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ABSTRACT
We consider the problem of scheduling resources with monetary

transfers among agents in a setting where multiple outlets can dis-

pense these resources at different rates within fixed time-slots. This

problem is motivated by applications like the electric vehicle (EV)

charging that require power and are available for charging within

the convenient time window of its owners. The agents’ valuations

depend on the contiguous collection of time slots at a given outlet

that dispense the resource to them. We show that for monotone
and its special sub-class of dichotomous valuations, computing the

social welfare-maximizing allocation is NP-hard, even if there is only
one outlet. For monotone valuations, we provide a randomized 2-

approximationmechanism that is truthful in dominant strategies and
individually rational for a single outlet and a randomized 𝑂 (

√︁
|𝑆 |)-

approximation algorithm with the same properties for multiple

outlets (𝑆 is the set of time-slots). However, for single-minded valu-
ations, the welfare maximization problem for multiple outlets is in

P. This allows us to use standard mechanisms like VCG to ensure

truthfulness and individual rationality in such a setting.
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1 INTRODUCTION
Allocating resources efficiently among time-constrained consumers

is a critical challenge across industries. For instance, power grids

distribute electricity to many organizations operating heavy elec-

trical equipments, while food delivery apps allocate incoming food

orders to delivery agents. Similarly, a charging point operator (CPO)
of electric vehicles (EVs) manages multiple charging stations, with

EVs coming as consumers to charge the vehicles. These diverse

scenarios share some common factors: (a) resources take significant

time to serve each consumer, (b) consumers have specific prefer-

ences over the schedules (e.g., delivery agents preferring certain

geographical areas and times or EVs needing charging at specific
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times and locations), and (c) payments are allowed, with the option

of price discrimination among consumers. This creates a general-

ized framework of mechanism design for resource scheduling with
monetary transfers, where the planner (e.g., a grid manager, deliv-

ery app, or CPO) must adhere to certain key principles. The first

is truthfulness, that ensures industries to reveal true electricity de-

mand or delivery agents to disclose real preferences. The second is

social welfare maximization, that aims to maximize the collective

consumer satisfaction.

In this paper, we consider the problem of truthful and welfare-

maximizing resource scheduling problem with payments where

the allocation and payment decisions are made at certain given

epochs, e.g., at certain hours of the day depending on the number

of consumer requests that arrive at that time epoch. We keep the

electric vehicle allocation as our running example and develop the

theory and notation accordingly. However, we want to emphasize

that the same framework can also be easily adapted to any resource

allocation problem discussed above. The special structure of this

setting allows us to show that maximizing welfare is computation-

ally hard and therefore needs to be approximated. However, for

such approximated welfare mechanisms, non-trivial allocation and

payment rules need to be designed to ensure truthfulness. In this

paper, we consider a static setup where the consumers report their

values and the mechanism decides the allocation and payments.

Making the decision epochs sufficiently fine, a close approximation

of the dynamic decision problem can be obtained. Even in such a

case, we find the problem to be quite challenging and therefore a

general analysis of an online resource scheduling problem is left as

a future exercise for these settings.

1.1 Related Work
The literature on truthful resource scheduling is diverse primarily

because of the history and application domains of such problems.

The first strand of this literature comes from the classical domain

of machine scheduling. In this domain, the primary objective is to

minimize makespan [1, 9, 10, 14, 16, e.g.]. The question of social

welfare has been addressed sporadically, e.g., Koutsoupias [23]

defined it as the negation of the sum of executing times of all

machines and provided approximation to the optimal.

The second strand comprises of discrete interval scheduling prob-

lems, where a set of jobs can be executed over multiple machines

and the the goal is to maximize the weighted sum of executed jobs

[4, 5, 7, 31]. While this literature focuses on providing approxima-

tion schemes, it does not consider the objective of truthfulness or

capture the rich valuation structure of agents.

The third strand of literature addresses the axiomatic questions

of properties such as truthfulness, budget balance, independence



of irrelevant alternatives [19], risk aversion [24], and provide char-

acterization results. These literature does not consider the compu-

tational complexity of the mechanisms that yield these properties.

Kress et al. [25] and Kolen et al. [21] provide nice surveys of these

three strands.

The fourth strand is from the algorithmic mechanism design

viewpoint, where the computational questions in welfare maxi-

mization and truthfulness are considered together. If the time is

discrete and each agent desires a set of contiguous time-slots of

a resource, then this problem reduces to a special combinatorial

allocation problem. We consider this setting in our paper and, there-

fore, this literature is the most relevant one. For mechanisms with

payments, VCG [11, 18, 32] is the most widely used one for guaran-

teeing truthfulness and welfare maximization. However, it requires

to compute the optimal social welfare (OSW) allocation in order to

ensure truthfulness. The OSW problem in combinatorial auctions

is known to be NP-Hard [12, 28], even in the case where agents

are single-minded. In addition, approximating the social welfare to

a factor within 𝑘
1/2−𝜖

(where 𝑘 is the number of objects or goods)

is also NP-Hard [12, 28]. In the case of multi-unit combinatorial

auction under the constraint that no object is allocated more than 𝑦

times (hence considered as the number of units of every object) and

every agent gets at most one bundle, approximating social welfare

within a factor of 𝑂 (𝑘1−𝜖/𝑦+1) is NP-Hard [6]. Thus, the approach

taken in the literature is to approximately achieve social welfare

ensuring truthfulness and individual rationality (IR).

There are several algorithms that provide 𝑂 (𝑘1/𝑦+1) approxima-

tion guarantee [8, 22, 29] to the social welfare maximization prob-

lem. For general monotone valuations, only [6, 26] are known to

be truthful. Note that the VCG mechanism with approximate social

welfare does not generally guarantee truthfulness [27]. Bartal et al.

[6] give a deterministic 𝑂 (𝑦𝑘1/𝑦−2) approximation algorithm that

ensures truthfulness and IR. However, this approach only works for

𝑦 ⩾ 3. In contrast, Lavi and Swamy [26] provide a randomizedmech-

anism that uses VCG in a computationally tractable manner and

achieves 𝑂 (𝑘1/𝑦+1) approximation guarantee for the social welfare

∀𝑦 ⩾ 1, ensuring truthfulness and IR. Several other works address

the single minded buyers [2, 8, 27, e.g.], single-valued buyers [3],

and subadditive valuations [15].

Our resource scheduling problem and the results are distinct

from that in the literature. In our setup, every outlet-timeslot pair

is a good, and there is only one unit of this available. Hence, this

naturally falls in the setup of [26]. However, applying their method

directly in our setting where the number of goods is |𝑆 | |𝑀 |, where
𝑆 and 𝑀 are the set of timeslots and outlets respectively, we can

achieve an approximation guarantee of𝑂 (
√︁
|𝑆 | |𝑀 |). However, using

the structure of the problem we consider, we provide an improved

𝑂 (
√︁
|𝑆 |)-approximation for multiple outlets and a 2-factor approxi-

mation for the single outlet (see Section 1.2 and Table 1 for more

details).

1.2 Our Contributions
In this paper, we consider the consumers (agents) who are looking

for contiguous time-slots to consume resource at a rate that is

fixed for that consumer-outlet pair. They have different valuations

for different such contiguous slots, e.g., infeasible slots have zero

values. The planner wants to allocate the resources to maximize the

sum of the valuations of all the agents (i.e., welfare-maximizing)

while ensuring that agents are truthful. Monetary transfers can be

used to achieve this goal. In this setting, our contributions can be

summarized as follows.

• For monotone and dichotomous valuations, computing the

welfare-maximizing allocation is NP-Hard even for a single out-

let (Theorems 1 and 4).

• When considering a single outlet for the above valuations, we

provide a 2-approximate welfare-maximizing mechanism that

satisfies truthfulness in dominant strategies and individual ratio-
nality (Theorem 3).

• For the case with multiple outlets, we provide a 𝑂 (
√︁
|𝑆 |)-

approximate welfare-maximizing mechanism (𝑆 is the set of

time-slots) that is also truthful in dominant strategies and indi-
vidually rational (Theorem 2).

• For single minded agents (agents who get a fixed positive valua-

tion only when a specific set of contiguous slots at a particular

outlet is allocated to them) with multiple outlets, we show that

the welfare-maximization problem can be reduced to a linear

program and hence is efficiently solvable (Theorem 5). There-

fore, truthfulness and IR can be ensured via the classic VCG

mechanism.

Our results are summarized in Table 1. The different cases are moti-

vated by the practical limitations of resource scheduling problems.

For instance, if the resource outlets are not interconnected and

cannot make a simultaneous decision over all the requests coming

at all outlets, the planner can run the algorithm individually at

every outlet and guarantee a constant factor approximation. For

the relatively difficult problem of a single CPO (in the context of EV

charging) jointly allocating the consumers over multiple outlets, the

approximation guarantee becomes worse because the underlying

optimization problem gets harder. For certain special settings, e.g.,

every EV has a desired (outlet, interval) and does not consider any

other (outlet, interval), the problem becomes computationally easy.

2 PRELIMINARIES
In this section, we formally describe the resource scheduling prob-

lem using electric vehicle charging as the motivation. We consider

monetary transfers with an aim to maximize social welfare in a

dominant strategy truthful manner and design mechanisms that

ensure participation guarantee.

2.1 Model
Let 𝑁 = {1, 2, 3, . . . , 𝑛} denote the set of electric vehicles (EVs) re-
questing to charge themselves (e.g., via a mobile application) from a

single charging point operator (CPO) who owns charging stations in
a region. Each station has several charging outlets and every outlet

has a fixedmaximum charging rate at which it can charge an EV.We

collect together all the outlets in the region (irrespective of whether

they are at the same station) and denote𝑀 = {1, 2, 3, . . . ,𝑚} to be

the set of all outlets that the CPO owns in that region. Therefore,

each outlet 𝑘 ∈ 𝑀 has a maximum charging rate 𝑟𝐶ℎ
𝑘

. EVs have pref-

erences over different outlets based on their location and charging

rates. For instance, an EV would prefer to charge at a charging out-

let based on its proximity, the rate of charging (fast/slow), pricing,



Table 1: Summary of results.

