technologies. In the space of crowdsourcing platforms, InnoCentive offers one of the

largest monetary rewards for executing challenging tasks [44]. 2

1.1.7 Modern Day Example: DARPA Red Balloon Challenge

In 2009, the defense research organization of the United States, DARPA, introduced a network

challenge which is popularly known as the DARPA Red Balloon Challenge [21]. The challenge

was to identify the locations of 10 red weather balloons in the shortest possible time. In the

press release, DARPA said: any individual or organization who reports the correct location

1Image courtesy: The original Tux, the official Linux mascot created by Larry Ewing,
http://en.wikipedia.org/wiki/File:Tux.png

2Image courtesy: https://www.innocentive.com/
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of all of the balloons in the shortest time will get a reward of $40,000. Balloons were spread

across the continental US, and it is impossible for any individual to travel to all the places and

locate them. Crowdsourcing emerged as a natural approach in this setting. The champion was

the team from MIT [65] who implemented a crowdsourcing based incentive scheme for people

to participate and earn rewards for their contributions, and this scheme found the accurate

locations of all the balloons in less than 9 hours. 1

There are many other crowdsourcing applications in the web space. Amazon Mechanical

Turk is one of the early examples of online crowdsourcing platform. The other example of such

online crowdsourcing platforms include oDesk, Rent-A-Coder, kaggle, Galaxy Zoo, and Star-

dust@home. In recent times, an explosive growth in online social media has given a novel twist

to crowdsourcing applications where participants can exploit the underlying social network for

inviting their friends to help executing the task. In such a scenario, the task owner initially

recruits individuals from her immediate network to participate in executing the task. These

individuals, apart from attempting to execute the task by themselves, recruit other individu-

als in their respective social networks to also attempt the task and further grow the network.

Apart from the DARPA Red Balloon Challenge [21], DARPA CLIQR quest [22], query incen-

tive networks [41], and multi-level marketing [26] fill this space for crowdsourcing over social

networks.

A larger space of crowdsourcing applications and platforms is shown in Figure 1.1. Many

of them are commercially active, that is, the participants are paid monetary compensations for

the task they do on those platforms. In particular, the last two examples of modern day crowd-

sourcing also fall into the monetary compensation category. Since the crowd is unstructured

and unknown, the monetary reward can lead them towards behaving strategically to maximize

their individual payoffs. It is, therefore, worthwhile and timely to conduct a thorough eco-

nomic analysis of the crowdsourcing problem. In the following section, we discuss three major

paradigms of crowdsourcing that require a detailed economic analysis.

1Image courtesy: http://archive.darpa.mil/networkchallenge/
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Figure 1.1: Commercial crowdsourcing platforms. Image courtesy: crowdsourcing.org
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1.2 The Economics of Crowdsourcing

The need to study the economics of crowdsourcing arises from the fact that the crowd could

potentially be strategic. Crowdsourcing has proved to be a splendid tool to aggregate the

knowledge from a pool of individuals in order to perform a task efficiently, and it also leverages

the social connectivity of the individuals in a crowd. However, we need to remember that the

crowd consists of human participants, who are rational and intelligent (either fully of partially).

They have payoffs for participating in the crowdsourcing applications and pick their actions so

that it maximizes their payoffs. The payoffs could be monetary or non-monetary, but the

goal is to maximize it given the fact that there are multiple other participants who also aim

for a similar goal. This induces a strategic interaction or game between the crowd workers,

and that is why we need to do a game theoretic modeling of crowdsourcing. The design of

a crowdsourcing mechanism and an incentive scheme need to be carefully chosen in order to

mitigate the untoward consequences of the strategic behavior. Addressing different paradigms

of this strategic crowdsourcing setting is the theme of this thesis as we provide solutions to

them. We consider three important aspects of the crowdsourcing problem in this thesis.

(a) Elicitation of the true qualities of the crowd workers. This is important since the crowd is

often unstructured and unknown to the designer, and therefore, it is difficult to determine

if the job that is crowdsourced is indeed being performed at the highest quality.

(b) Resource critical task execution ensuring the authenticity of both the information and the

identity of the participants. Due to the diverse geographical, cultural, socio-economic rea-

sons, crowdsourcing entails certain manipulations that are unusual in the classic mechanism

design theory. For example, individuals can cheat by creating fake identities, or virtually

reincarnating as a different individual, thus cheating the system, or by providing false

information. The design has to consider all these aspects.

(c) Improving the productive output of the crowdsourcing network. As a designer, the goal is to

maximize some measurable output of the crowdsourcing system as a whole. An interesting

question is that how one can design the incentive scheme and/or the network so that the

system performs at an optimal level considering the strategic nature of the individuals.

In this thesis, we address the three above mentioned aspects of the crowdsourcing problem,

shown graphically in Figure 1.2.
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Crowdsourcing

Skill

Elicitation

◮ Static skills, interdependent
values [57]

◮ Stochastic skill transition,
interdependent values [58]

Resource

Critical Tasks

◮ Sybilproofness, rewarding only
the winning chain [59]

◮ Rewarding all contributors,
information manipulation [60]

Efficient Team

Formation

◮ Through incentive design [55]

◮ Through a crowdsourcing
network design [61]

Figure 1.2: Key research components of the crowdsourcing problem.

1.3 Contributions of the Thesis

This thesis considers three related problem domains in crowdsourcing as given in Figure 1.2, and

provides solutions to each of them. Each domain is interesting on its own right since the three

domains handle three major aspects that a crowdsourcer (an individual or an organization)

would be concerned about. We model certain crowdsourcing applications to be interactions

between strategic agents and provide mechanism design solutions to them. In the following,

we discuss our major findings and summarize our contributions to the space of crowdsourcing

mechanisms.

1.3.1 Eliciting Skills of the Strategic Workers

In this part, we focus on an optimal crowd worker selection problem. The goal of the crowd-

sourcer is to select an optimal subset from a known set of experts. The experts privately observe

their skills (hidden from the crowdsourcer) and the goal of the incentivizing mechanism is to

ensure that they report their skills truthfully. Task execution by a selected subset of the experts

fall into the category of interdependent values since the benefit experienced by a participant

depends on the outcome and the skills of all the other participants. We address this question

in this thesis and show the following.

• First, we address the mechanism design problem in a static setting, that is, the private

skills are invariant over time. It has been shown that for interdependent valuations, it

is impossible to design a single stage mechanism that can ensure efficiency and truthful

reports of skill by the participants [39]. However, there is a two stage mechanism [48]
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that can mitigate this problem, but not completely. In the second stage of this mech-

anism, players are indifferent between truthful reporting and misreporting. We provide

an improved mechanism that makes truthful reporting a strictly better strategy for all

agents.

• Next, we consider the setting where the experts’ qualities vary stochastically over time

according to a Markov process. For the independent values, Bergemann and Välimäki

[9] have proposed an efficient mechanism called the dynamic pivot mechanism, which

is a generalization of the classic Vickrey-Clarke-Groves (VCG) mechanism. However,

the problem of dynamic mechanism design with interdependent valuations has received

very little attention in the literature [16]. We look into this problem and propose a

dynamic mechanism that is efficient and truthful. Under a special setting, this mechanism

incentivizes the agents to voluntarily participate in the game.

1.3.2 Resource Critical Task Execution via Crowdsourcing

Crowdsourcing is unique in the potential strategic manipulation that it offers to its participants.

One such problem in resource critical crowdsourcing contests is that it can have false-name

attacks or sybil attacks, in which the players can increase their payoffs by creating multiple false

identities of themselves. This is undesirable since it denies the right payment to the actual

contributors. At the same time it is necessary to ensure that the information provided by the

participants are true. We address these questions in the following way.

• We show that in crowdsourcing contests like the DARPA red balloon challenge [21], which

falls into the class of atomic tasks, it is impossible to satisfy sybilproofness, collapse-

proofness, and a property that rewards all contributors with positive compensation. We

introduce approximate versions of these properties and show that the mechanism space is

non-empty. To the best of our knowledge, this is a first attempt to design approximately

sybilproof crowdsourcing mechanisms. Under certain resource critical paradigms, some

of those properties are more preferable than the others and we characterize the space of

mechanisms that satisfy those properties under cost-critical and time-critical paradigms.

• We notice that in resource critical crowdsourcing contests, e.g., the red balloon challenge,

a great deal of human effort can get wasted, as people can potentially explore the same

region already explored by someone else. A more time efficient and fair scheme could

be to distribute the reward in proportion to the information contributed by each agent.

For example, if an agent searches for an object in a certain part of a city and reports
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that the object is not present in that region, it saves a lot of time and effort for the

other participants. We discuss briefly about this point and provide a solution proposal

using tools from information theory and prediction markets to aggregate information in

a truthful, time efficient manner.

1.3.3 Efficient Team Formation from a Crowd

The next interesting question in crowdsourcing is to understand how highly productive teams

emerge from a loosely structured population. A crowdsourcing network, once formed, is very

similar to an organizational network, where the reason for success (failure) is often attributed

to the (im)proper management of human resources. The goal of the designer in this context is

to maximize the net productive output of the networked crowdsourcing system. We build on

the papers of Bramoullé and Kranton [14], Ballester et al. [7] and develop an understanding of

the effort levels in influencer-influencee networks. In particular, we show the following.

• First, we analyze how individuals, connected in a network, trade off between their pro-

duction and communication efforts given the network positions and the reward sharing

scheme. We show that under certain sufficient conditions, there exists a unique Nash

equilibrium of this effort trade-off.

• We then provide a condition of achievability of optimal social output for certain represen-

tative networks. Our results show that the equilibrium output may not always achieve the

globally optimal. However, by choosing the right reward sharing scheme we can maximize

the output and we provide a recipe of such reward sharing schemes.

• Next, we analyze how the network design can lead to interesting structures for maximizing

the net productive output. We show that a network design that considers the strategic

behavior of the agents performs better than the one that does not consider it.

1.4 Outline of the Thesis

In this section, we provide a brief outline of the problems addressed and the organization of

each chapter of this thesis.

Chapter 2: Game Theory and Mechanism Design: A Quick Review

The goal of this chapter is to introduce the reader to the basic concepts and definitions of game

theory and mechanism design. We discuss only the part that is required to present the concepts

of this thesis satisfactorily. The chapter is organized as follows.
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• We begin with a basic example of a game to introduce the concept of game theory, and

using the example introduce the notation for a strategic form game.

• Using multiple other examples, we introduce the concepts of strongly and weakly dominant

strategies and the corresponding equilibria.

• Next we introduce the concept of the pure strategy and mixed strategy Nash equilibrium,

which concludes the game theory review section.

• The section on mechanism design also starts with popular examples to introduce the setup

and notation.

• We define the social choice function (SCF), direct and indirect mechanisms, and the

implementation of SCFs using direct and indirect mechanisms.

• We discuss how the indirect mechanism induces a Bayesian game among the players

and discuss about dominant strategy and Bayesian incentive compatibility of a SCF. The

section concludes with the revelation principle which essentially says that the direct rev-

elation mechanisms are enough to consider.

• Next we state a very fundamental theorem named after Gibbard and Satterthwaite (GS)

which shows the limits of achievability in mechanism design. This is a negative result

that shows that three very desirable properties are not simultaneously satisfiable.

• One way to circumvent the roadblock caused by the GS theorem is to consider a restricted

domain. For the purpose of this thesis, we focus on the quasi-linear domain, and exhibit

a mechanism that satisfies certain good properties.

• We present a very general characterization of the quasi-linear domain with private val-

uations given by Roberts, which basically shows that if the type set is rich enough, the

implementable SCFs in quasi-linear domain has to be affine maximizers.

• In the next two sections, we briefly review mechanisms with interdependent valuations

and dynamic mechanisms which sets the stage for the next chapter where we address the

crowdsourcing problem from these paradigms and provide solutions.

Chapter 3: Skill Elicitation in Crowdsourcing

This chapter deals with the first major contribution of this thesis. It models the skill elicitation

problem in crowdsourcing as a direct revelation mechanism with interdependent valuations.

The sequence of the presentation is as follows.
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• In the first part of this chapter, we focus on the classical problem of mechanism design

with interdependent valuation.

• We refer to an impossibility result in this setting that refrains us from designing a single

stage mechanism. The current state-of-the-art mechanism given by Mezzetti yields a

two-stage solution, but suffers from the weak indifference problem in the second stage.

• We setup the model and definitions of efficiency, ex-post incentive compatibility, ex-post

individual rationality, and a domain called subset allocation.

• We propose a mechanism called Value Consistent Pivotal Mechanism (VCPM) which

satisfies the first two properties mentioned above in the interdependent value setting. It

is a two-stage mechanism but it solves the problem of the weak indifference in the second

stage.

• In addition, VCPM is also ex-post individually rational in the subset allocation domain.

However, the improvement in the weak indifference of the classic two-stage mechanism of

Mezzetti comes at the cost of subgame perfection. We discuss this with an example. At

the end of this part, we discuss how the designer’s observation of a variable introduced

in the classic mechanism can affect the VCPM.

• In the second part of this chapter, we look into the dynamic mechanism design problem

with interdependent valuation. The dynamicity comes from the fact that the types of the

agents vary according to a stationary Markov process.

• We propose a mechanism called MDP-based Allocation and TRansfer in Interdependent-

valued eXchange economies (MATRIX) that satisfies three very desirable properties as

mentioned in the previous part, suitably modified for the dynamic setting. We show that

certain näıve mechanism do not work in this setting, which makes both the problem and

its solution non-trivial.

• We compute the complexity of MATRIX and show it to be equal to that of the mechanism

which is applicable to independent valuation setting.

Chapter 4: Resource Critical Task Execution via Crowdsourcing

The second major contribution of this thesis is on the aggregation of information in resource

critical crowdsourcing contests. We consider one potential manipulation that is unique to

crowdsourcing setup and provide solution and discuss about how the flow of information from
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the crowd can be efficiently harnessed by a proper incentive scheme. The details of the chapter

is as follows.

• In the first and the major part of this chapter, we consider crowdsourcing contests, where

several individuals are either trying to locate an object or finding an answer to a query

or solving a computationally hard problem, and the fastest correct response gives them

a reward. We use the DARPA red balloon challenge as one of the motivations for this

work.

• We define the viral and atomic tasks, which clearly distinguishes the domain for our work.

We consider crowdsourcing tasks that fall into the atomic task category.

• For the atomic crowdsourcing tasks, we consider three important design criteria: collusion-

proofness, dominant strategy implementability, and resource criticality. To the best of our

knowledge, these design criteria has not been addressed in the context of crowdsourcing

in the literature.

• Next we introduce the model and notation to analyze the crowdsourcing contest. We also

define a set of desirable properties in this setting. The first property is the downstream

sybilproofness, which ensures that the agents connected over a network cannot gain more

by creating fake identities. The second property ensures that the budget is balanced.

Contribution rationality ensures that every positive contributor in the contest gets positive

reward. The last property, collapse-proofness ensures that the agents do not collude and

report as a single node.

• Even though the properties are plausible, we show an impossibility result that claims that

a subset of these properties are not simultaneously satisfiable.

• However, if we consider the approximate versions of certain properties, we show that the

space of mechanisms satisfying other pure properties and one approximate property is

non-empty. This is a positive result and we characterize the space of those mechanisms.

• Given that it is possible to design mechanisms, the next question is which mechanism to

pick. The answer depends on which kind of applications we are looking at. We consider

two kinds of tasks in this chapter: cost critical and time critical tasks.

• In both the classes of tasks, we characterize the mechanisms that satisfy certain set of

properties, one of them is approximate and others pure.
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• We show that the winning solution of the DARPA red balloon challenge becomes a special

case of the cost critical class of this characterization result.

• We initiate a brief discussion about how the crowdsourcing competitions can be made

more efficient by giving partial rewards for partial information given by the agents. This

is a work in progress, and we discuss the plans how we can exploit a synergy between the

participants with the proper incenting mechanism.

Chapter 5: Efficient Team Formation using a Strategic Crowd

This chapter deals with the question of maximizing the productive output of the crowdsourcing

network. We model the crowd workers who are connected over a social network as an orga-

nization, and the designer of the crowdsourcing system aims to maximize the net productive

output of the system. Therefore the design of the incentive scheme and the network is of utmost

importance for crowdsourcing as it is important for any connected organization. The approach

we follow has two complementary facets, described as follows.

• In the first part of the chapter, we assume that the network is given to the designer, and

the goal is to design proper incentive shares to maximize output.

• To understand how a rational and intelligent inter-networked crowd can behave, we con-

duct a game theoretic analysis of the network. We assume that each agent can spend

his/her bounded effort either in production or in communication. The production effort

gives direct benefit to the organization, while the communication effort indirectly influ-

ences the output of the system by making other individuals more productive. If Alice

spends her time communicating with Bob, then we call Alice an influencer and Bob an

influencee.

• We begin with a hierarchical model of influencer and influencee, and propose a utility

model for the individuals capturing the fact of production and communication.

• We show the existence and uniqueness of Nash equilibrium effort levels. For hierarchical

networks, the computational complexity of computing the Nash equilibrium is not hard.

• Next we define the notion of social output appropriately to capture the net outcome of

the system. The natural question that follows is how the equilibrium efforts affect the

social output.
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• We show that the reward sharing (a part of the utility model) influences the equilibrium

effort and thereby the social outcome. We provide the recipe of finding the right reward

share that maximizes the social output, and then compare that with an optimal social

output of the network. We use the concept of price of anarchy (PoA) in order to capture

this and provide bounds on the PoA for stylized networks.

• The results of the existence and uniqueness of the Nash equilibrium generalizes to a general

influencer-influencee network. We show that there is a connection of the uniqueness result

to the matrix stability criterion, which connects the equilibrium efforts with the structure

of the network.

• In the second part of the chapter, we consider the complementary problem of designing

the network for a given reward sharing scheme.

• We introduce a somewhat different model in order to analyze this problem. The arrival

and execution of the tasks are assumed to be Poisson. We assume the agent model and

their utility model in this modified setting. The design goal in this setting is to minimize

the risk of not being able to consume the incoming rate of tasks by the entire network.

• For ease of exposition, we again consider hierarchies. We show that the hierarchy gives rise

to a drawback, namely free-riding of well positioned nodes, and a benefit of information

sharing.

• We show that there exists a trade-off between the two, and a network design that takes

care of both effects yields better performance by reducing the overall risk of the system.

We also provide an approximation algorithm to find an optimal hierarchy in this setting.

Chapter 6: Conclusions

The contributions of the thesis is summarized and the conclusions that can be drawn from this

work is presented in this chapter. We also provide some interesting future directions of this

work.
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Chapter 2

Game Theory and Mechanism Design:

A Quick Review

Crowdsourcing requires a designer and a (possibly large) number of participants who can

execute tasks, provide content, generate ideas, or deliver services, etc. In this thesis, we

address the crowdsourcing problem with rational and intelligent participants. A rational

agent always aims to maximize a well defined payoff function. Intelligence implies that

the agent understands the rules of a game well enough and is capable of taking an optimal

decision given the game. Microeconomics offers two appropriate tools under this scenario,

namely game theory and mechanism design, in order to analyze, predict, and design out-

comes of strategic interaction between decision making agents. In this chapter, we will

take a quick look at some basic concepts of game theory and mechanism design that are

relevant for presenting the material in this thesis.

Here we consolidate the concepts and definitions from a number of books [46, 76, 51, 64, 53, 47].

However, we primarily follow the notation of the book by Narahari [52]. In the places where

we use new notations and definitions, we explain them in the respective chapters. We first

look into the concepts of game theory followed by that of mechanism design. For brevity, we

restrict the discussions to the extent that is necessary to present the material of the subsequent

chapters of this thesis.

2.1 Game Theory

Game theory, often referred to as the science of strategic interaction, can be defined as the

formal study of the interaction of decision making agents who are rational and intelligent. As

defined earlier in this chapter, rationality means that an agent always aims to maximize her

own payoff, and intelligence ensures that the agent has enough knowledge of the game to pick
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the right action. The theory of games came into public attention after the monumental work

of von Neumann and Morgenstern [83]. Following the contributions of this book, there had

been many pioneering works that have contributed to developing game theory as the science of

economics.

For the discussions of this chapter and the rest of the thesis, we will restrict our attention to

non-cooperative games and their strategic form representation. An interested reader can look

up standard references [52, 51, 76, 47] for the other types of games and their representations.

Let us start with an example game called the Prisoner’s Dilemma to introduce the concepts.

We will set up the notation to make the description more formal afterwards.

Suppose two prisoners, Anthony and Monica, are caught under the suspicion of doing a

common mischief and now they are locked up in two separate cells in the police station and are

interrogated. In order to get the true information from them, let us suppose that the police

officer tells Anthony: “You can either confess your crime or not confess. If both of you confess,

then the crime is proved and both of you are going to be charged with 5 years of prison term.

If both of you do not confess, then I can still get you charged for 2 years jail term each. But

if your partner confesses and you do not, due to her honesty, I will let her go free, but charge

you with 10 years in jail.”

Now Anthony knows that the same thing has been told to Monica as well, and they cannot

communicate with each other. This is a classic example of the non-cooperative game. Let us

consider the payoff of the prisoners as being the negative of the number of years in jail, so that

their goal is to maximize this number which in turn minimizes their stay in prison. A compact

way of representing this is by writing down the payoff matrix given by Table 2.1, where the

numbers at the bottom left of each cell denote the payoffs of the row player (Anthony) and the

ones at the top right of each cell denote the payoffs to the column player (Monica).

Monica

Anthony
Confess Not Confess

Confess
-5

-5

-10

0

Not Confess
0

-10

-2

-2

Table 2.1: The prisoner’s dilemma game.

Now from Anthony’s perspective, it is easy to see that confessing gives strictly higher payoff

for both the actions (confess or not confess) taken by Monica. Hence, any rational and intelligent

agent would choose confess as his strategy when he is not able to communicate with the other
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player. Similar is the case for Monica as this is a symmetric game. So, a rational play by both

players lead to the outcome (confess, confess), which leads to a 5 years of prison term for both

of them. However, they could have done much better by not confessing together and saving 3

years each in terms of staying in prison. But that is the dilemma, since in a non-cooperative

setting it is hard to reason for the action of the other player, personal greed can lead to a

situation which is collectively worse. We are now in a position to develop the notation to

explain this game and the games to follow.

Strategic Form Game. A strategic or normal form game is a representation of a strategic

interaction that gives us a mathematical language to express the game precisely. Let us denote

the set of the players by N = {1, 2, . . . , n}, the strategy set of agent i by Si, and the utility

function by ui, which are used in the formal definition of the strategic form games given below.

Definition 2.1 A strategic form game Γ is a tuple 〈N, (Si)i∈N , (ui)i∈N〉, where,
◮ N = {1, 2, . . . , n} is the set of players;

◮ S1, S2, . . . , Sn are the strategy sets of the players 1, 2, . . . , n respectively; and

◮ ui : S1 × S2 × . . .× Sn → R, for i = 1, 2, . . . , n are mappings called the payoff functions.

In the prisoner’s dilemma example, there are two players, i.e., N = {1, 2}, the strategy set of

each agent is given by S1 = S2 = {confess, not confess}, and the utilities, given by Table 2.1,

are as follows.

u1(confess, confess) = −5; u2(confess, confess) = −5
u1(confess, not confess) = 0; u2(confess, not confess) = −10
u1(not confess, confess) = −10; u2(not confess, confess) = 0

u1(not confess, not confess) = −2; u2(not confess, not confess) = −2

We call the strategy confess to be a “strongly dominant” strategy since the payoff at this

strategy is strictly more than that of all other strategies of the players for any chosen strategies

of the other players. Let us define it formally.

Definition 2.2 (Strongly Dominant Strategy) A strategy s∗i ∈ Si is said to be a strongly

dominant strategy for player i if the payoff is strictly greater than all other strategy choices of

the player for every strategy profile s−i ∈ S−i of the other agents. That is, ∀ si 6= s∗i ,

ui(s
∗
i , s−i) > ui(si, s−i), ∀ s−i ∈ S−i.
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Definition 2.3 (Strongly Dominant Strategy Equilibrium) A strategy profile given by

s∗ = (s∗1, . . . , s
∗
n) is said to be a strongly dominant strategy equilibrium of the game Γ =

〈N, (Si)i∈N , (ui)i∈N〉 if for every player i, s∗i be the strongly dominant strategy.

It is clear from these definitions that (confess, confess) is a strongly dominant strategy equi-

librium (SDSE) of the prisoner’s dilemma game. However, this equilibrium is quite restrictive,

and may not exist in all games. For example, let us consider the same prisoner’s dilemma game

with the payoff matrix given by Table 2.2. This game no longer has a SDSE, however, it has a

weaker type of equilibrium called the weakly dominant strategy equilibrium (WDSE), defined

as follows.

Monica

Anthony
Confess Not Confess

Confess
-5

-5

-10

0

Not Confess
0

-10

0

0

Table 2.2: The modified prisoner’s dilemma game.

Definition 2.4 (Weakly Dominant Strategy) A strategy s∗i ∈ Si is said to be a weakly

dominant strategy for player i if the payoff is no less than all other strategy choices of the

player for every strategy profile s−i ∈ S−i of the other agents, and is strictly better for at least

one strategy profile s̃−i ∈ S−i of the other agents. That is, ∀ si 6= s∗i ,

ui(s
∗
i , s−i) ≥ ui(si, s−i), ∀ s−i ∈ S−i,

ui(s
∗
i , s̃−i) > ui(si, s̃−i), for some s̃−i ∈ S−i.

Definition 2.5 (Weakly Dominant Strategy Equilibrium) A strategy profile given by

s∗ = (s∗1, . . . , s
∗
n) is said to be a weakly dominant strategy equilibrium of the game Γ =

〈N, (Si)i∈N , (ui)i∈N〉 if for every player i, s∗i be the weakly dominant strategy.

Even though the strategy profile (confess, confess) turns out to be the WDSE of the modified

prisoner’s dilemma game given by Table 2.2, WDSE is also not guaranteed to exist in all games.

For example, let us consider the Battle of Sexes game. Suppose a couple wants to go for a movie,

where the husband likes action movies more than romantic movies, and the wife likes them the

other way. To put the preferences into numbers, let us assume the payoff for the husband is
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double than that of the wife if both decide to go for an action movie. The opposite happens

when they both go for a romantic movie. But if they decide to go to different movies, both get

a zero payoff as they value their ‘togetherness’. The situation is captured by Table 2.3.

Wife

Husband
Action Romantic

Action
1

2

0

0

Romantic
0

0

2

1

Table 2.3: The battle of sexes game.

It is clear that this game does not have either a SDSE or a WDSE. However, if we consider the

strategy profile (action, action), each of the agents get smaller payoff if they unilaterally deviate

from this profile when the other agent sticks to it. The complementary situation happens for

the strategy profile (romantic, romantic). These strategy profiles are called pure strategy Nash

equilibria (PSNE), named after one of the founding figures of game theory, John F. Nash. This

is defined formally as follows.

Definition 2.6 (Pure Strategy Nash Equilibrium) A strategy profile s∗ = (s∗1, . . . , s
∗
n) is

said to be a pure strategy Nash equilibrium of the game Γ = 〈N, (Si)i∈N , (ui)i∈N〉 if,

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i), ∀ si ∈ Si, i ∈ N.

Even though PSNE looks a nicer concept for a strategic form game, this is also not guaranteed

to exist. To illustrate this point, we refer to the Matching Pennies game (see Table 2.4) where

two players can simultaneously choose either heads or tails. This game does not have a PSNE.

But if the agents are allowed to make a probabilistic mix of their pure strategies, e.g., say the

row player decides to play H or T with probability 0.5 each, we are led to a scenario of mixed

strategies, which we define formally as follows.

Definition 2.7 (Mixed Strategy) Given a player i with Si as the set of pure strategies, a

mixed strategy σi of player i is a probability distribution over Si. That is, σi : Si → [0, 1] assigns

to each pure strategy si ∈ Si, a probability σi(si) such that,

∑

si∈Si

σi(si) = 1.
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Mismatcher

Matcher
Heads Tails

Heads
-1

1

1

-1

Tails
1

-1

-1

1

Table 2.4: The matching pennies game.

A pure strategy of a player, say si ∈ Si, can be considered as a mixed strategy that assigns

probability 1 to si and probability 0 to all other strategies of player i. Such a mixed strategy is

called a degenerate mixed strategy. The mixed strategy σi for agent i is picked from the mixed

extension of the pure strategy space Si. We assume Si to be finite for the discussions in this

chapter. The mixed extension of Si is denoted by ∆(Si) and defined as follows.

∆(Si) =
{

σ ∈ R
|Si|
+ : 1⊤σ = 1

}

.

Following the same spirit of the PSNE (Definition 2.6), we are now in a position to define a

mixed strategy Nash equilibrium (MSNE).

Definition 2.8 (Mixed Strategy Nash Equilibrium) A mixed strategy profile given

by σ∗ = (σ∗
1 , . . . , σ

∗
n) is said to be a mixed strategy Nash equilibrium of the game

Γ = 〈N, (Si)i∈N , (ui)i∈N 〉 if,

ui(σ
∗
i , σ

∗
−i) ≥ ui(σi, σ

∗
−i), ∀ σi ∈ ∆(Si), i ∈ N.

It can be shown that for the matching pennies game (Table 2.4), the MSNE is given by (0.5, 0.5)

for each player. The question of existence of a MSNE for a finite game (both the number of

players and their strategy sets are finite) was answered by Nash [54], which we reproduce here.

Theorem 2.1 (Nash [54]) Every finite strategic form game Γ = 〈N, (Si)i∈N , (ui)i∈N〉 has at

least one mixed strategy Nash equilibrium.

The review of the game theory concepts presented in this section would enable the reader to

follow the discussions and the definitions in the chapters to come. For more detailed description

of the concepts and definitions, one can refer to standard texts [52, 51, 76, 47, e.g.]. Let us now

move on to mechanism design theory and review the basic concepts.
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2.2 Mechanism Design

While game theory allows us to predict the outcome of a given game, mechanism design equips

us with techniques to design institutions or protocols that satisfy certain desired objectives.

Due to this reason, mechanism design is often called the reverse engineering of game theory.

The assumption of rationality and intelligence of the agents still holds, and the question that

mechanism design addresses is: “how to design the rules of a game so that in the equilibrium

of the game the desired properties are satisfied?” The strategic agents are expected to play

in an equilibrium and that helps the designer to satisfy society’s goals through mechanism

design. However, there are certain inherent difficulties in the theory of mechanism design,

given by certain impossibility theorems, which says that not all desirable properties can be

simultaneously satisfied. The goal, therefore, is to understand the limits of satisfiability and

design the best mechanism given a specific setting.

Let us introduce mechanism design using the well known story of a mother of two kids who

has to design a mechanism to make her two kids share a cake equally (see Figure 2.1). The

mother is the mechanism designer in this case. If the mother slices the cake into equal pieces

and distributes one piece to each of the kids, the solution is not necessarily acceptable to the

kids because each kid may be left with the perception that he/she got the smaller of the two

pieces. On the other hand, consider the following mechanism: (1) One of the kids would slice

the cake into two pieces and (2) the other kid would pick up one of the pieces, leaving the

remaining piece to the kid who sliced the cake into two pieces. This mechanism implements the

desirable outcome of the kids sharing the cake equally and further each kid has no reason to

complain about this mechanism. The first kid would divide the cake exactly in half according

to his notion of equality, since he knows if he divides unequally, the larger piece is going to go

to the other kid. Hence he is indifferent between the pieces. The other kid would also be happy

since she gets the opportunity to choose. Employing this simple mechanism, the mother is able

to achieve fair division, even though she did not know the preferences of the kids initially.

There are two things to notice in this example. First, even though the mother wants to

achieve a fair division, she does not know what the ‘fair’ division is, because the cake is observed

differently by the two kids. Secondly, the true ‘fair’ piece is private observation of the kids

(who are the players in this context). As we introduce the general setup of mechanism design

in the following section, we carry in mind that all mechanism design problem has these two

fundamental traits, namely the private information held by the agents and that the designer’s

objective is to achieve a goal under that partial knowledge. In other words, mechanism design

is an optimization problem where not all the parameters of the problem are known.
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Figure 2.1: The fair division problem.

2.2.1 Mechanism Design Environment

The following provides a general setting for formulating, analyzing, and solving mechanism

design problems.

• There are n agents, 1, 2, . . . , n, with N = {1, 2, . . . , n}. The agents are rational

and intelligent, and interact strategically among themselves towards making a collective

decision.

• X is a set of alternatives or outcomes . The agents are required to make a collective choice

from the set X . The outcome set is determined by the particular choice of model. For

instance, a critical choice is whether or not monetary compensation is allowed (voting vs.

exchange).
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• Prior to making the collective choice, each agent privately observes his preferences over

the alternatives in X . This is modeled by supposing that agent i privately observes a

parameter or signal θi that determines his preferences. Agent i knows the value of θi

perfectly and the other agents may not know it. θi is called a private value or type of

agent i.

• The preferences could be either cardinal (it is possible to quantitatively say how much one

alternative is preferred over another) or ordinal (only the relative preference is available,

not the quantitative measure). Clearly, the cardinal preference is a smaller subset of the

ordinal preferences. We will consider ordinal preferences for the voting examples, but

cardinal preferences are discussed in the major part of this chapter.

• We denote by Θi the set of private values of agent i, i = 1, 2, . . . , n. The set of all

type profiles is given by Θ = Θ1 × . . . × Θn. A typical type profile is represented as

θ = (θ1, . . . , θn).

• It is assumed that there is a common prior distribution P ∈ ∆(Θ). To maintain consis-

tency of beliefs, individual belief functions pi : Θ → ∆(Θi) that describe the beliefs that

player i has about the type profiles of the rest of the players can all be derived from the

common prior.

• Individual agents have preferences over outcomes that are represented by a utility function

ui : X × Θi → R. Given x ∈ X and θi ∈ Θi, the value ui(x, θi) denotes the payoff that

agent i having type θi ∈ Θi receives from a decision x ∈ X . In the more general case,

ui depends not only on the outcome and the type of player i, but could depend on the

types of the other players as well, and so ui : X × Θ → R. We restrict our attention to

the former in this chapter for simplicity.

