Performance Evaluation of Distance-Hop Proportionality on Geometric Graph Models of Dense Sensor Networks

Swaprava Nath and Anurag Kumar

Department of Electrical Communication Engineering Indian Institute of Science, Bangalore 560012, India

Valuetools 2008, Athens, GREECE

October 21, 2008

The Distance-Hop Proportionality Problem

- Geometric Graphs and the HD-ED Problem
- Motivation for the Problem: GPS-Free Localisation
- Why Random Geometric Graphs

Physical HD-ED Proportionality in a Random Geometric Graph (RGG)

3 Simulations Illustrating the Point-Node Theorem

The Distance-Hop Proportionality Problem

- Geometric Graphs and the HD-ED Problem
- Motivation for the Problem: GPS-Free Localisation
- Why Random Geometric Graphs

2 HD-ED Proportionality in a Random Geometric Graph (RGG)

3 Simulations Illustrating the Point-Node Theorem

The Distance-Hop Proportionality Problem

- Geometric Graphs and the HD-ED Problem
- Motivation for the Problem: GPS-Free Localisation
- Why Random Geometric Graphs

2 HD-ED Proportionality in a Random Geometric Graph (RGG)

3 Simulations Illustrating the Point-Node Theorem

The Geometric Graph Model $\mathcal{G}(\mathbf{v}, r)$

A Commonly used Model for Wireless Sensor Networks

• *n* nodes on a unit area, \mathcal{A} ; locations: $\mathbf{v} = [v_1, v_2, \cdots, v_n] \in \mathcal{A}^n$

Node locations can be arbitrary or random

Nath and Kumar (ECE, IISc)

Hop Distance (HD) and Euclidean Distance (ED)

Area to monitor, \mathcal{A}

Nath and Kumar (ECE, IISc)

Hop Distance (HD) and Euclidean Distance (ED)

Area to monitor, \mathcal{A}

Nath and Kumar (ECE, IISc)

The Distance-Hop Proportionality Problem
Geometric Graphs and the HD-ED Problem
Motivation for the Problem: GPS-Free Localisation
Why Random Geometric Graphs

2 HD-ED Proportionality in a Random Geometric Graph (RGG)

3 Simulations Illustrating the Point-Node Theorem

A GPS-Free Localisation Algorithm: HCRL

- Hop Count Ratio-based Localisation (HCRL) [Yang et al. 2007]
- Assumption: $\textit{ED} \propto \textit{HD}$
- Hence,

$$\frac{d_{s,B_1}}{d_{s,B_2}} = \frac{h_{s,B_1}}{h_{s,B_2}}$$

A GPS-Free Localisation Algorithm: HCRL

- Hop Count Ratio-based Localisation (HCRL) [Yang et al. 2007]
- Assumption: $\textit{ED} \propto \textit{HD}$

Hence,

$$\frac{d_{s,B_1}}{d_{s,B_2}} = \frac{h_{s,B_1}}{h_{s,B_2}}$$

• Suppose that the location of s is (x, y)

• "Anchors" $B_k, 1 \le k \le 4$, at known locations (x_k, y_k)

$$\frac{\sqrt{(x-x_1)^2 + (y-y_1)^2}}{\sqrt{(x-x_2)^2 + (y-y_2)^2}} \approx \frac{h_{s.B1}}{h_{s,B_2}} \quad \Leftarrow \text{ Equation of a circle}$$

Literature: Distribution of the Distance Covered in k-Hops

- Vural and Ekici, Mobihoc 2005
 - Node locations: 1-dim Poisson process

- Random Geometric Graph (RGG) on the line
- Obtain an approximation to the distribution of the maximum distance traveled in a certain number of hops
- Dulman et al., 2006: Node locations: 2-dim Poisson process

Literature: Distribution of the Distance Covered in k-Hops

- Vural and Ekici, Mobihoc 2005
 - Node locations: 1-dim Poisson process

- Random Geometric Graph (RGG) on the line
- Obtain an approximation to the distribution of the maximum distance traveled in a certain number of hops
- Dulman et al., 2006: Node locations: 2-dim Poisson process
- We establish asymptotic proportionality of HD and ED, with a high probability

The Distance-Hop Proportionality Problem

- Geometric Graphs and the HD-ED Problem
- Motivation for the Problem: GPS-Free Localisation
- Why Random Geometric Graphs

2 HD-ED Proportionality in a Random Geometric Graph (RGG)

3 Simulations Illustrating the Point-Node Theorem

How Far is a Node that is h Hops from Anchor ℓ ?