Valuation # outlets Complexity Mechanism Guarantee DSIC IR

Monotone multiple NP-Hard RAE (Algorithm 1) + Algorithm 2 in separation oracle 𝑂 (
√︁
|𝑆 |)-approx

Monotone single NP-Hard RAE (Algorithm 1) + Algorithm 3 in separation oracle 2-approx

Dichotomous single NP-Hard RAE (Algorithm 1) + Algorithm 3 in separation oracle 2-approx

Single-minded multiple Polynomial time DAE (Algorithm 4) Optimal

and various similar factors. We consider CPO as the planner whose

goal is to allocate EVs (agents) to outlets and decide an appropriate

pricing scheme for the allocation. Since charging an EV requires

time, the planner also needs to factor in the time allocated while

assigning agents to the outlets. Consider a time horizon (e.g. the

working hours of a day) which is discretized into 𝑠 slots of equal

duration denoted by 𝑆 = {1, 2, 3, . . . , 𝑠}. Each slot 𝑗 ∈ 𝑆 is an indivis-

ible unit representing the minimum amount of time an agent must

charge once plugged in at an outlet 𝑘 ∈ 𝑀 . The planner solves the

problem of allocating agents to slots at the outlets given a set of

charging requests by EVs. Hence, the resource that each EV can be

allocated is a pair of ‘time slot and outlet’.

Each EV 𝑖 ∈ 𝑁 is allocated a collection of (slot, outlet) pairs which

we will be calling a bundle. Since no EV can charge at two different

outlets at the same time slot, we denote a bundle by 𝑏 ∈ (𝑀 ∪{0})𝑆 ,
which implies that a bundle is a vector of length |𝑆 | where the

coordinates correspond to the time slots and the value at each co-

ordinate represents the assigned outlets {1, 2, . . . ,𝑚} ∪ {0} at the
corresponding time-slot. The special outlet 0 denotes ‘unassigned’

at that slot. We assume that each EV wants to be assigned con-

tiguous time-slots exactly at one outlet. This assumption captures

the practical problem of repeatedly switching between outlets or

stop-starting charging, which are infeasible in practice. This im-

plies that we are only considering the types of bundles that satisfy

the following: (i) ∀𝑖, 𝑗 ∈ 𝑆 , if 𝑏𝑖 , 𝑏 𝑗 ≠ 0, then 𝑏𝑖 = 𝑏 𝑗 and (ii) there

exists 𝑖∗, 𝑗∗, s.t. 𝑏𝑖 = 0,∀𝑖 < 𝑖∗, 𝑖 > 𝑗∗ and 𝑏𝑖 ≠ 0,∀𝑖∗ ⩽ 𝑖 ⩽ 𝑗∗. The
first condition ensures that the bundle consists of time slots at ex-

actly one outlet, while the second condition imposes the contiguity

requirement. Denote the set of all such feasible bundles by 𝐵.
Each agent 𝑖 ∈ 𝑁 comes with a type 𝜃𝑖 : 𝐵 → R, where 𝜃𝑖 (𝑏)

represents the satisfaction of agent 𝑖 for bundle 𝑏 ∈ 𝐵. We assume

that the types satisfy monotonicity unless stated otherwise, i.e., for

all 𝑏, 𝑏′ ∈ 𝐵 where 𝑏′ is a sub-bundle of 𝑏 (𝑏′ is a sub-bundle of 𝑏 if

𝑏 contains all the allocated time-slots of 𝑏′ at the same outlet, and

is represented as 𝑏′ ⊑ 𝑏)

𝜃𝑖 (𝑏′) ⩽ 𝜃𝑖 (𝑏),∀𝑖 ∈ 𝑁, and 𝜃𝑖 ({0} |𝑆 | ) = 0,∀𝑖 ∈ 𝑁 . (1)

Note that, in this definition, 𝜃𝑖s account for the agent 𝑖’s preference

over outlets (fast/slow chargers), time slots (e.g., their preferred

arrival and departure), and their charge demand, in a consolidated

manner. Since 𝜃𝑖 is agent 𝑖’s private information, we need mecha-

nisms to truthfully elicit this information to take an efficient deci-
sion. We use 𝜃−𝑖 to represent the types of agents other than 𝑖 and

𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑛) to denote the type profile. Set Θ𝑖 denotes the

monotone type set of agent 𝑖 and Θ =
∏

𝑖∈𝑁 Θ𝑖 denotes the set of

type profiles. When requesting for charging services, each agent

reports
ˆ𝜃𝑖 which could be different from their true type 𝜃𝑖 . The

planner needs to design a mechanism (the allocation and payment

schemes) using the reported type vector
ˆ𝜃 . Note, when time slots

are categorized into different time-periods of the day, e.g., morning,

afternoon, evening, night, such mechanisms can allocate slots to

all the EVs that placed a request before the time-period started.

An allocation is represented as 𝑥 = [𝑥 (𝑖, 𝑏),∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵],
where 𝑥 (𝑖, 𝑏) = 1 when agent 𝑖 is allocated 𝑏 ∈ 𝐵, and 𝑥 (𝑖, 𝑏) = 0

otherwise. We call an allocation feasible if it satisfies the following:

(a) every agent is allocated at most one bundle, i.e.,

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) ⩽

1,∀𝑖 ∈ 𝑁 , and, (b) no more than a single unit of any “time slot,

outlet” pair is allocated. Let 𝐵 𝑗𝑘 = {𝑏 ∈ 𝐵 : 𝑏 𝑗 = 𝑘} denote the
set of bundles in which the pair ( 𝑗, 𝑘), 𝑗 ∈ 𝑆, 𝑘 ∈ 𝑀, exists. Then∑
𝑏∈𝐵 𝑗𝑘

∑
𝑖∈𝑁 𝑥 (𝑖, 𝑏) ⩽ 1, ∀𝑗 ∈ 𝑆, 𝑘 ∈ 𝑀 . All allocations that

satisfy conditions (a) and (b) are called feasible allocations and the

set of all feasible allocations is denoted by 𝑋 .

An allocation function 𝑓 : Θ → 𝑋 is a mapping that yields

a feasible allocation 𝑓 (𝜃 ) ∈ 𝑋 for every type profile 𝜃 ∈ Θ. The
valuation of agent 𝑖 ∈ 𝑁 is described by 𝑣𝑖 : 𝑋 × Θ𝑖 → R, which
for a given 𝜃𝑖 ∈ 𝜃 and a feasible allocation 𝑥 ∈ 𝑋 gives a value

𝑣𝑖 (𝑥, 𝜃𝑖 ) =
∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏). Note, if 𝜃𝑖 satisfies monotonicity

then so does the valuation 𝑣𝑖 . Every EV is also asked a payment

for a given allocation. A payment function for agent 𝑖 is given by

𝜋𝑖 : Θ → R which maps the reported type profile 𝜃 ∈ Θ to a real

number.

Given the above formulation, the utilities of the agents take

a quasi-linear form. Formally, given the reported type profile of

agents
ˆ𝜃 , an allocation function 𝑓 and payment functions 𝜋𝑖 ,∀𝑖 ∈

𝑁 , the utility of agent 𝑖 when its true type is 𝜃𝑖 is given by:

𝑢𝑖 ((𝑓 ( ˆ𝜃 ), 𝜋 ( ˆ𝜃 )), 𝜃𝑖 ) = 𝑣𝑖 (𝑓 ( ˆ𝜃 ), 𝜃𝑖 ) − 𝜋𝑖 ( ˆ𝜃 ).
Note that in the definitions above, we defined the allocation and

the payments to be deterministic. But more generally, the planner

can also output randomized allocation and payments. A randomized

allocation can be seen as a probability distribution over all determin-

istic allocations in 𝑋 . Denote the set of all randomized allocations

by Δ𝑋 = {𝜆 ∈ [0, 1] |𝑋 |
:

∑
𝑥∈𝑋 𝜆𝑥 = 1 and 𝜆𝑥 ⩾ 0,∀𝑥 ∈ 𝑋 }, where

𝜆 represents a randomized allocation and 𝜆𝑥 denotes the proba-

bility of choosing the deterministic allocation 𝑥 ∈ 𝑋 . Note, Δ𝑋 is

the convex hull of the set 𝑋 . Given this, we extend the allocation

function 𝑓 : Θ → Δ𝑋 to be a mapping which yields a randomized

allocation 𝑓 (𝜃 ) ∈ Δ𝑋 for a given type profile 𝜃 ∈ Θ. We also ex-

tend the the valuation function of agent 𝑖 , 𝑣𝑖 : Δ𝑋 × Θ𝑖 → R to

have all randomized allocations Δ𝑥 in the domain. Thus, with a

slight abuse of notation we denote 𝑣𝑖 (𝜆, 𝜃𝑖 ) =
∑
𝑥∈𝑋 𝜆𝑥 𝑣𝑖 (𝑥, 𝜃𝑖 ) =∑

𝑥∈𝑋 𝜆𝑥
∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏) to be the expected valuation of agent 𝑖

for the randomized allocation 𝜆 ∈ Δ𝑋 when its type is 𝜃𝑖 . Likewise,

the payment 𝜋𝑖 (𝜃 ) denotes the expected payment to be made by

agent 𝑖 . For a given the reported type profile
ˆ𝜃 , this gives us the



expected utility of an agent 𝑖 when its true type is 𝜃𝑖 as follows:

𝑢𝑖 ((𝑓 ( ˆ𝜃 ), 𝜋 ( ˆ𝜃 )), 𝜃𝑖 ) = E[𝑣𝑖 (𝑓 ( ˆ𝜃 ), 𝜃𝑖 ) − 𝜋𝑖 ( ˆ𝜃 )], where the expecta-
tion is taken w.r.t. the randomized allocation 𝑓 ( ˆ𝜃 ) and randomized

payment 𝜋𝑖 ( ˆ𝜃 ).
In summary, the planner needs to design a social choice function

or a mechanism (𝑓 , 𝜋) such that several desirable properties are

satisfied. We define the desirable properties in the following section.

2.2 Design Desiderata
In this paper, our objective is to maximize social welfare through

a mechanism that is dominant strategy incentive compatible and

individually rational. These properties are defined as follows.

Definition 1 (Efficiency). A deterministic mechanism (𝑓 , 𝜋) max-

imizes social welfare and therefore is efficient if for every 𝜃 ∈ Θ,
𝑓 (𝜃 ) = argmax𝑥∈𝑋

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏). Correspondingly, a

randomized mechanism (𝑓 , 𝜋) is efficient if for every 𝜃 ∈ Θ,
𝑓 (𝜃 ) = argmax𝜆∈Δ𝑋

∑
𝑥∈𝑋 𝜆𝑥

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏).

The next property incentivizes each agent to participate in the

game ensuring that their utility is non-negative for every type

profile.

Definition 2 (Individual Rationality (IR)). A deterministic mech-

anism (𝑓 , 𝜋) is individually rational (IR) if for every 𝜃 ∈ Θ and

for every 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝑓 (𝜃 ), 𝜃𝑖 ) − 𝜋𝑖 (𝜃 ) ⩾ 0. Likewise, a randomized

mechanism (𝑓 , 𝜋) is ex-post individually rational if for every 𝜃 ∈ Θ
and for every 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝑥, 𝜃𝑖 ) − 𝑝𝑖 ⩾ 0 for every sample 𝑥 and 𝑝𝑖
drawn from 𝑓 (𝜃 ) and 𝜋𝑖 (𝜃 ) respectively.