• The set of outcomes X , the set of players N , the type sets Θi (i = 1, . . . , n), the common

prior distribution P ∈ ∆(Θ), and the payoff functions ui (i = 1, . . . , n) are assumed to

be common knowledge among all the players. The specific value θi observed by agent i is

private information of agent i.

Social Choice Functions

Since the preferences of the agents depend on the realization of their types θ = (θ1, . . . , θn), it is

logical and natural to make the collective decision to depend on θ. This leads to the definition

of a social choice function.
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Definition 2.9 (Social Choice Function) Suppose N = {1, 2, . . . , n} is a set of agents with

the type sets Θ1,Θ2, . . . ,Θn respectively. Given a set of outcomes X, a social choice function

is a mapping

f : Θ1 × . . .×Θn → X

that assigns to each possible type profile (θ1, θ2, . . . , θn), a collective choice from the set of alter-

natives.

Preference Elicitation Problem

Consider a social choice function f : Θ1× . . .×Θn → X . The types θ1, . . . , θn of the individual

agents are private information of the agents. Hence for the social choice f(θ1, . . . , θn) to be

chosen when the individual types are θ1, . . . , θn, each agent must disclose its true type to the

social planner. However, given a social choice function f , a given agent may not find it in

its best interest to reveal this information truthfully. This is called the preference elicitation

problem or the information revelation problem.

Preference Aggregation Problem

Once all the agents report their types, the profile of reported types has to be transformed to

an outcome, based on the social choice function. Let θi be the true type and θ̂i the reported

type of agent i (i = 1, . . . , n). The process of computing f(θ̂1, . . . , θ̂n) is called the preference

aggregation problem.

Figure 2.2 provides a pictorial representation of all the elements making up a mechanism

design environment.

2.2.2 Direct and Indirect Mechanisms

One can view mechanism design as the process of solving an incompletely specified optimization

problem where the specification is first elicited and then the underlying optimization problem is

solved. Specification elicitation is basically the preference elicitation or type elicitation problem.

To elicit the type information from the agents in a truthful way, there are broadly two kinds

of approaches, which are aptly called direct mechanisms and indirect mechanisms . We define

these below. In these definitions, we assume that the set of agents N , the set of outcomes X , the

sets of types Θ1, . . . ,Θn, a common prior P ∈ ∆(Θ), and the utility functions ui : X ×Θi → R

are given and are common knowledge.

Definition 2.10 (Direct Mechanism) Given a social choice function f : Θ1 × Θ2 × . . . ×
Θn → X, a direct mechanism (also called a direct revelation mechanism) consists of the tuple

(Θ1,Θ2, . . . ,Θn, f(.)).
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f : Θ1 × · · · ×Θn → X

· · ·

Θ2Θ1 Θn

θ̂1

θ1 θ2

x = f(θ̂1, · · · , θ̂n)

u1 : X ×Θ1 → R

u1(x, θ1)

u2 : X ×Θ2 → R

u2(x, θ2) un(x, θn)

θ̂nθ̂2

Individual Type Sets

θn Individual Types

Reported Types

Social Choice Function

Outcome

Utility Functions

Utility Values

un : X ×Θn → R

Figure 2.2: The general mechanism design environment.

The idea of a direct mechanism is to directly seek the type information from the agents by

asking them to reveal their true types.

Definition 2.11 (Indirect Mechanism) An indirect mechanism (also called an indirect rev-

elation mechanism) consists of a tuple (S1, S2, . . . , Sn, g(·)) where Si is a set of possible actions

for agent i (i = 1, 2, . . . , n) and g : S1×S2× . . .×Sn → X is a function that maps each action

profile to an outcome.

The idea of an indirect mechanism is to provide a choice of actions to each agent and specify

an outcome for each action profile. This induces a game among the players and the strategies

played by the agents in an equilibrium of this game will indirectly reflect their original types.

The idea behind and the difference between direct mechanisms and indirect mechanisms will

become clear in the next section when we discuss implementation of social choice functions by

mechanisms.

Note that a direct mechanism corresponding to a social choice function f : Θ → X is a

special case of an indirect mechanism (S1, S2, . . . , Sn, g(·)) with Si = Θi, ∀i ∈ N and g = f .

2.2.3 Implementation of Social Choice Functions

The social choice function (SCF) captures the goal of the mechanism designer. However, to

make the mechanism work in practice, we need to implement the SCF either directly or in-
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directly. Since, direct implementation is a special case of the indirect implementation, in this

section, we focus on indirect implementation. We will see that the indirect mechanism induces

a Bayesian game among the players, and implementation is concerned with the outcome at the

equilibria of that Bayesian game. Later in this section, we discuss about the direct and indirect

implementability and show that they are equivalent.

2.2.4 Bayesian Game Induced by a Mechanism

From Section 2.2.1, we see that an indirect mechanism M = (S1, S2, . . . , Sn, g(·)) endows the

players with the strategy spaces Si, i ∈ N , and an aggregation function g(·), that maps the

strategies chosen by the players into alternatives. Together with the common prior P that

gives rise to the individual beliefs pi, this indirect mechanism framework induces the Bayesian

game Γ := 〈N, (Θi)i∈N , (Si)i∈N , (pi)i∈N , (Ui)i∈N〉. The strategies of individual agents here are

the mappings, si : Θi → Si, i ∈ N . Thus, given a type θi ∈ Θi, si(θi) will give the action

of player i corresponding to θi. The strategy si(·) will specify actions corresponding to types.

In the auction scenario, the bid bi of player i is a function of the valuation θi. For example,

bi(θi) = αiθi is a particular strategy for player i. The utility function Ui in the induced Bayesian

game is related to the original utility function ui as follows.

Ui(s1(θ1), . . . , sn(θn)) = ui(g(s1(θ1), . . . , sn(θn)), θi), ∀ i ∈ N.

Figure 2.3 captures the idea behind an indirect mechanism and the Bayesian game that is

induced by an indirect mechanism.

Note that a direct mechanism corresponding to a social choice function f(·) is a special case

of an indirect mechanism with the strategy sets same as the type sets and the outcome rule g(·)
same as the social choice function f(·). It goes without saying that a Bayesian game is induced

by a direct mechanism as well.

2.2.5 Implementation of a Social Choice Function by a Mechanism

Let us now define the implementation of an SCF by a mechanism.

Definition 2.12 (Implementation of an SCF) We say a mechanism M = 〈(Si)i∈N , g(·)〉
where g : S1 × . . . × Sn → X, implements the social choice function f(·) if there is a pure

strategy equilibrium s∗(·) = (s∗1(·), . . . , s∗n(·)) of the Bayesian game Γ induced by M such that,

g(s∗1(θ1), . . . , s
∗
n(θn)) = f(θ1, . . . , θn), ∀ (θ1, . . . , θn) ∈ Θ.
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f : Θ1 × · · · ×Θn → X g : S1 × · · · × Sn → X

Θi Si

Agent i

ui(x, θi)

θi s∗i (θi)

i = 1 : n

Type Set Strategy Set

Outcome Rule of the Indirect MechanismSocial Choice Function

f(θ1, · · · , θn) = x = g(s∗1(θ1), · · · , s∗n(θn))

Figure 2.3: The indirect mechanism design environment and its implications.

The implementation is called dominant strategy or Bayesian Nash implementation depending

on whether the pure strategy equilibrium mentioned in the definition above is a dominant

strategy one or a Bayesian Nash one. In a Bayesian game, the dominant strategy or Bayesian

Nash equilibria are defined as follows.

Definition 2.13 (Dominant Strategy Equilibrium in a Bayesian Game) Given a

Bayesian game Γ, a strategy profile s∗(·) = (s∗1(·), . . . , s∗n(·)) is called a dominant strategy equi-

librium if ∀ai ∈ Si, ∀s−i : Θ−i → S−i, ∀θi ∈ Θi, ∀i ∈ N ,

Eθ−i
Ui(s

∗
i (θi), s−i(θ−i)) ≥ Eθ−i

Ui(ai, s−i(θ−i)).

Definition 2.14 (Bayesian Nash Equilibrium in a Bayesian Game) Given a Bayesian

game Γ, a strategy profile s∗(·) = (s∗1(·), . . . , s∗n(·)) is called a Bayesian Nash equilibrium if

∀ai ∈ Si, ∀θi ∈ Θi, ∀i ∈ N ,

Eθ−i
Ui(s

∗
i (θi), s

∗
−i(θ−i)) ≥ Eθ−i

Ui(ai, s
∗
−i(θ−i)).

Of particular interest is the direct mechanism, D = 〈(Θi)i∈N , f(·)〉. The following two incentive

compatibility properties are defined on the direct mechanism.
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Definition 2.15 (Dominant Strategy Incentive Compatibility (DSIC)) A social choice

function f : Θ1 × Θ2 × . . . × Θn → X is said to be dominant strategy incentive compatible

(or truthfully implementable in dominant strategies) if the direct revelation mechanism D =

〈(Θi)i∈N , f(·)〉 has a dominant strategy equilibrium s∗(·) = (s∗1(·), . . . , s∗n(·)) in which s∗i (θi) =

θi, ∀ θi ∈ Θi, i ∈ N .

Similarly an SCF is Bayesian incentive compatible when the equilibrium is a Bayesian Nash

equilibrium.

Definition 2.16 (Bayesian Incentive Compatibility (BIC)) A social choice function f :

Θ1 × Θ2 × . . . × Θn → X is said to be dominant strategy incentive compatible (or truthfully

implementable in dominant strategies) if the direct revelation mechanism D = 〈(Θi)i∈N , f(·)〉
has a Bayesian Nash equilibrium s∗(·) = (s∗1(·), . . . , s∗n(·)) in which s∗i (θi) = θi, ∀ θi ∈ Θi, i ∈ N .

A natural question here is why we are interested in the direct revelation mechanism D. This

is because of the revelation principle given by the following two theorems, which we mention

without proof. This principle essentially says that for each social choice function that is imple-

mentable in indirect mechanism is also implementable by a direct mechanism. Therefore, it is

enough to consider only direct mechanisms and properties like incentive compatibility.

Theorem 2.2 (Revelation Principle for Dominant Strategy Implementation) Suppose

that there exists a mechanism M = 〈(Si)i∈N , g(·)〉 that implements the social choice function

f(·) in dominant strategy equilibrium. Then f(·) is dominant strategy incentive compatible.

Theorem 2.3 (Revelation Principle for Bayesian Nash Implementation) Suppose that

there exists a mechanism M = 〈(Si)i∈N , g(·)〉 that implements the social choice function f(·) in
Bayesian Nash equilibrium. Then f(·) is Bayesian incentive compatible.

An inquisitive reader is referred to [52] for a proof of these theorems.

2.2.6 A Limit to the Desire: The Gibbard-Satterthwaite Impossi-

bility Theorem

Ideally, a mechanism designer would like the SCF to satisfy a number of “good” properties.

However, mechanism design theory deals with a lot of results that put limits on those desirable

properties. One such result, named after Gibbard and Satterthwaite, says us that the following

set of desirable properties cannot be satisfied together. The Gibbard-Satterthwaite (G-S) Im-

possibility Theorem is more general and works with even ordinal preferences on the alternative
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set X . What we consider in this chapter and in the rest of the thesis are cardinal preferences,

i.e., an agent i prefers alternative a over b, a, b ∈ X , in accordance with a utility function ui,

that is, ui(a, θi) ≥ ui(b, θi). It may not always be the case that there exists a well defined utility

function that leads to the preferences. Those kind of preferences are called ordinal preferences,

where the agents can have any preference ordering Pi which is a strict preference ordering over

the alternative set X . Since the G-S theorem applies to the more general ordinal preferences, it

will continue to hold even for the cardinal preferences. However, for a more general exposition,

we present the general version of the theorem. Before going into the theorem, some definitions

are as follows. For this section, we follow the notation and definitions of [74].

Strict preference ordering A preference ordering P is called strict if it is a binary relation

on X satisfying,

◮ Completeness: for all a, b ∈ X , either aPb or bPa or both.

◮ Reflexivity: for all a ∈ X , aPa.

◮ Transitivity: if aPb and bP c, then aPc.

◮ Anti-symmetry: for all a, b ∈ X , if aPb and bPa, then a = b.

Hence, for all a, b ∈ X , and a strict preference order Pi of agent i, aPib is interpreted as “a is

strictly preferred to b under Pi”.

Let P be the set of all linear orderings overX (there are |X|! such orders assuming |X| <∞).

A preference profile P = (P1, ..., Pn) ∈ P
n is an n-list of orderings, one for each voter. An SCF f

is a mapping f : Pn → X . The strategy-proofness (incentive compatibility) property introduced

in the previous section is restated below for this environment.

Definition 2.17 The SCF f is manipulable if there exists a voter i, a profile P ∈ P
N and an

ordering P ′
i such that,

f(P ′
i , P−i)Pif(Pi, P−i)

Definition 2.18 The SCF f is strategy-proof if it is not manipulable.

One class of SCFs which is always strategy-proof is the constant SCF which selects the same

alternative at all profiles. In order to rule out this possibility, it will be assumed that SCFs

under consideration satisfy the property of unanimity.

For all voters i and Pi ∈ P, let τ(Pi) denote the maximal element in X according to Pi.

Definition 2.19 The SCF f satisfies unanimity if f(P ) = a whenever τ(Pi) = a for all i ∈ N .

Definition 2.20 The voting rule f is dictatorial if there exists d ∈ N such that for all P ∈ P
n,

f(P ) = τ(Pd).
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Theorem 2.4 (Gibbard [31], Satterthwaite [73]) Assume |X| ≥ 3. If f satisfies unanimity

then it is strategy-proof if and only if it is dictatorial.

This is one of the classic results in mechanism design theory. For a direct proof of this theorem,

we refer the reader to [75].

A natural way of evading the negative conclusions of the G-S theorem is to assume that

admissible preferences are subject to certain restrictions. In the following section, we focus on

the Quasi-linear Domain, which is quite popular and appropriate for the discussions of this

thesis.

2.2.7 Domain Restriction: Quasi-Linear Utilities

These are models where monetary compensation is feasible. Moreover money enters the utility

function in an additively separable way.

Let A be the set of alternatives. Agent i’s type is θi ∈ Θi determines her valuation for every

a ∈ A according to the function vi : A×Θi → R, i.e. vi(a, θi) is the valuation of alternative a

when her type is θi. The agent may also receives a monetary payment ti ∈ R. The outcome x

is therefore given by the tuple (a, t) ∈ X = A×R
n. The overall utility of the agent is given by,

ui((a, t), θi) = vi(a, θi) + ti.

We re-define the earlier notions in this environment.

Definition 2.21 An SCF is a mapping f : Θ1 × . . .×Θn → A.

Definition 2.22 A transfer scheme is a collection of mappings t ≡ (t1, . . . , tn) where ti :

Θ1 × . . .×Θn → R for all i ∈ N .

Definition 2.23 A pair (f, t) where f is an SCF and t is a transfer scheme, is dominant

strategy incentive compatible if,

vi(f(θi, θ−i), θi) + ti(θi, θ−i) ≥ vi(f(θ
′

i, θ−i), θi) + ti(θ
′

i, θ−i),

for all θi, θ
′

i ∈ Θi, for all θ−i ∈ Θ−i and for all i ∈ N .

The SCF f is implementable in dominant strategies if there exists a transfer scheme t such that

the pair (f, t) is dominant strategy incentive compatible. Let us use the following shorthands,

θ ≡ (θi, θ−i) and Θ ≡ Θ1 × . . .×Θn.

Question: What are the SCFs that are implementable?
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Below we provide an example of an important implementable SCF.

Example 2.1 The following is the efficient SCF f e. For all θ ∈ Θ

f e(θ) = argmax
a∈A

∑

i∈N

vi(a, θi). (2.1)

We claim that f e is implementable. Let ti(θ) =
∑

j∈N\{i} vj(f
e(θ), θj)+hi(θ−i) where hi is an arbitrary

function hi : Θ−i → R. We show that (f e, t) is strategy-proof.

Observe that,

vi(f
e(θi, θ−i), θi) + ti(θi, θ−i)

= vi(f
e(θi, θ−i), θi) +

∑

j∈N\{i}

vj(f
e(θi, θ−i), θj) + hi(θ−i)

=
∑

i∈N

vi(f
e(θi, θ−i), θi) + hi(θ−i)

≥
∑

i∈N

vi(f
e(θ

′

i, θ−i), θi) + hi(θ−i)

= vi(f
e(θ

′

i, θ−i), θi) +
∑

j∈N\{i}

vj(f
e(θ

′

i, θ−i), θj) + hi(θ−i)

= vi(f
e(θ

′

i, θ−i), θi) + ti(θ
′

i, θ−i)

The inequality holds by definition of f e (Equation (2.1)). Therefore (f e, x) is strategy-proof. The

transfer scheme is known as the Vickrey-Clarke-Groves (VCG) scheme. If Θ is “rich enough”, this

scheme is the unique scheme with the property that (f e, x) is strategy-proof. This is a special case of

a class of results called Revenue Equivalence Theorems. �

Very general characterizations of implementability in general domains exist in terms of

“monotonicity properties”. Below are explicit characterizations in special domains.

The Complete Domain

Definition 2.24 (Unrestricted Domain) The domain Θ is unrestricted if, for all α ∈ R
n,

there exists θi ∈ Θi, ∀i ∈ N , such that for all a, b ∈ A,

vi(a, θi)− vi(b, θi) = αi, ∀i ∈ N.

Theorem 2.5 (Roberts [69]) Assume A to be finite and |A| ≥ 3. Let Θ be an unrestricted

domain and preferences be quasi-linear. The SCF f : Θ → A is implementable in dominant

strategies if and only if there exist non-negative real numbers k1, . . . , kN and real numbers γ(a)
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for all a ∈ A such that for all θ ∈ Θ,

f(θ) = argmax
a∈A

∑

i∈N

{kivi(a, θi) + γ(a)}.

Moreover the associated transfers are of the form,

ti(θ) =
1

ki

∑

j∈N\{i}

{kjvj(a, θj) + γ(a)}+ hi(θ−i).

This result characterizes the space of strategy-proof mechanisms in an unrestricted quasi-linear

domain. In particular, the VCG scheme of mechanisms is a special case of the above character-

ization. However, all these results hold assuming that the valuation is independent, i.e., given

the alternative a, the value function vi depends only on the type of agent i, θi. However, in

many real world scenarios where agents collaboratively solve a problem, e.g., joint projects in

multinational companies, or large distributed online projects, the valuation an agent experi-

ences depends on the private types of other agents as well. The model where the valuation of

an agent for an allocation depends not just only on her private type but on the types of other

agents, is the interdependent value model and has also received a great deal of attention in the

literature [43, Chap. 6]. The valuation function vi becomes a function of the alternative a and

the entire type vector θ. In the following section, we briefly discuss about this setting of the

mechanism design problem.

2.2.8 Mechanism Design with Interdependent Valuations

The interdependent value model poses a more difficult challenge for mechanism design. In in-

creasing generality, Jehiel and Moldovanu [39] and Jehiel et al. [40] have shown that the efficient

social choice function cannot generically be ex-post implemented. Ex-post implementation re-

quires agents to be truthful about their own type reports when all others are reporting their

types truthfully. This is a strong negative result - it rules out the existence of a mechanism that

takes type reports from the agents and yields an allocation and a payment rule which satisfies

ex-post incentive compatibility and efficiency. However, Mezzetti [48] has shown that these

goals can be achieved if the mechanism designer can split the allocation and payment decision

into two stages. The idea is that agents report their types in the first stage on the basis of

which the designer implements an allocation. Each agent then observes her own valuation and

reports this to the designer in the second stage. The designer then proposes a payment based

on these valuation announcements. This mechanism is called generalized Groves mechanism

and in the Nash equilibrium the allocation is efficient. However, a drawback of the mechanism
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pointed out by Mezzetti [48] himself is that the agents are indifferent between truth-telling and

lying in the second stage, i.e., agents have weak incentives for truth-telling in the second stage.

In Chapter 3, we consider the interdependent valuation setting in greater detail and show

how mechanisms can be designed in order to satisfy certain design goals, both in static and

dynamic setting. In the following section, we provide a brief introduction to the dynamic

mechanism design problem which is a recent development in the mechanism design literature.

2.2.9 Dynamic Mechanism Design

Under this setting, the types of the agents vary over time. This is a relatively new and active

research area of mechanism design. Therefore, solutions are available only for special domains

and with stylized models of type evolution. For example, for the classic quasi-linear domain

with Markov type transitions and independent valuations, some early results are shown by

Bergemann and Välimäki [9]. They have proposed an efficient mechanism called the dynamic

pivot mechanism, which is a generalization of the Vickrey-Clarke-Groves (VCG) mechanism [82,

19, 33] in a dynamic setting, which also serves to be truthful and efficient. Athey and Segal [5]

consider a similar setting with an aim to find an efficient mechanism that is budget balanced.

Cavallo et al. [17] develop a mechanism similar to the dynamic pivot mechanism in a setting

with agents whose type evolution follows a Markov process. In a later work, Cavallo et al.

[18] consider periodically inaccessible agents and dynamic private information jointly. Even

though these mechanisms work for an exchange economy, they have the underlying assumption

of private values, i.e., the reward experienced by an agent is a function of the allocation and

her own private observations.

In the second part of Chapter 3, we consider the dynamic mechanism design problem in

interdependent valuation setting. We draw inspiration from the papers of Bergemann and

Välimäki [9] and Mezzetti [48], and design a mechanism in this setting, that satisfies a set of

very desirable properties.

With this introduction to the game theory and mechanism design, starting from the classic

results to the current state-of-the-art, we move to the main contributions of the thesis, which

are spread across the following three chapters.
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Chapter 3

Skill Elicitation in Crowdsourcing

A particular problem in crowdsourcing is to allocate tasks to a set of experts. The experts

can be geographically diverse, but with the help of the Internet, they can be connected to

perform tasks efficiently. Because of the diversity, they may have very different levels of

expertise for a given task. Even though they know their expertise to a reasonable accuracy,

it is often unknown to the designer. If the experts are asked about their expertise, they

can potentially misreport if that maximize their payoffs. Therefore, one needs to design a

mechanism so that the agents’ (experts’) expertise can be truthfully elicited, that enables

to select an optimal set of experts. In this chapter, we provide a solution to this problem

in two situations of increasing generality. In the first part, we model the static version

of this problem, while in the second, we extend our model to the dynamic setting. We

show that the skill elicitation problem falls into the category of interdependent valuations

in the classical mechanism design theory. We solve a long standing problem in this class

of mechanism design problems by providing a mechanism that is strictly truthful in the

second round, thereby improving the Mezzetti mechanism in static setting. Then we

generalize this result for the dynamic setting.

Let us start with an example of a crowdsourcing experiment. Suppose an amateur botanist

wants to know all biological details of a flower that he has found. In order to know how

much he can use the expertise of the crowd, he takes a photo of the flower, and puts it on a

crowdsourcing platform (e.g., Amazon Mechanical Turk). There are multiple annotators, who

can now view the image of the flower and gives their inputs on the different details of the flower.

Some annotator can provide the scientific name, someone else can provide the natural habitat,

and so on. The situation is schematically shown in Figure 3.1. Depending on their inputs, the

botanist can decide which of the annotators’ contributions were worth and pay them. However,

the payment has to be carefully designed so that the crowd has incentive to participate in this
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experiment. Also, the botanist wants that the team of selected experts are chosen in such

a way that the task is done by the people with the best available skill-set. Hence, both the

allocation of the tasks to agents and the payment are important mechanism design problems.

In the following, we are going to present a formal mechanism design framework to model the

problems of this kind.

Ann.

n

Ann.

1

Ann.

2

Image

Owner

...

Workload

Efficiency Efficiency Efficiency

Mechanism Designer

Report

Reports

Figure 3.1: Online image annotation via crowdsourcing.

We model the skills of the experts (agents) as their private types, and the valuations as the

benefit they get (for the task owner) or the cost they incur (for the workers). The setting is

a classical quasi-linear utility setting of mechanism design. The difference, however, is that

in the crowdsourcing setting, even after the set of agents are selected for a given task, the

valuations that the agents get depends not only on their individual types, but also on the types

of all selected agents (e.g., the relative success of a project depends on the skills of the team

members). This makes the problem to fall into the interdependent valuations class. In this

chapter, we study the mechanism design problem of this class. In the next section, we are going

to address the static mechanism design problem with interdependent valuations. We develop

the notation according to the context. In the latter part of this chapter, we address value

interdependency when the types vary stochastically.
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3.1 Static Mechanism Design with Interdependent Val-

uations 1

The impossibility result by Jehiel and Moldovanu [39] says that in a setting with interdepen-

dent valuations, any efficient and ex-post incentive compatible mechanism must be a constant

mechanism. Mezzetti [48] circumvents this problem by designing a two stage mechanism where

the decision of allocation and payment are split over the two stages. This mechanism is elegant,

however it faces a limitation. In the second stage, agents are weakly indifferent about reporting

their valuations truthfully: an agent’s payment is independent of her reported valuation and

truth-telling for this stage is by assumption. We propose an improvement to this mechanism

which makes the second stage strictly truthful.

3.1.1 Introduction

In the classical independent private values model [46], each agent observes her valuation which

depends on the allocation and her own private type. One can design efficient, dominant strat-

egy incentive compatible mechanisms in this setting, e.g., the VCG mechanism achieves these

properties. However, in many real world scenarios where agents collaboratively solve a prob-

lem, e.g., joint projects in multinational companies, or large distributed online projects, such

as crowdsourcing experiments like the DARPA red balloon challenge [65], the valuation of an

agent depends on the private types of other agents as well. The model where the valuation of

an agent for an allocation depends not just only on her private type but on the types of other

agents, is the interdependent value model and has also received a great deal of attention in the

literature [43].

The interdependent value model poses a more difficult challenge for mechanism design. In

increasing generality, Jehiel and Moldovanu [39] and Jehiel et al. [40] have shown that the effi-

cient social choice function cannot generically be ex-post implemented. Ex-post implementation

requires agents to be truthful about their own type reports when all others are reporting their

types truthfully. This is a strong negative result - it rules out the existence of a mechanism that

takes type reports from the agents and yields an allocation and a payment rule which satisfies

ex-post incentive compatibility and efficiency. However, Mezzetti [48] has shown that these

goals can be achieved if the mechanism designer can split the allocation and payment decisions

into two stages. The agents report their types in Stage 1, and the designer implements an

allocation based on that. Then, each agent observes her own valuation and reports the values

to the designer in Stage 2. The designer then proposes a payment based on the two-stage

1This work has appeared in Economics Letters [57].

39



reports. This mechanism is called generalized Groves mechanism and in the Nash equilibrium

the allocation is efficient. However, a drawback of the mechanism pointed out by Mezzetti [48]

is that the agents are indifferent between truth-telling and lying in Stage 2, i.e., agents have

weak incentives for truth-telling in Stage 2. Hereafter, we will refer to this mechanism as the

classic mechanism.

In this section, we propose a mechanism called Value Consistent Pivotal Mechanism

(VCPM) that overcomes this difficulty. In particular it proposes a different set of payments

from the classic mechanism in Stage 2 which makes it a strict ex-post Nash equilibrium for each

agent to reveal her valuation truthfully at this stage.

The question may arise whether this mechanism hurts some other properties of Mezzetti’s

original mechanism. Since VCPM yields the same payoff to the agents as that of the classic

in equilibrium, it continues to satisfy all the properties that the classic mechanism satisfies

in equilibrium. For example, we show that in a restricted problem domain, a refinement of

our mechanism satisfies individual rationality (IR) as it is satisfied by the classic mechanism.

However, truth-telling in the classic mechanism is also a subgame perfect equilibrium, which is

compromised by VCPM. We illustrate this with an example.

3.1.2 Model and Definitions

Let the set of agents be denoted by N = {1, · · · , n}. Each agent observes her private type θi ∈
Θi. Let Θ = ×i∈NΘi denote the type profile space where θ ≡ (θ1, · · · , θn) be an element of Θ.

We will denote the type profile of all agents except agent i by θ−i ≡ (θ1, · · · , θi−1, θi+1, · · · , θn) ∈
Θ−i. Types are drawn independently across agents and each agent can only observe her own

type and does not know the types of other agents. We consider a standard quasi-linear model.

Therefore, the payoff ui of agent i is the sum of her value vi and transfer pi.

We will consider a two stage mechanism similar to that of Mezzetti [48], because of the

impossibility result by Jehiel and Moldovanu [39]. We call this mechanism Value Consistent

Pivotal Mechanism (VCPM).

In Stage 1, agents are asked to report their types, and after that the mechanism designer

chooses an alternative from the set A via the allocation function a : Θ → A. We denote the

reported types by θ̂, hence, the allocation for such a report is given by a(θ̂).

All agents then experience the consequence of the allocation via the valuation function which

is defined by vi : A × Θ → R, for all i ∈ N . Note: the value function is different from the

independent private value setting, where it is a mapping vi : A×Θi → R. This difference makes

mechanism design in interdependent value settings difficult as discussed in Section 4.1.

In Stage 2, agents report their experienced valuations; transfers given by pi : Θ × R
n →
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R, ∀i ∈ N are then decided by the designer. If the reported valuations are v̂ ∈ R
n, the transfer

to agent i is given by pi(θ̂, v̂).

The two stage mechanism VCPM is graphically illustrated in Figure 3.2.
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Figure 3.2: Graphical illustration of VCPM.

Definitions

As discussed earlier, in the section we will consider only two stage mechanisms, where in Stage

1, agents report their types and in Stage 2, their experienced valuations. The allocation decision

is made after Stage 1 and the payment after Stage 2. It is, therefore, necessary to define the

notions of efficiency, truthfulness, and voluntary participation, in this setting.

We consider only quasi-linear domains where the payoff is the sum of the valuation and

transfer. A mechanism M in this domain is fully characterized by a tuple of allocation and

payment 〈a, p〉. For a truthful mechanism in this setting, we need to ensure that it is truthful

in both stages. In Stage 1, truthfulness implies that the agents report their true types. In the

second round, the valuation is a function of the allocation chosen in Stage 1. Here truthfulness

would mean that they report their observed valuations due to that allocation.

The true type profile is given by θ. With a slight abuse of notation, we represent the true

valuation vector by v = (v1(a(θ), θ), · · · , vn(a(θ), θ)) under mechanism M = 〈a, p〉 . Let us

denote the payoff of agent i by uM
i (θ̂, v̂|θ, v) under mechanism M when the reported type and

value vectors are θ̂ and v̂ respectively, while the true type and value vectors are given by θ and

v. Therefore, due to the quasi-linear assumption, the payoff is given by,

uM
i (θ̂, v̂|θ, v) = vi(a(θ̂), θ) + pi(θ̂, v̂).

Definition 3.1 (Efficiency (EFF)) A mechanism M = 〈a, p〉 is efficient if the allocation rule

41



maximizes the sum valuation of the agents. That is, for all θ,

a(θ) ∈ argmax
a∈A

∑

j∈N

vj(a, θ).

Definition 3.2 (Ex-post Incentive Compatibility (EPIC)) A mechanism M = 〈a, p〉 is
ex-post incentive compatible if reporting the true type and valuation is an ex-post Nash equilib-

rium of the induced game. That is, for all true type profiles θ = (θi, θ−i) and true valuation

profiles v = (vi, v−i) = (vi(a(θ), θ), v−i(a(θ), θ)), and for all i ∈ N ,

uM
i ((θi, θ−i), (vi(a(θ), θ), v−i(a(θ), θ))|θ, v)
≥ uM

i ((θ̂i, θ−i), (v̂i, v−i(a(θ̂i, θ−i), θ))|θ, v), ∀θ̂i, v̂i.

Definition 3.3 (Ex-post Individual Rationality (EPIR)) A mechanism M = 〈a, p〉 is
ex-post individually rational if the payoff of each agent in the true type and valuation profile is

non-negative. That is, for all i ∈ N , θ = (θi, θ−i), and v = (vi, v−i) = (vi(a(θ), θ), v−i(a(θ), θ)),

uM
i (θ, v|θ, v) ≥ 0.

Subset Allocation (SA) Later in this section, we will focus on a problem domain named

subset allocation, where the allocation set is the set of all subsets of the agents, i.e., A = 2N .

In such a setting, we assume that the valuation of agent i is given by,

vi(a, θ) =

{

vi(a, θa) if i ∈ a,

0 otherwise.
(3.1)

We use θa to denote the type vector of the allocated agents, i.e., θa = (θj)j∈a, ∀a ∈ A. This

means that when agent i is not selected, her valuation is zero, and when she is selected, the

valuation depends only on the types of the selected agents. This restricted domain is relevant

for distributed projects in organizations, where the skill level of only the allocated agents matter

in the value achieved by the other allocated agents. The skill levels of all the workers/employees

participating in the project impact the success or failure of the project, and the reward or loss

is shared by the participants of the project. This and several other examples of collaborative

task execution falls under the SA domain, which makes it interesting to study.
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3.1.3 Main Results

With the dynamics of the mechanisms as in Figure 3.2, the mechanism design problem is to

design the allocation and the transfer rules. In VCPM, we adopt the following allocation and

transfer rules.

Stage 1: Agents report types θ̂ = (θ̂i, θ̂−i). The allocation is chosen as,

a∗(θ̂) ∈ argmax
a∈A

∑

j∈N

vj(a, θ̂). (3.2)

Stage 2: Agents report valuations v̂. The transfer to agent i, i ∈ N is,

p∗i (θ̂, v̂) =
∑

j 6=i

v̂j − g(v̂i, vi(a
∗(θ̂), θ̂))− hi(θ̂−i). (3.3)

Where hi is any arbitrary function of θ̂−i, and g(x, ℓ) is a non-negative function of x

with a unique zero at ℓ.

An example of the function g(x, ℓ) would be (x− ℓ)2.

Algorithm 1 VCPM

Stage 1:

for agents i = 1, . . . , n do

agent i observes θi;

agent i reports θ̂i;

end for

compute allocation a∗(θ̂) according to Equation (3.2);

Stage 2:

for agents i = 1, . . . , n do

agent i observes vi(a
∗(θ̂), θ);

agent i reports v̂i;

end for

compute payment to agent i, p∗i (θ̂, v̂), Equation (3.3);

The stages of the mechanism are

shown in algorithmic form in Algo-

rithm 1. The difference between this

mechanism with that of Mezzetti’s is

that we charge a tax to the agent i

for not being consistent with Stage

1 of type reports. Note that the

value function is a common knowl-

edge. Together with the reported

type vector θ̂, the designer can com-

pute the value vi(a
∗(θ̂), θ̂) in Equa-

tion (3.3). The amount of tax is

positive whenever the agents valua-

tion announcement are inconsistent

with the value computed according

to their reported types in Stage 1. We will show in the following theorem that this modification

in the transfer makes VCPM truth-telling a strict best-response in Stage 2.
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Theorem 3.1 VCPM is EFF and EPIC. In particular, reporting the valuations truthfully in

Stage 2 of this mechanism is a strict best-response for each agent.