- $\mathcal{N} = \{1, 2, \cdots, n\}$, the set of the nodes
- *H*_{ℓ,i}(**v**) = hop distance of node *i* from anchor ℓ
- *D*_{ℓ,i}(**v**) = distance of node *i* from anchor *ℓ*

$$\overline{D}_{\ell}(\mathbf{v}, h_{\ell}) = \max_{\{i \in \mathcal{N} : H_{\ell,i}(\mathbf{v}) = h_{\ell}\}} D_{\ell,i}(\mathbf{v})$$
$$\underline{D}_{\ell}(\mathbf{v}, h_{\ell}) = \min_{\{i \in \mathcal{N} : H_{\ell,i}(\mathbf{v}) = h_{\ell}\}} D_{\ell,i}(\mathbf{v})$$

HD-ED Relationship in an Arbitrary Geometric Graph

Lemma

For arbitrary \mathbf{v} and $h_{\ell} \geq 2$, $r < \underline{D}_{\ell}(\mathbf{v}, h_{\ell}) \leq \overline{D}_{\ell}(\mathbf{v}, h_{\ell}) \leq h_{\ell}r$ and both bounds are sharp.

Figure: Node placement on the right achieves the lower bound of ED

• HD does not give useful information about ED in an arbitrary GG

Nath and Kumar (ECE, IISc)

The Distance-Hop Proportionality Problem

- Geometric Graphs and the HD-ED Problem
- Motivation for the Problem: GPS-Free Localisation
- Why Random Geometric Graphs

D-ED Proportionality in a Random Geometric Graph (RGG)

3 Simulations Illustrating the Point-Node Theorem

The Random Geometric Graph (RGG) Setting

- n nodes; Uniform i.i.d.
 placement on unit area A
- Random locations $\mathbf{V} = [V_1, V_2, \cdots, V_n] \in \mathcal{A}^n$
- $\mathbb{P}^{n}(.)$ is the probability measure
- The random geometric graph $\mathcal{G}(\mathbf{V}, r(n))$ is formed

•
$$r(n) = c\sqrt{\frac{\ln n}{n}}, \ c > \frac{1}{\sqrt{\pi}}$$

 Ensures asymptotic connectivity with probability approaching 1

RGG: How Far Can a Node be that is h_{ℓ} Hops Away?

• We want bounds on the Euclidean distance (ED) between a fixed point (say and anchor, b_{ℓ}) and all nodes at a hop-distance h_{ℓ} from the point

Nath and Kumar (ECE, IISc)

The "Point-Node" Theorem

$$E_{h_{\ell}}(n) := \{ \mathbf{v} : (1-\epsilon)(h_{\ell}-1)r(n) \leq \underline{D}_{\ell}(\mathbf{v},h_{\ell}) \leq \overline{D}_{l}(\mathbf{v},h_{\ell}) \leq h_{\ell}r(n) \}$$

Theorem

For a given
$$1 > \epsilon > 0$$
, and $r(n) = c\sqrt{\frac{\ln n}{n}}$, $c > \frac{1}{\sqrt{\pi}}$,

$$\mathbb{P}^n(E_{h_\ell}(n)) = 1 - \mathcal{O}\left(rac{1}{n^{g(\epsilon)c^2}}
ight)$$

where

$$g(\epsilon) = q(\epsilon)\sqrt{1-p^2(\epsilon)},$$
with $p(\epsilon) = \frac{1-\epsilon+\sqrt{(1-\epsilon)^2+8}}{4}, q(\epsilon) = \frac{-3(1-\epsilon)+\sqrt{(1-\epsilon)^2+8}}{4}.$
Hence, $\lim_{n \to \infty} \mathbb{P}^n(E_{h_\ell}(n)) = 1$

Since $g(\epsilon) \downarrow$ as $\epsilon \downarrow$, the rate of convergence slows down as ϵ decreases.