Finally, since the planner’s decision is dependent on the agents’

reported types
ˆ𝜃 , we need to incentivize them to report it truthfully.

Definition 3 (Dominant Strategy Incentive Compatible (DSIC)). A

deterministic mechanism (𝑓 , 𝜋) is dominant strategy incentive com-
patible (DSIC) if for every agent 𝑖 ∈ 𝑁,∀ 𝜃𝑖 , ˜𝜃𝑖 ∈ Θ𝑖 , and ∀ 𝜃−𝑖 ∈
Θ−𝑖 , 𝑣𝑖 (𝑓 (𝜃𝑖 , 𝜃−𝑖 ), 𝜃𝑖 )−𝜋𝑖 (𝜃𝑖 , 𝜃−𝑖 ) ⩾ 𝑣𝑖 (𝑓 ( ˜𝜃𝑖 , 𝜃−𝑖 ), 𝜃𝑖 )−𝜋𝑖 ( ˜𝜃𝑖 , 𝜃−𝑖 ) .
Correspondingly, a randomized mechanism (𝑓 , 𝜋) is DSIC if ∀𝑖 ∈
𝑁,∀𝜃𝑖 , ˜𝜃𝑖 ∈ Θ𝑖 , and ∀𝜃−𝑖 ∈ Θ−𝑖 ,

E[𝑣𝑖 (𝑓 (𝜃𝑖 , 𝜃−𝑖 ), 𝜃𝑖 ) − 𝜋𝑖 (𝜃𝑖 , 𝜃−𝑖 )] ⩾ E[𝑣𝑖 (𝑓 ( ˜𝜃𝑖 , 𝜃−𝑖 ), 𝜃𝑖 ) − 𝜋𝑖 ( ˜𝜃𝑖 , 𝜃−𝑖 )] .
In the sections that follow, we focus on mechanisms that achieve

the above set of properties in a computationally efficient manner.

3 PROBLEM SETUP
In this section, we present the central problem of the paper. The

social welfare maximization problem for the general monotone

valuations is given as follows.

max

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏)

s.t.

∑︁
𝑏∈𝐵 𝑗𝑘

∑︁
𝑖∈𝑁

𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑗 ∈ 𝑆, 𝑘 ∈ 𝑀,∑︁
𝑏∈𝐵

𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑖 ∈ 𝑁,

𝑥 (𝑖, 𝑏) ∈ {0, 1},∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵.

(2)

We show that it is NP-Hard in various reasonable settings and

provide approximate solutions to welfare while maintaining the

DSIC and IR properties.

4 MONOTONE VALUATIONS
We first show that the social welfare maximization problem for

monotone valuations given by ILP (2) is NP-Hard. We prove this via

a polynomial reduction from the Job Interval Selection Problem [12,

31] which is known to be NP-Complete.

Theorem 1. For monotone valuations and for a given 𝐾 , the de-
cision problem of whether the optimal allocation to the EV charging
problem has a social welfare of at least 𝐾 is NP-complete even when
the number of outlets |𝑀 | = 1.

Due to paucity of space, we move the proof of this result and the

proofs some other results to the supplementary material.

4.1 Mechanism for multi-outlet scenario
Given the above result, the VCG mechanism is intractable for our

setup. Thus, we focus on maximizing social welfare approximately.

To obtain this, we use the classic VCG mechanism in the fractional
space to obtain an optimal fractional allocation that is efficient and
payments that ensure DSIC and IR. A randomized mechanism is

then constructed such that the randomized allocation is a convex

decomposition of the fractional allocation scaled by a factor 𝛼 and

the expected payment of every agent is set to be the 𝛼-scaled VCG

payment calculated in the fractional space. Note that to get the

convex decomposition of the 𝛼-scaled fractional allocation, an 𝛼-

approximation algorithm that gives guarantees w.r.t. the fractional

optimal solution for every monotone valuation is required. We pro-

vide a greedy algorithm with 𝑂 (
√︁
|𝑆 |)-approximation factor to do

this. The above method approximates the social welfare to within

a factor of 𝑂 (
√︁
|𝑆 |) and retains DSIC and IR via VCG in the frac-

tional space. We call this method Randomized Allocatively Efficient

(RAE) mechanism, which is detailed out in Algorithm 1. Note that

Algorithm 1 takes an 𝛼-approximation algorithm A as input. It in-

ternally employs the ellipsoid method with a separation oracle [33]
that uses the approximation algorithmA. Thus, Algorithm 1 acts as

a template, where the variableA can be set appropriately. We show

in the following result how we can achieve all desirable properties.

Theorem 2. For monotone valuations and mutiple outlets, the
RAE mechanism (Algorithm 1) that uses Algorithm 2 as A in the
separation oracle approximates the social welfare within a factor of
𝑂 (

√︁
|𝑆 |) and ensures DSIC and IR.

The general technique of constructing a randomized mechanism

using VCG in a tractable manner was originally proposed by Lavi

and Swamy [26] in the context of combinatorial auctions. We adapt

their general technique to ensure DSIC and IR for monotone valua-

tions, but improve on the approximation guarantees for this setup.

In particular, the𝑂 (√𝜌) approximation algorithm (𝜌 is the number

of goods) proposed in [26] translates to an approximation factor of

𝑂 (
√︁
|𝑆 | |𝑀 |) in our setting since every ( 𝑗, 𝑘) pair, where 𝑗 ∈ 𝑆, 𝑘 ∈ 𝑀

can be seen as a good. However, Theorem 2 provides an improved

𝑂 (
√︁
|𝑆 |)-approximation for the multi-outlet case. Later, we improve

it to a constant factor for a single outlet.

For given reported types
ˆ𝜃 , Algorithm 1 first solves the LP re-

laxation of ILP (2) given by LP (3) to obtain an optimal fractional

allocation. This can be computed in polynomial time since the

number of variables and constraints in LP (3) are polynomial in



Algorithm 1: RAEMechanism

Input: Agent reports ˆ𝜃 and an 𝛼-approximation algorithm

A (𝛼 > 1) that provides an integer solution with a

value of at least 1/𝛼 times the value of the fractional

optimal for any monotone
ˆ𝜃 .

Output: A randomized allocation 𝑓 ( ˆ𝜃 ) ∈ Δ𝑋 and

randomized payments 𝜋𝑖 ( ˆ𝜃 ),∀𝑖 ∈ 𝑁 .

1 Solve LP (3) to get an optimal fractional allocation 𝑥 fr ( ˆ𝜃 ).
2 Set payments 𝑝fr

𝑖
( ˆ𝜃 ) for every agent 𝑖 using VCG in the

fractional space 𝑋 fr
as given by Equation (4).

3 Scale 𝑥 fr ( ˆ𝜃 ) and 𝑝fr
𝑖
( ˆ𝜃 ),∀𝑖 ∈ 𝑁 by 𝛼 .

4 Using GetConvexDecomposition(𝑥 fr ( ˆ𝜃 ),A), construct a

convex decomposition 𝑥 fr ( ˆ𝜃 )/𝛼 =
∑
𝑥 𝐼 ∈𝑋 𝜆

∗
𝑥 𝐼 𝑥

𝐼
with

polynomially many 𝜆∗
𝑥 𝐼 > 0.

5 Set the randomized allocation 𝑓 ( ˆ𝜃 ) and payments

𝜋𝑖 ( ˆ𝜃 ),∀𝑖 ∈ 𝑁 according to Equation (8).

6 return 𝑓 ( ˆ𝜃 ), 𝜋 ( ˆ𝜃 )
7 Procedure GetConvexDecomposition(𝑥 fr ( ˆ𝜃 ),A):
8 Solve the dual LP (6) using ellipsoid method with

SeparationOracle() that uses A and 𝑥 fr ( ˆ𝜃 ). This
identifies an LP that is equivalent to LP (6) but with

only polynomial no. of constraints from∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) + 𝑧 ⩽ 1,∀𝑥 𝐼 ∈ 𝑋 .
9 Solve the primal LP (5) by considering polynomially

many variables corresponding to the above identified

constraints to get the optimal solution 𝜆∗.
10 return 𝜆∗

11 Procedure SeparationOracle():
Input: 𝑥 fr ( ˆ𝜃 ), an 𝛼-approximation algorithm A, and

any point (𝑤, 𝑧), where
𝑤 = [𝑤 (𝑖, 𝑏),∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵] is unconstrained.

Output: A separating hyperplane which is used to cut

the ellipsoid in a given iteration.

12 if 𝑧 + 1

𝛼

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

fr (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) > 1 then
13 Using A, get an 𝑥 𝐼 ∈ 𝑋 s.t.∑

𝑖∈𝑁
∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏)𝑤 (𝑖, 𝑏) ⩾
1

𝛼 max

𝑥∈𝑋 fr

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏)𝑤 (𝑖, 𝑏).

14 Using the above inequality and the condition in the

if statement, we get a violated constraint∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) + 𝑧 > 1 of the LP (6) for

the point (𝑤, 𝑧).
15 return

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) + 𝑧 = 1

16 else
17 return 𝑧 + 1

𝛼

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

fr (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) = 1

18 end

|𝑁 |, |𝑀 |, and |𝑆 |. Particularly, note that number of bundles in

𝐵 = 𝑂 ( |𝑀 | |𝑆 |2) since EVs are assigned contiguous time slots at

exactly any single outlet. Denote the optimal solution of LP (3)

by 𝑥 fr ( ˆ𝜃 ). Wherever clear from context, we will use 𝑥 fr instead of

𝑥 fr ( ˆ𝜃 ) for brevity. Note that, 𝑥 fr can be seen as a fractional alloca-

tion, where 𝑥 fr (𝑖, 𝑏) ∈ [0, 1],∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵 denotes the fraction of

bundle 𝑏 allocated to agent 𝑖 . Denote 𝑋 fr
to be the set of all feasible

fractional allocations
1
.

max

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

ˆ𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏)

s.t.

∑︁
𝑏∈𝐵 𝑗𝑘

∑︁
𝑖∈𝑁

𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑗 ∈ 𝑆, 𝑘 ∈ 𝑀∑︁
𝑏∈𝐵

𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑖 ∈ 𝑁

𝑥 (𝑖, 𝑏) ⩾ 0,∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵

(3)

The payment of every agent 𝑖 is then given by the VCG payment in

the fractional space 𝑋 fr
as follows.