Proof: The allocation rule of VCPM given by Equation (3.2) ensures efficiency by con-

struction. Therefore, we are only required to show that the mechanism is ex-post incentive

compatible.

To show that VCPM is ex-post incentive compatible, without loss of generality, let us as-

sume that all agents except agent i are reporting their types and valuations truthfully in the

two stages. Let us assume that the true types are given by θ = (θi, θ−i). Hence, under these as-

sumptions, θ̂ = (θ̂i, θ−i). The value reports in Stage 2 is dependent on the allocation in the first.

Hence, for the agents j 6= i, who are truthful, the value reports are given by, v̂j = vj(a
∗(θ̂), θ).

As defined earlier, we denote the payoff of agent i by ui((θ̂i, θ−i), (v̂i, v−i(a(θ̂), θ))|θ, v) when all

agents except i report their types and values truthfully, and the true type and value profiles

are θ and v. The payoff of agent i is given by,

uVCPM
i ((θ̂i, θ−i), (v̂i, v−i(a

∗(θ̂), θ))|θ, v)
= vi(a

∗(θ̂i, θ−i), θ) + pi((θ̂i, θ−i), (v̂i, v−i))

= vi(a
∗(θ̂i, θ−i), θ) +

∑

j 6=i

vj(a
∗(θ̂i, θ−i), θ)− g(v̂i, vi(a

∗(θ̂), θ̂))− hi(θ−i)

≤ vi(a
∗(θ̂i, θ−i), θ) +

∑

j 6=i

vj(a
∗(θ̂i, θ−i), θ)− hi(θ−i)

=
∑

j∈N

vj(a
∗(θ̂i, θ−i), θ)− hi(θ−i)

≤
∑

j∈N

vj(a
∗(θi, θ−i), θ)− hi(θ−i)

= vi(a
∗(θ), θ) +

∑

j 6=i

vj(a
∗(θ), θ)− hi(θ−i)

= uVCPM
i (θ, v|θ, v)

The first and second equalities are by definition and by substituting the expression of transfer

(Eq. (3.3)). The first inequality comes since we are ignoring a non-positive term. The third

equality is via simple reorganization the terms. The second inequality comes by definition of the

allocation rule (Eq. (3.2)). The rest of the steps are simple reorganization of the expressions.

The last equality is due to the fact that the function g is zero when v̂i = vi(a
∗(θ), θ). Hence,

we prove that VCPM is ex-post incentive compatible.
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Let us explain that in this ex-post Nash equilibrium of this game, reporting values truthfully

in Stage 2 is a strict best-response. This is because, when types are reported truthfully in

Stage 1, the second term in the expression of the transfer for agent i (Eq. (3.3)) is reduced to

g(v̂i, vi(a
∗(θ), θ)). This term is minimized (thereby the payoff to agent i is maximized) when

v̂i = vi(a
∗(θ), θ), which is the true report. Hence, truthful report in stage two of VCPM is a

strict best-response. �

Comparison with the Classic Mechanism

It is reasonable to ask whether the proposed mechanism VCPM that achieves the strict Nash

equilibrium in Stage 2, continues to satisfy all other desirable properties that the original mecha-

nism given by Mezzetti [48] used to satisfy. Since we prove thatVCPM is EPIC, truthful report-

ing is an ex-post Nash equilibrium, and in that equilibrium, the penalty term g(v̂i, vi(a
∗(θ̂), θ̂))

in the expression of the transfer (Eq. (3.3)) is zero. Therefore, the allocation and the transfer in

this truthful equilibrium are exactly the same as in the classic mechanism, and so is the payoff

of each agent. So, any property that the classic mechanism used to satisfy in the ex-post Nash

equilibrium will continue to hold even for VCPM. In addition, the truthful reporting in Stage

2 a strict best-response.

In the next section, we illustrate one such desirable property, namely the ex-post individual

rationality, and show that under a restricted domain, a refined VCPM satisfies this property

as does the classic mechanism.

It is important to note that the weak indifference in Stage 2 of the classic mechanism enables

truth reporting also a subgame perfect equilibrium. The strict EPIC of VCPM comes at the

expense of the subgame perfection. We illustrate this in the section following the next with an

example.

VCPM and Ex-post Individual Rationality

In this section, we investigate the incentives for individuals to participate in this game. We

consider the subset allocation (SA) domain. Hence, A = 2N . Let us define the social welfare

as,

W (θ) = max
a∈A

∑

j∈a

vj(a, θa). (3.4)

Similarly, the social welfare excluding agent i is given by,

W−i(θ−i) = max
a−i∈A−i

∑

j∈a−i

vj(a−i, θa−i
), (3.5)
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where A−i = 2N\{i}. Notice that in the SA domain A−i ⊆ A, and therefore we make the

following observation,

Observation 3.1 In SA problem domain, with W and W−i defined as in Eqs. (3.11) and (3.5),

W (θ) ≥ W−i(θ−i).

This is because, a−i ∈ A−i ⊆ A. Therefore, while choosing allocation a that yields the social

welfare including agent i, the designer has the choice of choosing all a−i’s as well. Therefore,

with the form of valuation functions in SA, the social welfare including agent i will always

dominate that excluding her.

Let us refine the VCPM to yield rVCPM by redefining the allocation (Equation (3.2)) in

stage one as follows.

arVCPM(θ̂) ∈ argmax
a∈A

∑

j∈a

vj(a, θ̂a). (3.6)

We also redefine the payment (Equation (3.3)) in stage two as follows.

prVCPM
i (θ̂, v̂) =

∑

j∈arVCPM(θ̂)\{i}

v̂j − g(v̂i, vi(a
rVCPM(θ̂), θ̂))−W−i(θ̂−i). (3.7)

Note that the hi function in theVCPM is replaced byW−i in rVCPM. The following Corollary

is now immediate from Theorem 3.2 and Observation 3.1.

Corollary 3.1 In the SA problem domain, rVCPM is EFF, EPIC, and EPIR.

Proof: Since rVCPM is a special case of VCPM and SA is a restricted domain, the results

of VCPM holds in this setting too. Therefore from Theorem 3.2, we conclude that rVCPM

is EFF and EPIC. Now, in the ex-post Nash equilibrium, the payoff of agent i is given by,

urVCPM
i (θ, v|θ, v)
= vi(a

rVCPM(θ), θarVCPM(θ)) + prVCPM
i (θ, v)

= vi(a
rVCPM(θ), θarVCPM(θ)) +

∑

j∈arVCPM(θ)\{i}

vj(a
rVCPM(θ), θarVCPM(θ))−W−i(θ−i)

=
∑

j∈arVCPM(θ)

vj(a
rVCPM(θ), θarVCPM(θ))−W−i(θ−i)

= W (θ)−W−i(θ−i)

≥ 0.
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The first three equalities are by definition and simple reorganization of the terms. The fourth

equality is by the definition of W (θ) (Equation (3.11)) and arVCPM(θ) (Equation (3.7)). The

inequality is due to Observation 3.1. Hence, rVCPM is ex-post individually rational. �

VCPM and Subgame Perfect Equilibrium

In this section, we show with an example that truth reporting in VCPM is not a subgame

perfect equilibrium (SPE).

Example 3.1 Let us consider two alternatives a1 and a2 and three agents, i = 1, 2, 3. Let

Θ1 = Θ2 = {0, 2}, and Θ3 = φ (i.e., agents 1 and 2 have two types each, agent 3 has no private

information). Assume, vi(a1, θ) = 0, for all i and θ, v1(a2, θ) = θ1 + 2θ2, v2(a2, θ) = 2θ1 + θ2,

v3(a2, θ) = −3, for all θ. The efficient allocation under VCPM is, a∗(θ) = a1, if θ1 = θ2 = 0, and a2

otherwise. Let us assume, hi ≡ 0 for simplicity. Under VCPM, no matter what was reported in Stage

1, the unique best reply for each agent is to report a value, v̂i = vi(a
∗(θ̂), θ̂). Now suppose that the

true types are θ1 = θ2 = 0 and that agent 2 truthfully reports in Stage 1, i.e., θ̂2 = 0 and then reports

v̂2 = v2(a
∗(θ̂), θ̂) (as it must in a SPE).

If agent 1 reports truth, i.e., θ̂1 = 0, then the implemented allocation is a∗(0, 0) = a1. The

allocation gives him zero value, and the second round transfer to agent 1 is
∑

j 6=1 vj(a1, (0, 0)) = 0. In

short, agent 1 obtains a total utility of zero if he reports his true type.

If he instead lies and reports θ̂1 = 2, then the implemented allocation is a∗(2, 0) = a2. The

allocation still gives him zero value (as the true types are θ1 = θ2 = 0), but the second round transfer

to agent 1 now is
∑

j 6=1 vj(a2, (2, 0)) = 4− 3 = 1. In short, agent 1 obtains a total utility of one if he

misreports. Hence, truth-telling in Stage 1 is not a SPE for agent 1. �

The classic mechanism is SPE because the payoffs of the agents in Stage 2 are independent of

their value reports, thereby making the EPIC weak. Hence, we can see that there is a trade-off

between the strict EPIC in Stage 2 and the subgame perfection.

We observe from the example that even though agents can misreport in Stage 1, in order

to report optimally according to that misreported θ̂, the agents need to know the reported θ̂

in Stage 2. This is often impractical in actual implementation, and the mechanism designer

can stop the reported θ̂ information from disseminating before the agents take their actions

in Stage 2. So, the inability to satisfy subgame perfection poses a much smaller threat than

the weak indifference on reporting the values truthfully in Stage 2. Hence, VCPM solves an

important limitation in the mechanism design with interdependent valuations.

Reduced Form vs State-of-the-World Formulation

In the original paper by Mezzetti [48], a state-of-the-world variable ω was introduced, which is

realized after the allocation and before the agents observe their valuations. The valuations are
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functions of this variable, and the payment is decided after they report their observed valuations

that depend on the realization of ω. The mechanism proposed in that paper is weak EPIC in

the second stage since the payment does not depend on the agent concerned’s report. The EPIC

in the first round, however, is with the expectation over the ω, since the allocation decision is

done in the first stage and before ω realizes. In contrast, the reduced form refers to the setting

where all the analysis is done taking expectation over ω. In this section, we have discussed the

reduced form analysis so far, and now we make a few observations on the state-of-the-world

formulation.

The state-of-the-world variable ω affects any strict EPIC mechanism including VCPM in

the following way. It depends on the following cases regarding the observability of the designer.

Case 1: The designer can observe the state-of-the-world ω. In such a case, by redefining the

penalty term to be g(v̂i, vi(a
∗(θ̂), θ̂, ω)), where vi(a

∗(θ̂), θ̂, ω) is now computable by the designer,

we can satisfy the strict EPIC in the second round for each realization of ω, in addition to

satisfying EPIC in the first round with expectation over ω.

Case 2: The designer cannot observe the state-of-the-world ω, but is able to decipher it

given the agents reports. This is going to hold for a restricted class of problems. For example,

if for each allocation a, type profile θ, and x ∈ Range(v), there exists at least two agents i1(x)

and i2(x) such that both v−1
i1(x)

(x) and v−1
i2(x)

(x) gives back a, θ, and a unique ω. This implies

that, each state of the world uniquely affects at least two agents in the population. In such a

setting, it is possible for the designer to retrieve the true state-of-the-world ω from the other

agents’ report and use the g function as used in case 1 above, and make VCPM a strict EPIC

in the second stage as well.

Case 3: The designer cannot observe the state-of-the-world ω, and is not able to decipher

it given the agents reports. This scenario is difficult for designing any strict EPIC mechanism.

We provide an example where a naive expectation of g given by,
∫

Ω
g(v̂i, vi(a

∗(θ̂), θ̂, ω)) dω does

not work, and leave a detailed investigation as an interesting future work.

Suppose, ω can take only two possible states, 1 and 0. The priors are P(ω = 1) = 0.99, and

P(ω = 0) = 0.01. Let us fix an allocation a and a type profile θ, and let vi(a, θ, ω = 1) = 1,

and vi(a, θ, ω = 0) = 0, then if i observes vi = 0, she might still report vi = 1 because the ω

corresponding to that outcome is a lot more likely. Say g(x, ℓ) = (x− ℓ)2, the agent would look

at minimizing (v̂i − 1)2 × 0.99 + (v̂i − 0)2 × 0.01 which is minimized by v̂i = 1 even if vi = 0.

The example above clearly shows that there is no easy way to convert a strict EPIC mech-

anism in the reduced form into a strict EPIC mechanism with state-of-the-world formulation.

It appears to us that in an unrestricted interdependent value domain, it could be impossible to

design any strict EPIC mechanism, an investigation of which we leave as a future work.
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3.2 Dynamic Mechanism Design with Interdependent

Valuations 1

It is often the case that the types of the agents vary over time. In this section, we extend the

results on mechanism design discussed in the last section into a dynamic setting, where the

horizon is infinite, and valuation is interdependent. We assume that the types of the agents are

evolving according to a first order Markov process and are independent across agents in every

round and across rounds. However, the valuations of the agents are functions of the types of

all the agents, which makes the problem fall into an interdependent value model. Designing

mechanisms in this setting is non-trivial not only because of the impossibility result of Jehiel

and Moldovanu [39], but also because of the dynamic evolution of the types. In this section,

we provide a first attempt at designing a dynamic mechanism which is strict ex-post incentive

compatible and efficient in interdependent value setting with Markovian type evolution. In a

restricted domain, which appears often in real-world scenarios, we show that our mechanism is

ex-post individually rational as well.

3.2.1 Introduction

Organizations often face the problem of executing a task for which they do not have enough

resources or expertise. It may also be difficult, both logistically and economically, to acquire

those resources. For example, in the area of healthcare, it has been observed that there are

very few occupational health professionals and doctors and nurses in all specialities at the

hospitals in the UK [63]. With the advances in computing and communication technologies, a

natural solution to this problem is to outsource the tasks to experts outside the organization.

Hiring experts beyond an organization was already in practice. However, with the advent of

the Internet, this practice has extended even beyond the international boundaries, e.g., some

U.S. hospitals are outsourcing the tasks of reading and analyzing scan reports to companies in

Bangalore, India [4]. Gupta et al. [34] give a detailed description of how the healthcare industry

uses the outsourcing tool.

The organizations where the tasks are outsourced (let us call them vendors) have quite

varied efficiency levels. For tasks like healthcare, it is extremely important to hire the right

set of experts. If the efficiency levels of the vendors and the medical task difficulties of the

hospitals are observable by a central management (controller), and these levels vary over time

according to a Markov process, the problem of selecting the right set of experts reduces to a

1Part of this work has been published in the Conference on Uncertainty in Artificial Intelligence, UAI
2011 [58], and the complete work has been submitted to the Review of Economic Design [62].
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Markov Decision Problem (MDP), which has been well studied in the literature [10, 66]. Let

us call the efficiency levels and task difficulties together as types of the tasks and resources.

However, the types are usually observed privately by the vendors and hospitals (agents),

who are rational and intelligent. The efficiencies of the vendors are private information of the

vendors (depending on what sort of doctors they hire, or machinery they use), and they might

misreport this information in order to win the contract and to increase their net returns. At

the same time the difficulty of the medical task is private to the hospital, and is unknown to

the experts. A strategic hospital, therefore, can misreport this information to the hired experts

as well. Hence, the asymmetry of information at different agents’ end transforms the problem

from a completely or partially observable MDP into a dynamic game among the agents.

Motivated by examples of this kind, in this section, we analyze them using a formal mech-

anism design framework. We consider only cases where the solution of the problem involves

monetary transfer, which makes the payoffs quasi-linear. The reporting strategy of the agents

and the decision problem of the controller is dynamic since we assume that the types of the

tasks and resources are varying with time. In addition, the above problem has two character-

istics, namely, interdependent values : the task execution generates values to the task owners

that depend on the efficiencies of the assigned resources, and exchange economy : a trade envi-

ronment where both buyers (task owners) and sellers (resources) are present. In this section,

the theme of modeling and analysis would be centered around the settings of task outsourcing

to strategic experts. We aim to have a socially efficient mechanism, and at the same time, that

would demand truthfulness and voluntary participation of the agents in this setting.

Prior Work

The above properties have been investigated separately in literature on dynamic mechanism

design. Bergemann and Välimäki [9] have proposed an efficient mechanism called the dynamic

pivot mechanism, which is a generalization of the Vickrey-Clarke-Groves (VCG) mechanism [82,

19, 33] in a dynamic setting, which also serves to be truthful and efficient. Athey and Segal [5]

consider a similar setting with an aim to find an efficient mechanism that is budget balanced.

Cavallo et al. [17] develop a mechanism similar to the dynamic pivot mechanism in a setting

with agents whose type evolution follows a Markov process. In a later work, Cavallo et al.

[18] consider periodically inaccessible agents and dynamic private information jointly. Even

though these mechanisms work for an exchange economy, they have the underlying assumption

of private values, i.e., the reward experienced by an agent is a function of the allocation and

her own private observations. Mezzetti [48, 49], on the other hand, explored the other facet,

namely, interdependent values, but in a static setting, and proposed a truthful mechanism.
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The mechanism proposed in these papers use a two-stage mechanism, since it is impossible to

design a single-stage mechanism satisfying both truthfulness and efficiency even for a static

setting [39].

Contributions

In this section, we propose a dynamic mechanism named MDP-based Allocation and TRansfer

in Interdependent-valued eXchange economies (abbreviated MATRIX), which is designed to

address the class of interdependent values. It extends the results of Mezzetti [48] to a dy-

namic setting, and serves as an efficient, truthful mechanism. Under a certain realistic domain

restriction, agents receive non-negative payoffs by participating in it. The key feature that

distinguishes our model and results from that of the existing dynamic mechanism literature

is that we address the interdependent values and dynamically varying types (in an exchange

economy) jointly. In Table 3.1, we have summarized the different paradigms of the mechanism

design problem, and their corresponding solutions in the literature.

Valuations STATIC DYNAMIC
Independent VCG Mechanism Dynamic Pivot Mechanism

[82, 19, 33] [9, 17]
Interdependent Generalized VCG Mechanism MATRIX

[48] (this section)

Table 3.1: The different paradigms of mechanism design problems with their solutions.

Our main contributions in this section can be summarized as follows.

• We propose a dynamic mechanism MATRIX, that is efficient, and truthful for the par-

ticipants in an interdependent-valued exchange economy (Theorem 3.2).

◮ This extends the classic mechanism proposed by Mezzetti [48] to a dynamic setting.

◮ It solves the issue of weak indifference by the agents in the second stage of the classic

mechanism.

• Under a restricted domain, we show that this mechanism is also individually rational for

the agents (Theorem 3.3).

• We discuss why known mechanisms like a fixed payment mechanism, VCG, or the dynamic

pivot mechanism [9] do not satisfy all the properties that MATRIX satisfies (beginning

of Section 5.1.3 and Section 3.2.3).

We discuss that MATRIX comes at a computational cost which is the same as that of its

independent value counterpart (Section 3.2.3). This work provides a first attempt of designing a
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dynamic mechanism which is strict ex-post incentive compatible and efficient in interdependent

value setting with Markovian type evolution. In a restricted domain, which appears often in

real-world scenarios, we show that our mechanism is ex-post individually rational as well.

3.2.2 Background and Model

Let the set of agents be given by N = {1, . . . , n}, who interact with each other for a countably

infinite time horizon indexed by time steps t = 0, 1, 2, . . .. The time-dependent type of each

agent is denoted by θi,t ∈ Θi for i ∈ N . We will use the shorthands θt ≡ (θ1,t, . . . , θn,t) ≡
(θi,t, θ−i,t), where θ−i,t denotes the type vector of all agents excluding agent i. We will refer to

θt as the type profile, θt ∈ Θ ≡ ×i∈NΘi.

Stationary Markov Type Transitions, SMTT. The combined type θt follows a first order

Markov process which is governed by the transition probability function F (θt+1|at, θt), which is

independent across agents, defined formally below.

Definition 3.4 (Stationary Markov Type Transitions, SMTT) We call the type transi-

tions to follow stationary Markov type transitions if the joint distribution F of the types of the

agents θt ≡ (θ1,t, · · · , θn,t), and the marginals Fi’s exhibit the following for all t.

F (θt+1|at, θt, θt−1, · · · , θ0) = F (θt+1|at, θt), and

F (θt+1|at, θt) =
∏

i∈N

Fi(θi,t+1|at, θi,t). (3.8)

We will assume the types to follow SMTT throughout the rest of the chapter.

The allocation set is denoted by A. In each round t, the mechanism designer chooses an

allocation at from this set and decides a payment pi,t to agent i. The allocation leads to a

valuation to agent i, vi : A×Θ→ R. This is in contrast to the classical independent valuations

(also called private values) case where valuations are assumed to depend only on i’s own type;

vi : A×Θi → R. However, we assume for all i, |vi(a, θ)| <∞, for all a and θ.

In the later part of this chapter, we will restrict our attention to a restricted space of

allocations and valuations as discussed below.

Subset Allocation, SA. Let us motivate this restriction with the medical task assignment

example given in the previous section. The organizations outsource tasks to experts for a

payment, where the expert may have different and often time-varying capabilities of executing

the task. The task owners come with a specific task difficulty (type of the task owner), which

is usually privately known to them, while the workers’ capabilities (types of the workers) are

their private information. A central planner’s job in this setting is to efficiently assign the tasks
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to the workers. Clearly, in this setting, the set of possible allocations is the set of the subsets

of agents, i.e., A = 2N . Note that, for a finite set of players, the allocation set is always finite.

So, we can formally define this setting as follows.

Definition 3.5 (Subset Allocation, SA) When the set of allocations is the set of all subsets

of the agent set, i.e., A = 2N , we call the domain a subset allocation domain.

Peer Influenced Valuations, PIV Even though the valuation of agent i is affected by

not only her private type but also by the types of others, it is often the case that the valuation

is affected by the types (e.g. the efficiencies of the workers in a joint project) of only the selected

agents. The valuation therefore is a function of the types of the allocated agents and not the

whole type vector, vi : A×ΘA → R. We also assume that the value of a non-selected agent is

zero. Formally, we define this setting as peer influenced valuations (PIV).

Definition 3.6 (Peer Influenced Valuations, PIV) This is a special case of interdependent

valuations in the SA domain, where the valuation of agent i is a function of the types of other

selected agents, vi : A×ΘA → R. In particular, the value function is given by,

vi(a, θ) =

{

vi(a, θa) if i ∈ a

0 otherwise
(3.9)

Efficient Allocation, EFF. The mechanism designer aims to maximize the sum of the val-

uations of task owners and workers, summed over an infinite horizon, geometrically discounted

with factor δ ∈ (0, 1). The discount factor accounts for the fact that a future payoff is less

valued by an agent than a current stage payoff. We assume δ to be common knowledge. If the

designer would have perfect information about the θt’s, his objective would be to find a policy

πt, which is a sequence of allocation functions from time t, that yields the following for all t

and for all type profiles θt,

πt ∈ argmax
γ

Eγ,θt

[
∞∑

s=t

δs−t
∑

i∈N

vi(as(θs), θs)

]

, (3.10)

where γ = (at(·), at+1(·), . . .) is any arbitrary sequence of allocation functions. Here we use

Eγ,θt [·] = E[ · |θt; γ] for brevity of notation. We point to the fact that the allocation policy γ is

not a random variable in this expectation computation. The policy is a functional that specifies

what action to take in each time instant for a given type profile. Different policies will lead to

different sequences of allocation functions over the infinite horizon, and the efficient allocation

is the one that maximizes the expected discounted sum of the valuations of all the agents.
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In general, the allocation policy πt depends on the time instant t. However, for the special

kind of stochastic behavior of the type vectors, namely SMTT, and due to the infinite horizon

discounted utility, this policy becomes stationary, i.e., independent of t. We will denote such a

stationary policy by π = (a(·), a(·), . . .). Thus, the efficient allocation under SMTT reduces to

solving for the optimal action in the following stationary Markov Decision Problem (MDP).

W (θt) = max
π

Eπ,θt

[
∞∑

s=t

δs−t
∑

j∈N

vj(a(θs), θs)

]

= max
a∈A

Ea,θt

[
∑

j∈N

vj(a, θt) + δEθt+1|a,θtW (θt+1)

]

. (3.11)

Here, with a slight abuse of notation, we have used a to denote the actual action taken in t rather

than the allocation function. The second equality comes from a standard recursive argument for

stationary infinite horizon MDPs. We refer an interested reader to standard text [66, e.g.] for

this reduction. Above we have used the following shorthand, Eθt+1|a,θt [·] =
∑

θt+1
p(θt+1|θt; at)[·].

We will refer to W as the social welfare. The efficient allocation under SMTT is defined as

follows.

Definition 3.7 (Efficient Allocation, EFF) An allocation policy a(·) is efficient under

SMTT if for all type profiles θt,

a(θt) ∈ argmax
a∈A

Ea,θt

[
∑

j∈N

vj(a, θt) + δEθt+1|a,θtW (θt+1),

]

. (3.12)

Challenges in Mechanism Design with Interdependent Valuations

true values
Agents observeAgents

report types

Agents report

valuestrue types

Agents observe

Stage 1 Stage 2

Allocation Payment

At time t

v2(a(θ̂t), θt)

vn(a(θ̂t), θt)

... ...

θ̂1,t

θ̂2,t

θ̂n,t

... a(θ̂t)

v̂1,t

v̂2,t
...

v̂n,t

v1(a(θ̂t), θt)θ1,t

θ2,t

...
...

θn,t

p(θ̂t, v̂t)

Figure 3.3: Graphical illustration of a candidate dynamic mechanism in an interdependent
value setting.
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The value interdependency among the agents poses a challenge for designing mechanisms.

Even in a static setting, if the allocation and payment are decided simultaneously under the

interdependent valuation setting, efficiency and incentive compatibility together can only be

satisfied by a constant mechanism [39]. This strong negative result compels us to split the

decisions of allocation and payment into two separate stages. We would mimic the two-stage

mechanism of [48] for each time instant of the dynamic setting (see Figure 3.3). The designer

decides the allocation a(θ̂t) after the agents report their types θ̂t in first stage. After allocation,

the agents observe their valuations vi(a(θ̂t), θt)’s, and report v̂i,t’s to the designer. The payment

decision is made after this second round of reporting. Our definition of incentive compatibility

is accordingly modified for a two stage mechanism.

Due to SMTT and the infinite horizon of the MDP, we will focus only on stationary mech-

anisms, that give a stationary allocation and payment to the agents in each round of the

dynamic game. Let us denote a typical two-stage dynamic mechanism by M = 〈a, p〉. The

function a : Θ→ A yields an allocation for a reported type profile θ̂t in round t. Depending on

the reported types in the first stage, the mechanism designer decides the allocation a(θ̂t), and

due to which agent i experiences a valuation of vi(a(θ̂t), θt) in round t. Let us suppose that in

the second stage, the reported value vector is given by v̂t. The payment function p is a vector

where pi(θ̂t, v̂t) is the payment received by agent i at instant t. Combining the value and pay-

ment in each round we can write the expected discounted utility of agent i in the quasi-linear

setting, denoted by uM
i (θ̂t, v̂t|θt), when the true type vector is θt and the reported type and

value vectors are θ̂t and v̂t respectively. This utility has two parts: (a) the current round utility,

and (b) expected utilities over the future rounds. The expectation over the future rounds is

taken on the true types. Thus the effect of manipulation is limited only to the current round

in this utility expression. This is enough to consider due to the single deviation principle of

Blackwell [13].

uM
i (θ̂t, v̂t|θt)

= vi(a(θ̂t), θt) + pi(θ̂t, v̂t)
︸ ︷︷ ︸

current round utility

+Eπ,θt

[
∞∑

s=t+1

δs−t(vi(a(θs), θs) + pi(θs, vs))

]

︸ ︷︷ ︸

expected discounted future utility

(3.13)

Here π denotes the stationary policy of actions, (a(·), a(·), . . .). For the SMTT, the type evolu-

tion is dependent on only the current type profile and action. To avoid confusion, we will use

π, a(θ̂t), or a(θs), s ≥ t + 1, according to the context.

55



Equipped with these notations, we can now define incentive compatibility.

Definition 3.8 (w.p. EPIC) A mechanism M = 〈a, p〉 is within period Ex-post Incentive

Compatible (w.p. EPIC) if for all agents i ∈ N , for all possible true types θt, for all reported

types θ̂i,t, for all reported values v̂i,t, and for all t,

uM
i (θt, (vi(a(θt), θt), v−i(a(θt), θt))|θt)
≥ uM

i ((θ̂i,t, θ−i,t), (v̂i,t, v−i(a(θ̂i,t, θ−i,t), θt))|θt)

That is, reporting the types and valuations in the two stages truthfully is an ex-post Nash

equilibrium. In this context, individual rationality is defined as follows.

Definition 3.9 (w.p. EPIR) A mechanism M = 〈a, p〉 is within period Ex-post Individually

Rational (w.p. EPIR) if for all agents i ∈ N , for all possible true types θt and for all t,

uM
i (θt, (vi(a(θt), θt), v−i(a(θt), θt))|θt) ≥ 0.

That is, reporting the types and valuations in the two stages truthfully yields non-negative

expected utility.

3.2.3 The MATRIX Mechanism

In the setting mentioned above, our goal is to design a mechanism which is efficient (Defini-

tion 3.7), w.p. EPIC (Definition 3.8), and w.p. EPIR (Definition 3.9). Before we present the

mechanism, let us discuss why it is non-trivial to design such a mechanism in this setting. We

start with discussing a couple of näıve attempts to decide the allocation and the payment.

Fixed payment mechanism: A candidate mechanism that is often applied in organiza-

tions is a fixed payment mechanism. The allocation is done using the performance history of

the agents. That is, select the agent(s) who has(have) been proved to be the most capable of

doing the task in the past. But one can immediately notice that this fixed payment mechanism

would not be efficient since the capabilities (types) of the agents vary over time. To make the

correct decision on the allocation, it is important to know the realized type of the agent. Since

this is private, the history will give only a (possibly incorrect) estimate of the type. Hence, this

is not efficient.

Repeated static VCG mechanism: We know that the VCG mechanism is truthful in

dominant strategies for static settings. The mechanism works on an efficient allocation for a

single stage game, and pays each agent her marginal contribution. One can think of applying
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the static VCG in each stage of the dynamic setting. However, now, social welfare is no longer

the sum of the values at the current stage, rather is the expected discounted sum of the values

over the horizon of the dynamic game. Hence the allocation given by the static VCG mechanism

would not be efficient in a dynamic setting.

Discussion. The above two candidate mechanisms are designed to be truthful in each round,

however, they fail to be efficient. It suggests that, to achieve efficient allocation in a dynamic

setting, one needs to consider the expected future evolution of the types of the agents, which

would reflect in the allocation and payment decisions. The value interdependency among the

agents plays a crucial role here. The reason the above approach does not work is not an

accident. We have already mentioned that even in a static interdependent value setting, if

the allocation and payment are decided simultaneously, one cannot guarantee efficiency and

incentive compatibility together [39]. One way out is to split the decision of allocation and

payment into two stages [48].

Following this observation, we propose MDP-based Allocation and TRansfer in

Interdependent-valued eXchange economies (MATRIX), which we prove to satisfy EFF and

w.p. EPIC for general interdependent valuations, and w.p. EPIR under the restricted setting

of SA and PIV.

Given the above dynamics of the game as illustrated in Figure 3.3, the agents report their

types in the first stage, and then the allocation is decided. In the second stage, they report their

experienced values and the payment is decided. The task of the mechanism designer, therefore,

is to design the allocation and payment rules 〈a, p〉.
We have already defined the social welfare given by Equation (3.11). Let us also define

the maximum social welfare excluding agent i to be W−i(θ−i,t), which is the same as Equation

(3.11) except now the sum of the valuations and the allocations are over all agents j 6= i.

W−i(θ−i,t) = max
a−i∈A−i

Ea−i,θ−i,t

[ ∑

j∈N\{i}

vj(a−i, θ−i,t) +

δEθ−i,t+1|a−i,θ−i,t
W−i(θ−i,t+1)

]

(3.14)

Notice that, when i is absent, the following two notations are equivalent: Eθt+1|a−i,t,θt[·] =

Eθ−i,t+1|a−i,t,θ−i,t
[·], since the type of i will be unchanged when she is not in the game. However,

we adopt the former for the ease of notation.

Using the definitions above and in the previous section, now we formally present MATRIX.

Mechanism 3.1 (MATRIX) Given the reported type profile θ̂t in stage 1, choose the agents
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a∗(θ̂t) as follows.

a∗(θ̂t) ∈ argmax
a

Ea,θ̂t

[
∑

j∈N

vj(a, θ̂t) + δEθt+1|a,θ̂t
W (θt+1),

]

(3.15)

and transfer to agent i after agents report v̂t in stage 2, a payment of,

p∗i (θ̂t, v̂t) =

(
∑

j 6=i

v̂j,t

)

+ δEθt+1|a∗(θ̂t),θ̂t
W−i(θ−i,t+1)−W−i(θ̂−i,t)

−
(

v̂i,t − vi(a
∗(θ̂t), θ̂t)

)2

. (3.16)

The last quadratic term in the above equation is agent i’s penalty of not being consistent with

the first stage report. The intuition of charging a penalty is to make sure that agent i be

consistent with her reported type θ̂i,t in the first stage and her value report v̂i,t in the second

stage, given that others are reporting their types and values truthfully. We will argue that

when all agents other than agent i reports their types and values truthfully in those stages, it

is the best response for agent i to do so as well. This term distinguishes our mechanism from

that given by Mezzetti [48], where the agents are weakly indifferent between reporting true and

false values in the second round.

It is worth mentioning that we have used this quadratic term for the ease of exposition.

