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The Geometric Graph Model G(v, r)
A Commonly used Model for Wireless Sensor Networks

n nodes on a unit area, A; locations: v = [v1, v2, · · · , vn] ∈ An

b1 ≡ (0, 0)

Area to monitor, A

b2 ≡ (1, 0)

b3 ≡ (1, 1)b4 ≡ (0, 1)

sample deployment v

r

Neighbours in the
Geometric Graph
G(v, r)

Node locations can be arbitrary or random
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Hop Distance (HD) and Euclidean Distance (ED)
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Question: Relation between HD and ED?
Motivation: GPS-free localisation
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A GPS-Free Localisation Algorithm: HCRL

Hop Count Ratio-based
Localisation (HCRL) [Yang et
al. 2007]

Assumption: ED ∝ HD

Hence,

ds,B1

ds,B2

=
hs.B1

hs,B2
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Suppose that the location of s is (x , y)

“Anchors” Bk , 1 ≤ k ≤ 4, at known locations (xk , yk)

√

(x − x1)2 + (y − y1)2
√

(x − x2)2 + (y − y2)2
≈ hs.B1

hs,B2

⇐ Equation of a circle
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Literature: Distribution of the Distance Covered in k-Hops

Vural and Ekici, Mobihoc 2005
I Node locations: 1-dim Poisson process

I Random Geometric Graph (RGG) on the line
I Obtain an approximation to the distribution of the maximum distance

traveled in a certain number of hops

Dulman et al., 2006: Node locations: 2-dim Poisson process
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We establish asymptotic proportionality of HD and ED, with a high
probability
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How Far is a Node that is h Hops from Anchor `?

N = {1, 2, · · · , n}, the set of
the nodes

H`,i(v) = hop distance of node i

from anchor `

D`,i(v) = distance of node i

from anchor `

D`(v, h`) = max
{i∈N :H`,i(v)=h`}

D`,i(v)

D`(v, h`) = min
{i∈N :H`,i(v)=h`}

D`,i(v)
sample deployment v

Dl(v, hl)

D
l
(v, hl)

bl

Area to monitor, A

These paths are on G(v, r)

Anchor can be anywhere in A, this is an example
lth anchor location
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HD-ED Relationship in an Arbitrary Geometric Graph

Lemma

For arbitrary v and h` ≥ 2, r < D`(v, h`) ≤ D`(v, h`) ≤ h`r and both

bounds are sharp.

= r

s

d

A regular hl + 1 sided polygon

γ > π
3

∀hl > 2

= r
all internal angles = γ

3

2

1

hl + 1

= r

s

d

r1 = r + δ′, δ′ > 0

hop distance between s and d = hl

this edge is deleted

all other angles

γ + δ

3

2

1

increase by δ

hl + 1

Figure: Node placement on the right achieves the lower bound of ED

HD does not give useful information about ED in an arbitrary GG
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The Random Geometric Graph (RGG) Setting

n nodes; Uniform i.i.d.

placement on unit area A
Random locations
V = [V1,V2, · · · ,Vn] ∈ An

P
n(.) is the probability measure

The random geometric graph
G(V, r(n)) is formed

I r(n) = c

√

ln n
n

, c > 1
√

π

I Ensures asymptotic
connectivity with probability
approaching 1 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4
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1
A uniform i.i.d. deployment
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RGG: How Far Can a Node be that is h` Hops Away?

D`(v, h`) = max
{i∈N :H`,i(v)=h`}

D`,i(v)

D`(v, h`) = min
{i∈N :H`,i(v)=h`}

D`,i(v)

By the triangle inequality:

D`(v, h`) ≤ h`r(n)

We want an upper and a lower bound on the ED

Dl(v, hl)

Dl(v, hl)

bl

Area to monitor, A

We want bounds on the Euclidean distance (ED) between a fixed
point (say and anchor, b`) and all nodes at a hop-distance h` from
the point
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The “Point-Node” Theorem

Eh`
(n) := {v : (1 − ε)(h` − 1)r(n) ≤ D`(v, h`) ≤ D l(v, h`) ≤ h`r(n)}

Theorem

For a given 1 > ε > 0, and r(n) = c

√

ln n
n

, c > 1√
π
,

P
n(Eh`

(n)) = 1 −O
(

1

ng(ε)c2

)

where

g(ε) = q(ε)
√

1 − p2(ε),

with p(ε) =
1−ε+

√
(1−ε)2+8
4 , q(ε) =

−3(1−ε)+
√

(1−ε)2+8
4 .

Hence, lim
n→∞

P
n(Eh`

(n)) = 1

Since g(ε) ↓ as ε ↓, the rate of convergence slows down as ε decreases.
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The “Point-Node” Theorem: Outline of the Proof (1/4)

hlr(n)

. . .