𝑝fr𝑖 ( ˆ𝜃 ) = max

𝑥∈𝑋 fr

∑︁
𝑖′∈𝑁 \{𝑖 }

∑︁
𝑏∈𝐵

ˆ𝜃𝑖′ (𝑏)𝑥 (𝑖′, 𝑏) −
∑︁

𝑖′∈𝑁 \{𝑖 }

∑︁
𝑏∈𝐵

ˆ𝜃𝑖′ (𝑏)𝑥 fr (𝑖′, 𝑏)

(4)

The fractional mechanism (𝑥 fr, 𝑝fr) guarantees DSIC and IR since

it is the VCG mechanism in the fractional space 𝑋 fr
. Note that,

even if the allocation and the payments are scaled by some 𝛼 > 1,

i.e., 𝑥
fr (𝑖,𝑏 )/𝛼,∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵 and 𝑝 fr

𝑖 ( ˆ𝜃 )/𝛼,∀𝑖 ∈ 𝑁 , DSIC and IR

still hold. This is due to 𝑣𝑖 ’s linearity in 𝑥 fr i.e., 𝑣𝑖 (𝑥 fr ( ˆ𝜃 ), 𝜃𝑖 ) =∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 fr (𝑖, 𝑏),∀𝑥 fr ( ˆ𝜃 ) ∈ 𝑋 fr

. Note that we also overload 𝑣𝑖
for a fractional allocation. From the above discussion, we get the

following lemma.

Lemma 1. For every 𝜃 ∈ Θ, a mechanism that outputs the frac-
tional allocation 𝑥 fr (𝜃 )/𝛼 and the VCG payments 𝑝 fr (𝜃 )/𝛼 , for every
𝛼 > 1 is DSIC and IR in 𝑋 fr.

However, note that the mechanism (𝑥 fr ( ˆ𝜃 )/𝛼, 𝑝 fr ( ˆ𝜃 )/𝛼) cannot be
implemented since it gives a fractional allocation. For this reason,

we construct a convex decomposition of 𝑥
fr ( ˆ𝜃 )/𝛼 =

∑
𝑥 𝐼 ∈𝑋 𝜆𝑥 𝐼 𝑥 𝐼 to

obtain a randomized allocation 𝜆 ∈ Δ𝑋 that has only polynomially

many 𝜆𝑥 𝐼 > 0. The problem of finding such a decomposition can

be formulated as the following linear program.

min

∑︁
𝑥 𝐼 ∈𝑋

𝜆𝑥 𝐼

s.t.

∑︁
𝑥 𝐼 ∈𝑋

𝜆𝑥 𝐼 𝑥
𝐼 (𝑖, 𝑏) = 𝑥 fr ( ˆ𝜃 ) (𝑖,𝑏 )/𝛼,∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵∑︁

𝑥 𝐼 ∈𝑋
𝜆𝑥 𝐼 ⩾ 1

𝜆𝑥 ⩾ 0,∀𝑥 𝐼 ∈ 𝑋 .

(5)

If we can show that the optimal value of LP (5) is 1 (for some

fixed 𝛼 > 1), then we get the required convex decomposi-

tion of the fractional allocation. This gives a randomized al-

location that approximates the social welfare to within a fac-

tor of 𝛼 since we have

∑
𝑥 𝐼 ∈𝑋 𝜆𝑥 𝐼

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 𝐼 (𝑖, 𝑏) =∑

𝑖∈𝑁
∑
𝑏∈𝐵 𝜃𝑖 (𝑏)

∑
𝑥 𝐼 ∈𝑋 𝜆𝑥 𝐼 𝑥 𝐼 (𝑖, 𝑏) =

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 fr (𝑖,𝑏 )/𝛼 .

In addition, using the properties of fractional mechanism (Lemma 1)

we can also ensure DSIC and IR. We show that for a particular

1
Note that, 𝑋 fr

is the feasible region of LP (3). This may be different from the convex

hull of 𝑋 , since the corner points of the feasible region 𝑋 fr
may not be deterministic

allocations. If that happens to be the case, then ILP (2) is solvable in polynomial time.



choice of 𝛼 we can guarantee an optimal value of 1 for LP (5) for ev-

ery monotone
ˆ𝜃 . This also gives a 𝜆 ∈ Δ𝑋 having only polynomially

many 𝜆𝑥 𝐼 > 0, (for 𝑥 𝐼 ∈ 𝑋 ) in polynomial time.

Observe that LP (5) can have exponentially many variables, since

the number of deterministic allocations for a given instance of our

EV charging problem can be exponential in the number of agents,

outlets and time slots. For this reason, we consider its dual LP (6).

max 𝑧 + 1

𝛼

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑥 fr ( ˆ𝜃 ) (𝑖, 𝑏) 𝑤 (𝑖, 𝑏)

s.t. 𝑧 ⩾ 0∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑥 𝐼 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) + 𝑧 ⩽ 1,∀𝑥 𝐼 ∈ 𝑋

(6)

The dual program has a polynomial number of variables and an

exponential number of constraints. But an LP with exponentially

many constraints can be solved in polynomial time using the el-

lipsoid method if one can construct an efficient separation oracle
[17, 33]. This is because the ellipsoid method solves an LP without

the explicit description of the program itself. For our dual LP (6),

an 𝛼-approximation algorithm that provides an integer solution

with a value of at least 1/𝛼 times the value of the optimal fractional

solution of LP(3) for everymonotone 𝜃 ∈ Θ can be used to construct

such an efficient separation oracle (see Algorithm 1). This has two

implications for the choice of 𝛼 : (1) We require 𝛼 to be at least the

integrality gap (IG); (2) To obtain the convex decomposition we need

an accompanying 𝛼-approximation algorithm which provides an

integer solution having guarantees w.r.t. to the fractional optimal

for every monotone 𝜃 ∈ Θ. The integrality gap is the maximal ratio

between the optimal fractional solution and optimal integer solu-

tion of the social welfare maximization problem across allmonotone
valuations as defined below.

IG := sup

𝜃 ∈ΘMONO

max𝑥∈𝑋 fr

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏)

max𝑥 𝐼 ∈𝑋
∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝜃𝑖 (𝑏) 𝑥 𝐼 (𝑖, 𝑏)

(7)

If 𝛼 was less than the integrality gap, then by the above definition

there exists a 𝜃 ∈ Θ for which no integer solution 𝑥 𝐼 ∈ 𝑋 gives∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) 𝜃𝑖 (𝑏) ⩾ 1

𝛼 max𝑥∈𝑋 fr

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) 𝜃𝑖 (𝑏).

An important point to highlight is that in the separation oracle

the 𝛼-approximation algorithm is used to provide an integer solu-

tion with a value of at least 1/𝛼 times the value of the fractional

optimal for any unconstrained𝑤 (not monotone𝑤 ). However, for

packing
2
problems an 𝛼-approximation algorithm that works for

monotone𝑤 can also be used to provide the required integer solu-

tion for any unconstrained𝑤 . This is stated as the following lemma.

We note that for packing problems an 𝛼-approximation algorithm

that provides an integer solution with a value of at least 1/𝛼 times

the value of the fractional optimal for every positive 𝜃 ∈ Θ can also

be used for the separation oracle. For more details, we refer the

reader to the supplementary material.

Lemma 2. For any unconstrained 𝑤 = [𝑤 (𝑖, 𝑏),∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵],
an 𝛼-approximation algorithm that provides an integer solution with
a value of at least 1/𝛼 times the value of the fractional optimal of
Equation (3) for every monotone 𝜃 ∈ Θ can be used to construct an

2
Note that the EV allocation problem (can also be represented as a combinatorial

auction problem) is an instance of the set packing problem [13].

𝑥 𝐼 ∈ 𝑋 in polynomial time such that
∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) ⩾
1/𝛼 ·max𝑥∈𝑋 fr

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏).

The ellipsoid method with this efficient separation oracle identi-

fies an LP that is equivalent
3
to the dual LP (6), but with only poly-

nomially many constraints from

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) + 𝑧 ⩽

1,∀𝑥 ∈ 𝑋 . These constitute the set of violated constraints returned

by the separation oracle which is used to cut the ellipsoid at each

iteration. The primal LP (5) is then solved by considering only

polynomially many variables corresponding to these violated con-

straints to get the optimal solution 𝜆∗. Since the ellipsoid method

runs in polynomially many iterations, we get the decomposition

in polynomial time. It can also be shown that the optimal value of

the dual, and hence, the primal is 1 which yields the desired convex

combination. This gives us the following result.

Lemma 3. A decomposition of 𝑥 fr ( ˆ𝜃 )/𝛼 =
∑
𝑥 𝐼 ∈𝑋 𝜆

∗
𝑥 𝐼 𝑥

𝐼 with only
polynomially many 𝜆∗

𝑥 𝐼 > 0 and
∑
𝑥 𝐼 ∈𝑋 𝜆

∗
𝑥 𝐼 = 1 can be obtained in

polynomial time.

Finally, the allocation and payments of the randomized mecha-

nism are given by Equation (8). The allocation 𝑓 ( ˆ𝜃 ) is set to the ran-
domized allocation 𝜆∗ and the expected payment 𝜋𝑖 ( ˆ𝜃 ) of agent 𝑖 is
set to 𝑝 fr

𝑖 ( ˆ𝜃 )/𝛼 . This ensures DSIC, IR, and gives an 𝛼-approximation

to the social welfare. In summary, the above discussion highlights

that for packing problems any 𝛼-approximation that gives guaran-

tees w.r.t to the fractional optimal for monotone inputs can be used

to give a 𝛼-approximation mechanism that is DSIC and IR.

𝑓 ( ˆ𝜃 ) = {𝜆∗
𝑥 𝐼 ,∀𝑥 𝐼 ∈ 𝑋 }

𝜋𝑖 ( ˆ𝜃 ) =


𝑝fr
𝑖
( ˆ𝜃 )/𝛼

𝑣𝑖 (𝑓 ( ˆ𝜃 ), ˆ𝜃𝑖 )
𝑣𝑖 (𝑥 𝐼 , ˆ𝜃𝑖 ), if 𝑣𝑖 (𝑓 ( ˆ𝜃 ), ˆ𝜃𝑖 ) > 0 & 𝑥 𝐼 ∈ 𝑋 is sampled.

0, Otherwise.

(8)

Lemma 4. The randomized mechanism (𝑓 , 𝜋) given by Equa-
tion (8) is DSIC, IR, and approximates the social welfare to within a
factor of 𝛼 .

For the 𝛼-approximation algorithm, we leverage [27] to provide

a greedy strategy that gives an improved 𝑂 (
√︁
|𝑆 |)-approximation

guarantee w.r.t. the optimal fractional solution in our setup. Note

that the approximation guarantee depends only on the number of

time slots |𝑆 | and not on the outlet count |𝑀 |.