However, it is easy to show that any non-negative function g(x, ℓ) having the property that

g(x, ℓ) = 0⇔ x = ℓ would still satisfy the claims made in this section.

Efficiency and Incentive Compatibility

We summarize the dynamics of MATRIX using an algorithmic flowchart in Algorithm 2. The

following theorem shows that MATRIX satisfies two desirable properties in the unrestricted

setting.

Theorem 3.2 Under SMTT, MATRIX is EFF and w.p. EPIC. In addition, the second stage

of MATRIX is strictly EPIC.

Note that the above theorem does not put any restriction on the allocation space and the

valuation functions. MATRIX is a two stage mechanism, and we need to ensure that truth-

telling is a best response in both these stages when other agents also do the same. Also, the

strict EPIC in the second stage of this mechanism improves upon the mechanism given by

Mezzetti [48]. Let us prove the above theorem.
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Algorithm 2 MATRIX

for all time instants t do
Stage 1:
for agents i = 0, 1, . . . , n do
agent i observes θi,t;

agent i reports θ̂i,t;
end for
compute allocation a∗(θ̂t) according to Equation (3.15);
Stage 2:
for agents i = 0, 1, . . . , n do
agent i observes vi(a

∗(θ̂t), θt);
agent i reports v̂i,t;

end for
compute payment to agent i, p∗i (θ̂t, v̂t), Equation (3.16);
types evolve θt → θt+1 according to SMTT;

end for

Proof: Clearly, given true reported types, the allocation of MATRIX is efficient by Defini-

tion 3.7. Hence, we need to show only that MATRIX is w.p. EPIC.

To show that MATRIX is w.p. EPIC, let us assume that the true type profile at time t is θt,

and all agents j 6= i report their true types and values in each round s = t, t+ 1, · · · etc. Only

agent i reports θ̂i,t and v̂i,t in the two stages. Therefore, θ̂t = (θ̂i,t, θ−i,t) and v̂j,t = vj(a
∗(θ̂t), θt),

for all j 6= i. Using the single deviation principle [13], we conclude that it is enough to consider

only a single shot deviation from the true report of the type. Hence, without loss of generality,

let us assume that agent i deviates only in round t of this game.

Let us write down the discounted utility to agent i at time t.

uMATRIX
i ((θ̂i,t, θ−i,t), (v̂i,t, v−i(a(θ̂i,t, θ−i,t), θt))|θt)

= vi(a
∗(θ̂t), θt) + p∗i (θ̂t, v̂t)

︸ ︷︷ ︸

current round utility

+Eπ∗,θt

[
∞∑

s=t+1

δs−t(vi(a
∗(θs), θs) + p∗i (θs, vs))

]

︸ ︷︷ ︸

expected discounted future utility

= vi(a
∗(θ̂t), θt) +

∑

j 6=i

v̂j,t + δEθt+1|a∗(θ̂t),θ̂t
W−i(θ−i,t+1)−W−i(θ̂−i,t)

−
(

v̂i,t − vi(a
∗(θ̂t), θ̂t)

)2

+ Eπ∗,θt

[
∞∑

s=t+1

δs−t(vi(a
∗(θs), θs) + p∗i (θs, vs))

]

We use the shorthand π∗ to denote the allocation policy under MATRIX. This gives rise to

the allocations a(·) in each round given the type profiles (either reported or true). The first
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equality is from Equation (3.13). The second equality comes by substituting the expression of

payment from Equation (3.16).

Now, from the previous discussion on the v̂j,t’s and θ̂j,t’s, j 6= i, we get,

uMATRIX
i ((θ̂i,t, θ−i,t), (v̂i,t, v−i(a(θ̂i,t, θ−i,t), θt))|θt)
= vi(a

∗(θ̂t), θt) +
∑

j 6=i

vj(a
∗(θ̂t), θt) + δEθt+1|a∗(θ̂t),θ̂t

W−i(θ−i,t+1)−W−i(θ−i,t)

−
(

v̂i,t − vi(a
∗(θ̂t), θ̂t)

)2

+ Eπ∗,θt

[
∞∑

s=t+1

δs−t(vi(a
∗(θs), θs) + p∗i (θs, vs))

]

≤ vi(a
∗(θ̂t), θt) +

∑

j 6=i

vj(a
∗(θ̂t), θt) + δEθt+1|a∗(θ̂t),θ̂t

W−i(θ−i,t+1)−W−i(θ−i,t)

+ Eπ∗,θt

[
∞∑

s=t+1

δs−t(vi(a
∗(θs), θs) + p∗i (θs, vs))

]

(3.17)

The equality comes because of the assumption that all agents j 6= i report their types and

values truthfully. The inequality is because we are ignoring a non-positive term. Now, let us

consider the last term of the above equation.

Eπ∗,θt

[
∞∑

s=t+1

δs−t(vi(a
∗(θs), θs) + p∗i (θs, vs))

]

= Eπ∗,θt

[
∞∑

s=t+1

δs−t (vi(a
∗(θs), θs)

+
∑

j 6=i

vj(a
∗(θs), θs) + δEθs+1|a∗(θs),θsW−i(θ−i,s+1)−W−i(θ−i,s)

)]

= Eπ∗,θt

[ ∞∑

s=t+1

δs−t
(∑

j∈N

vj(a
∗(θs), θs) + δEθs+1|a∗(θs),θsW−i(θ−i,s+1)−W−i(θ−i,s)

)]

The first equality comes from Equation (3.16). We can now rearrange the expectation for the

first term above using the Markov property of θt that gives, Eπ∗,θt[·] = Eθt+1|a∗(θ̂t),θt
[Eπ∗,θt+1[·]].

Therefore,

Eπ∗,θt

[
∞∑

s=t+1

δs−t(vi(a
∗(θs), θs) + p∗i (θs, vs))

]
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= Eθt+1|a∗(θ̂t),θt

[

Eπ∗,θt+1

(
∞∑

s=t+1

δs−t
∑

j∈N

vj(a
∗(θs), θs)

)]

+ Eπ∗,θt

[
∞∑

s=t+1

δs−t
(
δEθs+1|a∗(θs),θsW−i(θ−i,s+1)−W−i(θ−i,s)

)

]

= Eθt+1|a∗(θ̂t),θt
(δW (θt+1))

+ Eπ∗,θt

[
∞∑

s=t+1

δs−t
(
δEθs+1|a∗(θs),θsW−i(θ−i,s+1)−W−i(θ−i,s)

)

]

(3.18)

The last equality comes from the definition of W (θt+1). Let us now focus on the last term of

the above equation.

Eπ∗,θt

[
∞∑

s=t+1

δs−t
(
δEθs+1|a∗(θs),θsW−i(θ−i,s+1)−W−i(θ−i,s)

)

]

=
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭✭

δ2Eπ∗,θtW−i(θ−i,t+2)− δEθt+1|a∗(θ̂t),θt
W−i(θ−i,t+1)

+
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭✭

δ3Eπ∗,θtW−i(θ−i,t+3)−
✭

✭
✭
✭
✭
✭
✭
✭
✭
✭✭

δ2Eπ∗,θtW−i(θ−i,t+2)

+ · · · −
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭✭

δ3Eπ∗,θtW−i(θ−i,t+3)

+ · · · − · · ·
= −δEθt+1|a∗(θ̂t),θt

W−i(θ−i,t+1) (3.19)

Let us show the reduction from the first term on the LHS to the first term on the RHS above.

The reduction of the other terms comes from similar exercises which is straightforward and not

shown here.

Eπ∗,θtEθt+2|a∗(θt+1),θt+1
W−i(θ−i,t+2)

= Eθt+1|a∗(θ̂t),θt
[Eθt+2|a∗(θt+1),θt+1W−i(θ−i,t+2)]

= Eθt+1|a∗(θ̂t),θt
[Eθt+2|a∗(θt+1),θt+1,θtW−i(θ−i,t+2)]

= Eθt+2|π∗,θtW−i(θ−i,t+2)

= Eπ∗,θtW−i(θ−i,t+2)

The first equality above comes from the fact that the function inside bracket is only a function

of θt+1, and the second equality is due to the Markov property.
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Hence, combining Equations 3.17, 3.18, and 3.19, we get,

uMATRIX
i ((θ̂i,t, θ−i,t), (v̂i,t, v−i(a(θ̂i,t, θ−i,t), θt))|θt)
≤ vi(a

∗(θ̂t), θt) +
∑

j 6=i

vj(a
∗(θ̂t), θt) + δEθt+1|a∗(θ̂t),θ̂t

W−i(θ−i,t+1)

− W−i(θ−i,t) + δEθt+1|a∗(θ̂t),θt
[W (θt+1)−W−i(θ−i,t+1)] (3.20)

We also note that,

Eθt+1|a∗(θ̂t),θ̂t
W−i(θ−i,t+1) = Eθt+1|a∗(θ̂t),θt

W−i(θ−i,t+1) (3.21)

This is because when i is removed from the system (while computing W−i(θ−i,t+1)), the values

of none of the other agents will depend on the type θi,t+1. And due to the independence of type

transitions, i’s reported type θ̂i,t can only influence θi,t+1. Hence, the reported value of agent i

at t, i.e., θ̂i,t cannot affect W−i(θ−i,t+1).

Hence, Equation 3.20 can be rewritten and we can show the following inequality.

uMATRIX
i ((θ̂i,t, θ−i,t), (v̂i,t, v−i(a(θ̂i,t, θ−i,t), θt))|θt)
≤ vi(a

∗(θ̂t), θt) +
∑

j 6=i

vj(a
∗(θ̂t), θt) +

✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭
✭

δEθt+1|a∗(θ̂t),θt
W−i(θ−i,t+1)

−W−i(θ−i,t) + δEθt+1|a∗(θ̂t),θt
[W (θt+1)−✭

✭
✭
✭
✭
✭✭W−i(θ−i,t+1)] (from Equation (3.21))

=
∑

j∈N

vj(a
∗(θ̂t), θt) + δEθt+1|a∗(θ̂t),θt

W (θt+1)−W−i(θ−i,t)

≤
∑

j∈N

vj(a
∗(θt), θt) + δEθt+1|a∗(θt),θtW (θt+1)−W−i(θ−i,t)

(by definition of a∗(θt), Equation (3.15))

= uMATRIX
i (θt, (vi(a(θt), θt), v−i(a(θt), θt))|θt). (3.22)

This shows that utility of agent i is maximized when θ̂i,t = θi,t and v̂i,t = vi(a
∗(θt), θt). This

proves that MATRIX is within period ex-post incentive compatible.

We now argue that the second stage is strictly EPIC. This happens because of the quadratic

penalty term
(

v̂i,t − vi(a
∗(θ̂t), θ̂t)

)2

in the payment p∗i (Equation (3.16)). If all the agents except

i report the types and values truthfully, and agent i also reports her type truthfully in the first

stage, then the penalty term will always penalize her if v̂i,t is different from vi(a
∗(θt), θt), which

is her true valuation. Hence, the best response of agent i would be to report the true values in

the second stage, which makes MATRIX strictly EPIC in this stage. �
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Why the Dynamic Pivot Mechanism would not work in this Setting

It is interesting to note that, if we tried to use the dynamic pivot mechanism (DPM) [9],

unmodified in this setting, the true type profile θt in the first summation of Equation (3.20)

would have been replaced by θ̂t, since this comes from the payment term (Equation (3.16)). The

proof for the DPM relies on the private value assumption (see the beginning of Section 3.2.2

for a definition) such that, when reasoning about the valuations for the other agents j 6= i, we

have vj(a
∗((θ̂i,t, θ−i,t)), (θ̂i,t, θ−i,t)) = vj(a

∗(θ̂t), θj,t), with which the EPIC claim of DPM can be

shown. But in the interdependent value setting, we cannot do such a substitution, and hence

the proof of EPIC in DPM does not work. We have to invoke the second stage of value reporting

in order to satisfy the EPIC.

Ex-post Individual Rationality for a Restricted Domain

In this section, we consider subset allocation (SA) and the values to be peer influenced (PIV).

Note that now the valuation of agent i is given by vi(a, θa), and the maximum social welfare

would be given by,

W (θt) = max
π

Eπ,θt

[
∞∑

s=t

δs−t
∑

j∈N

vj(a(θs), θa(θs))

]

= max
a∈A

Ea,θt

[
∑

j∈N

vj(a, θa) + δEθt+1|a,θtW (θt+1)

]

(3.23)

Similarly the maximum social welfare excluding agent i is given by,

W−i(θ−i,t)

= max
a−i

Ea−i,θt




∑

j∈N\{i}

vj(a−i, θa−i
) + δEθt+1|a−i,θtW−i(θ−i,t+1)



 (3.24)

Both these definitions are the same as Definitions 3.11 and 3.14, but redefined in this restricted

domain. We now state the following theorem on individual rationality.

Theorem 3.3 (Individual Rationality) When the allocations are chosen from class SA,

values are in PIV, and types evolve in SMTT, MATRIX is w.p. EPIR.

Proof: We observe that the allocation set is the set of subsets of N , the player set. Therefore,

the set of allocations excluding agent i, denoted by A−i = 2N\{i}, is already contained in the
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set of allocations including i, denoted by A = 2N . Formally, this means a−i ∈ A−i ⊆ A ∋ a.

Therefore, the policies π−i ∈ A∞
−i ⊆ A∞ ∋ π. From Equation 3.11, we can write the optimal

social welfare in terms of the optimal policy π∗ as follows.

W (θt) =
∑

j∈N

vj(a
∗(θt), θa∗(θt)) + δEθt+1|a∗(θt),θtW (θt+1)

= Eπ∗,θt

[
∞∑

s=t

δs−t
∑

j∈N

vj(a
∗(θs), θa∗(θs))

]

(3.25)

Hence in the ex-post Nash equilibrium, the utility of agent i is given by,

uMATRIX
i (θt, (vi(a(θt), θt), v−i(a(θt), θt))|θt)
=
∑

j∈N

vj(a
∗(θt), θt) + δEθt+1|a∗(θt),θtW (θt+1)−W−i(θ−i,t)

= W (θt)−W−i(θ−i,t).

The first equality comes from the last equality in Equation 3.22. The last expression in the

equation above can be written as,

W (θt)−W−i(θ−i,t)

= Eπ∗,θt

[
∞∑

s=t

δs−t
∑

j∈N

vj(a
∗(θs), θa∗(θs))

]

− Eπ∗

−i,θt





∞∑

s=t

δs−t
∑

j∈N\{i}

vj(a
∗
−i(θ−i,s), θa∗

−i
(θ−i,s))





≥ Eπ∗

−i,θt





∞∑

s=t

δs−t
∑

j∈N\{i}

vj(a
∗
−i(θ−i,s), θa∗

−i(θ−i,s))





− Eπ∗

−i,θt





∞∑

s=t

δs−t
∑

j∈N\{i}

vj(a
∗
−i(θ−i,s), θa∗

−i(θ−i,s))





= 0 (3.26)

The inequality holds since while choosing the optimal policy including agent i, i.e., π∗, one has

the option of choosing π∗
−i as well, as we are in the SA domain, and the fact that the valuations
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of the unallocated agents are zero, a consequence of the PIV domain. If this inequality was

not true, then there would exist some π∗
−i ∈ A∞

−i which would have achieved a social welfare

more than the maximum, which is a contradiction. This proves that MATRIX is within period

ex-post individually rational. �

Complexity of Computing the Allocation and Payment

The non-strategic version of the resource to task assignment problem was that of solving an

MDP, whose complexity was polynomial in the size of state-space [90]. Interestingly, for the

proposed mechanism, the allocation and payment decisions are also solutions of MDPs (Equa-

tions 3.15, 3.16). Hence the proposed mechanism MATRIX has polynomial time complexity

in the number of agents and size of the state-space, which is the same as that of the dynamic

pivot mechanism [9].

In order to get a feel for the theory behind the mechanism MATRIX, let us illustrate the

mechanism through an example in the following section.

3.2.4 Simulations

In this section, we demonstrate the properties satisfied byMATRIX through simple illustrative

experiments, and compare the results with a näıve fixed payment mechanism (CONST). In

addition to the already proven properties of MATRIX, we also explore two more properties

here, namely payment consistency and budget balance (defined later). For brevity, we choose

a relatively small example, but analyze it in detail. For the simplicity of the illustration,

we simulate only the stage 1 reports, i.e., only the type reports, since in the second round

MATRIX has been proved to be strictly truthful.

Experimental Setup

Let us consider an example of a task execution in a small organization, which has three agents:

a task owner (center) and two production teams (agents). We index them by 0, 1, and 2. At

time t, let the difficulty of the task be denoted by θ0,t, which is a private information of the task

owner, i.e., agent 0, and the efficiencies of agents 1 and 2 be denoted by θ1,t and θ2,t respectively,

which are private to the respective agents. We assume that each of these types can take three

possible values: high (H), medium (M), and low (L). To define value functions, we associate

a real number to each of these types, given by 1 (high), 0.75 (medium), and 0.5 (low). We

consider the following value structure.

v0(at, θt) =

(

k1
θ0,t

∑

i∈at,i 6=0

θi,t − k2

)

10∈at ;
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vj(at, θt) = −k3θ2j,t1j∈at , j = 1, 2; ki > 0, i = 1, 2, 3.

The intuition behind choosing such a value function is the following. The value of the center

is directly proportional to the sum total efficiency of the selected employees and inversely

proportional to the difficulty of the task. For each production team, the value is negative

(representing cost). It is proportional to the square of the efficiency level, representing a law of

diminishing returns. Though the results in this section do not place any restriction on the value

structure, we have chosen a form that is reasonable in practice. Note that the value of the center

depends on the types of all the selected agents, giving rise to PIV setting. Also, because of the

presence of both buyers and sellers, the market setting here is that of an exchange economy.

Type transitions are independent and follow a first order Markov chain. We choose a

transition probability matrix that reflects that efficiency is likely to be reduced after a high

workload round, improved after a low workload round (e.g. when a production team is not

assigned).

A Näıve Mechanism (CONST)

We consider another mechanism, where the allocation decision is the same as that of MATRIX,

that is, given by Equation 3.15 but the payment is a fixed constant p if the team is selected, and

the task owner is charged an amount p times the number of agents selected. This mechanism

satisfies, by construction, PC and BB properties. We call this mechanism CONST.

The experiment is run for an infinite horizon with discount factor δ = 0.7 and the results are

summarized in Figures 3.4, 3.5, and 3.6. There are 3 agents each having 3 possible types.

Therefore the 33 = 27 possible type profiles are represented along the x-axis of all the plots,

however, it is explicitly shown only in the bottom-most plot of Figure 3.4 (the true types

are denoted by the letters ‘H’, ‘M’, and ‘L’). This bottom-most plot also shows the actual

(stationary) allocation for all the 27 type profiles (if the agents would have reported their types

truthfully) when the allocation rule of MATRIX is applied. A ‘◦’ denotes the respective agent

is selected, a ‘×’ it is not.
The y-axis of the top plot in Figure 3.4 shows the utility under the payment rule ofMATRIX

(defined in Eq. 3.22) to agent 0 (the task owner). The y-axis of the plot in the middle shows the

utility to agent 1 under the same mechanism (note that the production teams are symmetric,

so it suffices to study only one). Since we are interested in ex-post equilibria, we show utilities

in the setting where all other agents report truthfully, and consider the impact of misreporting

by the agent under study. In these two figures, a ‘◦’ represents true report, a ‘+’ denotes the

utilities from a misreport. We see in Figure 3.4 that truthful reporting is a best response for
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Figure 3.4: Utility of task owner and production team 1 under MATRIX as a function of true
type profiles. The ordering of the 33 = 27 type profiles is represented in the bottom-most plot.

both the agents (◦’s dominates +’s), which illustrates the EPIC result (Theorem 3.2). Also, all

the utilities under truthful reports lie above the zero (Theorem 3.3).

Figure 3.5 shows the plots similar to Figure 3.4 under the mechanism CONST. Since the

allocation rule for both MATRIX and CONST are same, the bottom-most plot of Figure 3.4

would reappear as the x-axis of the plots, which we have suppressed for brevity. The plots show

that the näıve method is not EPIC (for both task owner and production teams there are ◦’s
lying below +’s).

Figure 3.6 investigates the two other properties of MATRIX: payment consistency (PC)

and budget balance (BB). We call a mechanism payment consistent (PC) if the task owner

pays and the production teams receive payment in each round. We call a mechanism budget

balanced (BB) if the sum of the monetary transfers to all the agents is non-positive (no deficit),

failing which the mechanism runs into a deficit. We observe that neither of these properties are
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Figure 3.5: Utility of task owner and team 1 under CONST as function of true type profiles.
The x-axis follows same true profile order as in Fig. 3.4.

EFF EPIC EPIR PC BB
MATRIX X X X × ×
CONST × × × X X

Table 3.2: Simulation summary

satisfied for MATRIX. We summarize the results in Table 3.2.4. Not surprisingly, MATRIX

satisfies three very desirable properties: EFF, EPIC, and EPIR. However, there are instances

where it does not satisfy PC and BB. On the other hand, CONST satisfies PC and BB by

construction, but fails to satisfy the others EFF, EPIC, and EPIR.

It seems that all these properties may not be simultaneously satisfiable in this restricted

domain of dependent valued exchange economy. However, it is promising to derive bounds on

payment inconsistency and budget deficit for a truthful mechanism such asMATRIX. We leave

both proving the impossibility result and deriving the bounds as interesting open problems.

3.2.5 A Discussion on the Characterization of Dynamic Mechanisms

Let us consolidate our findings in this section. We have discussed the interesting and challenging

domain of mechanism design with dynamically varying types and interdependent valuations.
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Figure 3.6: Payment consistency and budget properties of MATRIX. The x-axis follows same
true profile order as in Fig. 3.4.

There is very little work where dynamic types and interdependent values have been addressed

together. Hence, there is very little known on the limits of achievable properties in this do-

main. We have provided one mechanism, namely MATRIX, that is w.p. EPIC, strict in the

second stage, and under a restricted domain, even w.p. EPIR. However, we do not know what

mechanism characterizes those properties in this domain. For example, a question that may

arise is “Is this the only dynamic mechanism that satisfies strict w.p. EPIC in an interdepen-

dent value setting?”. For the static setting with independent values we have the Green-Laffont

characterization result that answers this question for efficiency and DSIC. However, such a

characterization result is absent for interdependent valuations for both static and dynamic

mechanisms. Developing such a full characterization would be worthwhile.

3.3 Conclusions

In this chapter we designed mechanisms in the interdependent valuation setting. The setting

is very relevant for a collaborative task execution in crowdsourcing. In the process of designing

mechanism for the crowdsourcing problem, we have also improved the solutions for general

static and dynamic interdependent value mechanism design problem. In the first part, we
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have looked into the static mechanism design with interdependent valuations, and improved

the classic mechanism of Mezzetti [48] by making it strictly incentive compatible in the second

round.

In the second part of the chapter, we designed a dynamic mechanism that is strict ex-

post incentive compatible and efficient in an interdependent value setting with Markovian type

evolution. In a restricted domain, which appears often in real-world scenarios, we showed that

our mechanism is ex-post individually rational as well. This mechanism, VCPM, extends the

mechanism proposed by Mezzetti [48] to a dynamic setting and connects it to the mechanism

proposed by Bergemann and Välimäki [9].

Both parts open up certain interesting questions: in the first part, we improve the classic

mechanism of Mezzetti by making truthful reporting in the second stage a strict Nash equilib-

rium, though it comes at the cost of subgame perfection of the classic mechanism. It will be

interesting to investigate if these two properties are possible to satisfy together. In the second

part, we have given one mechanism that satisfy a set of properties, but do not know if this is the

maximal set of properties that can be satisfied by any mechanism in dynamic setting. The full

set of mechanisms that satisfy the properties studied in this section is also not characterized.

These questions can form interesting directions for future research.
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Chapter 4

Resource Critical Task Execution via

Crowdsourcing 1

In this chapter, we consider resource critical crowdsourcing tasks and show the limits

of achievability of certain desirable properties in that context. Examples include search

and rescue operations like the DARPA red balloon challenge, DARPA cliqr quest, finding

answers in query incentive networks, or multi-level marketing. The common thread in all

these problems is that we need to incentivize the crowd to find the object/answer as well

as to grow the network. Hence, the mechanism designer needs to design a mechanism

that splits the reward into direct and indirect parts to incentivize both task execution and

task forwarding. However, when the crowd is strategic, certain näıve mechanisms may

run into problems such as fake node attacks (known as sybil attacks in literature), as we

show through examples. In this chapter, we axiomatize some key desired properties in

this kind of crowdsourcing settings, and show that certain properties are impossible to

satisfy simultaneously. Therefore, we focus our attention on approximation schemes and

our exploration leads to a parametrized family of payment mechanisms that characterize

a certain set of desirable properties to achieve certain resource critical objectives.

An exciting application of crowdsourcing is to use social networks in complex task execution.

In this chapter, we address the problem of a planner who needs to incentivize agents within

a network in order to seek their help in executing an atomic task as well as in recruiting

other agents to execute the task. We study this mechanism design problem under two natural

resource optimization settings: (1) cost critical tasks, where the planner’s goal is to minimize

the total cost, and (2) time critical tasks, where the goal is to minimize the total time elapsed

1A major part of this chapter has appeared in the International Conference on Web and Internet Economics,
WINE 2012 [59].
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before the task is executed. We identify a set of desirable properties that should ideally be

satisfied by a crowdsourcing mechanism. In particular, sybil-proofness and collapse-proofness

are two complementary properties in our desiderata. We prove that no mechanism can satisfy

all the desirable properties simultaneously. This leads us naturally to explore approximate

versions of the critical properties. We focus our attention on approximate sybil-proofness and

our exploration leads to a parametrized family of payment mechanisms which satisfy collapse-

proofness. We characterize the approximate versions of the desirable properties in cost critical

and time critical domain.

4.1 Introduction

Advances in the Internet and communication technologies have made it possible to harness the

wisdom and efforts from a sizable portion of the society towards accomplishing tasks which are

otherwise herculean. Examples include labeling millions of images, prediction of stock markets,

seeking answers to specific queries, searching for objects across a wide geographical area, etc.

This phenomenon is popularly known as crowdsourcing (for details, see Surowiecki [79] and

Howe [37]). Amazon Mechanical Turk is one of the early examples of online crowdsourcing

platform. The other example of such online crowdsourcing platforms include oDesk, Rent-A-

Coder, kaggle, Galaxy Zoo, and Stardust@home.

In recent times, an explosive growth in online social media has given a novel twist to

crowdsourcing applications where participants can exploit the underlying social network for

inviting their friends to help executing the task. In such a scenario, the task owner initially

recruits individuals from her immediate network to participate in executing the task. These

individuals, apart from attempting to execute the task by themselves, recruit other individuals

in their respective social networks to also attempt the task and further grow the network.

An example of such applications include the DARPA Red Balloon Challenge [21], DARPA

CLIQR quest [22], query incentive networks [41], and multi-level marketing [26]. The success of

such crowdsourcing applications depends on providing appropriate incentives to individuals for

both (1) executing the task by themselves and/or (2) recruiting other individuals. Designing

a proper incentive scheme (crowdsourcing mechanism) is crucial to the success of any such

crowdsourcing based application. In the red balloon challenge, the winning team from MIT

successfully demonstrated that a crowdsourcing mechanism can be used to accomplish such a

challenging task (see [65]).

A major challenge in deploying such crowdsourcing mechanisms in realistic settings is their

vulnerability to different kinds of manipulations (e.g. false name attacks, also known as sybil

attacks in the literature) that rational and intelligent participants would invariably attempt.
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This challenge needs to be addressed in a specific manner for a specific application setting at

the time of designing the mechanism. The application setting is characterized, primarily, by

the nature of the underlying task and secondly, by the high level objectives of the designer.

Depending on the nature of the underlying task, we can classify them as follows.

Viral Task. A viral task is the one where the designer’s goal is to involve as many members as

possible in the social network. This kind of tasks do not have a well defined stopping criterion.

Examples of such a task include viral marketing, multi-level marketing, users of a social network

participating in an election, etc.

Atomic Task. An atomic task is one in which occurrence of a particular event (typically

carried out by a single individual) signifies the end of the task. By definition, it comes with

a well defined measure of success or accomplishment. Examples of an atomic task include

the DARPA Red Balloon Challenge, DARPA CLIQR quest, query incentive networks, and

transaction authentication in Bitcoin system [6].

In this chapter, we focus on the problem of designing crowdsourcing mechanisms for atomic

tasks such that the mechanisms are robust to any kind of manipulations and additionally achieve

the stated objectives of the designer.

DARPA Red Balloon Challenge: An Example

We provide an example to show that how resource critical crowdsourcing can lead to struc-

tural manipulation by the participants. In 2009, the defense research organization of the US,

DARPA, introduced a network challenge, which is popularly known as the DARPA red balloon

challenge [21]. The challenge was to find the location of 10 red weather balloons which were dis-

persed across the continental US, and whoever finds the correct location of all the balloons will

get $40,000 as the prize money. A snapshot of the locations of the balloons post-competition

is shown in Figure 4.1.

From the geographical diversity, it is clear that the task is impossible for a single individual or

even an organization. However, the winning solution came from the MIT media labs [65], who

found the locations of all the balloons within 9 hours. They employed an incentive scheme,

which split the total reward into 10 parts, one for each balloon, i.e., $4000 per balloon. Now, an

open call was made through the social media so that people can join MIT team’s website and

through the website, they can report their information about the location of the balloon. For

example, if Alice joins the network first, and she knows the location of one or more balloons,

she can report it directly. If she does not, she can invite her friends whom she thinks could have

the information, and the process continues through multiple levels. A typical network formed

in this way is shown in Figure 4.2. The reward is shared in a bottom-up fashion. The locater
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Figure 4.1: The DARPA red balloon challenge location map.

of the balloon, Dave in this case, gets $2000 and the ancestors in the referral tree gets 0.5 times

the reward of their immediate child. The scheme ensured that the referral structure becomes a

tree. We notice that, in this scheme each agent has incentive to search for the balloons, since

it gives them the maximum reward, and also incentive to spread the information, since it gives

them some passive reward.

$500
$250
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$500
Bob

$1000

Carol

$1000

$2000

$2000
Dave

Alice wins $750

Bob wins $500

Carol wins $1000

Dave wins $2000

Balloon

Found!

Balloon

Found!

Figure 4.2: MIT team’s solution to DARPA red balloon challenge.

However, the mechanism is not totally strategyproof. An agent, e.g., Carol can manipulate

the structure as shown in Figure 4.3 and gain. This kind of attacks are called sybil attacks in
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literature. We want our mechanism to be robust against this.
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Figure 4.3: Sybil attack in the MIT scheme.

On the other hand, if we devise a näıve top-down scheme as shown in Figure 4.4, where the

node at depth d from the root gets a reward of 1
2d+t $4000 if the length of the winning chain

is t. It can be shown that this incentive scheme stops sybil attack, however, it introduces a

new problem called the node collapse attack, where agents are better off by colluding with each

other and reporting the location of the balloon as a consolidated single node (see Figure 4.4).
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Figure 4.4: Collapse attack.

4.2 Prior Work

Prior work can be broadly classified into two categories based on the nature of the underlying

task - viral or atomic.
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Viral Task: The literature in this category focuses, predominantly, on the problem of multi-

level marketing. Emek et al. [26] and Drucker and Fleischer [24] have analyzed somewhat

similar models for multi-level marketing over a social network. In their model, the planner

incentivizes agents to promote a product among their friends in order to increase the sales

revenue. While Emek et al. [26] show that the geometric reward mechanism uniquely satisfies

many desirable properties except false-name-proofness, Drucker and Fleischer [24] present a

capping reward mechanism that is locally sybil-proof and collusion-proof. The collusion here

only considers creating fake nodes in a collaborative way. In all multi-level marketing mecha-

nisms, the revenue is generated endogenously by the participating nodes, and a fraction of the

revenue is redistributed over the referrers. On slightly different kind of tasks, Conitzer et al.

[20] propose mechanisms that are robust to false-name manipulation for applications such as

facebook inviting its users to vote on its future terms of use. Further, Yu et al. [91] proposes

a protocol to limit corruptive influence of sybil attacks in P2P networks by exploiting insights

from social networks.

Atomic Task: The red-balloon challenge [21], query incentive networks [41], and transaction

authentication in Bitcoin system [6] are examples of atomic tasks. The reward in such set-

tings is exogenous, and hence the strategic problems are different from the viral tasks such as

multi-level marketing. Sybil attacks still pose a problem here. Pickard et al. [65] proposed a

novel solution method for Red Balloon challenge and can be considered as an early work that

motivated the study of strategic aspects in crowdsourcing applications. [6] provides an almost

uniform mechanism where sybil-proofness is guaranteed via iterated elimination of weakly dom-

inated strategies. The work by Kleinberg and Raghavan [41] deals with a branching process

based model for query incentive networks and proposes a decentralized reward mechanism for

the nodes along the path from the root to the node who answers the query.

4.3 Contributions and Outline of the Chapter

In this chapter, we propose design of crowdsourcing mechanisms for atomic tasks such that

the mechanisms are robust to any kind of manipulations and additionally achieve the stated

objectives of the designer. Our work is distinct from the existing body of related literature in

the following aspects.

(1) Collapse-Proofness: We discover that agents can exhibit an important strategic behavior,

namely node collapse attack, which has not been explored in literature. Though the sybil attack

has been studied quite well, a sybil-proof mechanism cannot by itself prevent multiple nodes

colluding and reporting as a single node in order to increase their collective reward. Node

collapse behavior of the agents is undesirable because, (i) it increases cost to the designer, (ii)
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the distribution of this additional payment creates a situation of bargaining among the agents,

hence is not suitable for risk averse agents, and (iii) it hides the structure of the actual network,

which could be useful for other future purposes. A node collapse is a form of collusion, and it

can be shown that the sybil-proof mechanisms presented in both [6] and [24] are vulnerable to

collapse attack. In this chapter, in addition to sybil attacks, we also address the problem of

collapse attacks and present mechanisms that are collapse-proof.

(2) Dominant Strategy Implementation: In practical crowdsourcing scenarios, we cannot

expect all the agents to be fully rational and intelligent. We, therefore, take a complementary

design approach, where instead of satisfying various desirable properties (e.g. sybil-proofness,

collapse-proofness) in the Nash equilibrium sense, 1 we prefer to address a approximate versions

of the same properties, and design dominant strategy mechanisms. If a mechanism satisfies an

approximate version of a cheat-proof property then it means the loss in an agents’ utility due

to him following a non-cheating behavior is bounded (irrespective of what others are doing).