J(n) blades. . .

hl strips in each blade

bl

blade Bl
j

A

Circle of radius h`r(n) centered at the “point”

Cover the circumference, within A, by ”blades,” as shown

Each blade is then covered with overlapping rectangles

The overlaps are called “strips”
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The “Point-Node” Theorem: Outline of the Proof (2/4)

We take 0 < q < p < 1; these will related to ε later

Blade

· · ·
· · ·

r(n)r(n)

hl
1 2

u(n) =
√

1 − p2r(n)

t(n) = qr(n)

pr(n)

(p − q)(hl − 1)r(n)

hl − 1bl

Bl
j

all nodes that fall here will have hop distance ≤ hl − 1 from bl
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Blade

· · ·
· · ·

r(n)r(n)

hl
1 2

u(n) =
√

1 − p2r(n)

t(n) = qr(n)

pr(n)

(p − q)(hl − 1)r(n)

hl − 1bl

Bl
j

all nodes that fall here will have hop distance ≤ hl − 1 from bl

A`
i ,j = {v : ∃ at least one node in the i th strip of B`

j }

{∩J(n)
j=1 ∩h`−1

i=1 A`
i ,j}

⊆ {v : (p − q)(h` − 1)r(n) ≤ D`(v, h`) ≤ D`(v, h`) ≤ h`r(n)}
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The “Point-Node” Theorem: Outline of the Proof (3/4)

P
n
(

∩J(n)
j=1 ∩h`−1

i=1 A`
i ,j

)

= 1 − P
n
(

∪J(n)
j=1 ∪h`−1

i=1 A`
i ,j

c
)

≥ 1 −
J(n)
∑

j=1

h`−1
∑

i=1

P
n
(

A`
i ,j

c
)

≥ 1 − (h` − 1)

⌈

πh`

2
√

1 − p2

⌉

(1 − u(n)t(n))n

≥ 1 − (h` − 1)

⌈

πh`

2
√

1 − p2

⌉

e−nu(n)t(n)

= 1 − (h` − 1)

⌈

πh`

2
√

1 − p2

⌉

e−nq
√

1−p2r2(n)

= 1 − (h` − 1)

⌈

πh`

2
√

1 − p2

⌉

n−q
√

1−p2c2 n→∞−→ 1
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The “Point-Node” Theorem: Outline of the Proof (4/4)

We take p − q = 1 − ε, and maximise q
√

1 − p2

Gives p(ε) =
1−ε+

√
(1−ε)2+8

4 , q(ε) =
−3(1−ε)+

√
(1−ε)2+8

4

Define g(ε) = q(ε)
√

1 − p2(ε)

Hence,

P
n{v : (1 − ε)(h` − 1)r(n) ≤ D`(v, h`) ≤ D`(v, h`) ≤ h`r(n)}

= 1 −O
(

1

ng(ε)c2

)
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Simulation: n = 1000, 5000, 5000; h` = 5, 5, 10 Hops
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1000 nodes, prob lower bound = 0.37, epsilon = 0.4

Predicted region for h = 5, on G(V,r(n)), Uniform i.i.d.

P
n(E1(n)) ≥ 0.37
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Predicted region for h = 5, on G(V,r(n)), Uniform i.i.d.
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Predicted region for h = 10, on G(V,r(n)), Uniform i.i.d.

P
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ε = 0.4, r(n) = 4√
π

√

ln n
n

The dashed curves show the ED bounds given by the Point-Node
Theorem

I The probability lower bound from the theorem is shown

The solid line shows the ED (h1 − 1)r(n)
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Observations and Extensions

Observations from simulations
I The bounds are valid, but
I The lower bound (1 − ε)(h` − 1)r(n) is quite loose, and
I The bounds [(h` − 1)r(n), h`r(n)] might be a good approximation
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I The bounds [(h` − 1)r(n), h`r(n)] might be a good approximation

Extensions in the paper
I RGG with a fixed radius r : Exponential convergence of the probability
I RGG with Randomized Lattice deployment of nodes

F A similar point-node theorem is obtained

Other extensions that we have shown
I Node-node theorem, point-point theorem
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Conclusion, Applications, Future Work

Summary

Assumed a Geometric Graph model of a Wireless Sensor Network

HD is not a good measure of ED for arbitrary node placement

Established high probability bounds on the ED, given the HD (h)
between a fixed point and a node

(1 − ε)(h − 1)r < ED ≤ hr with high probability

Illustrated the theory with simulations
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HD is not a good measure of ED for arbitrary node placement

Established high probability bounds on the ED, given the HD (h)
between a fixed point and a node

(1 − ε)(h − 1)r < ED ≤ hr with high probability

Illustrated the theory with simulations

Application

We have also shown how to use this theory to develop a localisation
technique

Future Work

Obtaining sharper bounds, perhaps by a different geometrical
construction

Improving the convergence rate result
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