Lemma 5. Formonotone valuations andmultiple outlets, the greedy
Algorithm 2 approximates the social welfare of the EV charging prob-
lem within a factor of 𝑂 (

√︁
|𝑆 |).

From Lemmas 1 to 5, we conclude Theorem 2.

4.2 Mechanism for single outlet scenario
As shown in Theorem 1, the social welfare maximization problem

under monotone valuations is NP-Hard even for the case of single

outlet. However, we show that we can achieve an improved 2-factor

approximation for this scenario. This is particularly useful when

each agent prefers to be charged at a single outlet but hasmonotonic

3
It has the same the same optimal value as LP (6), but has only polynomially many

constraints from

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥 𝐼 (𝑖, 𝑏 )𝑤 (𝑖, 𝑏 ) + 𝑧 ⩽ 1, ∀𝑥 𝐼 ∈ 𝑋 .



Algorithm 2: Greedy 𝑂 (
√︁
|𝑆 |)-approximation algorithm

Input:Montone
ˆ𝜃 = [ ˆ𝜃𝑖 (𝑏),∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵].

Output: 𝑥 𝐼 ∈ 𝑋 such that

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) ˆ𝜃𝑖 (𝑏) ⩾
1

2

√
|𝑆 |

max𝑥∈𝑋 fr

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) ˆ𝜃𝑖 (𝑏).

1 Initialize allocation 𝑥 𝐼 = [0, ∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵] .
2 Initialize set 𝑌 = {(𝑖, 𝑏),∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵}.
3 while 𝑌 ≠ ∅ do
4 Determine (𝑖′, 𝑏′) = argmax𝑖∈𝑁,𝑏∈𝐵

ˆ𝜃𝑖 (𝑏 )/√∑
𝑗 ∈𝑆 I{𝑏 𝑗≠0}

5 Set 𝑥 𝐼 (𝑖′, 𝑏′) = 1.

6 For every (𝑖, 𝑏) such that 𝑖 = 𝑖′ or 𝑏′
𝑗
= 𝑏 𝑗 ≠ 0 (for some

𝑗 ∈ 𝑆), 𝑌 = 𝑌 \ {(𝑖, 𝑏)}.
7 end
8 return 𝑥 𝐼

valuations for contiguous time slots at that outlet. In such cases,

we can solve for each outlet independently, and achieve a 2-factor

approximation across multiple outlets.

We leverage [5] to give a 2-approximation w.r.t. the optimal

fractional solution. In particular, their rounding and graph coloring

ideas can be extended to our single outlet setup while retaining the

same approximation guarantees. Since the algorithm works for all

monotone inputs, this gives DSIC and IR via the RAE mechanism.

Firstly, LP(9) is solved to obtain the optimal fractional solution

(𝑥∗, OPT) for any monotone𝑤4
. Note that since |𝑀 | = 1, a bundle

𝑏 ∈ 𝐵 is a vector of length |𝑆 | i.e., 𝑏 ∈ {0, 1} |𝑆 | , such that : (i)

∀𝑖, 𝑗 ∈ 𝑆 , if 𝑏𝑖 , 𝑏 𝑗 ≠ 0, then 𝑏𝑖 = 𝑏 𝑗 = 1 and (ii) there exists 𝑖∗, 𝑗∗, s.t.
𝑏𝑖 = 0,∀𝑖 < 𝑖∗, 𝑖 > 𝑗∗ and 𝑏𝑖 = 1,∀𝑖∗ ⩽ 𝑖 ⩽ 𝑗∗.

max

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑤 (𝑖, 𝑏)𝑥 (𝑖, 𝑏)

s.t.

∑︁
𝑏∈𝐵

𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑖 ∈ 𝑁 (9)∑︁
𝑏∈𝐵 𝑗

∑︁
𝑖∈𝑁

𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑗 ∈ 𝑆

𝑥 (𝑖, 𝑏) ⩾ 0,∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵
Each 𝑥∗ (𝑖, 𝑏) is then rounded down to the nearest fraction of the

form 𝑝/𝑄 for some 𝑝 ∈ {1, 2, . . . , 𝑄}, where 𝑄 = |𝑁 |2 ( |𝑆 | ( |𝑆 |+1)/2)2.
Denote the rounded solution by 𝑥rou. Observe that every 𝑥rou (𝑖, 𝑏)
is at most 1/𝑄 smaller than 𝑥∗ (𝑖, 𝑏). This implies that the value of the

objective function for 𝑥rou decreases by at most max𝑖,𝑏 𝑤 (𝑖,𝑏 )/√𝑄.
This is because the summation is taken over all agents (|𝑁 |) and
bundles ( |𝑆 | ( |𝑆 |+1)/2). Moreover, since OPT ⩾ max𝑖,𝑏 𝑤 (𝑖, 𝑏), we
have ∑︁

𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑤 (𝑖, 𝑏) 𝑥rou (𝑖, 𝑏) ⩾ (1 − 1/√𝑄) OPT. (10)

Denote 𝑥 ℓ ,∀ℓ ∈ 𝐿 be a set of feasible integral solutions to LP(9),

where 𝐿 = {1, 2, . . . , 𝑙}. Let val(𝑥 ℓ ) = ∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑤 (𝑖, 𝑏) 𝑥 ℓ (𝑖, 𝑏).

It is easy to see that if

∑
ℓ∈𝐿 val(𝑥 ℓ )𝛽ℓ ⩾ (1 − 1/√𝑄) OPT and∑

ℓ∈𝐿 𝛽ℓ ⩽ 2, then there exists an ℓ′ ∈ 𝐿 such that val(𝑥 ℓ ′ ) ⩾
(1− 1/√𝑄)OPT/2. Thus, if one can find such a set of integral solutions

4
We omit the outlets𝑀 from the linear program since |𝑀 | = 1.

𝑥 ℓ ,∀ℓ ∈ 𝐿 with polynomial size of L, then we get a 2-factor approx-

imation (with a negligible rounding loss) for the single outlet case.

Using the rounded solution 𝑥rou, we next construct a graph and

color it appropriately to get the desired set of integral solutions.

Construct a graph𝐺 with 𝑥rou (𝑖, 𝑏) ·𝑄 vertices corresponding to

each 𝑖 ∈ 𝑁,𝑏 ∈ 𝐵. Any two vertices 𝑦, 𝑧 corresponding to (𝑖𝑦, 𝑏𝑦)
and (𝑖𝑧 , 𝑏𝑧) respectively have an edge between them if 𝑖𝑦 = 𝑖𝑧

or 𝑏
𝑦

𝑗
= 𝑏𝑧

𝑗
= 1 for some 𝑗 ∈ 𝑆 . This implies that two vertices

have an edge if either they correspond to the same agent or if their

corresponding bundles overlap (i.e., have a common slot allotted).

The vertices of 𝐺 are colored such that no two vertices 𝑦, 𝑧 having

an edge between them get the same color. Observe that the set of

vertices that get the same color is an independent set in𝐺 and form

a feasible integral solution for LP(9). Hence, we will call such a

coloring of vertices of𝐺 as a feasible coloring. It can be shown that a

feasible coloring can be achieved with at most (2𝑄 − 1) colors using
a greedy strategy. See supplementary material for more details.

Lemma 6. For graph 𝐺 , there exists a feasible coloring for vertices
that requires at most (2𝑄 − 1) colors.

Let 𝐿 be the set of colors and 𝑥 ℓ for ℓ ∈ 𝐿 denote an inte-

gral solution where 𝑥 ℓ (𝑖, 𝑏) = 1 if a vertex corresponding to

(𝑖, 𝑏) has color ℓ , and 𝑥 ℓ (𝑖, 𝑏) = 0 otherwise. As before, denote

val(𝑥 ℓ ) =
∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑤 (𝑖, 𝑏) 𝑥 ℓ (𝑖, 𝑏). Let 𝛽ℓ = 1/𝑄,∀ℓ ∈ 𝐿. This

gives

∑
ℓ∈𝐿 𝛽ℓ ⩽ (2𝑄−1)/𝑄 ⩽ 2 since the size of 𝐿 is at most 2𝑄 − 1.

Moreover, we have∑︁
ℓ∈𝐿

val(𝑥 ℓ ) =
∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑤 (𝑖, 𝑏) (𝑄 𝑥rou (𝑖, 𝑏)) ⩾ 𝑄 ((1 − 1/√𝑄)OPT).

The equality holds because graph 𝐺 contains 𝑥rou (𝑖, 𝑏) ·𝑄 vertices

for each 𝑖 ∈ 𝑁,𝑏 ∈ 𝐵. The inequality holds due to Equation (10).

This implies

∑
ℓ∈𝐿 val(𝑥 ℓ )𝛽ℓ =

∑
ℓ∈𝐿 val(𝑥 ℓ )1/𝑄 ⩾ (1 − 1/√𝑄)OPT.

Since

∑
ℓ∈𝐿 𝛽ℓ ⩽ 2, there exists a color ℓ′ ∈ 𝐿 for which val(𝑥 ℓ ′ ) ⩾

(1 − 1/√𝑄) OPT
2
. We can obtain 𝑥 ℓ

′
by choosing the color having

the maximum value. From the above discussion, we conclude the

following.

Lemma 7. For the single outlet case, Algorithm 3 that rounds the
optimal fractional solution approximates the social welfare to within
a factor of 2 in polynomial time.

From Lemmas 1 to 4 and 7, we conclude the following result.

Theorem 3. For monotone valuations and a single outlet, the RAE
mechanism (Algorithm 1) that uses approximation Algorithm 3 as
A in the separation oracle, approximates the social welfare within a
factor of 2 and ensures DSIC and IR.

5 DICHOTOMOUS VALUATIONS
Although our assumption that agents have monotone valuations is

fairly general, it becomes quite demanding in the EV charging setup.

A more restricted, yet practical scenario arises when agents have

dichotomous valuations. Consider a scenario where each agent

requires 𝑐𝑖 units of charge and is available between the time slots

𝑎𝑖 and 𝑑𝑖 for charging, where 𝑎𝑖 , 𝑑𝑖 ∈ 𝑆 denote the arrival and

departure time slots with 𝑎𝑖 ⩽ 𝑑𝑖 . Furthermore, each agent 𝑖 derives

a value of 𝑣∗
𝑖
if assigned 𝑐𝑖 units of charge and 0 if they receive

anything less. This implies that each agent 𝑖 must be allocated some



Algorithm 3: 2-approximation algorithm

Input:Montone𝑤 = [𝑤 (𝑖, 𝑏),∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵].
Output: A feasible integer allocation

𝑥 𝐼 = [𝑥 𝐼 (𝑖, 𝑏) : ∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵] s.t.∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) ⩾
1

2
max𝑥∈𝑋 fr

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏).