(3) Resource Optimization Criterion: The present literature mostly focuses on the design

of a crowdsourcing mechanism satisfying a set of desirable cheat-proof properties. The feasible

set could be quite large in many scenarios and hence a further level of optimization of the

resources would be a natural extension. In this chapter, we demonstrate how to fill this gap by

analyzing two scenarios - (1) cost critical tasks, and (2) time critical tasks.

A summary of our specific contributions in this chapter is as follows.

1. We identify a set of desirable properties, namely (1) Downstream Sybil-proofness (DSP),

(2) Collapse-proofness (CP), (3) Strict Contribution Rationality (SCR), (4) Budget Bal-

ance (BB), and (5) Security to Winner (SEC).

2. We first prove that not all properties above (not even a subset of these properties) are

simultaneously satisfiable (Theorem 4.1).

3. We next prove a possibility result which shows that DSP, SCR, CP, and BB can be

simultaneously satisfied but under a very restrictive mechanism (Theorem 4.2).

4. Next, we propose dominant strategy mechanisms for approximate versions of these proper-

ties, which is complementary to the solution provided by Babaioff et al. [6] that guarantees

sybil-proofness in Nash equilibrium. In particular, we define the notion of ǫ-DSP, δ-SCR,

and γ-SEC. The need for defining an approximate version of the CP property does not

arise since all the proposed mechanisms satisfy exact collapse-proofness.

1For example, the solution provided by Babaioff et al. [6] guarantees sybil-proofness only in Nash equilibrium
and not in dominant strategies.
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5. The approximate versions help expand the space of feasible mechanisms, leading us nat-

urally to the following question: How should the mechanism designer (task owner or

planner) choose a particular mechanism from a bunch of possibilities? We ask this ques-

tion in two natural settings: (a) cost critical tasks, where the goal is to minimize the total

cost, (b) time critical tasks, where the goal is to minimize the total time for executing

the task 1. We provide characterization theorems (Theorems 4.4 and 4.5) in both the set-

tings for the mechanisms satisfying approximate properties (ǫ-DSP, δ-SCR, and γ-SEC)

in conjunction with the CP property.

To the best of our knowledge, this is the first attempt at providing approximate sybil-proofness

and exact collapse-proofness in dominant strategies with certain additional fairness guarantees

(δ-SCR and γ-SEC).

4.4 The Model

Consider a planner (such as DARPA) who needs to get an atomic task executed. The planner

recruits a set of agents and asks them to execute the task. The recruited agents can try

executing the task themselves or in turn forward the task to their friends and acquaintances

who have not been offered this deal so far, thereby recruiting them into the system. If an agent

receives separate invitations from multiple nodes to join their network, she can accept exactly

one invitation. Thus, at any point of time, the recruited agents network is a tree. The planner

stops the process as soon as the atomic task gets executed by one of the agents and offers

rewards to the agents as per a centralized monetary reward scheme, say R. Let T = (VT , ET )

denote the final recruitment tree when the atomic task gets executed by one of the recruited

agents. In T , the agent who executes the atomic task first is referred to as the winner. Let

us denote the winner as w ∈ VT . The unique path from the winner to the root is referred to

as the winning chain. We consider the mechanisms where only winning chain receives positive

payments.

For our setting, we assume that the planner designs the centralized reward mechanism R,

which assigns a non-negative reward to every node in the winning chain and zero to all other

nodes. Hence, we can denote the reward mechanism as a mapping R : N× N → R
+ where N

is the set of natural numbers and R
+ is the set of nonnegative reals. In such a mechanism,

R(k, t), k ≤ t denotes the reward of a node which is at depth k in the winning chain, where

length of the winning chain is t. The payment is made only after completion of the task. Note,

this reward mechanism is anonymous to node identities and the payment is solely dependent on

1Note, query incentive networks [41] and multi-level marketing [26] fall under the category of cost critical
tasks, while search-and-rescue operations such as red balloon challenge [21] fall under that of time critical tasks.
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their position in T . Throughout this chapter, we would assume that the payment to all nodes

of any non-winning chain is zero. Hence, all definitions of the desirable properties apply only

to the winning chain.

An example of such a reward mechanism is the geometric payment used by Emek et al.

[26] and Pickard et al. [65]. These mechanisms pay the largest amount to the winner node and

geometrically decrease the payment over the path to the root. This class of mechanisms are

susceptible to sybil attacks. For example, the winning node can create a long chain of artificial

nodes, {x1, ..., xm}, and report that xi recruits xi+1 and xm is the winner. Then each fake xi

would extract payment from the mechanism.

4.4.1 Desirable Properties

An ideal reward mechanism of our model should satisfy several desirable properties. In what

follows, we have listed down a set of very natural properties that must be satisfied by an ideal

mechanism under dominant strategy equilibrium.

Definition 4.1 (Downstream Sybilproofness, DSP) Given the position of a node in a

recruitment tree, a reward mechanism R is called downstream sybil-proof, if the node cannot

gain by adding fake nodes below itself in the current subtree (irrespective of what others are

doing). Mathematically,

R(k, t) ≥∑n
i=0R(k + i, t+ n) ∀k ≤ t, ∀t, n. (4.1)

Definition 4.2 (Budget Balance, BB) Let us assume the maximum budget allocated by the

planner for executing an atomic task is Rmax. Then, a mechanism R is budget balanced if,

∑t
k=1R(k, t) ≤ Rmax, ∀t. (4.2)

Definition 4.3 (Contribution Rationality, CR) This property ensures that a node gets

non-negative payoff whenever she belongs to the winning chain. We distinguish between strict

and weak versions of this property as defined below. For all t ≥ 1,

Strict Contribution Rationality (SCR):

R(k, t) > 0, ∀k ≤ t, if t is the length of the winning chain. (4.3)

Weak Contribution Rationality (WCR):

R(k, t) ≥ 0, ∀k ≤ t− 1, if t is the length of the winning chain.
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R(t, t) > 0, winner gets positive reward. (4.4)

DSP ensures that an agent in the network cannot gain additional payment by creating fake

identities and pretending to have recruited these nodes. SCR ensures that nodes have incentive

to recruit, since all members of the winning chain are rewarded.

There are many reward mechanisms that satisfy these three properties. For example, let us

consider a mechanism that diminishes the rewards geometrically in both k and t, i.e. R(k, t) =
1

2k+t · Rmax. This mechanism pays heavy to the nodes near the root and less near the leaf. We

call this class of mechanisms as top-down mechanisms. This mechanism satisfies DSP, BB, and

SCR properties for any finite t. However, the best response strategy of the agents in this type

of mechanisms could introduce other kinds of undesirable behavior. For example, the agents

of any chain would be better off by colluding among themselves and representing themselves

as a single node in front of the the designer, since if the winner emerges from that particular

chain, they would gain more collective reward than they could get individually. We call this

node collapse problem. This introduces a two-fold difficulty. First, the designer cannot learn the

structure of the network that executed the task, and hence cannot use the network structure

for future applications. Second, she ends up paying more than what she should have paid for a

true network. Hence, in the scenario where designer is also willing to minimize the expenditure,

she would like to have collapse-proofness.

Definition 4.4 (Collapse-Proofness, CP) Given a depth k in a winning chain, a reward

mechanism R is called collapse-proof, if the subchain of length p down below k collectively

cannot gain by collapsing to depth k (irrespective of what others are doing). Mathematically,

∑p
i=0R(k + i, t) ≥ R(k, t− p) ∀k + p ≤ t, ∀t. (4.5)

In the following section, we will show that some of these properties are impossible to satisfy

together. To this end, we need to define a class of mechanisms, called Winner Takes All (WTA),

where the winning node receives a positive reward and all other nodes get zero reward.

Definition 4.5 (WTA Mechanism) A reward mechanism R is called WTA mechanism if

Rmax ≥ R(t, t) > 0, and R(k, t) = 0, ∀k < t.

4.5 Impossibility and Possibility Results

Theorem 4.1 (Impossibility Result) No reward mechanism can satisfy DSP, SCR, and CP

together.
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Proof: Suppose the reward mechanism R satisfies DSP, SCR, and CP. Then by CP, let us

put t← t+ n and p← n in Equation 4.5, and we get,
∑n

i=0R(k+ i, t+ n) ≥ R(k, t+ n− n) =

R(k, t), ∀k ≤ t, ∀t, n. This is same as Equation 4.1 with the inequality reversed. So, to satisfy

DSP and CP together, the inequalities reduce to the following equality.

R(k, t) =
∑n

i=0R(k + i, t+ n), ∀k ≤ t, ∀t, n. (4.6)

Now we use the following substitutions, leading to the corresponding equalities.

put k ← t− 2, t← t− 2, n← 2, to get,

R(t− 2, t− 2) = R(t− 2, t) +R(t− 1, t) +R(t, t) (4.7)

put k ← t− 1, t← t− 1, n← 1, to get,

R(t− 1, t− 1) = R(t− 1, t) +R(t, t) (4.8)

put k ← t− 2, t← t− 2, n← 1, to get,

R(t− 2, t− 2) = R(t− 2, t− 1) +R(t− 1, t− 1) (4.9)

put k ← t− 2, t← t− 1, n← 1, to get,

R(t− 2, t− 1) = R(t− 2, t) +R(t− 1, t) (4.10)

Substituting the value of Eq. 4.8 on the RHS of Eq. 4.9,

R(t− 2, t− 2) = R(t− 2, t− 1) +R(t− 1, t) +R(t, t) (4.11)

Substituting Eq. 4.11 on the LHS of Eq. 4.7 yields

R(t− 2, t) = R(t− 2, t− 1) (4.12)

From Eq. 4.12 and Eq. 4.10, we see that,

R(t− 1, t) = 0. (4.13)

which contradicts SCR. �

From the above theorem and the fact that additional properties reduce the space of feasible

mechanisms, we obtain the following corollary.

Corollary 4.1 It is impossible to satisfy DSP, SCR, CP, and BB together.
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Theorem 4.2 (Possibility Result) A mechanism satisfies DSP, WCR, CP and BB iff it is

a WTA mechanism.

Proof: (⇐) It is easy to see that WTA mechanism satisfies DSP, WCR, CP and BB. Hence,

it suffices to investigate the other direction.

(⇒) From Equations 4.8 and 4.13, we see that, R(t − 1, t − 1) = R(t, t), which is true for

any t. By induction on the analysis of Theorem 4.1 for length t− 1 in place of t, we can show

that R(t− 2, t− 1) = 0. But, by Eq. 4.12, R(t− 2, t− 1) = R(t− 2, t). Hence, R(t− 2, t) = 0.

Inductively, for all t and for all k < t, R(k, t) = 0. It shows that for all non-winner nodes,

the reward would be zero. So, we can assign any positive reward to the winner node and zero

to all others, which is precisely the WTA mechanism. This proves that for WCR, the reward

mechanism that satisfies DSP, CP and BB must be a WTA mechanism. �

4.6 Approximate Versions of Desirable Properties

The results in the previous section are disappointing in the sense that the space of mechanisms

satisfying the desirable properties is extremely restricted (WTA being the only one). This

suggests two possible ways out of this situation. The first route is to compromise on stronger

equilibrium notion of dominant strategy and settle for a slightly weaker notion such as Nash

equilibrium. The other route could be to weaken these stringent properties related to cheat-

proofness and still look for a dominant strategy equilibrium. We choose to go by the latter way

because Nash equilibrium makes the assumption that all the players can efficiently compute and

find the equilibrium. This assumption may not be true in practical crowdsourcing applications.

Therefore, we relax some of the desirable properties to derive their approximate versions. We

begin with approximation of the DSP property.

Definition 4.6 (ǫ - Downstream Sybilproofness, ǫ-DSP) Given the position of the node

in a tree, a payment mechanism R is called ǫ - DSP, if the node cannot gain by more than a

factor of (1 + ǫ) by adding fake nodes below herself in the current subtree (irrespective of what

others are doing). Mathematically,

(1 + ǫ) ·R(k, t) ≥
∑n

i=0R(k + i, t+ n), ∀k ≤ t, ∀t, n. (4.14)

Theorem 4.3 For all ǫ > 0, there exists a mechanism that is ǫ-DSP, CP, BB, and SCR.

Proof: The proof is constructive. Let us consider the following mechanism: set R(t, t) =

(1− δ) ·Rmax, ∀ t, the reward to the winner, where δ ≤ ǫ
1+ǫ

. Also, let R(k, t) = δ ·R(k+1, t) =
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δt−k · R(t, t) = δt−k(1 − δ)Rmax, k ≤ t − 1. By construction, this mechanism satisfies BB. It is

also SCR, since δ ∈ (0, 1). It remains to show that this satisfies ǫ-DSP and CP. Let us consider,

∑n
i=0R(k + i, t+ n) =

∑n
i=0 δ

t+n−k−i · R(t+ n, t+ n)

= δt−k · (1 + δ + · · ·+ δn) · (1− δ)Rmax

= R(k, t) · (1 + δ + · · ·+ δn)

≤ R(k, t) · 1

1− δ
≤ (1 + ǫ) · R(k, t), since δ ≤ ǫ

1 + ǫ
.

This shows that this mechanism is ǫ-DSP. Also,

∑p
i=0R(k + i, t) =

∑p
i=0 δ

t−k−i · R(t, t)

=
∑p−1

i=0 δ
t−k−i · R(t, t) + δt−k−p ·R(t, t)

︸ ︷︷ ︸

=R(k,t−p)

≥ R(k, t− p)

This shows that this mechanism is CP as well. �

Discussions:

• Above theorem suggests that merely weakening the DSP property allows a way out of

the impossibility result given in Theorem 4.1. One can try weakening the CP property

analogously (instead of DSP) and check for the possibility/impossibility results. This we

leave as an interesting future work.

• One may argue that no matter how small is ǫ, as long as we satisfy ǫ-DSP property, an

agent would always find it beneficial to add as many sybil nodes as possible. However,

in real crowdsourcing networks, there would be a non-zero cost involved in creating fake

nodes and hence there must be a tipping point so that agent’s net gain would increase

till he creates that many sybil nodes but starts declining after that. Note, it is impossible

for an agent to compute the tipping point a priori as his own reward is uncertain at

the time of him getting freshly recruited by someone and he trying to create sybil nodes.

Therefore, in the face of this uncertainty, the agent can assure himself of a bounded regret

if he decides not to create any sybil nodes.

4.6.1 Motivation for δ-SCR and γ-SEC

As per previous theorem, the class of mechanisms that satisfy ǫ-DSP, CP, BB, and SCR is

quite rich. However, the exemplar mechanism of this class, which was used in the proof of
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this theorem, prompts us to think of the following undesirable consequence - the planner can

assign arbitrarily low reward to the winner node and still manage to satisfy all these properties.

This could discourage the agents from putting in effort by themselves for executing the task.

Motivated by this considerations, we further extend the SCR property by relaxing it to δ-SCR

and also introduce an additional property, namely Winner’s γ Security (γ-SEC).

Definition 4.7 (δ - Strict Contribution Rationality, δ-SCR) This ensures that a node

in the winning chain gets at least δ ∈ (0, 1) fraction of her successor. Also the the winner gets

a positive reward. For all t ≥ 1,

R(k, t) ≥ δR(k + 1, t), ∀k ≤ t− 1, t: winning chain.

R(t, t) > 0, winner gets positive reward. (4.15)

Definition 4.8 (Winner’s γ Security, γ-SEC) This ensures that payoff to the winning node

is at least γ fraction of the total available budget.

R(t, t) ≥ γ ·Rmax, t is the length of the winning chain (4.16)

Discussions:

• The δ-SCR property guarantees that recruiter of each agent on the winning chain gets a

certain fraction of the agent’s reward. This property will encourage an agent to propagate

the message to her acquaintances even though she may not execute the task by herself.

This would result in rapid growth of the network which is desirable in many settings.

• On the other hand, γ-SEC ensures that the reward to the winner remains larger than a

fraction of the total reward. This works as a motivation for any agent to spend effort on

executing the task by herself.

In what follows, we characterize the space of mechanisms satisfying these properties.

4.7 Cost Critical Tasks

In this section, we design crowdsourcing mechanisms for the atomic tasks where the planner’s

objective is to minimize total cost of executing the task.

Definition 4.9 (MINCOST over C ) A reward mechanism R is called MINCOST over a class of

mechanisms C , if it minimizes the total reward distributed to the participants in the winning
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chain. That is, R is MINCOST over C , if

R ∈ argminR′∈C

∑t
k=1R

′(k, t), ∀t. (4.17)

We will show that the MINCOST mechanism over the space of ǫ-DSP, δ-SCR, and BB properties

is completely characterized by a simple geometric mechanism, defined below.

Definition 4.10 ((γ, δ)-Geometric Mechanism, (γ, δ)-GEOM) This mechanism gives γ

fraction of the total reward to the winner and geometrically decreases the rewards towards root

with the factor δ. For all t, R(t, t) = γ · Rmax; R(k, t) = δ · R(k + 1, t) = δt−k · R(t, t) =

δt−k · γRmax, k ≤ t− 1.

4.7.1 Characterization Theorem for MINCOST

Now, we will show that (γ, δ)-Geometric mechanism characterizes the space of MINCOST mech-

anisms satisfying ǫ-DSP, δ-SCR, γ-SEC, and BB. We start with an intermediate result.

Lemma 4.1 A mechanism is δ-SCR, γ-SEC and BB only if γ ≤ 1− δ.

Proof: Suppose γ > 1− δ. Then by δ-SCR, we have,

∑t
k=1R(k, t) ≥ (1 + δ + · · ·+ δt−1) ·R(t, t) (4.18)

≥ (1 + δ + · · ·+ δt−1) · γRmax (4.19)

> (1 + δ + · · ·+ δt−1)(1− δ)Rmax

This holds for all t ≥ 1. It must hold for t → ∞. Hence, limt→∞

∑t
k=1R(k, t) > 1

1−δ
· (1 −

δ)Rmax = Rmax. Which is a contradiction to BB. �

Theorem 4.4 If δ ≤ min{1− γ, ǫ
1+ǫ
}, a mechanism is MINCOST over the class of mechanisms

satisfying ǫ-DSP, δ-SCR, γ-SEC, and BB iff it is (γ, δ)-GEOM mechanism.

Proof: (⇐) It is easy to see that (γ, δ)-GEOM is δ-SCR and γ-SEC by construction. It is also

BB since δ ≤ 1− γ or γ ≤ 1− δ. For the ǫ-DSP property, we consider the following expression,

n∑

i=0

R(k + i, t+ n) =

n∑

i=0

δt+n−k−i · R(t+ n, t+ n),
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which is equal to,

δt−k · (1 + δ + . . .+ δn) · γRmax = R(k, t) · (1 + δ + . . .+ δn)

≤ R(k, t) · 1

1− δ
≤ (1 + ǫ)R(k, t), as δ ≤ ǫ

1 + ǫ
.

Also for a given δ and γ, this mechanism minimizes the total cost as it pays each node the

minimum possible reward. Thus, δ-GEOM mechanism is MINCOST over ǫ-DSP, δ-SCR, γ-SEC,

and BB.

(⇒) Since δ ≤ 1 − γ, from Lemma 4.1, we see that δ-SCR, γ-SEC, and BB are satisfiable.

In addition the objective of the mechanism designer is to minimize the total reward (Rtotal)

given to the winning chain.

Rtotal =
∑t

k=1R(k, t)
Eq. 4.19

≥ (1 + δ + · · ·+ δt−1) · γRmax

We require a mechanism that is also ǫ-DSP and minimizes the above quantity. Let us consider

a mechanism R1 that pays the leaf an amount of γRmax and any other node at depth k, an

amount δt−kγRmax. We ask the question if this mechanism is ǫ-DSP. This is because if this

is true, then there cannot be any other mechanism that minimizes the cost, as this achieves

the lower bound of Rtotal. To check for ǫ-DSP of this mechanism, we consider the following

expression.

∑n
i=0R1(k + i, t + n) =

∑n
i=0 δ

t+n−k−i · R1(t + n, t+ n)

= δt−k · (1 + δ + · · ·+ δn) · γRmax

= R1(k, t) · (1 + δ + · · ·+ δn)

≤ R1(k, t) ·
1

1− δ
≤ (1 + ǫ)R1(k, t) since δ ≤ ǫ

1 + ǫ

implying R1 is also ǫ-DSP. Hence, R1 is the MINCOST mechanism over ǫ-DSP, δ-SCR, γ-SEC,

and BB. Note, R1 is precisely the (γ, δ)-GEOM mechanism. �

Discussions:

• Note, (γ, δ)-GEOM mechanism additionally satisfies CP. The proof for this is given in the

Appendix.

• Theorem 4.4 imposes a constraint on the values of the parameters δ, ǫ, and γ, for which
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Figure 4.5: The space of (δ, ǫ, γ) tuples characterized by Theorem 4.4.

the characterization result holds. Let us define,

E = {(δ, ǫ, γ) : δ ≤ min{1− γ,
ǫ

1 + ǫ
}}.

The space E is graphically illustrated in the Figure 4.5.

• The set E of (δ, ǫ, γ) tuples that are characterizable via Theorem 4.4 is the space below

the shaded region in Figure 4.5. MIT mechanism (ǫ = 1, δ = 0.5, γ = 0.5) and the

WTA mechanism (δ = 0, the floor of the space in the figure above) are special cases.

Theorem 4.4 says that if (δ, ǫ, γ) ∈ E , the characterization result in that theorem holds.

4.8 Time Critical Tasks

In applications where the faster growth of network is more important than maximizing the

surplus, the designer can spend the whole budget in order to incentivize participants to either

search for the answer or forward the information quickly among their acquaintances. In such

settings, we can design mechanisms which aim to maximize reward of the leaf node of the

winning chain. In this section, we show that such kind of mechanisms with the same fairness

guarantees can also be characterized by a similar mechanism that exhausts the budget even for
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a finite length of the winning chain. In what follows, we define the design goal and a specific

geometric mechanism.

Definition 4.11 (MAXLEAF over C ) A reward mechanism R is called MAXLEAF over a class of

mechanisms C , if it maximizes the reward of the leaf node in the winning chain. That is, R is

MAXLEAF over C , if

R ∈ argmax
R′∈C

R′(t, t), ∀t. (4.20)

Definition 4.12 (δ-Geometric mechanism, δ-GEOM) This mechanism gives 1−δ
1−δt

fraction

of the total reward to the winner and geometrically decreases the rewards towards root with

the factor δ, where t is the length of the winning chain. For all t, R(t, t) = 1−δ
1−δt
· Rmax;

R(k, t) = δ · R(k + 1, t) = δt−k · R(t, t), k ≤ t− 1.

4.8.1 Characterization Theorem for MAXLEAF

Theorem 4.5 If δ ≤ ǫ
1+ǫ

, a mechanism is MAXLEAF over the class of mechanisms satisfying

ǫ-DSP, δ-SCR, and BB iff it is δ-GEOM mechanism.

Proof: (⇐) By construction, the δ-GEOM mechanism is δ-SCR and BB for all t. It is also

ǫ-DSP, as,

n∑

i=0

R(k + i, t+ n) =

n∑

i=0

δt+n−k−i · R(t+ n, t + n)

= δt−k · (1 + δ + · · ·+ δn) · R(t+ n, t + n)

= δt−kR(t, t) · R(t+ n, t+ n)

R(t, t)
· 1− δn+1

1− δ

= R(k, t) · R(t+ n, t+ n)

R(t, t)
· 1− δn+1

1− δ

= R(k, t) ·
1−δ

1−δt+n · Rmax

1−δ
1−δt
· Rmax

· 1− δn+1

1− δ

= R(k, t) · 1− δn+1

1− δt+n
· 1− δt

1− δ
.

Since 1−δn+1

1−δt+n ↑ n and 1−δt

1−δ
↑ t, we can take limits as n→ ∞ and t → ∞ respectively to get an

upper bound on the quantity of the RHS, which gives,

n∑

i=0

R(k + i, t + n) = R(k, t) · 1

1− δ
≤ (1 + ǫ) ·R(k, t),
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since δ ≤ ǫ
1+ǫ

. Hence this is ǫ-DSP. Suppose this is not MAXLEAF. Then ∃ some other mechanism

R′ in the same class that pays R′(t, t) > 1−δ
1−δt
· Rmax. Since, R

′ is also δ-SCR,

∑t
k=1R

′(k, t) ≥ (1 + δ + · · ·+ δt−1) · R′(t, t)

=
1− δt

1− δ
·R′(t, t) >

1− δt

1− δ
· 1− δ

1− δt
· Rmax = Rmax,

which is a contradiction to BB. Hence proved.

(⇒) Let R be a mechanism that is MAXLEAF over the class of mechanisms satisfying ǫ-DSP,

δ-SCR, and BB. Hence,

Rmax ≥
t∑

k=1

R(k, t)
Eq. 4.18

≥ 1− δt

1− δ
· R(t, t)

⇒ R(t, t) ≤ 1− δ

1− δt
· Rmax, for all t. (4.21)

The first and second inequalities arise from BB and δ-SCR respectively. Now, from the ǫ-DSP

condition of R, we get, for all n, t, k ≤ t,

(1 + ǫ)R(k, t) ≥∑n
i=0R(k + i, t+ n)

≥
∑n

i=0 δ
t+n−k−i ·R(t + n, t+ n)

= δt−k · (1 + δ + · · ·+ δn) · R(t + n, t+ n),

where the second inequality comes from δ-SCR of R. Rearranging, we obtain,

1 + ǫ ≥ δt−k · 1− δn+1

1− δ
· R(t+ n, t + n)

R(k, t)
(4.22)

Since this is a necessary condition for any k ≤ t, it should hold for k = t in particular. Using

this in Equation 4.22 the necessary condition becomes,

1 + ǫ ≥ 1− δn+1

1− δ
· R(t+ n, t + n)

R(t, t)
(4.23)

Now, we have two conditions on R(t + n, t+ n) as follows.

R(t+ n, t+ n) ≤ (1 + ǫ) · 1− δ

1− δn+1
· R(t, t)
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Eq. 4.21

≤ (1 + ǫ) · 1− δ

1− δn+1
· 1− δ

1− δt
· Rmax

︸ ︷︷ ︸

=:A(n,t)

(4.24)

and using Eq. 4.21 directly on R(t+ n, t+ n), we get,

R(t + n, t+ n) ≤ 1− δ

1− δt+n
· Rmax

︸ ︷︷ ︸

=:B(n,t)

(4.25)

It is clear that to satisfy δ-SCR, ǫ-DSP and BB, it is necessary for R to satisfy,

R(t+ n, t + n) ≤ min
n,t
{A(n, t), B(n, t)}.

We can show the following bounds for the quantity B(n,t)
A(n,t)

, which we skip due to space constraints.

1

1 + ǫ
≤ B(n, t)

A(n, t)
≤ 1

(1 + ǫ)(1− δ)
. (4.26)

Since δ ≤ ǫ
1+ǫ

, we see that the upper bound 1
(1+ǫ)(1−δ)

≤ 1. Hence, A(n, t) uniformly dominates

B(n, t), ∀ n, t. Hence, R(t + n, t + n) ≤ B(n, t). Since R is also MAXLEAF, equality must hold

and it must be true that,

R(t, t) =
1− δ

1− δt
· Rmax, ∀ t. (4.27)

Also, since R is BB, it is necessary that,

R(k, t) = δt−k ·R(t, t), k ≤ t− 1. (4.28)

This shows that R has to be δ-GEOM. �

Discussion: A δ-GEOM mechanism also satisfies CP property. The proof for this is given

in the Appendix.

4.9 Partial Information Aggregation: Synergy among

the Agents

So far in this chapter we have discussed only atomic tasks where the reward is distributed

only on the winning chain, i.e., the chain that found the object. A more time efficient and

fair scheme could be to distribute the reward in proportion to the information contributed by

each agent. For example, if an agent searches for an object in a certain part of a city and
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reports that the object is not present in that region, it saves a lot of time and effort for the

other participants assuming that the original reporter was truthful. In our current work [60],

we are exploring how to incentivize and exploit the synergy between participants satisfying

certain desirable properties of crowdsourcing. We employ the machinery of prediction market

in order to achieve two objectives: (a) agents can express their confidence in reporting certain

information by trading in the information market, and (b) the reward can be shared by all

participants who gave useful information towards the goal. In general, prediction market allows

for certain properties like truthfulness and arbitrage-free information aggregation which is very

desirable in the crowdsourcing application as well.

4.10 Conclusions

In this chapter, we have studied the problem of designing manipulation free crowdsourcing

mechanisms for atomic tasks under the cost critical and time critical scenarios. We have moti-

vated the need for having CP as an additional property of the mechanism beyond what already

exists in the literature. Starting with an impossibility result, we have developed mechanisms

for both cost and time critical scenarios which satisfy CP property along with weaker versions

of other desirable properties (all under dominant strategy equilibrium) that characterize the

space of feasible mechanisms in this setting. We have also made some progress on how the

partial information can be processed to make an aggregation of information with some design

desiderata. This opens up several bigger questions both in crowdsourcing and in prediction

market on how raw information can be converted into distributions over outcomes.

Appendix

4.A Proof of Two Lemmata

Lemma 4.2 The (γ, δ)-GEOM Mechanism is Collapse-Proof.

Proof: For the mechanism (γ, δ)-GEOM, the reward of the leaf node is independent of the

length of the winning chain, i.e., t. Hence, we can use the same proof technique used in

Theorem 4.3 to show that (γ, δ)-GEOM is CP. The steps are as follows.

∑p
i=0R(k + i, t) =

∑p
i=0 δ

t−k−i · R(t, t)

=
∑p−1

i=0 δ
t−k−i · R(t, t) + δt−k−p ·R(t, t)

︸ ︷︷ ︸

=R(k,t−p)

≥ R(k, t− p)

This shows that this mechanism is CP. �
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Lemma 4.3 The δ-GEOM Mechanism is Collapse-Proof.

Proof: In order to prove the claim, we need to show that,

p
∑

i=0

R(k + i, t) ≥ R(k, t− p) ∀k + p ≤ t, ∀t

⇒
p
∑

i=0

δt−k−i · R(t, t) ≥ δt−k−p · R(t− p, t− p)

⇒
p
∑

i=0

δt−k−i · 1− δ

1− δt
· Rmax ≥ δt−k−p · 1− δ

1− δt−p
·Rmax

⇒ (1− δt−p)

p
∑

i=0

δt−k−i ≥ δt−k−p(1− δt)

⇒ (1− δt−p)(δt−k−p + · · ·+ δt−k) ≥ δt−k−p − δ2t−k−p

⇒ ✘
✘
✘✘

δt−k−p + · · ·+ δt−k − (δ2t−2p−k + . . .

+✘
✘
✘
✘

δ2t−p−k) ≥✘
✘
✘✘

δt−k−p −✘
✘
✘
✘

δ2t−k−p

⇒ (δt−k + · · ·+ δt−k−p+1)− (δ2t−2p−k + . . .

δ2t−p−k−1) ≥ 0. (4.A.1)

Where both the terms within the parentheses on the LHS are in ascending order. We can

rewrite inequality (4.A.1) as,

δt−k−p
[
(δp − δt−p) + (δp−1 − δt−p+1) + · · ·+ (δ1 − δt−1)

]
≥ 0.

Let us define, atk := δk − δt−k. Therefore, from the above inequality, we need to show that,

p
∑

k=1

atk ≥ 0. (4.A.2)

This is a partial sum of the complete sum,
∑t−1

k=1 a
t
k which equals zero. Since, δ < 1, we also

see that,

atk ≥ 0 ∀k = 1, . . . , ⌊t/2⌋,
atk ≤ 0 ∀k = ⌊t/2⌋+ 1, . . . , t− 1.

For any p, the partial sum would be non-negative. So, inequality (4.A.2) holds for any p.

Therefore, we have shown that δ-GEOM is CP. �
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Chapter 5

Efficient Team Formation using a

Strategic Crowd

Many crowdsourcing applications leverage the social connectivity of the individuals by

allowing them to invite their acquaintances and by offering them a reward share from

their invitees. The result is the formation of a network of referrals, which can be ei-

ther hierarchical or non-hierarchical. If we consider the whole crowdsourcing system as a

consolidated organization, a primary goal of the crowdsourcer is to maximize the net pro-

ductive output of this network. Every individual in these networks has a limited amount

of effort that they can split between productive and communicating components, and they

trade off these two components depending on their positions and share of rewards in the

network. Since the efficiency of the crowdsourcing network depends on both these com-

ponents, it is important to understand how the agents trade off between them considering

that their goal is to maximize their own individual payoffs.

In this chapter, we capture this phenomenon using a game theoretic modeling. We model

each agent’s payoff as a sum of the direct reward obtained from her own production

effort and the indirect reward obtained from the efforts of communicating the task to

others. We identify two factors for an optimal trade-off of efforts: (a) the reward sharing

policy and (b) the network structure. We investigate how these two factors influence the

trade-off and how these factors can be better designed to maximize the net productive

output of the system. Our results show that under the strategic behavior of the agents, it

may not always be possible to achieve an optimal output and we provide bounds on the

achievability in such scenarios.

We consider two approaches towards efficient team formation in crowdsourcing. The first,

discussed next, considers the reward sharing between the influencers and influencees. The
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second considers designing the network and is discussed later in this chapter. Since we are

modeling the crowdsourcing network as a single team, it is similar to a networked organization

both in operation and the choice of rational efforts. We, therefore, would be using the term

organization in the rest of this chapter to imply the networked crowdsourcing system.

5.1 Incentive Design for Improving Productive Output 1

The organization of economic activity as a means for the efficient co-ordination of effort is a

cornerstone of economic theory. In networked organizations, agents are responsible for two

processes: information flow and productive effort. A major objective of the organization is to

maximize the net productive output of the networked system. However, in real organizations the

individuals are rational and intelligent. They select their degree of effort which maximizes their

payoff. Hence, to understand how organizations can boost their productive output, we need to

understand how the individuals connected over a network split their efforts between work vs.

investing effort in explaining tasks to others depending on the amount of direct and indirect

rewards. We model the agents having dual responsibilities of executing the task (production

effort) and communicating the information (communication effort) to other agents. When an

agent communicates with another, we call the former an influencer and the latter an influencee.