Nath and Kumar (ECE, IISc)

The "Point-Node" Theorem: Outline of the Proof (1/4)

- Circle of radius $h_{\ell}r(n)$ centered at the "point"
- Cover the circumference, within A, by "blades," as shown
- Each blade is then covered with overlapping rectangles
- The overlaps are called "strips"

Nath and Kumar (ECE, IISc)

The "Point-Node" Theorem: Outline of the Proof (2/4)

• We take 0 < q < p < 1; these will related to ϵ later

The "Point-Node" Theorem: Outline of the Proof (2/4)

• We take 0 < q < p < 1; these will related to ϵ later

$$\mathcal{A}_{i,j}^\ell = \{ \mathbf{v} : \exists \text{ at least one node in the } i^{th} ext{ strip of } \mathcal{B}_j^\ell \}$$

$$egin{aligned} &\{\cap_{j=1}^{J(n)}\cap_{i=1}^{h_\ell-1}A_{i,j}^\ell\}\ &\subseteq &\{\mathbf{v}:(p-q)(h_\ell-1)r(n)\leq \underline{D}_\ell(\mathbf{v},h_\ell)\leq \overline{D}_\ell(\mathbf{v},h_\ell)\leq h_\ell r(n)\} \end{aligned}$$

The "Point-Node" Theorem: Outline of the Proof (3/4)

$$\mathbb{P}^{n} \left(\bigcap_{j=1}^{J(n)} \bigcap_{i=1}^{h_{\ell}-1} A_{i,j}^{\ell} \right) = 1 - \mathbb{P}^{n} \left(\bigcup_{j=1}^{J(n)} \bigcup_{i=1}^{h_{\ell}-1} A_{i,j}^{\ell} \right)$$

$$\geq 1 - \sum_{j=1}^{J(n)} \sum_{i=1}^{h_{\ell}-1} \mathbb{P}^{n} \left(A_{i,j}^{\ell} \right)$$

$$\geq 1 - (h_{\ell} - 1) \left[\frac{\pi h_{\ell}}{2\sqrt{1 - p^{2}}} \right] (1 - u(n)t(n))^{n}$$

$$\geq 1 - (h_{\ell} - 1) \left[\frac{\pi h_{\ell}}{2\sqrt{1 - p^{2}}} \right] e^{-nu(n)t(n)}$$

$$= 1 - (h_{\ell} - 1) \left[\frac{\pi h_{\ell}}{2\sqrt{1 - p^{2}}} \right] e^{-nq\sqrt{1 - p^{2}}r^{2}(n)}$$

$$= 1 - (h_{\ell} - 1) \left[\frac{\pi h_{\ell}}{2\sqrt{1 - p^{2}}} \right] n^{-q\sqrt{1 - p^{2}}c^{2}} \xrightarrow{n \to \infty} 1$$

Nath and Kumar (ECE, IISc)

The "Point-Node" Theorem: Outline of the Proof (4/4)

• We take
$$p - q = 1 - \epsilon$$
, and maximise $q\sqrt{1 - p^2}$
• Gives $p(\epsilon) = \frac{1 - \epsilon + \sqrt{(1 - \epsilon)^2 + 8}}{4}$, $q(\epsilon) = \frac{-3(1 - \epsilon) + \sqrt{(1 - \epsilon)^2 + 8}}{4}$
• Define $g(\epsilon) = q(\epsilon)\sqrt{1 - p^2(\epsilon)}$