1 Solve LP(9) to get the optimal fractional solution 𝑥∗.
2 Set 𝑄 = |𝑁 |2 ( |𝑆 | ( |𝑆 |+1)/2)2.
3 Round down every 𝑥∗ (𝑖, 𝑏) to the nearest fraction of the

form 𝑝/𝑄 for some 𝑝 ∈ {1, 2, . . . , 𝑄} to get 𝑥rou.

4 Construct a graph 𝐺 with 𝑥rou (𝑖, 𝑏) ·𝑄 vertices

corresponding to the each 𝑖 ∈ 𝑁,𝑏 ∈ 𝐵. Add an edge

between any two vertices 𝑦, 𝑧 if either 𝑖𝑦 = 𝑖𝑧 or

𝑏
𝑦

𝑗
= 𝑏𝑧

𝑗
= 1 for some 𝑗 ∈ 𝑆 .

5 For every vertex 𝑦 denote 𝑏
𝑦

min
= min𝑗∈𝑆 :𝑏𝑦

𝑗
=1 𝑗 .

6 Sort the vertices in ascending order of 𝑏min and color them

using at most 2𝑄 − 1 colors (Lemma 6) from left to right s.t.

no two vertices 𝑦, 𝑧 with an edge between them get the

same color.

7 Let 𝐿 be the set of colors and let 𝑥 ℓ ,∀ℓ ∈ 𝐿 be an integer

solution where 𝑥 ℓ (𝑖, 𝑏) = 1 if a vertex corresponding to

(𝑖, 𝑏) has color ℓ , and 𝑥 ℓ (𝑖, 𝑏) = 0 otherwise.

8 𝑥 𝐼 = argmax𝑥 ℓ
:ℓ∈𝐿

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑤 (𝑖, 𝑏) 𝑥 ℓ (𝑖, 𝑏).

9 return 𝑥 𝐼

ℓ𝑖𝑘 time slots at the outlet 𝑘 to obtain 𝑐𝑖 amount of charge. This

scenario induces the following dichotomous type 𝜃𝑖 for each agent.

For every 𝑏 ∈ 𝐵, let 𝑏arr = min𝑗∈𝑆 :𝑏 𝑗≠0 𝑗 and 𝑏
dep = max𝑗∈𝑆 :𝑏 𝑗≠0 𝑗

denote the earliest and the latest time slot allotted as part of 𝑏

respectively. In addition, denote by 𝑏len = 𝑏dep − 𝑏arr the number

of contiguous time slots allotted within 𝑏 and 𝑘𝑏 ∈ 𝑀 as the outlet

such that 𝑏 𝑗 = 𝑘𝑏 ,∀𝑗 ∈ 𝑆 having 𝑏 𝑗 ≠ 0. Then 𝜃𝑖 is said to be

dichotomous if 𝜃𝑖 (𝑏) = 𝑣∗
𝑖
,∀𝑏 ∈ 𝐵∗

𝑖
, where 𝐵∗

𝑖
= {𝑏 ∈ 𝐵 : 𝑏arr ⩾

𝑎𝑖 , 𝑏
dep ⩽ 𝑑𝑖 , 𝑏

len = ℓ𝑖𝑘𝑏 }, else 𝜃𝑖 (𝑏) = 0. It can be shown that the

social welfare maximization problem for dichotomous valuations

is also NP-Hard. This is because we can show a reduction from the

Job Interval Selection Problem (JISPk) [31] where all intervals have
equal length, which is known to be NP-Complete.

Theorem 4. For dichotomous valuations, the social welfare maxi-
mization problem is NP-Hard even if the number of outlets |𝑀 | = 1.

Given the above result, all the approximation mechanisms given

for monotone valuations also extend to this case, since dichotomous

valuations are a strict subset of monotone valuations.

6 SINGLE-MINDED VALUATIONS
The type 𝜃𝑖 for every agent 𝑖 ∈ 𝑁 is said to be single-minded if

there exists a bundle 𝑏𝑖 ∈ 𝐵 and 𝑞 ∈ R such that 𝜃𝑖 (𝑏) = 𝑞,∀𝑏 ⊇ 𝑏𝑖
and 𝜃𝑖 (𝑏) = 0 otherwise. In other words, each agent prefers to

charge at a single outlet for a specific set of contiguous time slots

or not charge at all. For single-minded reports
ˆ𝜃 , we can drop the

constraint

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑖 ∈ 𝑁 from ILP (2) since each agent is

interested in exactly one bundle. Hence, the LP-relaxation reduces

Algorithm 4: DAE mechanism

Input: Agents report type profile ˆ𝜃 .

Output: A allocation 𝑓 ( ˆ𝜃 ) ∈ 𝑋 and payments

𝜋𝑖 ( ˆ𝜃 ) ∈ R,∀𝑖 ∈ 𝑁 .

1 Solve LP (11) with parameters given by
ˆ𝜃 to get an optimal

deterministic allocation 𝑓 ( ˆ𝜃 ) = 𝑥∗.
2 For every agent 𝑖 , set payment using VCG

𝜋𝑖 ( ˆ𝜃 ) = max𝑥∈𝑋
∑
𝑖′∈𝑁 \{𝑖 }

∑
𝑏∈𝐵 ˆ𝜃𝑖′ (𝑏)𝑥 (𝑖′, 𝑏) −∑

𝑖′∈𝑁 \{𝑖 }
∑
𝑏∈𝐵 ˆ𝜃𝑖′ (𝑏)𝑥∗ (𝑖′, 𝑏).

3 return 𝑓 ( ˆ𝜃 ), 𝜋 ( ˆ𝜃 )

to LP (11). It can be shown that this LP always has an optimal

integer solution (since the constraints are totally unimodular [20]).

This implies it can be solved to obtain an optimal deterministic

allocation.

max

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

ˆ𝜃𝑖 (𝑏) 𝑥 (𝑖, 𝑏)

s.t.

∑︁
𝑏∈𝐵 𝑗𝑘

∑︁
𝑖∈𝑁

𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑗 ∈ 𝑆, 𝑘 ∈ 𝑀,

𝑥 (𝑖, 𝑏) ⩾ 0,∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵.

(11)

A polytope (𝐴𝑥 ⩽ 𝑏, 𝑥 ⩾ 0) is said to be integral if and only if

all its corners have integer coordinates. It is well known that a

linear program with an integral polytope always has an optimal

integer solution [30]. A sufficient condition to identify integral

polytopes is by total unimodularity. A polytope 𝐴𝑥 ⩽ 𝑏, 𝑥 ⩾ 0

is integral if 𝐴 is totally unimodular (TU)
5
and 𝑏 is integral [30].

Observe from the constraints (𝐴𝑥 ⩽ 𝑏, 𝑥 ⩾ 0) of LP (11) that 𝑏 is

integral. Additionally, the constraint matrix𝐴 is totally unimodular

because it is a 0-1matrix with consecutive ones in each column. This

implies the LP (11) is integral and can be solved to obtain an optimal

deterministic allocation in polynomial time. Since computing the

efficient allocation is tractable, the VCG mechanism can be used to

ensure DSIC and IR which concludes the following result.

Theorem 5. For single-minded valuations, the Deterministic Al-

locatively Efficient (DAE) mechanism (Algorithm 4) ensures DSIC and
IR, and gives an efficient allocation in polynomial time.

7 CONCLUSION
We investigated the problem of scheduling resources with mone-

tary transfers among agents across multiple outlets with varying

dispensing rates in this paper. We established NP-hardness of max-

imizing social welfare for both monotone and dichotomous valu-

ation functions, for a single outlet. For monotone valuations, we

presented a randomized 2-approximation mechanism for a single

outlet and an 𝑂 (
√
𝑆)-approximation mechanism for multiple out-

lets, ensuring DSIC and IR. For single-minded agents, the allocation

problem is in P and hence VCG mechanism can be used.

In future, we would like to explore improving the approximation

ratios and finding matching lower bounds. Extending the model

to consider dynamic arrivals and departures of agents is another

important future direction.

5
A matrix𝐴 is TU if every square sub-matrix of𝐴 has a determinant of 0, 1, or −1.
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A SUPPLEMENTARY MATERIAL
A.1 Proof of Theorem 1

Job Interval Selection Problem: Consider a time horizon which

is slotted into time slots 𝑇 = {1, 2, . . . , 𝑡}. An interval ℓ ∈ 𝐼 can

be represented using [𝑠ℓ , 𝑓ℓ ] where 𝑠ℓ ⩽ 𝑓ℓ and 𝑠ℓ , 𝑓ℓ ∈ 𝑇 , which
is a collection of contiguous time slots starting from 𝑠ℓ until 𝑓ℓ .

Two intervals ℓ, ℓ′ ∈ 𝐼 overlap if there exists 𝑡 ∈ 𝑇 such that

𝑡 ∈ [𝑠ℓ , 𝑓ℓ ] ∩ [𝑠ℓ ′ , 𝑓ℓ ′ ]. The job interval selection problem (JISPk)
considers a set of jobs 𝐽 which can be executed over any set of 𝑘

intervals (can be different set for each job) in 𝐼 . For a given integer

𝐾 , the goal is to decide if we can select at least 𝐾 intervals from

𝐼 such that: (1) no two selected intervals overlap, and (2) at most

one interval is selected for each job. We denote 𝑎( 𝑗, ℓ) = 1 if the

interval ℓ ∈ 𝐼 is selected for the job 𝑗 ∈ 𝐽 , and 𝑎( 𝑗, ℓ) = 0 otherwise.

The problem JISPk (𝑘 ⩾ 2) is known to be NP-complete [31]. Ad-

ditionally, the maximization version of JISPk has no PTAS unless

P = NP, i.e., there exists no known polynomial time algorithm

which can approximate the solution to within a factor of (1 − 𝜖) to
the optimal, ∀𝜖 > 0 (see [31] for details).

Proof. We can construct an instance of the EV charging problem

from JISPk as follows. The set of agents 𝑁 and the set of bundles

𝐵 in ILP (2) denote the set of jobs 𝐽 and the set of intervals 𝐼 in

JISPk respectively. For every agent 𝑖 ∈ 𝑁 and ∀𝑏,𝑏′ ∈ 𝐵 such that

𝑏 ⊑ 𝑏′, set 𝜃𝑖 (𝑏′) = 1 if the job 𝑗 ∈ 𝐽 corresponding to agent 𝑖 can

be executed in the interval ℓ ∈ 𝐼 corresponding to 𝑏 ∈ 𝐵. For the
remaining bundles 𝑏′ ∈ 𝐵 set 𝜃𝑖 (𝑏′) = 0.