Influencers improve the productivity of the influencees. Influencees, in turn, share a part of their

rewards with the influencers, and this interaction induces a game between the agents connected

over the network. In our model, working on a task is costly and brings a direct payoff, whereas

investing effort in explaining a task can improve the productivity of others (depending on the

quality of communication in the network). This can in turn generate additional indirect reward

for an agent through reward sharing incentives.

We model the network as a directed graph, where the direction represents the direction of

information flow or communication between nodes and the rewards are shared in the reverse

direction. Of particular interest to us are directed trees, which represent a hierarchy, and are

the most prevalent in organizations and firms. In the first part of this section, our analysis is

focused on hierarchies, and in the second, we generalize our results to arbitrary directed graphs.

Our goal is to understand how the reward sharing scheme affects the choice of efforts of the

agents and thereby influences the total output of the network.

The focus of this section is to maximize the productive effort of the organization, and in

the process, understand the dynamics of the influence phenomenon and find the equilibrium

efforts chosen by the rational and intelligent agents. Within firms, organizational networks

are often hierarchical and there is a long history on the role of organizational structure on

1Part of this work is going to appear in AAMAS [56], the rest is taken from the full version of the paper [55].
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economic efficiency going back to Tichy et al. [80] (on social network analysis within orga-

nizations). More recently, Radner [67], Ravasz and Barabási [68], Mookherjee [50] study the

role of hierarchies; see Van Alstyne [81] for a survey of different perspectives. There is also a

growing interest in crowdsourcing, and relevant here, the ability to generate effective networks

for solving challenging problems. Our model also captures some aspects of so called ‘diffusion-

based task environments’ where agents become aware of tasks through recruitment [65, 84]. For

example, the winner of the 2009 DARPA Red Balloon Challenge adopted an indirect reward

scheme where the reward associated with successful completion of subtasks was shared with

other agents in the network [65]. At the same time modern massive online social networks and

online gaming networks1 require information and incentive propagation to organize activity. In

this section, we draw attention to the interaction between various aspects of network influence,

such as profit sharing [30], information exchange [12], and influence in networks.

Motivated by the possibility that this phenomenon of splitting effort into production and

communication can be understood as a consequence of the strategic behavior of the participants,

we adopt a game theoretic perspective where individual members in a networked organization

decide on effort levels motivated by their self interest. Agents are coordinated by incentives,

including both direct wages and indirect profit sharing. We construct quantitative models of

organizations, that are general enough to capture social and economic networks, but specific

enough for us to obtain insightful results. We quantify the effects of reward sharing and com-

munication quality on the performance of work organizations in equilibrium. We then turn

to the question of designing proper reward shares that can motivate people to work hard and

maximize the social output of the system. We show that for stylized networks, under certain

conditions, a proper incentive design can lead to an optimal social output. But when the con-

dition is not satisfied, we capture the loss in optimality using the Price of Anarchy (PoA) [42]

framework. In particular, we provide the worst case bound on the sub-optimality.

Efforts in Networks: An Example

In this section, we illustrate the effort trade-off through an example of the corporate hierarchies.

As we model the crowdsourcing system as an organization in this chapter, the operation and the

goal of the design of a networked crowdsourcing system that we discuss next can be visualized

using this example. A typical (and restricted) organizational hierarchy is shown in Figure 5.1.

A usual observation in hierarchies is that the employees who are in the leaf-level of the tree

spend more time in production and as people are promoted, e.g., to manager or senior manager

etc. they spend a significant amount of time in communicating with the people they manage.

1http://www.eveonline.com/
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In this chapter, we are interested in the question: ‘How much time should a manager spend in

working on a problem versus managing his employees?’

CEO

Production

Head

Development
Manager

Employee
I

Employee
II

Quality
Assurance
Manager

Employee
III

Employee
IV

Marketing

Head

Advertising
Customer
Support

Figure 5.1: A typical corporate hierarchy.

5.1.1 Prior Work

The study of effort levels in network games, where an agent’s utility depends on actions of

neighboring agents has recently received much attention [28]. For example, Ballester et al. [7]

show how the level of activity of a given agent depends on the Bonacich centrality of the agent

in the network, for a specific utility structure that results in a concave game. Our model differs

in two aspects: (a) we have multiple types of efforts (namely production and communication)

which has different nonlinear correlation among the agents, and (b) utilities are non-concave.

In addition, our results give a design recipe for the reward sharing scheme. Rogers [70] analyzes

the efficiency of equilibria in two specific types of games (i) ‘giving’ and (ii) ‘taking’, where an

edge means utility is sent on an edge. A strategic model of effort is discussed in the public goods

model of Bramoullé and Kranton [14], where utility is concave in individual agents’ efforts, and

the structures of the Nash and stable equilibria are shown. Their model applies to a very

specific utility structure where the same benefit of the ‘public good’ is experienced by all the

first level neighbors on a graph. In our model, the individual utilities can be asymmetric, and

depend on the efforts and reward shares in multiple levels on the graph. Building on these

efforts our utility model cleanly separate the effects of two types of influence, that we termed

information and incentives.

The recent DARPA Red Balloon Challenge, and particularly the hierarchical network and

specific reward structure used by the winning MIT team [65], has led to a renewed interest
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in the analysis of effort exerted by agents in networks. The winning team’s strategy, utilized

a recursive incentive mechanism. Our results show that, in this case for example, too much

reward sharing encourages managers to spend more time recruiting or managing and not enough

time searching or working, though we do not study network formation games here.

The literature on strategic social network formation games and organizational design is vast

[38, 35]. We use the Price of Anarchy (PoA) introduced by Koutsoupias and Papadimitriou

[42] to measure the sub-optimality in outcome efforts, as a function of network structure and

incentives, due to the self interested nature of agents. In the network contribution games

literature, the PoA has been investigated in different contexts. Anshelevich and Hoefer [3]

consider a model where an agent’s contribution locally benefit the nodes who share an edge

with him, and give existence and PoA results for pairwise equilibrium for different contribution

functions. The PoA in cooperative network formation is considered by Demaine et al. [23], while

Roughgarden [72], Garg and Narahari [29] have considered the question in a selfish network

routing context. Our setting is different from all of these since in our model the strategies are

the efforts of the agents, which distinguishes it from the network formation and selfish routing

literature, and we use multiple levels of information and reward sharing and study utilities that

are asymmetric even for the neighboring nodes in the network, which distinguishes itself from

the network contribution games.

5.1.2 Overview and Main Results

For the ease of exposition, in the first and major part of this work, we study hierarchies

where the network is a directed tree. Each agent decides how to split its effort between (i)

production effort, which results in direct payoff for the agent and indirect reward to other

agents on the path from the root to the agent, and (ii) communication effort, which serves to

improve the productivity of his descendants on the tree (e.g., explaining the problem to others,

conveying insights and the goals of the organization). A natural constraint is imposed on the

complementary tasks of production and communication, such that the more effort an agent

invests in production the less he can communicate. Investing production effort incurs a cost

to an agent, in return for some direct payoff. But committing effort to communication that

can improve productivity of descendants, which in turn improves their output, should they

decide to invest effort in direct work, and thus give an agent a return on investment through

an indirect payoff.

Each agent decides, based on his position in the hierarchy, how to split his effort between

production and communication, in order to maximize the sum of direct payoff and indirect

reward, accounting for the cost of effort. For most of our results we adopt an exponential
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productivity (EP) model, where the quality of communication falls exponentially with effort

spent in production with a parameter β. The model has the useful property that a pure-

strategy Nash equilibrium always exists (Theorem 5.1) even though the game is non-concave.

In a concave game, the agents’ payoffs are concave in their choices (production efforts), and a

pure-strategy Nash equilibrium is guaranteed to exist [71]. We develop tight conditions for the

uniqueness of the equilibrium (Theorem 5.2). In addition, for the EP model of communication,

the Nash equilibrium can be computed in time that is quadratic in the number of agents, despite

the non-concave nature of the problem, by exploiting the hierarchical structure.

We then ask the question what effect this equilibrium effort level has on the total output

of the hierarchical organization. We define the social output to be the sum of the individual

outputs which are products of productivity and production effort. Our next result is that for

balanced hierarchies and in the EP model, there exists a threshold β∗ on communication quality

parameter β such that if communication performance is below the threshold (communication is

‘good enough’) then the equilibrium social output can be made equal to the optimal social output

by choosing an optimal reward sharing scheme. The phenomenon is captured by the fraction

called PoA, which is the ratio of an optimal and the equilibrium social output. If the reward

share is not chosen appropriately, PoA can be large (Theorem 5.4). For β above this threshold

(low quality communication), we give closed-form bounds on the PoA (Theorem 5.5), which we

show are tight in special networks, e.g., single-level hierarchies. This highlights the importance

of the design of reward sharing in organizations accounting for both network structure and

communication process in order to achieve a higher network output.

In the second part, we consider general directed network graphs and establish the existence

of a pure-strategy Nash equilibrium and a characterization for when this equilibrium is unique

(Theorems 5.6 and 5.7). We also provide a geometric interpretation of these conditions in terms

of the stability properties of a suitably defined Jacobian matrix (Figure 5.7). This connection

between control-theoretic stability and uniqueness of Nash equilibrium in network games is an

interesting property of the model.

For ease of reading, some proofs are deferred to the Appendix.

5.1.3 A Hierarchical Model of Influencer and Influencee

In this section, we formalize a specific version of the hierarchical network model. Let N =

{1, 2, . . . , n} denote a set of agents who are connected over a hierarchy T . Each node i has

a set of influencers, whose communication efforts influence his own direct payoff, and a set of

influencees, whose direct payoffs are influenced by node i. In turn the production efforts of

these influencees endow agent i with indirect payoffs. The origin (denoted by node θ) is a node
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...

θ

root

origin

Figure 5.2: A typical hierarchical model.

assumed to be outside the network, and communicates perfectly with the first (root) node,

denoted by 1.

We number nodes lexicographically, so that each child has a higher index than his parent,

thus the adjacency matrix is an upper triangular matrix with zeros on the diagonal. Figure 5.2

illustrates the model for an example hierarchical network.

The set of influencers of node i consists of the nodes (excluding node i) on the unique path

from the origin to the node, and is denoted by Pθ→i. The set of influencees of node i consists

of the nodes (again, excluding node i) in the subtree Ti below her.

The production effort, denoted by xi ∈ [0, 1], of node i yields a direct payoff to the node, and

the particular way in which this occurs depends on its productivity. The remaining effort, 1−xi,

goes to communication effort, and improves the productivity of the influencees of the node. The

constant sum of production effort and communication effort models the constraint on an agent’s

time, and it is enough to write both the direct and indirect payoff of a node as a function of the

production effort xi. In particular, the productivity of a node, denoted by pi(xPθ→i
), depends

on the communication effort (and thus the production effort) of the influencers on path Pθ→i

to the node. The production effort profile of these influences is denoted by xPθ→i
.

It is useful to associate xipi(xPθ→i
) with the value from the direct output of node i. The

payoff to node i comprises two additive terms that capture:

(1) the direct payoff, which depends on the value generated by the direct output of a node

and the cost of production and communication effort, and is modulated by the productivity of

the node, and

(2) the indirect payoff, which is a fraction of the value associated with the direct output of

any influencee j of the node.

99



Taken together, the payoff to a single node i is:

ui(xi, x−i) = pi(xPθ→i
)f(xi) +

∑

j∈Ti\{i}

hijpj(xPθ→j
)xj. (5.1.1)

The first term is the product of the direct payoff and a function f(xi) (which models production

output and cost) and captures the trade-off between direct output and cost of production and

communication effort. The second term is the total indirect payoff received by node i due to

the output pj(xPθ→j
)xj of its influencees. We insist that the productivity pj(·) of any node j is

non-decreasing in the communication effort of each influencer, and thus non-increasing in the

production effort of each influencer, and we require ∂
∂xi

pj(xPθ→j
) ≤ 0 for all nodes j, where i is

an influencer of j.

Each node i receives a share hij of the value of the direct output of influencee j. The model

can also capture a setting where an agent can only share output he creates, i.e., the total fraction

of the output an agent retains and shares with the influencers is bounded at 1. Let us assume

that agent j retains a share sjj and shares sij with influencers i ∈ Pθ→j. A budget-balance

constraint on the amount of direct value that can be shared requires
∑

i∈Pθ→j∪{j}
sij ≤ 1.

Assume that sjj = γ > 0, for all j, so that each node retains the same fraction γ of its

direct output value. Then, the earlier inequality can be written as,
∑

i∈Pθ→j

sij
γ
≤ 1

γ
− 1. By

now defining hij =
sij
γ
, the whole system is scaled by a factor γ. In addition to notational

cleanliness, this transformation gives the advantage of not having any upper bound on the
∑

i∈Pθ→j
hij , since any finite sum can always be accommodated with a proper choice of γ. Let

us call the matrix H = [hij ] containing all the reward shares as the reward sharing scheme.

To highlight our results, we focus on a specific form of the payoff model, namely the Ex-

ponential Productivity (EP) model. A model is an instantiation of the direct-payoff function

f(xi) and the productivity function pi(·). In particular, in the EP model:

f(xi) = xi −
x2
i

2
− b

(1 − xi)
2

2
, (5.1.2)

pi(xPθ→i
) =

∏

k∈Pθ→i

µ(Ck)e
−βxk , (5.1.3)

where b ≥ 0 is the cost of communication, Ck is the number of children of node k, function

µ(Ck) ∈ [0, 1] required to be non-increasing, and β ≥ 0 denotes the quality of communication,

with higher β corresponding to a lower quality of communication. We assume p1 = 1 for

the root node. This models the root having perfect productivity. We interpret the term

µ(Ck)e
−βxk ∈ [0, 1] as the communication influence of node k on the agents in his subtree.
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The direct payoff of an agent i is quadratic in production effort xi, and reflects a linear

benefit xi from direct production effort but a quadratic cost x2
i /2 for effort. The utility model

given by Equation (5.1.1) resembles the utility model given by Ballester et al. [7]. However,

there are a few subtle differences in our model than that in this paper: (a) the utility of agent

i is not concave in her production effort xi (caused by the exponential term in the productiv-

ity); thus the existence of Nash equilibrium is nontrivial (for concave games Nash equilibrium

is guaranteed to exist [71]); (b) each agent has two types of effort, namely production and

communication, and the communication effort of an agent is complementary to the production

efforts of her influencees, while the production efforts are substitutable to each other. Also,

the complementarity is nonlinear. In Section 5.1.4, we address quite general nonlinear com-

plementarity. This is a step forward to the multidimensional effort distribution with nonlinear

correlation between the efforts among agents. We chose this particular form to capture a real-

istic organizational hierarchy; (c) In addition, we also consider the cost due to communication,

captured by b(1− xi)
2/2.

The productivity of node j, given by pj(xPθ→j
), where j ∈ Ti \ {i} warrants a careful

observation. Here we explain the components of this function and the reasons for choosing

them. Consider µ(Ck), which is non-increasing in the number of children. Ck captures the

idea that the effect of the communication effort is reduced if the node has more children to

communicate with. An increase in production effort xk reduces the productivity of influencees

of node k. In particular, the exponential term in the productivity captures two effects: (a)

a linear decrease in production effort gives exponential gain in the productivity of influencee,

which captures the importance of communication and management in organizations [2]. Smaller

values of β model better communication and a stronger positive effect on an influencee. (b) We

can approximate other models by choosing β appropriately. Linear productivity corresponds to

small values of β. This property is useful when the effects of production and communication on

the payoff are equally important. For large β, communication quality between agents is poor

and the value of communication effort is low.

The successive product of these exponential terms in the path from root to a node reflects

the fact that a change in the production effort of an agent affects the productivity of the entire

subtree below her. We note that the productivity of node j, where j ∈ Ti \{i}, is not a concave

function of xi, leading to the payoff function ui to be non-concave in xi. Hence the existence

of a Nash equilibrium is not guaranteed a priori through known results on concave games [71].

In the next section we will demonstrate the required conditions on existence and uniqueness of

a Nash equilibrium. For brevity of notation, we will drop the arguments of productivity pi at

certain places where it is understood.
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Our results on existence, uniqueness and their interpretations generalize to other network

structures beyond hierarchies, which we show in the later part of this section. However, despite

the mathematical simplicity of the EP model, it allows us to obtain interesting results on the

importance of influence, both communication and incentives, and gives insight on outcome

efforts in a networked organization.

Main Results

The effect of communication efforts between nodes i and j, where i ∈ Pθ→j is captured by the

fractional productivity
pj
pi

defined as, pij(xPi−→j
) =

∏

k∈Pi−→j
µ(Ck)e

−βxk , (the node i− is the

parent of i in the hierarchy). This term is dependent only on the production efforts in the path

segment between i and j and accounts for ‘local’ effects. We show in the following theorem

that the Nash equilibrium production effort of node i depends on this local information from

all its descendants.

Theorem 5.1 (Existence of a Nash Equilibrium) A Nash equilibrium always exists in the

effort game in the EP model, and is given by the production effort profile (x∗
i , x

∗
−i) that satisfies,

x∗
i =



1− β

1 + b

∑

j∈Ti\{i}

hijpij(x
∗
Pi−→j

)x∗
j





+

(5.1.4)

Proof: The proof of this theorem uses the hierarchical structure of the network and the fact

that the productivity functions (pi’s) are bounded. We present the proof in Appendix 5.A. �

This theorem shows that the EP model allows us to guarantee the existence of (at least

one) Nash equilibrium. In particular, we can make certain observations on the equilibrium

production effort, some of which are intuitive.

• If communication improves, i.e., β becomes small, the production effort of each node

increases.

• If the cost of management b increases, the production effort of each node increases.

• When reward sharing (hij) is large, agents reduce production effort and focus more on

communication effort, which is more productive in terms of payoffs.

• The computation of a Nash equilibrium at any node depends only on the production

efforts of the nodes in its subtree. Thus, we can employ a backward induction algorithm

which exploits this property that helps in an efficient computation of the equilibrium (this

will be shown formally in the corollaries later in this section).
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We turn now to establishing conditions for the uniqueness of this Nash equilibrium. Let us

define the maximum amount of reward share that any node i can accumulate from a hierarchy

T given a reward sharing scheme H as, hmax(T ) = supi

∑

j∈Ti\{i}
hij . We also define the effort

update function as follows.

Definition 5.1 (Effort Update Function (EUF)) Let the function F : [0, 1]n → [0, 1]n be

defined as,

Fi(x) =



1− β

1 + b

∑

j∈Ti\{i}

hijpij(xPi−→j
)xj





+

.

Note that the RHS of the above expression contains the production efforts of all the agents

in the subtree of agent i. This function is a prescription of the choice of the production effort

of agent i, if the agents below the hierarchy choose a certain effort profile. Hence the name

‘effort update’.

Theorem 5.2 (Sufficiency for Uniqueness) If β <
√

1+b
hmax(T )

, the Nash equilibrium effort

profile (x∗
i , x

∗
−i) is unique and is given by Equation (5.1.4).

Proof: The proof of this theorem shows that F is a contraction, and is given in Appendix 5.A.

�

Theorem 5.3 (Tightness) The sufficient condition of Theorem 5.2 is tight.

Proof: Consider a 3 node hierarchy with nodes 2 and 3 being the children of node 1 (Fig-

ure 5.3). We show that if the sufficient condition is violated, we get multiple equilibria.

Let b = 0, and h12 = h13 = 0.25, therefore hmax(T ) = 0.25. Theorem 5.2 requires that

β < 1/
√
0.25 = 2. We choose β = 2. The equilibrium efforts for node 2 and 3 are 1. Node 1

solves the following equation to find the equilibria.

1− x1 = e−2x1 .

This equation has multiple solutions, x1 = 0, 0.797, showing non-uniqueness. �

The uniqueness condition indicates that the communication quality needs to be ‘good

enough’ (small β) to ensure uniqueness of an equilibrium. It is worth noting that the uniqueness

condition ensures the convergence of the best response dynamics, in which all the players start

from any arbitrary effort profile xinit, and sequentially update their efforts via the function F ,

to the unique equilibrium. This is a consequence of the fact that F is a contraction.
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Figure 5.3: Tightness of the sufficiency (Theorem 5.2).

We now turn to the computational complexity of a Nash equilibrium. If there are multiple

NE, these complexity results hold for computing a NE. Recall that the equilibrium computation

of an agent requires only the production efforts and the reward structure of its subtree, and

we can take advantage of the backward induction. This observation leads to the following

corollaries.

Corollary 5.1 The worst-case complexity of computing the equilibrium effort for node i is

O(|Ti|2). As a result, The worst-case complexity of computing the equilibrium efforts of the

whole network is O(n2).

Proof: To compute the equilibrium production effort x∗
i , node i needs to compute Equa-

tion (5.1.4). This requires to compute the equilibrium efforts for each node in his subtree Ti.

Because of the fact that x∗
i depends only on the equilibrium efforts of the subtree below i, we

can apply the backward induction method starting from the leaves towards the root of this

sub-hierarchy Ti. The worst-case complexity of such a backward induction occurs when the

sub-hierarchy is a line. In such a case the complexity would be |Ti|(|Ti| − 1)/2 = O(|Ti|2). In

order to compute the equilibrium efforts of the whole network, it is enough to determine the

equilibrium effort at the root because this would, in the process, determine the equilibrium

efforts of each node in the hierarchy. This is also a consequence of the backward induction

method of computing the equilibrium. The worst-case complexity of finding the equilibrium

effort at the root is O(n2) and therefore the worst-case complexity of computing the equilibrium

efforts of the whole network is also O(n2). �
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Given the characterization of the Nash equilibrium above, we now move on to questions of

characterizing the amount of direct output value generated in equilibrium.

Maximizing the Productive Output of the Network

In our model, the equilibrium behavior of the agents are tightly coupled with the network

structure and the reward sharing scheme as seen from Equation (5.1.4). In this section, we look

at how the equilibrium behavior affects the social output of the hierarchy T for a given effort

vector x ∈ [0, 1]n, defined as follows.

SO(x, T ) =
∑

i∈N

pi(xPθ→i
)xi (5.1.5)

This quantity captures the sum of the output of each individual agents in the network, where

the output of each agent is the product of their productivity and production effort. For a

given hierarchy T , let us define an optimal effort vector as xOPT ∈ argmax
x
SO(x, T ). This is

the production effort profile across the network that maximizes the total direct output value,

considering also the effect of communication effort (induced by lower production effort) on

the productivity of other nodes. Ideally the designer would like to achieve this maximal social

output for the given hierarchy. However, the strategic choice of the individuals might not always

lead to this performance of the system as a whole. The question we address in this section is

how the Nash equilibrium effort level x∗ performs in comparison to the socially optimal outcome

xOPT.

We will consider cases where the equilibrium is unique, hence, the price of anarchy [42] is

given by:

PoA =
SO(xOPT, T )

SO(x∗, T )
. (5.1.6)

This quantity measures the degree of efficiency of the network. Making PoA equal to unity

would be the ideal achievement for the designer. However, that may not always be possible

given the parameters of the model. In such a case, we provide a design procedure of the reward

sharing scheme that yields the maximum social output.

We note that the equilibrium effort profile x∗ depends on the reward sharing scheme H ,

while xOPT does not. The goal of this section is to understand how one can engineer the H to

reduce the PoA (thereby making the social output closer to an optimal). The following theorem

shows that if the reward sharing is not properly designed, the PoA can be arbitrarily large. We

first consider a single-level hierarchy (see Figure 5.4). To simplify the analysis, we also assume
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that the function µ(C1) = 1, irrespective of the number of children of node 1. By symmetry, we

consider a single value h, such that h12 = h13 = . . . = h1n = h. We refer to this model as FLAT.

We will return to this model later as well, after presenting our results for more general balanced

hierarchies. We first consider what happens when there is bad communication (β large) and no

profit sharing (h = 0), between node 1 and its children.

1

. . .2 n

θ

Figure 5.4: FLAT hierarchy.

Theorem 5.4 (Large PoA) For n ≥ 3, the PoA is n−1
2

in the FLAT hierarchy when β =

ln(n− 1) and h = 0.

Proof: For FLAT, the social output is given by, SO(x, FLAT) =
∑n

i=2 e
−βx1xi + x1. We

see that β = ln(n − 1) ≥ − ln
(
1− 1

n−1

)
, for all n ≥ 3. The optimal effort profile xOPT =

(0, 1, . . . , 1) maximizes the social output (stated in Corollary 5.2, for the proof see Lemma 5.7

in Appendix 5.B). Hence an optimal social output is n− 1. However, for reward sharing factor

h = 0, we get the equilibrium effort profile from Equation (5.1.4) to be x∗ = (1, 1, . . . , 1). This

yields a social output of (n− 1)e−β + 1. Hence the PoA is n−1
(n−1)e− ln(n−1)+1

= n−1
2
. �

However, if h is chosen appropriately, e.g., if it were chosen to be large positive, the equi-

librium effort profile given by Equation (5.1.4) would have been closer to that of an optimal.

Hence PoA could have been reduced and made closer to 1.

This raises a natural question: is it always possible to design a suitable reward sharing

scheme that can make PoA = 1 for any given hierarchy? In order to answer that, we define

the stability of an effort profile x.

Definition 5.2 (Stable Effort Vector) An effort profile x = (x1, . . . , xn) is stable, repre-

sented by x ∈ S, if x ≥ 0, and there exists a reward sharing matrix H = [hij ], hij ≥ 0, such

that,
∑

j∈Ti\{i}

aij(x)hij ≥ 1− xi;
∑

j∈Ti\{i}

hij ≤
1 + b

β2
, ∀i ∈ N. (5.1.7)
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Where, aij(x) =
β

1+b
pij(xPi−→j

)xj, for all j ∈ Ti \ {i}, and zero otherwise. If such a solution H

exists, we call it a stable reward sharing matrix.

The inequalities capture a required balance between incentives and information flow. In

the first inequality, for a fixed communication factor β and cost coefficient b, the term aij(·) is
proportional to the fractional output (fractional productivity × production effort) of an agent

j. After multiplying with hij , this is the effective indirect output that i receives from j. The

RHS of the inequality can be interpreted as the communication effort of agent i. Hence, this

inequality says that the total indirect benefit should be at least equal to the effort put in by

a node for communicating the information to its subtree. If we consider that the agents share

information based on the reward share they receive, the flow of information and reward forms

a closed loop. The second inequality says that the closed loop ‘gain’ of the information flow

(β2) and the reward share accumulated by agent i (
∑

j∈Ti\{i}
hij) should be bounded by the

cost of sharing the information. The closed loop ‘gain’ is essentially the reward that an agent

accumulates due to his communication effort through his descendants. We can connect a stable

effort vector with the Nash equilibrium of the effort game.

Lemma 5.1 (Stability-Nash Relationship) If an effort profile x = (x1, . . . , xn) is stable, it

is the unique Nash equilibrium of the effort game with the corresponding stable reward sharing

matrix.

Proof: Let x is a stable effort profile. So, there exists a stable reward sharing matrix

corresponding to it. Let H = [hij ], hij ≥ 0 be the matrix, s.t. Equation (5.1.7) is satisfied with

x. Also x ≥ 0. Therefore, reorganizing the first inequality of Equation (5.1.7) and noting the

fact that xi ≥ 0, ∀i ∈ N , we get,

xi =



1−
∑

j∈Ti\{i}

aij(x)hij





+

, ∀i ∈ N.

Under the condition given by the second inequality of Equation (5.1.7), the Nash equilibrium

is unique and is given by the above expression (recall Theorem 5.2). Hence, x is the unique

Nash equilibrium of this game. �

Now it is straightforward to see that the stability of xOPT is sufficient for PoA to be 1. This

is because now the H that makes the xOPT vector stable can be used as the reward sharing

scheme, and for that H the equilibrium effort profile will coincide with xOPT. In other words,

an optimal effort vector can be supported in equilibrium by a suitable reward sharing scheme.

Hence, the following lemma is immediate.
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Lemma 5.2 (No Anarchy) A stable reward sharing scheme corresponding to xOPT yields a

PoA of 1.

A couple of important questions are then: how efficiently can we check if a given effort

profile x is stable or not? And how to choose a reward sharing scheme that makes the effort

profile stable? The answer is that we can solve the following feasibility linear program (LP) for

a given effort profile:

min 1

s.t.

∑

j∈Ti\{i}
aij(x)hij ≥ 1− xi,

∑

j∈Ti\{i}
hij ≤ 1+b

β2 ,

hij ≥ 0, ∀j,







∀i ∈ N.
(5.1.8)

If a solution exists to the above LP, we conclude that x is stable and declare the corresponding

H to be the resulting reward sharing scheme. Linear programs can be efficiently solved and

therefore checking an effort profile for stability can be done efficiently.

A Note on the Reward Share Design This condition gives us a recipe of the design of

the reward sharing scheme. However, the next question is: what happens when the xOPT is

unstable? If the above feasibility LP does not return any solution matrix H , we conclude that

xOPT /∈ S. In such a scenario, we cannot guarantee PoA to be unity. However, for any given

reward sharing matrix H , there is an equilibrium effort profile x∗(H). We can, therefore, solve

for Hmax ∈ argmaxH:x∗(H)∈S SO(x∗(H)) which leads to an equilibrium effort profile x∗(Hmax)

that lies in the stable set and maximize the social output. Therefore, when we cannot find a

reward sharing scheme to achieve an optimal social output, Hmax is our best bet. Computing

Hmax for general hierarchies may be a hard problem, and we leave that as an interesting future

work. However, for certain special classes of hierarchies, it is possible to derive bounds on the

PoA (thereby providing a design recipe for H to achieve a lower bound on the social output).

In the following section, we do this for the balanced hierarchies. The price of anarchy analysis,

therefore, serves as a means to find an optimal reward sharing scheme that gives a theoretical

guarantee on the social output of the system.

Price of Anarchy in Balanced Hierarchies

In this section we consider a simple yet representative class of hierarchies, namely the balanced

hierarchies, and analyze the effect of communication on PoA and provide efficient bounds.

Hierarchies in organizations are often (nearly) balanced, and the FLAT or linear networks are

special cases of the balanced hierarchy (depth = 1 or degree = 1). Hence, the class of balanced

hierarchies can generate useful insights. In addition, the symmetry in balanced hierarchies
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allows us to obtain interpretable closed-form bounds and understand the relative importance

of different parameters.

We consider a balanced d-ary tree of depth D. By symmetry, the efforts of the nodes

that are at the same level of the hierarchy are same at both equilibrium and optimality. This

happens because of the fact that in the EP model, both the equilibrium and optimal effort

profile computation follows a backward induction method starting from the leaves towards the

root. Since the nodes in the same level of the hierarchy is symmetric in the backward induction

steps, they have identical effort profiles.

With a little abuse of notation, we denote the efforts of each node at level i by xi. We

start numbering the levels from root, hence, there are D + 1 levels. Note that there are a few

interesting special cases of this model, namely (a) d = 2: balanced binary tree, (b) D = 1:

flat hierarchy, (c) d = 1: line. We assume, for notational simplicity only, that the function

µ(Ck) = 1, for all Ck, though our results generalize. This function is the coefficient of the

productivity function. µ(Ck) = 1 also models organizations where each manager is assigned a

small team and there is no attenuation in productivity due to the number of children. In order

to present the price of anarchy (PoA) results, we define the set ξ:

ξ(β) =

{

x : x =

[

1− 1

β
e−βx

]+
}

. (5.1.9)

This set is the set of possible equilibrium effort levels for agents at the penultimate level of

the EP model hierarchy when β > 1. Note that this set is a singleton, when β > 1. Depending

on β, we define a lower bound φ(d, β) on the contribution of an agent toward the social output,

and a sequence of nested functions ti, where d is the degree of each node.

φ(d, β) = max

{
1

β
(1 + ln(dβ)), dβ + (1− dβ)ξ(β)

}

,

t1(d, β) = φ(d, β), t2(d, β) = φ(d · φ(d, β), β), . . . , tD(d, β) = φ(d · tD−1(d, β), β).

(5.1.10)

Theorem 5.5 (Price of Anarchy) For a balanced d-ary hierarchy with depth D, as β in-

creases, we can show the following price of anarchy results.

When 0 ≤ β ≤ 1, PoA = 1,

and when 1 < β <∞, PoA ≤ dD

tD(d, β)
.

(5.1.11)
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Figure 5.5: Bounds on PoA for FLAT, d = 6, D = 1.

Proof: The proof is constructive and sets the H matrix appropriately to achieve the bounds

on PoA. The H matrix constructed this way acts as the reward sharing scheme to achieve a

reasonable enough social output. For details, see Appendix 5.B. �

As opposed to our choice of lower bound φ, a näıve lower bound of 1
β
(1 + ln(dβ)) can also

be used. We denote the corresponding sequence of nested functions similar to the ones defined

in Equation (5.1.10) in that case to be qi, i = 1, . . . , D. However, this gives a weaker bound for

any hierarchy. As an example, we compare the bounds with the actual PoA for FLAT (recall

Figure 5.4) in Figure 5.5 (the FLAT hierarchy is a balanced tree with D = 1, d = n − 1).

Figure 5.5 shows that the bound given by our analysis is tight for FLAT, indicating the value

of the analysis and also gives intuition to the shape of the effect of β on the PoA. We have the

following corollaries of Theorem 5.5,

Corollary 5.2 (Optimal Effort) For the FLAT hierarchy, if 0 ≤ β < − ln
(
1− 1

n

)
, an optimal

effort profile is where all nodes put unit effort. When − ln
(
1− 1

n

)
≤ β <∞, an optimal changes

to the profile where the root node puts zero effort and each other node puts unit effort.

Corollary 5.3 For the FLAT hierarchy, when 0 ≤ β ≤ 1, PoA = 1, and when 1 < β < ∞,

PoA ≤ n
φ(d,β)

.

The second corollary above makes rigorous the intuition that when β is small enough an

optimal x can be achieved by choosing a small enough reward share h. However, when β grows,

in order to ensure uniqueness of the Nash equilibrium, the choice of h becomes limited (as it

has to satisfy ≤ (1 + b)/β2) resulting in a PoA, as captured in Figure 5.5.
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5.1.4 A General Network Model of Influencer and Influencee

In this section, we show that the results on existence and uniqueness of a pure strategy Nash

equilibrium generalize to a much broader setting of agents as influencer and influencees inter-

acting over an arbitrary network.