Hence,

$$\mathbb{P}^n \{ \mathbf{v} : (1-\epsilon)(h_\ell - 1)r(n) \le \underline{D}_\ell(\mathbf{v}, h_\ell) \le \overline{D}_\ell(\mathbf{v}, h_\ell) \le h_\ell r(n) \}$$

= $1 - \mathcal{O}\left(\frac{1}{n^{g(\epsilon)c^2}}\right)$

The Distance-Hop Proportionality Problem

- Geometric Graphs and the HD-ED Problem
- Motivation for the Problem: GPS-Free Localisation
- Why Random Geometric Graphs

2 HD-ED Proportionality in a Random Geometric Graph (RGG)

Simulations Illustrating the Point-Node Theorem

Simulation: $n = 1000, 5000, 5000; h_{\ell} = 5, 5, 10$ Hops

•
$$\epsilon = 0.4$$
, $r(n) = \frac{4}{\sqrt{\pi}}\sqrt{\frac{\ln n}{n}}$

- The dashed curves show the ED bounds given by the Point-Node Theorem
 - The probability lower bound from the theorem is shown
- The solid line shows the ED $(h_1 1)r(n)$

• Observations from simulations

- The bounds are valid, but
- The lower bound $(1-\epsilon)(h_{\ell}-1)r(n)$ is quite loose, and
- ▶ The bounds $[(h_{\ell} 1)r(n), h_{\ell}r(n)]$ might be a good approximation

Observations from simulations

- The bounds are valid, but
- The lower bound $(1-\epsilon)(h_{\ell}-1)r(n)$ is quite loose, and
- The bounds $[(h_{\ell} 1)r(n), h_{\ell}r(n)]$ might be a good approximation
- Extensions in the paper
 - ▶ RGG with a fixed radius r: Exponential convergence of the probability
 - RGG with Randomized Lattice deployment of nodes

 $\star\,$ A similar point-node theorem is obtained

- Other extensions that we have shown
 - Node-node theorem, point-point theorem

The Distance-Hop Proportionality Problem

- Geometric Graphs and the HD-ED Problem
- Motivation for the Problem: GPS-Free Localisation
- Why Random Geometric Graphs

2 HD-ED Proportionality in a Random Geometric Graph (RGG)

3 Simulations Illustrating the Point-Node Theorem

Conclusion, Applications, Future Work

Summary

- Assumed a Geometric Graph model of a Wireless Sensor Network
- HD is not a good measure of ED for arbitrary node placement
- Established high probability bounds on the ED, given the HD (*h*) between a fixed point and a node

 $(1-\epsilon)(h-1)r < \mathsf{ED} \le hr$ with high probability

• Illustrated the theory with simulations

Conclusion, Applications, Future Work

Summary

- Assumed a Geometric Graph model of a Wireless Sensor Network
- HD is not a good measure of ED for arbitrary node placement
- Established high probability bounds on the ED, given the HD (h) between a fixed point and a node

 $(1-\epsilon)(h-1)r < \mathsf{ED} \le hr$ with high probability

• Illustrated the theory with simulations

Application

• We have also shown how to use this theory to develop a localisation technique

Conclusion, Applications, Future Work

Summary

- Assumed a Geometric Graph model of a Wireless Sensor Network
- HD is not a good measure of ED for arbitrary node placement
- Established high probability bounds on the ED, given the HD (*h*) between a fixed point and a node

 $(1-\epsilon)(h-1)r < \mathsf{ED} \le hr$ with high probability

• Illustrated the theory with simulations

Application

• We have also shown how to use this theory to develop a localisation technique

Future Work

- Obtaining sharper bounds, perhaps by a different geometrical construction
- Improving the convergence rate result

Nath and Kumar (ECE, IISc)

- Defence Research and Development Organisation (DRDO), Government of India
- Cisco Systems India (Private Limited)
- Dr. Rajesh Sundaresan, Prof. Srikant Iyer, Srivatsa Acharya, N. E. Venkatesan, Prof. P. Vijay Kumar