A solution of JISPk can be constructed from the solution of

EV charging problem as follows. For every 𝑖 ∈ 𝑁 and 𝑏′ ∈ 𝐵, if

𝑥∗ (𝑖, 𝑏′) = 1, then for the job 𝑗 corresponding to agent 𝑖 select any

one of its valid interval ℓ ∈ 𝐼 such that bundle 𝑏 ∈ 𝐵 corresponding

to interval ℓ is a subset of 𝑏′ and set 𝑎∗ ( 𝑗, ℓ) = 1. For the remaining

set 𝑎∗ ( 𝑗, ℓ) = 0. It is easy to see that the selected intervals are a

valid set of intervals for JISPk. Additionally, the social welfare of
the optimal allocation is the same as the number of such selected

intervals. This implies, we can select at least 𝐾 intervals from 𝐼

for JISPk if and only if the optimal allocation to the EV charging

problem has a social welfare of at least 𝐾 . Since the reduction

requires only polynomial number of steps, the decision version of

the EV charging problem is NP-Hard. The problem also belongs to

NP because given a solution we can verify in polynomial time if its

social welfare exceeds 𝐾 . □

A.2 Proof of Lemma 2
Proof. Let OPT = max𝑥∈𝑋 fr

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏). For ev-

ery 𝑖 ∈ 𝑁,𝑏 ∈ 𝐵, denote𝑤+ (𝑖, 𝑏) = max(𝑤 (𝑖, 𝑏), 0) and𝑤mn (𝑖, 𝑏) =
max𝑏′⊑𝑏 𝑤

+ (𝑖, 𝑏′). Since 𝑤mn
is monotone, the 𝛼-approximation

algorithm can be used to get a feasible integral 𝑥mn ∈ 𝑋 such that∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑥mn (𝑖, 𝑏)𝑤mn (𝑖, 𝑏) ⩾ 1

𝛼
max

𝑥∈𝑋 fr

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑥 (𝑖, 𝑏) 𝑤mn (𝑖, 𝑏)

⩾ OPT/𝛼 .
Note that the second inequality holds since 𝑤mn (𝑖, 𝑏) ⩾
𝑤 (𝑖, 𝑏),∀𝑖 ∈ 𝑁,𝑏 ∈ 𝐵. Now, construct 𝑥+ from 𝑥mn

as follows.

For each 𝑖 ∈ 𝑁,𝑏 ∈ 𝐵, if 𝑥mn (𝑖, 𝑏) = 1, set 𝑥+ (𝑖, 𝑏′) = 1 for

exactly one 𝑏′ such that 𝑏′ = argmax𝑏′′⊑𝑏 𝑤
+ (𝑖, 𝑏′′). For the

other variables, set 0. Clearly, 𝑥+ is a feasible integer solution

and

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑤

mn (𝑖, 𝑏)𝑥mn (𝑖, 𝑏) = ∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑤

+ (𝑖, 𝑏)𝑥+ (𝑖, 𝑏)
by construction. Finally, we construct 𝑥 𝐼 ∈ 𝑋 satisfying∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑤 (𝑖, 𝑏)𝑥 𝐼 (𝑖, 𝑏) =

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑤

+ (𝑖, 𝑏)𝑥+ (𝑖, 𝑏) ⩾ OPT/𝛼
which concludes the proof. If 𝑤+ (𝑖, 𝑏) ⩾ 0, then set 𝑥 𝐼 (𝑖, 𝑏) =

𝑥+ (𝑖, 𝑏), else 𝑥 𝐼 (𝑖, 𝑏) = 0. Since 𝑥+ ∈ 𝑋 and 𝑥 𝐼 is an integral so-

lution such that 𝑥 𝐼 ⩽ 𝑥+, from the packing property of the EV

charging problem 𝑥 𝐼 ∈ 𝑋 . The packing property states that if any

𝑥 ∈ 𝑋 is an integral solution and some integral 𝑥 ′ ⩽ 𝑥 , then 𝑥 ′ ∈ 𝑋 .
We note that if the 𝛼-approximation algorithm provides an in-

teger solution with a value of at least 1/𝛼 times the value of the

fractional optimal for every positive 𝜃 ∈ Θ then we can directly

feed𝑤+ (𝑖, 𝑏) = max(𝑤 (𝑖, 𝑏), 0) to the algorithm to get 𝑥+ (𝑖, 𝑏) such
that

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑤

+ (𝑖, 𝑏)𝑥+ (𝑖, 𝑏) ⩾ OPT/𝛼 . Then, 𝑥 𝐼 ∈ 𝑋 can be

constructed as mentioned above using the packing property. □

A.3 Proof of Lemma 3
Proof. Note, the dual LP (6) is a maximization problem and

𝑤 = 0, 𝑧 = 1 is a feasible solution with a value of 1. This implies

max 𝑧 + 1

𝛼

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

fr ( ˆ𝜃 ) (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) ⩾ 1. Assume that for

any feasible solution𝑤, 𝑧 of LP (6)

𝑧 + 1

𝛼

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑥 fr ( ˆ𝜃 ) (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) > 1. (12)

Using the 𝛼-approximation algorithm, we can get an 𝑥 𝐼 ∈ 𝑋 that

satisfies the following (from Lemma 2).∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑥 𝐼 (𝑖, 𝑏)𝑤 (𝑖, 𝑏) ⩾ 1

𝛼
· max

𝑥∈𝑋 fr

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑥 (𝑖, 𝑏)𝑤 (𝑖, 𝑏)

⩾
1

𝛼

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

𝑥 fr ( ˆ𝜃 ) (𝑖, 𝑏) 𝑤 (𝑖, 𝑏)
(13)

From (12) and (13) we get 𝑧 +∑𝑖∈𝑁
∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏)𝑤 (𝑖, 𝑏) > 1 which

violates a constraint of LP (6). This gives us a contradiction since

𝑤, 𝑧 is a feasible solution of LP (6). Hence, for any feasible𝑤, 𝑧 we

have 𝑧 + 1

𝛼

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

fr ( ˆ𝜃 ) (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) ⩽ 1. This implies that

the optimal value of the dual LP (6), and hence, the primal LP (5) is

exactly 1.

The ellipsoid method is used with the efficient separation oracle

described in Algorithm 1. This identifies an LP that is equivalent

to the dual LP (6), but with only polynomially many constraints

from

∑
𝑖∈𝑁

∑
𝑏∈𝐵 𝑥

𝐼 (𝑖, 𝑏) 𝑤 (𝑖, 𝑏) + 𝑧 ⩽ 1,∀𝑥 𝐼 ∈ 𝑋 . These constitute
the set of violated constraints returned by the separation oracle

which is used to cut the ellipsoid at each iteration of the method.

The primal LP (5) can then solved by considering only polynomially

many variables corresponding to these violated constraints to get

the optimal solution 𝜆∗. For more details on the ellipsoid method,

we refer the reader to [17, 33]. In particular, the above discussion

of the ellipsoid method is a direct consequence of Theorem (3.10)

Grötschel et al. [17]. Since the ellipsoidmethod runs in polynomially

many iterations, we get the decomposition in polynomial time.

□



A.4 Proof of Lemma 4
Proof. For a given

ˆ𝜃 , the expected value derived by an agent 𝑖

under 𝑓 ( ˆ𝜃 ) is 𝑣𝑖 (𝑓 ( ˆ𝜃 ), 𝜃𝑖 ) =
∑
𝑥 𝐼 ∈𝑋 𝜆

∗
𝑥 𝐼 𝑣𝑖 (𝑥 𝐼 , 𝜃𝑖 ).∑︁

𝑥 𝐼 ∈𝑋
𝜆∗
𝑥 𝐼 𝑣𝑖 (𝑥 𝐼 , 𝜃𝑖 ) =

∑︁
𝑥 𝐼 ∈𝑋

𝜆∗
𝑥 𝐼

∑︁
𝑏∈𝐵

𝜃𝑖 (𝑏)𝑥 𝐼 (𝑖, 𝑏)

=
∑︁
𝑏∈𝐵

𝜃𝑖 (𝑏)
∑︁
𝑥 𝐼 ∈𝑋

𝜆∗
𝑥 𝐼 𝑥

𝐼 (𝑖, 𝑏)

=
∑︁
𝑏∈𝐵

𝜃𝑖 (𝑏) 𝑥 fr ( ˆ𝜃 ) (𝑖,𝑏 )/𝛼

= 𝑣𝑖 (𝑥 fr ( ˆ𝜃 )/𝛼, 𝜃𝑖 ) = 𝑣𝑖 (𝑥 fr ( ˆ𝜃 ),𝜃𝑖 )/𝛼 .

The expected payment 𝜋𝑖 ( ˆ𝜃 ) is as follows.

𝜋𝑖 ( ˆ𝜃 ) =
∑︁
𝑥 𝐼 ∈𝑋

𝜆𝑥 𝐼

(
𝑝fr
𝑖
( ˆ𝜃 )/𝛼

𝑣𝑖 (𝑓 ( ˆ𝜃 ), ˆ𝜃𝑖 )
𝑣𝑖 (𝑥 𝐼 , ˆ𝜃𝑖 )

)
=

𝑝 fr

𝑖 ( ˆ𝜃 )/𝛼
𝑣𝑖 (𝑓 ( ˆ𝜃 ), ˆ𝜃𝑖 )

∑︁
𝑥 𝐼 ∈𝑋

𝜆𝑥 𝐼 𝑣𝑖 (𝑥 𝐼 , ˆ𝜃𝑖 ) =
𝑝fr
𝑖
( ˆ𝜃 )
𝛼

Thus, for a given
ˆ𝜃 the expected utility for every agent under 𝑓 , 𝜋

is equal to its utility under fractional VCGmechanism 𝑥 fr ( ˆ𝜃 ), 𝑝fr ( ˆ𝜃 )
scaled by 𝛼 . This from Lemma 1 implies that the randomized mech-

anism (𝑓 , 𝜋) is DSIC . Moreover, IR is guaranteed since for every

sample 𝑥 𝐼 ∈ 𝑋 the payment 𝜋𝑖 (𝜃 ) ⩽ 𝑣𝑖 (𝑥 𝐼 , 𝜃𝑖 ). This is because
𝑣𝑖 (𝑓 (𝜃 ), 𝜃𝑖 ) = 𝑣𝑖 (𝑥 fr (𝜃 ),𝜃𝑖 )/𝛼 ⩾ 𝑝 fr

𝑖 (𝜃 )/𝛼 (since Lemma 1 guarantees

IR for the fractional mechanism) which gives

𝑝fr
𝑖
(𝜃 )/𝛼

𝑣𝑖 (𝑓 (𝜃 ),𝜃𝑖 ) ⩽ 1.