Suppose that the agents are connected over a (possibly non-hierarchical) network G. Each

node i has a set of influencers, denoted by Ri (generalizing Pθ→i), and a set of influencees, Ei

(generalizing Ti \{i}). We import the notation from Section 5.1.3 with their exact or analogous

meanings for productivity pi(xRi
) and reward sharing scheme H . Now, the payoff function of

agent i is given by,

ui(xi, x−i) = pi(xRi
)f(xi) +

∑

j∈Ei

hijpj(xRj
)xj . (5.1.12)

We assume that f is a strictly concave function, and is continuously differentiable. We will

refer to the product of effort xi and productivity pi(xRi
) as the output, and denote it by yi. In

this context, we do not impose any condition on the nature of the productivity function pi(·),
and as before, this game is also not necessarily a concave game and the existence of a Nash

equilibrium is not always guaranteed.

Results

The payoff function given by Equation (5.1.12) induces a game between the influencers and

the influencees. In addition, as before, every agent faces a trade-off when deciding how much

production and communication effort to exert. We will need the following facts.

Fact 5.1 If a function is continuously differentiable and strictly concave, its derivative is con-

tinuous and monotone decreasing.

Fact 5.2 A continuous and monotone decreasing function is invertible and the inverse is also

continuous and monotone decreasing.

Using the above two facts, we see that the inverse of f ′ exists and is monotone decreasing.

Let us denote f ′−1 by ℓ. Let us define two functions g and T similar to that defined in

Section 5.1.3.

gi(x) =
∑

j∈Ei

hij

(

− 1

pi(xRi
)

∂pj(xRj
)

∂xi

xj

)∣
∣
∣
∣
x

, (5.1.13)

T (x) = min{max{0, x}, 1}. (5.1.14)
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xi
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Figure 5.6: Impact on the production effort of a node having higher EFOR from the influencees.

Fact 5.3 The function T is continuous.

Lemma 5.3 (Necessary Condition for Nash equilibrium) If a Nash equilibrium exists

for the effort game in a influencer-influencee network, the effort profile (x∗
i , x

∗
−i) must satisfy,

x∗
i = T ◦ ℓ ◦ gi(x∗), ∀i ∈ N. (5.1.15)

To illustrate what this necessary condition means, let us assume, for simplicity, that we do

not hit the edges of the truncation function T . Therefore we can rewrite Equation (5.1.15) as,

f ′(x∗
i ) =

∑

j∈Ei

hij

(

− 1

pi

∂pj
∂xi

xj

)∣
∣
∣
∣
x
∗

=
∑

j∈Ei

hij

(

− 1

pi

∂yj
∂xi

)∣
∣
∣
∣
x
∗

(5.1.16)

Where yj = pjxj is the output of node j. We have dropped the arguments of pi and pj for

brevity of notation. The expression on the LHS is the rate of change of direct benefit for agent

i. The RHS is the rate at which the passive output of agent i changes w.r.t. his effort xi and

productivity pi. If the LHS is larger, the agent would gain more at the margin by increasing xi.

This is because the derivative (−∂yj/∂xi) is non-negative since ∂pj/∂xi is always non-positive.

Similarly, if the RHS was larger, the agent could gain at the margin by decreasing xi. Hence

Equation (5.1.16) resembles a rate balance equation (or demand-supply curve) where the rate

of effective direct payoff matches the rate of passive payoffs.

Let us define the effective fractional output rate (EFOR) at x as
∑

j∈Ei
hij

(

− 1
pi

∂yj
∂xi

)∣
∣
∣
x

. In

some settings, e.g., if pi(xRi
) =

∏

k∈Ri
(1 − xk), the fractional output rate

(

− 1
pi

∂yj
∂xi

)

can be

independent of the production effort of i, i.e., xi. In such settings, Equation (5.1.16) shows

that if the EFOR of node i increases, the equilibrium for node i will move in a direction that

decreases production effort xi. This happens because the slope of f in equilibrium is always non-
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negative and its increase leads to a smaller xi because of the concavity of f . This phenomenon

is graphically shown in Figure 5.6. This shows that the nodes having a higher EFOR, which is

a function of the network position of an agent, can leverage more on the production efforts of

the influencees.

Following Definition 5.1, we define the effort update function (EUF) F : [0, 1]n → [0, 1]n

for the general setting as, F (x) = T ◦ ℓ ◦ g(x), where T ◦ ℓ operates on the vector function g

element-wise. Therefore, the question of existence of a Nash equilibrium of this effort game is

the same as asking the question if the following fixed point equation has a solution: x = F (x).

In the following, we provide a sufficient condition for existence of the Nash equilibrium, and

its uniqueness.

Lemma 5.4 For pi > 0, for all i ∈ N , and continuously differentiable, F (x) is continuous.

Proof: Given pi > 0, for all i ∈ N , and is continuously differentiable. Therefore, the function

g, defined in Equation (5.1.13), is continuous in x. Using Facts 5.2 and 5.3, we see that the

functions ℓ and T are continuous. Hence, F ≡ T ◦ ℓ ◦ g is continuous in x. �

Theorem 5.6 (Sufficient Condition for a Nash Equilibrium) For pi > 0, for all i ∈ N ,

and continuously differentiable, the effort game has at least one Nash equilibrium.

Proof: From Lemma 5.3, we see that the Nash equilibrium of the effort game is same as the

fixed point of the equation, x = F (x). Since F is continuous (Lemma 5.4), Brouwer’s fixed

point theorem immediately ensures a fixed point of the above equation to exist. Hence, the

effort game has at least one Nash equilibrium. �

Let us use the shorthand G ≡ ℓ ◦ g. The following theorem provides a sufficient condition

for the uniqueness of the Nash equilibrium.

Theorem 5.7 (Sufficient Condition for unique Nash Equilibrium) If sup
x0
|∇G(x0)| <

1, then the Nash equilibrium effort profile (x∗
i , x

∗
−i) is unique and is given by Equation (5.1.15).

Proof: The key here is to show that F is a contraction. We follow the steps of Theorem 5.2

as follows:

||F (x)− F (y)|| ≤ ||G(x)−G(y)|| ≤ |∇G(x0)| · ||x− y||.

This is a contraction as sup
x0
|∇G(x0)| < 1. �
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Interpretation of the Sufficient Condition of the Uniqueness

The sufficient condition given by Theorem 5.7 is a technical one. We now discuss an interesting

geometric interpretation of this condition. By the Taylor expansion of G with first order

remainder term, we get,

G(x)−G(y) = ∇G(x0) · (x− y).

Where x0 lies on the line joining x and y. Using singular value decomposition, we get, ∇G(x0) =

U0Σ0V
⊤
0 . Therefore, for each pair of points x and y, we can transform the space of efforts with

a pure rotation as follows.

G(x)−G(y) = U0Σ0V
⊤
0 · (x− y),

⇒ U⊤
0 (G(x)−G(y)) = Σ0 · (x̄− ȳ), where x̄ = V ⊤

0 x, ȳ = V ⊤
0 y

⇒ R(x̄)−R(ȳ) = Σ0 · (x̄− ȳ), where R ≡ U⊤
0 GV0.

Hence, for any pair of points x and y, we can rotate the space so that the effect of the deviation

to x from y can be captured by a weight on each of the coordinates in the rotated space. Here,

the diagonal matrix Σ0 contains the weights along its diagonal.

Theorem 5.7 says that for any point x0, if the absolute value of all the elements of this

diagonal matrix is smaller than unity, the uniqueness of the Nash equilibrium is guaranteed.

Let us denote the rotated vector of x0 by z0 := V ⊤
0 x0. The diagonal elements can be written

w.r.t. the vectors in the rotated space as,

(Σ0)ii =
∑

j∈Ei

hij

(

− 1

pi

∂2pj
∂z2i

zj

)∣
∣
∣
∣
z0

=
∂EFOR(z0)

∂zi,0
.

In other words, the diagonal elements are the rate of change of EFOR at z0. Having the rate

of change of EFOR bounded by 1 is a sufficient condition for a unique Nash equilibrium. One

can think of the EFOR as the product of two effects: (1) the rate of change in productivity,

which increases the payoff of the influencees, (2) the reward share hij ’s. The sufficient condi-

tion essentially says that the net effect should not be too large in order to guarantee unique

equilibrium.

Figure 5.7 shows a graphical illustration of the phenomenon in polar co-ordinates, where the

directions represent that of the vectors. The results say that if for any vector, the singular values

of the Jacobian matrix of G at that point lies entirely within the unit ball, then there exists

an unique Nash equilibrium. This is similar to the feedback loop gain of a feedback controller,

where the closed loop gain being smaller than unity ensures stability. We find this natural
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Figure 5.7: Geometric interpretation of the condition for uniqueness of the Nash equilibrium.

parallel between notions of stability (from control theory) and uniqueness of Nash equilibria

interesting.

5.2 Network Design for Improving Productive Output 1

In this section, we focus on the network design aspect of the crowdsourcing system in order to

maximize the output. We use a slightly different model here. We assume that the tasks come

in the form of a Poisson process and they are consumed by the agents by a similar process. The

performance criterion that we focus on is minimization of the risk of not meeting the incoming

rate of tasks. In this setting, a crowdsourcing network is more productive if it has a lower risk,

i.e., the probability of the event that the incoming rate of tasks falls short of the sum delivery

rate of all the agents in the network. For simplicity, we analyze the hierarchical networks in

this section.

We propose a queuing-theoretic model of task arrival and processing, and a natural model

of profit sharing that provides a direct reward for completing a task and an indirect reward

if subordinates complete a task. We then model employee competition for tasks based on

the cost of the effort involved and the possible rewards. In addition to considerations that

follow from boundedly rational models of managers [77, 87] with limited information about

opportunities, we show how common organizational features, in particular profit sharing and

intra-organizational competition, can reduce overall efficiency due to a free-riding phenomenon,

1This section is based on the paper [61].
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which is an interesting feature in this model.

In an environment with profit sharing and without the benefits of information sharing

that can accrue within an organization, our first result (Theorem 5.8) quantifies the effect of

free riding on reducing the efficiency of an organization. In particular, the total output of

an organization decreases when compared to a flat organization. We then introduce a model

of information asymmetry and consider the positive effects of information sharing within an

organization, where managers are able to improve the estimates subordinates have for the

rewards for task completion. That is, managers share a form of ‘business intelligence’ about

the value of tasks to the organization and their potential rewards.

Based on this queuing and game theoretic model, we study the trade-offs between free riding

and the positive effects of information sharing. In particular we seek to answer quantitative

questions of the form ‘how well should management communicate to overcome the free riding

effects’? We show that information sharing can provide benefit even in the presence of free

riding, and quantify the magnitude of both effects (Theorem 5.9). The simulation results serve

to illustrate that the performance of the organization improves when the hierarchy is designed

considering free riding, as opposed to constructions that do not model these effects.

Section outline: We first introduce our general model, which includes rewards, information

asymmetry and information sharing. In Section 5.2.2, we address the perfect information sce-

nario where agents observe the true reward they obtain from task completion, and describe the

free riding that occurs when managers share in the profits of employees. In Section 5.2.3, we

study the effect of information asymmetry, and quantify how information sharing and propa-

gation improves the effectiveness of agent effort. In Section 5.2.4, we combine the two, and

discuss how the optimization of information propagation in hierarchies with free riding results

in interesting network structures with improved efficiency.

5.2.1 The Model

We first develop a model of task (or work) arrival and processing in an organization using a

server-queue model. The employees and managers of the organization are modeled as strategic

autonomous agents who choose actions to maximize their own payoffs, given the organizational

structure and with the possibility of indirect rewards for the tasks completed by others. The

agents may have asymmetric information and can communicate when they are connected.

The Task Arrival and Processing Model

We model an organization as a task processing unit where the tasks arrive at a Poisson rate λ,

and wait until served. For example, the tasks could be projects that need to be executed, or
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even small modules that need to be developed or completed as part of a larger contract. Other

situations where such a model would be applicable arise for example in sales organizations for

which agents get commissions [25].

Let the set of employees be denoted by N = {1, 2, . . . , n}, and connected over a hierarchy,

represented by a directed tree T . We assume that if an individual performs a task she gets

a direct reward and the nodes along the path from the individual to the root receive indirect

incentives. These indirect rewards model bonuses or the ‘credit’ a manager receives when a

task is completed by her employee.

Each node i attempts to capture a task from the work queue according to a Poisson process

with rate λi. The rate λi corresponds to the effort that the agent expends. The cost of

maintaining an attempt rate λi is Cλi, where C > 0 is a known constant. Such a linear increase

model of cost has been adopted in literature on public goods network [14]. If the total reward

of a task is R, corresponding to the total bonus or credit that the organization allocates to a

task, we assume that the node that executes it gets a direct reward of γR (γ ∈ (0, 1)), and the

rest shared as indirect incentives among its predecessors in the organizational tree. The true

reward of a task, R, is stochastic and distributed as FR.

In our initial analysis, we assume that every agent knows the realized reward of a task and

in the subsequent analysis we assume every agent has a noisy estimate of the reward of a task,

corresponding to information asymmetry between agents in an organization, where some agents

can better estimate the true value of a task and thus expend their effort more effectively. To

keep the model simple, every agent is assumed to have the same intrinsic ability to complete a

task, all tasks carry the same reward and that the time to complete a task is small compared to

the inter-attempt time of an agent. Some of these assumptions can be relaxed with considerable

increase in notational complexity though our basic model is sufficient to capture the effects of

profit sharing and information asymmetry.
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∑

j∈N λj
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Player i
grabs task
w. p. λi∑

j∈N λj

Figure 5.8: Server queue model for the task arrival to the network.

We model the task arrival and departure in a server-queue model, as shown in Figure 5.8,

where the arrival rate is λ(> 0) and the consolidated service rate of the entire network is
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∑

j∈N λj , using the simple fact that the superposition of Poisson processes is Poisson with the

rate being the sum of the rates [11]. When agent i tries to capture a job from the task queue, the

probability that she succeeds is given by λi/
∑

j∈N λj . This can be shown using the fact that

the inter-attempt times are exponentially distributed for a Poisson process, and exponential

random variables exhibit memoryless property [89]. This basic model can be extended using

other queuing theoretic models of job arrival and task completion, though that is beyond the

scope of this section.

Agent Utility and Reward Sharing

Organizations have profit sharing schemes where a manager is rewarded for a successful exe-

cution of a project by his team. Hence all agents connected in the hierarchy have two parts

to their net payoffs. If node j executes a task, she receives a ‘direct’ reward, and each node i

on the directed path from the root to j receives an ‘indirect’ reward. Since efforts are costly

(Cλi), each agent decides on an effort level to maximize her net payoff, i.e., (direct + indirect)

reward - cost. The choice of attempt rate λi ∈ Si = [0,∞) is a strategy for the agent, and this

induces a game between the nodes. If there is a large indirect reward a node can (and will)

reduce efforts to reduce costs. In the following, we derive an quantitative expression for the

expected utility for an agent i, when there are explicit direct and indirect rewards.

The indirect incentives are shared with other players as specified by a reward sharing matrix

∆ = [δij] where δij is the fraction of j’s reward received by i when j executes a task. We assume,

δii = γ > 0, ∀i ∈ N . Moreover, since the network is a directed tree, if j does not appear in

subtree of i then δij = 0. Our analysis extends to more general organizational structures,

such as ‘matrix’ type organizations where employees may report to multiple managers. We call

the matrix ∆ monotone non-increasing if δij ≥ δij′, whenever the hop-distance distT (i, j) ≤
distT (i, j

′), and anonymous if the δij depends only on the distance of i and j on T , distT (i, j),

and not on the identities of the nodes. To ensure that the total reward is bounded above by R,

we assume
∑

k∈N δkj ≤ 1, ∀j ∈ N .

An example of a monotone non-increasing and anonymous reward sharing scheme is a ge-

ometric reward sharing scheme. Node i, a predecessor of j in the tree T , gets a fraction of

reward δdistT (i,j), δ ∈ (0, 1), when j grabs the task. Node j gets γ fraction for her own effort,

and δ+γ ≤ 1 is require to balance the budget. For concreteness, we will use this reward sharing

scheme for the simulations.

Let us denote with Ti the subtree rooted at i. Combining the direct and indirect rewards

and costs, the expected utility of agent i ∈ N is given by,
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ui(λi, λ−i) := λγR
λi

∑

k∈N λk

+ λR
∑

j∈Ti\{i}

δij
λj

∑

k∈N λk

− Cλi, (5.2.1)

where λ−i = (λ1, . . . , λi−1, λi+1, . . . , λn). In the above equation, the first term on the RHS

denotes the expected utility of agent i due to her own effort λi, the second term represents

the indirect utility coming from the efforts λj of all the nodes j ∈ Ti \ {i}, and the third term

captures the cost an agent pays to maintain the effort level. The function ui can be shown to

be concave in λi, we skip the proof due to space constraints.

3

δ1,2

1

2

δ1,3

Figure 5.9: Node 1 is rewarded indirectly by 2 and 3.

Depending on the efforts exerted by the agents, the system could operate in one of the

following two zones:

Zone 1: When
∑

j∈N λj > λ, the task queuing process is a positive recurrent Markov chain

and all tasks will be served, and hence this is a desirable zone for the organization to operate.

Let us denote this zone by Z1 =
{

λ :
∑

j∈N λj > λ
}

.

Zone 2: When
∑

j∈N λj ≤ λ, the queuing process is a null or transient Markov chain and with

high probability (probability approaching unity) the queue will be non-empty and growing at

a steady state [89]. This is an undesirable state for an organization since certain incoming

projects will never be served. Let us denote this zone by Z2 =
{

λ :
∑

j∈N λj ≤ λ
}

.

Simply stated, the desirable state for the organization as a whole is in Zone Z1, with all

incoming customers served. To illustrate the utilities and the reward sharing among the agents,

let us consider a small hierarchy T (3) with nodes 1, 2, and 3, connected as shown in Figure 5.9.

Node 2 and 3 gets only direct reward due to their own effort, but 1 gets both direct and indirect

rewards.
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Information Asymmetry

In the full version of our model, we model agents as having only noisy estimates of the reward

associated with a task. Agent i observes the reward as Ri = R + ηi, which is a noisy version

of the actual reward. The noise is independent across agents, and is additive to true reward

R, and is distributed according to a Normal distribution: ηi ∼ N(0, σ2
i ). Agents vary in their

intrinsic variance σ2
i , reflecting their ability to track the reward accurately. The parameter σi

is assumed private to agents. For this reason, agent i knows that agent j observes a realization

of Rj = R+ ηj , but does not know σj or the value of Rj . In this section, we assume that agent

i picks its action after observation Ri is realized; i.e., the employees put their efforts after a

project arrives.

We allow information to be shared between agents. We model information propagation as

the change in the variance of the individuals, corresponding to a change in the uncertainty or

business insight that an employee has through communication with her manager. We assume

the variances evolve over time, and the dynamics depend on how agents are connected in

the hierarchy and how well they communicate. With a little abuse of notation, we use the

lowercase t as the index for time, and the uppercase T to denote the hierarchy. Let σ2
j (t, T ) be

the instantaneous variance of node j on tree T , with σ2
j (0, T ) = σ2

j , the intrinsic variances, for

all T . The rate of change of agent j’s variance is proportional to the instantaneous difference

of variance between her parent p(j) and herself.1 Formally,

dσ2
j (t, T )

dt
= µ(Cp(j)(T ))(σ

2
p(j)(t, T )− σ2

j (t, T )). (5.2.2)

The set of children of node i on tree T is denoted by Ci(T ) := {k ∈ N : (i, k) ∈ T}. The

communication function µ maps the set of children of the parent p(j), given by Cp(j)(T ), to R,

and is a monotone decreasing function. Where the tree T is understood, we leave this silent to

simplify notation.

To get a feel for this information propagation model, let us consider a case where the parent

p(j) has a smaller instantaneous variance than j, i.e., the manager knows the business potential

more accurately. Under this model, agent j also understands the business better due to her

connection with a better informed manager. Similarly, if the instantaneous variance of the

manager was larger, then the employees managed by him would be worse informed about the

business, which would reflect in their variance, even though their intrinsic variances were low.

The monotone decreasing function µ models that if a manager manages a large team, his

1This is similar to the information ‘osmosis’ model [32].
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effort per employee would be small. For the simulations, we adopt a sigmoid function:

µ(Cp(j)) = a · 1

1 + es(|Cp(j)|−b)
, (5.2.3)

where the parameters a ∈ [0, 1], s ∈ R>0, and b ∈ N denote the amplitude, steepness, and

breadth of communication respectively. A typical plot of µ with a = 1, s = 3, b = 4 is given in

Figure 5.10. Parameter a controls the amplitude of the function, s captures how steeply the

curve falls, and b captures how many children can the parent support without significant fall

in µ.
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Figure 5.10: Function µ, with a = 1, s = 3, b = 4.

Agent Model

The agents are assumed to be strategic, and they choose their effort λi’s to maximize their

payoff, given by Equation (5.2.1). If the reward is perfectly known to the agents, they maximize

this utility function by choosing appropriate effort in a pure-strategy Nash equilibrium.

When R is observed with noise, according to the information asymmetry model (Sec-

tion 5.2.1), we assume that each agent i estimates the reward perceived by the other agents.

That is, each agent i tries to estimate Rj given their privately observed Ri, ∀j 6= i. The two

random variables are related as, Ri = Rj+ηi−ηj . Since both ηi and ηj are zero mean Gaussians

with variances σ2
i and σ2

j respectively, Ri given Rj is distributed as N(Rj , σ
2
i + σ2

j ). Hence the

maximum likelihood (MLE) estimate of Rj after observing Ri is given by Ri itself.

In this setting, we adopt a simple model of the agent i’s behavior, in which the agent acts in

a certainty-equivalent way and adopts this estimate Ri in place of R, including for the purpose
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of modeling the reward perceived by other agents. In particular, agent i adopts as its strategy

the effort level that it would adopt in the pure strategy Nash equilibrium in a subjective model

of the game, in which it assumes that every other agent adopts as the reward for the current

task the MLE estimate of agent i.1 In this section, we refer to the this behavioral model as the

MLE Best Response (MBR) model.

Performance Metric

To ensure that all incoming tasks are served in the long run, the sum of the best response efforts

should be at least the incoming rate of tasks. Let us denote the best response effort of agent i

under the MBR model by λMBR
i . The sum effort is a random variable under the information

asymmetry model of the agents. We define the risk of the organization as the probability that

the sum effort does not meet the arrival rate:

Risk := P

(
∑

i∈N

λMBR
i ≤ λ

)

(5.2.4)

5.2.2 Drawback: Free Riding

In this section, we analyze the effect of reward sharing on the effort level of the agents in a model

with no information asymmetry, such that all agents observe R perfectly. The effort sharing

function f is a recursive function, which is computed at the leaf first and then is computed on

the nodes above till the root, for a given tree T and a reward sharing matrix ∆, defined as

follows. Let us denote the set of single-rooted directed trees with n nodes by T.

Definition 5.3 (Effort Sharing Function) An effort sharing function is a mapping f :

T × [0, 1)n×n → [0, 1] given by the recursive formula,

f(Ti,∆) = max






0, 1− 1

γ

∑

j∈Ti\{i}

δij · f(Tj,∆)






, (5.2.5)

where Ti is the subtree rooted at i, which includes i.

This function is maximum when i is a leaf, and decreases as we move towards the root. In

Figure 5.11, we plot f(Ti,∆) as a function of the size of the subtree Ti. The function decreases

1This model of agent behavior is related to formal models in behavioral game theory; e.g., the Quantal Level
k (QL-k) model [78]. In these models, agents make (different, depending on their level) simplifying assumptions
about the reasoning of other agents. In our MLE best response model, agents make simplifying assumptions
about the beliefs of other agents about the reward of a task.
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as the size of the subtree Ti increases. The following theorem states that the equilibrium effort

level of each node in a hierarchy is proportional to this function, leading to a smaller effort

levels of nodes near the root.
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Figure 5.11: Plot of f(Ti,∆) (∆ averaged) versus |Ti|.

Theorem 5.8 (Nash Equilibrium Characterization) Under the perfect observation of the

reward R, the Nash equilibrium effort profile λ
∗, is uniquely given by,

λ∗
i =

λγR

C






∑

j∈N f(Tj,∆)− 1
(
∑

j∈N f(Tj,∆)
)2




 f(Ti,∆), ∀ i ∈ N, (5.2.6)

and lies in Z1 =
{

λ :
∑

j∈N λj > λ
}

, if and only if,

γ · R
C

>

∑

j∈N f(Tj,∆)
∑

j∈N f(Tj ,∆)− 1
(5.2.7)

Proof: (⇒) Substituting Equation (5.2.6) in
∑

j∈N λj > λ we obtain γ·R
C

>
∑

j∈N f(Tj ,∆)
∑

j∈N f(Tj ,∆)−1
.

(⇐) We show this in two steps.

Step 1: Unique PSNE effort profile: If a PSNE effort profile (λ∗
i , λ

∗
−i) exists in the given

game, then it must satisfy, ui(λ
∗
i , λ

∗
−i) ≥ ui(λi, λ

∗
−i), ∀λi ∈ Si = [0,∞), ∀i ∈ N . This implies,

λ∗
i = argmaxλi∈Si=[0,∞) ui(λi, λ

∗
−i), ∀ i ∈ N .
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Thus in order to find the Nash equilibrium we have to solve the following optimization

problem for each i ∈ N .

maxλi
ui(λi, λ

∗
−i)

s.t. λi ≥ 0,

}

⇒ minλi
−ui(λi, λ

∗
−i)

s.t. −λi ≤ 0.
(5.2.8)

Due to concavity of ui, this is a convex optimization problem with linear constraints, which

can be solved using KKT theorem. At the minimizer λ∗
i of problem (5.2.8), ∃ µ ∈ R such that,

(i) µ ≥ 0, (ii) − ∂
∂λi

ui(λ
∗
i , λ

∗
−i)− µ = 0, (iii) −µλ∗

i = 0, (iv) −λ∗
i ≤ 0.

Case 1: µ > 0⇒ λ∗
i = 0 and in this case ∂

∂λi
ui = −µ ≤ 0.

Case 2: µ = 0⇒ ∂
∂λi

ui(λ
∗
i , λ

∗
−i) = 0 and in this case λ∗

i ≥ 0. This leads us to,

(
∑

j∈N

λ∗
j

)2

=
λγR

C




∑

j 6=i

λ∗
j −

∑

j∈Ti\{i}

λ∗
jδij



 . (5.2.9)

The above expression is obtained by differentiating ui.

For a given tree and its equilibrium profile λ∗, let us substitute x for
∑

j∈N λ∗
j , then manip-

ulation of Equation (5.2.9) leads to,

λ∗
i +

∑

j∈Ti\{i}

λ∗
jδij = x− x2C

λγR
, ∀i ∈ N. (5.2.10)

We do another variable substitution to denote the RHS of Equation (5.2.10) by y (≥ 0 since

LHS is ≥ 0). That is,

y = x− x2C

λγR
. (5.2.11)

Claim: λ∗
i = yf(Ti,∆), ∀i ∈ N .

Proof: We prove this claim via induction on the levels of T . Let the depth of T be D. From

Equation (5.2.10), λ∗
i +

∑

j∈Ti\{i}
δijλ

∗
j = y, ∀ i ∈ N . From Cases 1 and 2 above,

λ∗
i = max



0, y −
∑

j∈Ti\{i}

δijλ
∗
j



 ∀ i ∈ N. (5.2.12)

Step 1: For an arbitrary node j at level D, from Equation (5.2.12), λ∗
j = y. Hence, the

proposition is true as f(Tj ,∆) = 1 for a leaf. Now, select an arbitrary node i (which is not

a leaf) at level D − 1. From Equation (5.2.12) we get, λ∗
i = max(0, y −

∑

j∈Ti\{i}
δijy) =

ymax(0, 1−∑j∈Ti\{i}
δij1) = yf(Ti,∆).
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Step 2: Let λ∗
j = yf(Tj,∆) be true for all nodes j upto level D − l. Consider an arbitrary

node i at level D − l − 1. From Equation (5.2.12) and Equation (5.2.5),

λ∗
i = max



0, y −
∑

j∈Ti\{i}

y · f(Tj,∆)δij



 = yf(Ti,∆) (5.2.13)

which concludes the induction. �

To find an expression for PSNE we now evaluate y. The sum of efforts of all the players is

defined as x. Hence, x = y
∑

j∈N f(Tj,∆). Substituting for y from Equation (5.2.11) in this

expression and solving for x yields,

x =
∑

j∈N

λ∗
j =

λγR

C

(∑

j∈N f(Tj,∆)− 1
∑

j∈N f(Tj ,∆)

)

. (5.2.14)

Using Equation (5.2.11) we get,

y =
λγR

C






∑

j∈N f(Tj,∆)− 1
(
∑

j∈N f(Tj ,∆)
)2




 . (5.2.15)

Combining Equation (5.2.15) and the claim above, the PSNE is given by,

λ∗
i =

λγR

C






∑

j∈N f(Tj,∆)− 1
(
∑

j∈N f(Tj,∆)
)2




 f(Ti,∆), ∀ i ∈ N.

KKT equations led to a unique solution of the optimization problem, hence PSNE is unique.

Step 2:
∑

j∈N λj > λ: We use Equation (5.2.6) to compute the sum
∑

j∈N λ∗
j , and use the

fact that γR/C >
∑

j∈N f(Tj ,∆)
∑

j∈N f(Tj ,∆)−1
to get

∑

j∈N λ∗
j > λ. �

Example 5.1 To get a feel for how free riding can affect the total effort in the system, let us

look at the specific example of of Figure 5.12. We consider the geometric reward sharing with factor

δ (see Section 5.2.1), and plot the equilibrium sum effort level with increasing δ. If δ ≈ 0.4, and no

free riding happens (that is, pretend δ = 0 in the figure), in order to reach a sum effort level of 8 the

organization would have needed a reward of R = 10. However, because of free riding phenomenon, to

attain the same sum effort level, one needs to put R = 20, see the circled curve on the top at δ ≈ 0.4.

�
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Figure 5.12: Plot of
∑

i∈N λ∗
i versus the geometric reward share factor, δ.

5.2.3 Benefit: Information Sharing

In this section, we discuss the benefit of placing asymmetrically informed nodes in a hierarchy,

for now studying this in the absence of free riding behavior. The goal is to understand one of

the ‘pure’ advantages of having a hierarchy. In particular, while agents still aim to maximize

their payoffs, we restrict them to ignore the reward share coming from the subtree below them

(and thus the indirect reward).

We assume that the reward R is sufficient to guarantee γR/C > n
n−1

(n is the number of

nodes) with high probability (i.e., approaches 1 in the limit). Since we ignore indirect rewards

in this section, agent i perceives the utility:

ui(λi, λ−i) = λγRi
λi

∑

k∈N λk
− Cλi.

The above utility is a modification of Equation (5.2.1), which does not contain passive

reward terms, due to our assumption that the nodes do not free ride. Also the reward R is

replaced by Ri because of the MBR agent behavior model.

Taking the partial derivative of the above equation w.r.t. λi and equating it to zero, and

solving the set of equations similar to the ones in Section 5.2.2, we get,

λMBR
i =

λγRi

C

n− 1

n2
⇒
∑

i∈N

λMBR
i =

λγ
∑

i Ri

C

n− 1

n2
.

Notice that, Ri’s are conditionally independent given R, and are distributed as N(0, σ2
i (t)).
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Hence, the sum effort
∑

i∈N λMBR
i , is also distributed as a Gaussian random variable given R,

with mean mtotal and variance σ2
total(t), such that,

mtotal =
λγR

C

n− 1

n
,

σ2
total(t) =

(
λγ

C

)2(
n− 1

n2

)2∑

i

σ2
i (t). (5.2.16)

Since, γR/C > n
n−1

, it implies, mtotal > λ. Hence, using the upper bound on the tail

distribution of the standard normal distribution, we can show the following bound on the risk:

P

(
∑

i∈N

λMBR
i ≤ λ

)

= O

(
σtotal(t)

ǫ
e−ǫ2/2σ2

total(t)

)

, (5.2.17)

where, ǫ = mtotal − λ > 0. To minimize risk, we want the RHS of the above equation to be

small. Let us define the risk bound ignoring free riding (IFR) as,

ρIFR(t) :=
σtotal(t)

ǫ
e−ǫ2/2σ2

total(t). (5.2.18)

The risk is bounded by a constant factor of the above quantity. This is a function of the

total variance σ2
total(t), which has been calculated ignoring the free riding effect in this section,

and hence this expression does not consider free riding effect. Since ρIFR(t) is a function of

time, we should consider its rate of fall. However, if the magnitude of the risk bound remains

large, then the rate alone is not a good measure of how the actual risk falls. Therefore, a good

metric to quantify both the rate and magnitude of the risk is the fractional rate, 1
ρIFR(t)

dρIFR(t)
dt

.

For this reason, we formulate a hierarchy design problem as the problem of finding the

tree Tmin that minimizes the fractional rate of fall of the risk bound at time t = 0. Formally,

denoting the set of all single rooted trees with n nodes by T, we get the following Optimization

problem Ignoring Free Riding (OPT-IFR):

Tmin ∈ argmin
T∈T

1

ρIFR(t)

dρIFR(t)

dt

∣
∣
∣
∣
t=0

OPT-IFR (5.2.19)

The fractional rate of fall of ρIFR(t) at time t = 0 can be shown to be:

1

ρIFR(t)

dρIFR(t)

dt

∣
∣
∣
∣
t=0

=
1

σtotal(0)

(

1 +
ǫ2

σ2
total(0)

)

· dσ
2
total(t)

dt

∣
∣
∣
∣
t=0
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The rate of fall in the total variance is given by,

dσ2
total(t)

dt

∣
∣
∣
∣
t=0

∝
∑

i∈N

dσ2
i (t)

dt

∣
∣
∣
∣
∣
t=0

=
∑

i∈N

µ(Cp(i)) (σ
2
p(i)(t)− σ2

i (t))
∣
∣
t=0

=
∑

i∈N

µ(Cp(i))(σ
2
p(i) − σ2

i ). (5.2.20)

The first proportionality comes from the Equation (5.2.16). The second equality comes due

to the information propagation model (Equation (5.2.2)). The parent of i is denoted by p(i)

(and unique due to the tree structure).

Example 5.2 Under this model, the benefit of the hierarchy comes from the fact that it helps

reduce the uncertainty levels of the employees, and thereby reduces the risk. Figure 5.13 shows a

typical hierarchy formed using Equation (5.2.19) with 6 nodes with a typical set of intrinsic variances.

We will show in the next section that the hierarchy changes when we consider both information

propagation and free riding of the nodes jointly into account. �

Ignoring FR, Rate of Fall = −0.3466, δ = 0.25

1
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Var = 0.23666

Var = 1.1049

Var = 0.93273
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Var = 0.7251

Var = 1.2177

Figure 5.13: Hierarchy formed when free riding is not a concern.

5.2.4 Trade-off between Free-riding and Information Sharing

In the previous two sections, we have addressed separately the issues of free-riding and informa-

tion sharing. In an actual hierarchical organization, both these effects take place simultaneously,

making it necessary to consider both aspects while designing a hierarchy.
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Figure 5.14: Plot of
∑

i∈N f(Ti,∆) (∆ averaged) vs n .

We consider hierarchies with n nodes. The sum,
∑

i∈N f(Ti,∆) is increasing in n (see

Fig. 5.14). Hence,
∑

i∈N f(Ti,∆)
∑

i∈N f(Ti,∆)−1
↓ n and approaches 1 in the limit. If we assume that the

potential reward R is distributed such that with high probability (w.h.p.), γR/C ≥ (1 + ǫ),

where ǫ > 0 is any fixed number, then for large enough n, the parameters will satisfy Eq. (5.2.7)

w.h.p.

Lemma 5.5 For a population of agents with MBR behavioral model, the MBR effort of agent

i is given by,

λMBR
i =

λγRi

C






∑

j∈N f(Tj ,∆)− 1
(
∑

j∈N f(Tj,∆)
)2




 f(Ti,∆), ∀i ∈ N, ∀T. (5.2.21)

Proof: By definition of the MBR model (Section 5.2.1), an agent i makes the MLE estimate

of the reward observed by agent j given her own observed reward Ri, which is Ri. Hence, the

utility of agent i is given by Equation (5.2.1), with R replaced by Ri.

ui(λi, λ−i) = λγRi
λi

∑

k∈N λk
+ λRi

∑

j∈Ti\{i}

δij
λj

∑

k∈N λk
− Cλi. (5.2.22)

To maximize this w.r.t. λi, we follow a similar analysis technique as in the proof of Theorem 5.8,

by writing down the constrained optimization problem and the KKT conditions, and solving

the set of equations we get the expression of Equation (5.2.21). �
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Note: Lemma 5.5 does do not claim the equilibrium result given by Theorem 5.8, but uses

the same analysis technique to solve the set of equations and find the best response effort of

agent i, given by λMBR
i , that maximizes the utility in Equation (5.2.22).

The following theorem presents the distribution of the total effort of the nodes in a hierarchy,

and gives the expressions for mean and variance.

Theorem 5.9 The sum effort of a population of agents with MBR behavior under the informa-

tion asymmetry and reward sharing model on a hierarchy T , is distributed as N(mtotal, σ
2
total

(t)),

where for large n, mtotal ≈ λγR
C

, and σ2
total

(t) = Θ
(

1
n2

∑

i∈N f 2(Ti,∆)σ2
i (t)
)
.

Proof: From Lemma 5.5 we get,

∑

i∈N

λMBR
i =

∑

i∈N

λγRi

C






∑

j∈N f(Tj ,∆)− 1
(
∑

j∈N f(Tj,∆)
)2




 f(Ti,∆)

=
∑

i∈N

λγ

C






∑

j∈N f(Tj ,∆)− 1
(
∑

j∈N f(Tj,∆)
)2




 f(Ti,∆) · (R + ηi) (5.2.23)

Conditioned upon the true reward R, this sum is also distributed as Gaussian with mean and

variance as follows.

mtotal := E

[
∑

i∈N

λMBR
i (T,Ri) | R

]

=
λγR

C

∑

j∈N f(Tj ,∆)− 1
∑

j∈N f(Tj ,∆)
(5.2.24)

σ2
total(t) := Var

[
∑

i∈N

λMBR
i (T,Ri) | R

]

=

(
λγ

C

)2






∑

j∈N f(Tj ,∆)− 1
(
∑

j∈N f(Tj,∆)
)2






2

∑

i∈N

f 2(Ti,∆)σ2
i (t) (5.2.25)
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For large enough n,
∑

j∈N f(Tj ,∆)−1
∑

j∈N f(Tj ,∆)
≈ 1, and,






∑

j∈N f(Tj,∆)− 1
(
∑

j∈N f(Tj ,∆)
)2






2

= Θ(1/n2).

Hence, we have proved the theorem.

�

To minimize the risk of the organization, the approach of minimizing the risk bound (Equa-

tion (5.2.18)) is followed. However, the risk bound considering free riding (CFR) is different

from that of Equation (5.2.19) since the total variance σ2
total(t) now considers the free riding ef-

fect and is different (given by Equation (5.2.25) as opposed to Equation (5.2.16)). The modified

risk bound is:

ρCFR(t) :=
σtotal(t)

ǫ
e−ǫ2/2σ2

total(t). (5.2.26)

The modified design goal is to identify the hierarchy that minimizes the fractional fall rate

of the risk bound at time t = 0. Hence the Optimization problem Considering Free Riding

(OPT-CFR) is given by:

Tmin ∈ argmin
T∈T

1

ρCFR(t)

dρCFR(t)

dt

∣
∣
∣
∣
t=0

OPT-CFR (5.2.27)

Following similar steps to the analysis following Equation (5.2.19), and using the expression

of ρCFR(t) from Equation (5.2.26), we can show that the RHS of the above optimization problem

is given by,

1

ρCFR(t)

dρCFR(t)

dt

∣
∣
∣
∣
t=0

=
1

σtotal(0)

(

1 +
ǫ2

σ2
total(0)

)

· dσ
2
total(t)

dt

∣
∣
∣
∣
t=0

Taking the derivative of the total variance given by Theorem 5.9, and following the steps as

in Equation (5.2.25), we have:

dσ2
total(t)

dt

∣
∣
∣
∣
t=0

∝
∑

i∈N

f 2(Ti,∆)µ(Cp(i))(σ
2
p(i) − σ2

i ). (5.2.28)

We now see that the term accounting for the free riding effect, f 2(Ti,∆), appears in the sum

in the above equation, which makes it different from Equation (5.2.20). The rate of change of

the total variance is now a weighted sum of the squared effort sharing function f , and therefore
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Figure 5.15: Hierarchy formed considering free riding.

the output of OPT-CFR will potentially be a different hierarchy from the OPT-IFR. In the

following section we show the difference between the hierarchies found by these two optimization

problems.

Example 5.3 To show how the structure of the hierarchy changes when one designs a network

considering the free riding effect, we take the same set of nodes as in Figure 5.13, but now solve the

optimization problem given by Equation (5.2.27), and find the hierarchy as shown in Figure 5.15. �

We compare the performances of the OPT-IFR and OPT-CFR. Figure 5.16 plots the frac-

tional fall rate w.r.t. the amplitude factor of the function µ and shows that the fall rate is faster

in OPT-CFR. Figure 5.17 shows that the difference in the fall rate between OPT-CFR and

OPT-IFR is around 10% for 5 nodes and increases with the number of nodes.

5.2.5 An Algorithm for Finding a Near Optimal Hierarchy

Equation (5.2.27) gives a method of jointly optimizing over the free riding and information

propagation phenomena in hierarchies. It is natural to ask how one can solve the optimization

problem to find an optimal hierarchy. An exhaustive search algorithm would iterate over the

space of all single rooted directed trees with n nodes. To find an optimal hierarchies in the

simulations of this section, we have used the exhaustive search. However, a simple sequential

greedy algorithm, given in tabular form in Algorithm 3, runs in O(n3) time and gives reasonably

good approximation to an optimal hierarchy. Figure 5.18 shows the performance comparison

of the rate of fall of the fractional risk bound given by the greedy algorithm with that of an

optimal hierarchy for 6 nodes with varying average noise variance of the population.
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5.3 Conclusions

In the first part of this chapter, we built on the papers by Bramoullé and Kranton [14], Ballester

et al. [7] and develop an understanding of the effort levels in influencer-influencee networks.

Taking a game theoretic perspective, we introduced a general utility model which results in

a non-concave game, but are able to show results on the existence and uniqueness of Nash

133



Algorithm 3 Sequential Greedy

Input: A set of n nodes with intrinsic variances σ2
i ’s

Output: A tree connecting the nodes
Step 1: Sort nodes in ascending order of variances
Step 2:
for Both configuration of the first two nodes do
for Nodes j ← 3 to n do
Sequentially add j as a child of one of the previous nodes, such that the total variance
of the subnetwork after adding j is minimum

end for
end for
Step 3: Output the tree giving the lowest total variance with n nodes

equilibrium efforts. For the ease of exposition, we focused on hierarchical networks, and with

the EP model we found closed form expressions and bounds on the PoA for balanced hierarchies.

These results provide us the insight on the importance of communication in hierarchies on the

design of efficient networks. At the same time, for a given network structure and communication

level, we provide a design recipe for the reward sharing in order to achieve highly productive

output, and thereby minimize the PoA.

The connection between matrix stability and uniqueness of Nash equilibria that arose in our

work, is of particular interest to us for future research. In particular, for the general networks

there was a direct interpretation of the uniqueness condition in terms of a Jacobian matrix

stability. This stability property is directly related to the contraction property that shows that

agents following local updates on effort levels will converge to the Nash equilibrium another

desirable property. Pursuing these connections in the investigation of organizational network

formation games is an important direction of future research.

In the second part of this chapter, we have studied organizational hierarchies to understand

the effects of competition, information asymmetry, and reward sharing on the performance of

organizations, for a simple queuing-theoretic model. Our analysis has highlighted a trade-off

between the inefficiencies that come from free riding and the benefits that come from informa-

tion sharing, and thus improving the accuracy of agent models for the reward of tasks. We

have demonstrated the effect of considering both phenomena on the design of organizational

hierarchies.

These two complementary approaches provide a theoretical foundation of the crowdsourcing

environment looked from an organization theoretic viewpoint. It shows that both the reward

sharing and the structure of the network has important implications in the rational choice of

efforts of the agents, leading to the net productive output of the crowdsourcing network.
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Appendices

5.A Proofs for the Exponential Productivity Model

Proof of Theorem 5.1

Proof: The argument for the existence of a Nash equilibrium is straightforward in this

particular setting. We see that because of the hierarchical structure of the network, the leaf

nodes will always put unit effort, i.e., x∗
leaves = 1. To compute the equilibrium in the level above

the leaves one can run a backward induction algorithm to maximize Equation (5.1.1) at each

level, where the equilibrium efforts in the levels below is already computed by the algorithm.

Since, all pi’s are bounded and the maximization is over xi ∈ [0, 1], a compact space, maxima

always exists. Hence, a Nash equilibrium always exists.

Now we show that a Nash equilibrium profile (x∗
i , x

∗
−i) must satisfy Equation (5.1.4). For

notational convenience, we drop the arguments of pi and pij , which are functions of xPθ→i
and

xPi−→j
respectively. Each agent i ∈ N solves the following optimization problem.

maxxi
ui(xi, x−i)

s.t. xi ≥ 0
(5.A.1)

Combining Equations (5.1.1), (5.1.2), and (5.1.3), we get,

ui(xi, x−i) = pi(xPθ→i
)

(

xi −
x2
i

2
− b

(1 − xi)
2

2

)

+
∑

j∈Ti\{i}

hijpj(xPθ→j
)xj.

Note that we have relaxed the constraint from 0 ≤ xi ≤ 1. The first additive term in the utility

function has the peak at xi = 1. The second term has eβxi in the pj , which is decreasing in

xi. Therefore, an optimal xi that maximizes this utility will be ≤ 1. Hence, in this problem

setting, an optimal solution for both the exact and the relaxed problems is the same. So, it is

enough to consider the above problem. For this non-linear optimization problem, we can write

down the Lagrangian as follows.

L = ui(xi, x−i) + λixi, λi ≥ 0.

The KKT conditions for this optimization problem (5.A.1) are:

∂L

∂xi
= 0,⇒ ∂

∂xi
ui(xi, x−i) + λi = 0, (5.A.2)

λixi = 0, complementary slackness. (5.A.3)
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Case 1: λi = 0, then from Equation (5.A.2) we get,

pi(1− xi + b(1 − xi)) +
∑

j∈Ti\{i}

hij
∂pj
∂xi

xj = 0

⇒ pi(1 + b)(1− xi)− β
∑

j∈Ti\{i}

hijpjxj = 0

⇒ 1− xi =
β

1 + b

∑

j∈Ti\{i}

hijpijxj , with pij as defined

⇒ xi = 1− β

1 + b

∑

j∈Ti\{i}

hijpijxj . (5.A.4)

Case 2: λi > 0, then from Equation (5.A.3) we get xi = 0, and from Equation (5.A.2),
∂
∂xi

ui(xi, x−i) < 0. Carrying out the differentiation as in Equation (5.A.4) we get,

0 = xi > 1− β

1 + b

∑

j∈Ti\{i}

hijpijxj . (5.A.5)

∴ xi =



1− β

1 + b

∑

j∈Ti\{i}

hijpijxj





+

.

Since this condition has to hold for all nodes i ∈ N , the equilibrium profile (x∗
i , x

∗
−i) must satisfy

the above equality. �

Proof of Theorem 5.2

We prove this theorem via the following Lemma.

Lemma 5.6 If β <
√

1+b
hmax(T )

, the function F is a contraction.

Proof: The Taylor series expansion of g with a first order remainder term is as follows. There

exists a point x0 that lies on the line joining x and y, such that,

g(x) = g(y) +∇g(x0) · (x− y).

Where, ∇g(x0) is the Jacobian matrix.

∇g(x0) =







∂g1
∂x1

. . . ∂g1
∂xn

...
. . .

∂gn
∂x1

. . . ∂gn
∂xn







∣
∣
∣
∣
∣
∣
∣
∣
x0
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In order to show that F is a contraction, we note that F is a truncation of g. Hence, ||F (x)−
F (y)|| ≤ ||g(x)− g(y)||, for all x,y ∈ [0, 1]n. Let us consider the following term,

||F (x)− F (y)|| ≤ ||g(x)− g(y)|| ≤ |∇g(x0)| · ||x− y|| (5.A.6)

Where the matrix norm |∇g(x0)| is the largest singular value of the Jacobian matrix ∇g(x0).

We see that in our special structure in the problem, this matrix is upper triangular, hence the

diagonal elements are the singular values. Suppose, the k-th diagonal element yields the largest

singular value.

|∇g(x0)| =
∂gk
∂xk

∣
∣
∣
∣
x0

=
β2

1 + b

∑

j∈Tk\{k}

hkjpkjxj

∣
∣
∣
∣
∣
∣
x0

⇒ sup
x0

|∇g(x0)| ≤
β2

1 + b
· hmax(T ) < 1, since β2 <

1 + b

hmax(T )
.

The first inequality above holds due to the fact that pkj’s and xj ’s are ≤ 1, and by the definition

of hmax(T ). Hence, from Equation (5.A.6), we get that F is a contraction. �

Proof: [of Theorem 5.2] We know from Theorem 5.1 that a Nash equilibrium exists. Under

the sufficient condition given by Lemma 5.6, the fixed point of x = F (x) is unique. Therefore,

the Nash equilibrium is also unique, and is given by Equation (5.1.4). �

5.B Proofs of the Price of Anarchy Results in Balanced

Hierarchies

Proof of Theorem 5.5

We prove this theorem via the following lemma, which finds out an optimal effort profile for

β above a threshold.

Lemma 5.7 (Optimal Efforts) For a balanced d-ary hierarchy with depth D, any optimal

effort profile has xOPT

D+1 = 1. When − ln
(
1− 1

d

)
≤ β < ∞, an optimal effort profile is xOPT

i =

0, ∀i = 1, . . . , D, and xOPT

D+1 = 1.

Proof: The social outcome for a given effort vector x on the balanced hierarchy is as follows.

Since, the hierarchy is understood here, we use SO(x) instead of SO(x, BALANCED).

SO(x) = x1 + de−βx1x2 + d2e−β(x1+x2)x3 + · · ·+ dDe−β(
∑D

i=1 xi)xD+1.
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It is clear that for any effort profile of the other nodes the effort at the leaves that maximizes

the above expression is xD+1 = 1. This proves the first part of the lemma. Hence we can

simplify the above expression by,

SO(x) = x1 + de−βx1x2 + d2e−β(x1+x2)x3 + · · ·+ dDe−β(
∑D

i=1 xi)

= x1 + de−βx1x2 + · · ·+ dD−1e−β(
∑D−1

i=1 xi)(xD + de−βxD) (5.B.1)

≤ x1 + de−βx1x2 + · · ·+ dD−1e−β(
∑D−1

i=1 xi) · d.

The last inequality occurs since β ≥ − ln
(
1− 1

d

)
, and xD = 0 meets this inequality with a

equality. Also since β ≥ − ln
(
1− 1

d

)
implies that β ≥ − ln

(
1− 1

dk

)
, for all k ≥ 2, the next

inequality will also be met by xD−1 = 0 as shown below.

SO(x) = x1 + de−βx1x2 + · · ·+ dD−1e−β(
∑D−1

i=1 xi) · d
= x1 + de−βx1x2 + · · ·+ dD−2e−β(

∑D−2
i=1 xi)(xD−1 + d2e−βxD−1)

≤ x1 + de−βx1x2 + · · ·+ dD−2e−β(
∑D−2

i=1 xi) · d2.

This inequality is also achieved by xD−1 = 0. We can keep on reducing the terms from the right

in the RHS of the above equation, and in all the reduced forms, xi = 0, i = D− 1, D− 2, . . . , 1

will maximize the social output expression. Hence proved. �

Proof: [of Theorem 5.5] Case 1 (0 ≤ β ≤ 1): From Lemma 5.7, xD+1 = 1 for optimal

effort. However, for any equilibrium effort profile xD+1 = 1 as well. Therefore we consider the

equilibrium effort of the nodes at level D.

xD = 1− β

1 + b
de−βxDhD,D+1. (5.B.2)

The constraint for unique equilibrium demands that dhD,D+1 ≤ (1 + b)/β2, which makes
β

1+b
dhD,D+1 ≤ 1/β, while 1/β ≥ 1. So, we have the liberty of choosing the right hD,D+1 to

achieve any xD ∈ [0, 1], and in particular, the xOPT
D . We apply backward induction on the next

level above.

xD−1 = 1− β

1 + b
[de−βxD−1xDhD−1,D + d2e−β(xD−1+xD)hD−1,D+1].

The constraints are dhD−1,D + d2hD−1,D+1 ≤ (1 + b)/β2. We claim that any xD−1 ∈ [0, 1] is
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achievable here as well. To show that, put hD−1,D = 0. The above equation becomes then,

xD−1 = 1− β

1 + b
d2e−β(xD−1+xD)hD−1,D+1

= 1− β

1 + b
d2e−βxD−1

1 + b

dβhD,D+1

hD−1,D+1, from the earlier expression

= 1− dhD−1,D+1

hD,D+1

e−βxD−1

This again can satisfy any xD−1, since the coefficient of the exponential term can be made

anywhere between 0 and 1. It can be made 0 by choosing hD−1,D+1 = 0, and 1 by choosing
dhD−1,D+1

hD,D+1
= 1 which is feasible, since d2hD−1,D+1 = dhD,D+1 ≤ (1 + b)/β2.

In the similar way we can continue the induction till the root and can make x∗ = xOPT.

Hence, PoA = 1.

Case 2 (1 < β <∞): We note that this region of β falls in the region specified by Lemma 5.7.

Hence an optimal effort is 1 for all the leaves and 0 for everyone else. Hence, an optimal social

output is given by dD. The equilibrium effort for the leaves, xD+1 = 1. However, Equation

(5.B.2) may not be satisfiable for any xD since 1/β < 1. In order to push the solution as

close to zero as possible, we choose hD,D+1 = (1 + b)/β2, and plug it in Equation (5.B.2), and

the solution is given by ξ(β) (recall Equation (5.1.9)) and the solution set is singleton under

this condition. The social output is dD, which is the numerator of the PoA expression. The

denominator is given by the social output at the Nash equilibrium, which we will try to lower

bound. From Equation (5.B.1), for the equilibrium, we know that xD = ξ(β). Therefore,

xD + de−βxD = xD + dβ(1− xD) = dβ + (1− dβ)ξ(β).

At the same time, we see that the leftmost expression is convex in xD, which can be lower

bounded by the minima, given by,

xD + de−βxD ≥ 1

β
(1 + ln(dβ)).

Combining the two, a tight lower bound of the expression would be,

xD + de−βxD ≥ max

{
1

β
(1 + ln(dβ)), dβ + (1− dβ)ξ(β)

}

= φ(d, β).
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Plugging this lower bound in Equation (5.B.1), we see that,

SO(x)

≥ x1 + de−βx1x2 + · · ·+ dD−1e−β(
∑D−1

i=1 xi) · φ(d, β)
= x1 + de−βx1x2 + · · ·+ dD−2e−β(

∑D−2
i=1 xi) · (xD−1 + dφ(d, β)e−βxD−1)

Let us consider the last term within parenthesis.

xD−1 + dφ(d, β)e−βxD−1

= xD−1 + dφ(d, β)
β

ξ(β)
(1− xD−1)

≥ xD−1 + dφ(d, β)β(1− xD−1), as ξ(β) ≤ 1

= dφ(d, β)β + (1− dφ(d, β)β)xD−1

≥ dφ(d, β)β + (1− dφ(d, β)β)ξ(β)

The first equality comes since we can make the equilibrium xD−1 s.t., xD−1 = 1− ξ(β)
β
e−βxD−1,

by choosing dhD−1,D = (1 + b)/β2, d2hD−1,D+1 = 0. Also, since ξ(β) ≤ 1, we conclude, xD−1 ≥
xD = ξ(β), which gives the second inequality above. On the other hand, using the fact that

the expression xD−1 + dφ(d, β)e−βxD−1 is convex in xD−1, it can be lower bounded by, 1
β
(1 +

ln(dφ(d, β)β)). Combining this and the above inequality, we get the following.

SO(x) ≥ x1 + de−βx1x2 + · · ·+ dD−2e−β(
∑D−2

i=1 xi) · φ(d · φ(d, β), β)
... repeating the steps above

≥ tD(d, β), as defined in Equation (5.1.10).

Therefore the PoA ≤ dD

tD(d,β)
. �

5.C Proofs for General Networks

Proof of Lemma 5.3

Proof: We follow the line of proof of Theorem 5.1. Each agent i ∈ N is solving the following

optimization problem.

maxxi
ui(xi, x−i)

s.t. 0 ≤ xi ≤ 1
(5.C.1)
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This is a non-linear optimization problem. Hence we can write down the Lagrangian as follows.

L = ui(xi, x−i) + λixi + γi(1− xi), λi, γi ≥ 0.

The KKT conditions are necessary for this optimization problem (5.C.1), which are the follow-

ing.

∂L

∂xi

= 0,

⇒ ∂

∂xi

ui(xi, x−i) + λi − γi = 0, (5.C.2)

λixi = 0, γi(1− xi) = 0. (5.C.3)

Case 1: λi = 0, γi = 0, then from Equation (5.C.2) we get,

∂

∂xi
ui(xi, x−i) = 0

⇒ pif
′(xi) +

∑

j∈Ei

hij
∂pj
∂xi

xj = 0

⇒ f ′(xi) =
∑

j∈Ei

hij

(

− 1

pi

∂pj
∂xi

xj

)

= gi(x)

⇒ xi = ℓ ◦ gi(x), from the definition of ℓ (5.C.4)

Case 2: λi > 0, γi = 0, then from Equation (5.C.3) we get xi = 0, and from Equation (5.C.2),

∂

∂xi

ui(xi, x−i) < 0.

Carrying out the differentiation as in Equation (5.A.4), we get,

f ′(xi) < gi(x)⇒ 0 = xi > ℓ ◦ gi(x), since f is concave

⇒ xi = T ◦ ℓ ◦ gi(x), where T is the truncation function. (5.C.5)

Case 3: λi = 0, γi > 0, then from Equation (5.C.3) we get xi = 1, and from Equation (5.C.2),

∂

∂xi
ui(xi, x−i) > 0.
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Carrying out similar steps as before, we get,

f ′(xi) > gi(x)⇒ 1 = xi < ℓ ◦ gi(x)
⇒ xi = T ◦ ℓ ◦ gi(x), where T is the truncation function. (5.C.6)

Case 4: λi > 0, γi > 0, this cannot happen since it will lead to a contradiction 0 = xi = 1.

Therefore, combining Equations (5.C.4), (5.C.5), and (5.C.6), we get,

x∗
i = T ◦ ℓ ◦ gi(x∗), ∀i ∈ N.

Hence proved. �
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Chapter 6

Conclusions and Future Research

This thesis has addressed several game theoretic questions in crowdsourcing, and provided

mechanism design solutions. In this chapter, we summarize the findings and contributions,

and sketch a broad outline of a future research that these results can lead to.

6.1 Conclusions

Crowdsourcing

Skill

Elicitation

◮ Static skills, interdependent
values [57]

◮ Stochastic skill transition,
interdependent values [58]

Resource

Critical Tasks

◮ Sybilproofness, rewarding only
the winning chain [59]

◮ Rewarding all contributors,
information manipulation [60]

Efficient Team

Formation

◮ Through incentive design [55]
◮ Through a crowdsourcing

network design [61]

Figure 6.1: Summary of the findings of the thesis.

This thesis addressed three critical problems of strategic crowdsourcing. To visualize the

problems addressed and the contributions of the thesis, let us look at Figure 6.1. In each

paradigm, the major findings are as follows.
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Eliciting Skills of the Strategic Workers

We addressed this problem in Chapter 3. We focused on the optimal crowd worker selection

problem, where the goal of the crowdsourcer was to select an optimal subset from a known set

of experts. The experts had private skills (hidden from the crowdsourcer) and the mechanism

design problem was to ensure that they report their skills truthfully.

Task execution by a selected subset of the experts fall into the category of interdependent

values since the benefit experienced by a participant depends on the outcome and the skills of

all the other participants.

First, we addressed the mechanism design problem in a static setting, that is, the private

skills are invariant over time. We provided an mechanism that made truthful reporting a strictly

better strategy for all agents, and improved on the mechanism provided by Mezzetti [48].

We extended the result to dynamic setting where the experts’ qualities vary stochastically

over time according to a Markov process. This provided an efficient and truthful mechanism

for the Markovian type transitions with interdependent values and improved upon the dynamic

pivot mechanism [9]. We also showed that under a special setting, this mechanism incentivizes

the participants to voluntarily participate in the game.

Resource Critical Task Execution via Crowdsourcing

Crowdsourcing is unique in the potential strategic manipulation that it offers to its participants.

One such problem in resource critical crowdsourcing contests is that it can have false-name

attacks or sybil attacks, in which the players can increase their payoffs by creating multiple false

identities of themselves. We discuss this in Chapter 4.

We showed that in crowdsourcing contests like the DARPA red balloon challenge [21], which

falls into the class of atomic tasks, it is impossible to satisfy sybilproofness, collapse-proofness,

and a property that rewards all contributors with positive compensation. We introduced ap-

proximate versions of these properties and show that the mechanism space is non-empty. To

the best of our knowledge, this is a first attempt to design approximately sybilproof crowd-

sourcing mechanisms. Under certain resource critical paradigms, some of those properties are

more preferable than the others and we characterize the space of mechanisms that satisfy those

properties under cost-critical and time-critical paradigms.

We noticed that in resource critical crowdsourcing contests, e.g., the red balloon challenge,

a great deal of human effort can gets wasted, as people can potentially explore the same region

already explored by someone else. A more time efficient and fair scheme could be to distribute

the reward in proportion to the information contributed by each agent. We discussed briefly
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about this point and provided a solution proposal using the tools from information theory and

prediction market to aggregate information in a truthful, time efficient manner.

Efficient Team Formation from a Crowd

The other interesting question in crowdsourcing is to understand how highly productive teams

emerge from a loosely structured population. A crowdsourcing network, once formed, is very

similar to an organizational network, where the reason for success (failure) is often attributed

to the (im)proper management of human resources. The goal of the designer in this context is

to maximize the net productive output of the networked crowdsourcing system. We develop an

understanding of the effort levels in influencer-influencee networks in Chapter 5.

We analyzed how individuals connected in a network trade-off between their production and

communication effort given the network positions and the reward sharing scheme. We showed

that under certain sufficient conditions, there exists a unique Nash equilibrium of this effort

trade-off. We then provided a condition of achievability of optimal social output for stylized

networks. Our results show that the equilibrium output may not always achieve the globally

optimal. However, by choosing the right reward sharing scheme we can maximize the output

and we provide a recipe of such reward sharing schemes.

Next, we analyzed how the network design can lead to interesting structures for maximizing

the net productive output. We show that a network design that considers the strategic behavior

of the agents performs better than the one that does not consider it.

6.2 Scope of Future Research

Each of these facets of the crowdsourcing problems gives rise to some more research directions

that can be drawn from this thesis. Following are a few of them.

Learning the Skills of the Strategic Experts

So far we have assumed the skills to be perfectly known to the agents. However, in many

practical scenarios, even the experts may not exactly know their qualities rather experience by

doing it. It is, therefore, interesting to understand how learning the expertise of the participants

can help design an efficient outsourcing process. The mechanism design question would be to

make the outsourcing truthful for the experts even when the skills of the experts are unknown

to both the crowdsourcer and the experts. There is a chance that a ‘learned good’ expert can

exploit the learning of the designer by doing a sub-skillful job. An interesting question would

be to understand how severe would its impact be, and if there is any approximately truthful

mechanism in such settings.
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Information Theoretic Crowdsourcing

Information theory provides us the analytical techniques to find the limits of information trans-

mission. In the domain of crowdsourcing, we are actually interested in scavenging the true

information from the strategic crowd. It is interesting to design (exact or approximate) sybil-

proof mechanisms using the information theoretic tools, where the best response of an agent

would be to report partial or whole information as soon as she receives it. This approach will

lead us to designing mechanisms that blends the flavor of both competition and collaboration

and help the designer crowdsource information in a time-efficient manner.

Network Stability Analysis in Crowdsourcing

Though we have answered the question of how efficient teams can be built by a central planner,

either by the reward sharing design or the network design, an important question is whether

these networks are structurally stable. This means that in the resulting network with the

rewarding scheme, no agent should find deviating from the current configuration to a different

one beneficial in terms of the expected payoff. If the three aspects: (a) reward share, (b) network

structure, and (c) network stability, are jointly optimized, then it would serve to perform as

the ideal solution for the efficient team formation problem in crowdsourcing.

In a nutshell

We have looked into an interesting set of mechanism design problems in the context of strate-

gic crowdsourcing, which elicits the true skills of the crowd workers, limits the false identity

problem, and yields a scheme of sharing the rewards for efficient output of the crowdsourcing

network. The future of these problems are interesting both from the application and analytical

points of view, and opens the door to a plethora of new research directions.
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[14] Yann Bramoullé and Rachel Kranton. Public Goods in Networks. Journal of Economic

Theory, 135(1):478 – 494, 2007. ISSN 0022-0531. 11, 96, 117, 133

[15] Elena Bruno. Smithsonian crowdsourcing since 1849!, April 2011. URL http://

siarchives.si.edu/blog/smithsonian-crowdsourcing-1849. 3

[16] Ruggiero Cavallo. Social Welfare Maximization in Dynamic Strategic Decision Problems.

PhD thesis, School of Engineering and Applied Sciences, Harvard University, Cambridge,

Massachusetts, May 2008. 10

[17] Ruggiero Cavallo, David C. Parkes, and Satinder Singh. Optimal coordinated planning

amongst self-interested agents with private state. In Proceedings of the Twenty-second

Annual Conference on Uncertainty in Artificial Intelligence (UAI 2006), pages 55–62, 2006.

35, 50, 51

[18] Ruggiero Cavallo, David C. Parkes, and Satinder Singh. Efficient Mechanisms with Dy-

namic Populations and Dynamic Types. Technical report, Harvard University, 2009. 35,

50

[19] Edward Clarke. Multipart Pricing of Public Goods. Public Choice, (8):19–33, 1971. 35,

50, 51

[20] Vincent Conitzer, Nicole Immorlica, Joshua Letchford, Kamesh Munagala, and Liad Wag-

man. False-name-proofness in Social Networks. In Proceedings of Internet and Network

Economics (WINE 2010), pages 209–221, 2010. 76

148

http://siarchives.si.edu/blog/smithsonian-crowdsourcing-1849
http://siarchives.si.edu/blog/smithsonian-crowdsourcing-1849


BIBLIOGRAPHY

[21] DARPA. DARPA Network Challenge Project Report, 2010. URL http://archive.

darpa.mil/networkchallenge/. 5, 6, 10, 72, 73, 76, 78, 144

[22] DARPA. DARPA CLIQR Quest Challenge, 2012. URL https://www.cliqrquest.com.

6, 72

[23] Erik D. Demaine, Mohammadtaghi Hajiaghayi, Hamid Mahini, and Morteza Zadimoghad-

dam. The Price of Anarchy in Cooperative Network Creation Games. ACM SIGecom

Exchanges, 8(2):2, 2009. 97

[24] Fabio Drucker and Lisa Fleischer. Simpler Sybil-Proof Mechanisms for Multi-Level Mar-

keting. In Proceedings of ACM Electronic Commerce (EC 2012), pages 441–458. ACM,

2012. 76, 77

[25] Kathleen M. Eisenhardt. Agency-and institutional-theory explanations: the case of retail

sales compensation. Academy of Management Journal, 31(3):488–511, 1988. 117

[26] Yuval Emek, Ron Karidi, Moshe Tennenholtz, and Aviv Zohar. Mechanisms for Multi-

Level Marketing. In Proceedings of the 12th ACM Conference on Electronic Commerce

(EC 2011), pages 209–218. ACM, 2011. 6, 72, 76, 78, 79

[27] Enrique Estellés-Arolas and Fernando González-Ladrón-de Guevara. Towards an inte-
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