Finally, for the social welfare we have,∑︁
𝑥 𝐼 ∈𝑋

𝜆∗
𝑥 𝐼

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

ˆ𝜃𝑖 (𝑏) 𝑥 𝐼 (𝑖, 𝑏) =
∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

ˆ𝜃𝑖 (𝑏)
∑︁
𝑥 𝐼 ∈𝑋

𝜆∗
𝑥 𝐼 𝑥

𝐼 (𝑖, 𝑏)

=
1

𝛼

∑︁
𝑖∈𝑁

∑︁
𝑏∈𝐵

ˆ𝜃𝑖 (𝑏) 𝑥 fr ( ˆ𝜃 ) (𝑖, 𝑏).

Since

∑
𝑖∈𝑁

∑
𝑏∈𝐵 ˆ𝜃𝑖 (𝑏) 𝑥 fr ( ˆ𝜃 ) (𝑖, 𝑏) is an upper bound on the so-

cial welfare, the randomized mechanism approximates the social

welfare to within a factor of 𝛼 . □

A.5 Proof of Lemma 5
Proof. Consider 𝑥 𝐼 to be the integer solution returned by the

greedy algorithm and 𝑥 fr ∈ 𝑋 be the optimal fractional solution

of LP (3). Define for every agent 𝑖′ ∈ 𝑁 with 𝑥 𝐼 (𝑖′, 𝑏′) = 1, a term

𝑃𝑖′ which is the set of pairs (𝑖, 𝑏) s.t. 𝑥 fr (𝑖, 𝑏) > 0 and (𝑖, 𝑏) was
removed by the greedy strategy when 𝑥 𝐼 (𝑖′, 𝑏′) was set to 1. Note

that (𝑖′, 𝑏′) ∈ 𝑃𝑖′ . It can be shown that

∑
(𝑖,𝑏 ) ∈𝑃𝑖′ 𝑥

fr (𝑖, 𝑏) ˆ𝜃𝑖 (𝑏) ⩽
2

√︁
|𝑆 | ˆ𝜃𝑖′ (𝑏′) which proves the lemma. To begin with, we have∑
(𝑖,𝑏 ) ∈𝑃𝑖′ 𝑥

fr (𝑖, 𝑏) ˆ𝜃𝑖 (𝑏)

=
∑︁

(𝑖,𝑏 ) ∈𝑃𝑖′
𝑥 fr (𝑖, 𝑏)

ˆ𝜃𝑖 (𝑏)√︃∑
𝑗∈𝑆 I{𝑏 𝑗 ≠ 0}

√︄∑︁
𝑗∈𝑆
I{𝑏 𝑗 ≠ 0}

⩽
ˆ𝜃𝑖′ (𝑏′)√︃∑

𝑗∈𝑆 I{𝑏′𝑗 ≠ 0}

∑︁
(𝑖,𝑏 ) ∈𝑃𝑖′

𝑥 fr (𝑖, 𝑏)
√︄∑︁

𝑗∈𝑆
I{𝑏 𝑗 ≠ 0} (from greedy strategy)

⩽
ˆ𝜃𝑖′ (𝑏′)√︃∑

𝑗∈𝑆 I{𝑏′𝑗 ≠ 0}

√√√√©­«
∑︁

(𝑖,𝑏 ) ∈𝑃𝑖′
𝑥 fr (𝑖, 𝑏)ª®¬ ©­«

∑︁
(𝑖,𝑏 ) ∈𝑃𝑖′

𝑥 fr (𝑖, 𝑏) · ©­«
∑︁
𝑗∈𝑆
I{𝑏 𝑗 ≠ 0}ª®¬ª®¬

(14)

Note, 𝑏′ is a set of contiguous slots at a particular outlet. Let that
outlet be 𝑘′ ∈ 𝑀 i.e., 𝑏′

𝑗
= 𝑘′,∀𝑗 ∈ 𝑆 such that 𝑏′

𝑗
≠ 0. In addition,

by definition of 𝑃𝑖′ , for each (𝑖, 𝑏) ∈ 𝑃𝑖′ we have either 𝑖 = 𝑖′ or
𝑏 𝑗 = 𝑏

′
𝑗
= 𝑘′ for some 𝑗 ∈ 𝑆 . This implies∑︁

(𝑖,𝑏 ) ∈𝑃𝑖′
𝑥 fr (𝑖, 𝑏) ⩽

∑︁
(𝑖,𝑏 ) ∈𝑃𝑖′ :𝑖=𝑖′

𝑥 fr (𝑖, 𝑏) +
∑︁
𝑗∈𝑆 :
𝑏′𝑗=𝑘

′

∑︁
(𝑖,𝑏 ) ∈𝑃𝑖′ :
𝑏 𝑗=𝑘

′

𝑥 fr (𝑖, 𝑏)

⩽ 1 +
∑︁

𝑗∈𝑆 :𝑏′
𝑗
≠0

1 (from constraints of LP(3))

= 1 +
∑︁
𝑗∈𝑆
I{𝑏′𝑗 ≠ 0}. (15)

Moreover we have the following:∑︁
(𝑖,𝑏 ) ∈𝑃𝑖′

𝑥 fr (𝑖, 𝑏) · ©­«
∑︁
𝑗∈𝑆
I{𝑏 𝑗 ≠ 0}ª®¬

⩽
∑︁
𝑗∈𝑆

∑︁
(𝑖,𝑏 ) ∈𝑃𝑖′ :
𝑏 𝑗≠0

𝑥 fr (𝑖, 𝑏) ⩽
∑︁
𝑗∈𝑆

∑︁
𝑘∈𝑀

∑︁
(𝑖,𝑏 ) ∈𝑃𝑖′ :
𝑏 𝑗=𝑘

𝑥 fr (𝑖, 𝑏)

⩽
∑︁
𝑗∈𝑆

∑︁
(𝑖,𝑏 ) ∈𝑃𝑖′ :
𝑏 𝑗=𝑘

′

𝑥 fr (𝑖, 𝑏) +
∑︁
𝑗∈𝑆

∑︁
𝑘∈𝑀\{𝑘 ′ }

∑︁
(𝑖,𝑏 ) ∈𝑃𝑖′ :
𝑏 𝑗=𝑘

𝑥 fr (𝑖, 𝑏)

From constraints of LP(3),

⩽
∑︁
𝑗∈𝑆

1 +
∑︁
𝑗∈𝑆

∑︁
𝑘∈𝑀\{𝑘 ′ }

∑︁
(𝑖,𝑏 ) ∈𝑃𝑖′ :
𝑏 𝑗=𝑘

𝑥 fr (𝑖, 𝑏)

=
∑︁
𝑗∈𝑆

1 +
∑︁
𝑗∈𝑆

∑︁
𝑘∈𝑀\{𝑘 ′ }

∑︁
(𝑖,𝑏 ) ∈𝑃𝑖′ :
𝑏 𝑗=𝑘,𝑖=𝑖

′

𝑥 fr (𝑖, 𝑏)

⩽
∑︁
𝑗∈𝑆

1 +
∑︁
𝑗∈𝑆

∑︁
(𝑖,𝑏 ) ∈𝑃𝑖′ :

𝑖=𝑖′

𝑥 fr (𝑖, 𝑏) ⩽
∑︁
𝑗∈𝑆

1 +
∑︁
𝑗∈𝑆

1 ⩽ 2|𝑆 | (16)

Substituting Equation (15) and Equation (16) in Equation (14) we

get the following which concludes the proof.∑︁
(𝑖,𝑏 ) ∈𝑃𝑖′

𝑥 fr (𝑖, 𝑏) ˆ𝜃𝑖 (𝑏)

⩽
ˆ𝜃𝑖′ (𝑏′)√︃∑

𝑗∈𝑆 I{𝑏′𝑗 ≠ 0}

√√√√©­«1 +
∑︁
𝑗∈𝑆
I{𝑏′

𝑗
≠ 0}ª®¬ 2|𝑆 |

⩽ ˆ𝜃𝑖′ (𝑏′)
√
2

√︁
2|𝑆 | ⩽ ˆ𝜃𝑖′ (𝑏′)2

√︁
|𝑆 |

□

A.6 Proof of Lemma 6
Proof. For every vertex 𝑦 in 𝐺 let 𝑏

𝑦

min
= min𝑗∈𝑆 :𝑏𝑦

𝑗
=1 𝑗 . We

sort the vertices in increasing order of 𝑏
𝑦

min
and color them one at

a time in that order so that no two vertices 𝑦, 𝑧 having an edge get

the same color. Using induction, we can show that there always

exists a free color for a vertex when using 2𝑄 − 1 colors.

In the beginning, since no vertices are colored, this holds triv-

ially. For any vertex 𝑦, the color corresponding to any colored

vertex 𝑧 ≠ 𝑦 where both 𝑦 and 𝑧 correspond to the same agent



(i.e., 𝑖𝑦 = 𝑖𝑧 ) cannot be used. By construction, we have at most

𝑄 − 1 such vertices because from the constraints of Equation (9)

we get

∑
𝑏∈𝐵 𝑥 (𝑖, 𝑏) ⩽ 1 for every 𝑖 ∈ 𝑁 which implies that∑

𝑏∈𝐵 𝑄 𝑥
rou (𝑖, 𝑏) ⩽ 𝑄 . Thus, the number of vertices corresponding

to the same agent is upper-bounded by 𝑄 . Furthermore, the color

corresponding to any colored vertex 𝑧 ≠ 𝑦 where𝑦 and 𝑧 correspond

to bundles that overlap (i.e., 𝑏
𝑦

𝑗
= 𝑏𝑧

𝑗
= 1 for some 𝑗 ∈ 𝑆) cannot also

be used. Observe that the vertices are colored in ascending order

of the value 𝑏
𝑦

min
and all the colored vertices whose corresponding

bundles overlap with the bundle 𝑏𝑦 also have overlapping bundles

among themselves. Since

∑
𝑏∈𝐵 𝑗

∑
𝑖∈𝑁 𝑥 (𝑖, 𝑏) ⩽ 1,∀𝑗 ∈ 𝑆 from the

constraints of Equation (9), we get

∑
𝑏∈𝐵 𝑗

∑
𝑖∈𝑁 𝑄 𝑥rou (𝑖, 𝑏) ⩽ 𝑄

which results in excluding at most another 𝑄 − 1 colors. Thus, at

any given time for any vertex 𝑦 at most 2𝑄 − 2 colors cannot be

used, but one free color remains. This concludes the proof.

□
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