
A Generalised Theory of

Bit Vector Data Flow Analysis

Submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

by

Uday P. Khedker

a

Department of Computer Science and Engineering

Indian Institute of Technology, Bombay.

1995

Dedicated to the memory of my high-school teacher

Late Shri. S. V. Kanade

It was obvious to me even then that the lama who was my guide was
indeed a good man, and one whom I would follow to the utmost of
my ability. It was clear that he knew a very great deal about me,
far more than I knew myself. I was looking forward to studying with
him, and I resolved that no one should have a better pupil. There
was, as I could plainly feel, a very strong affinity between us, and I
marvelled at the workings of Fate which had placed me in his care.

- T. Lobsang Rampa
The Third Eye

All other quotations in this thesis are from The Little Prince — an English trans-

lation of the French classic by Antoine De Saint-Exupéry.

Acknowledgements

“To me, you are still nothing more than a little boy who is just like a hun-

dred thousand other little boys. And I have no need of you. And you, on

your part, have no need of me. To you, I am nothing more than a fox like a
hundred thousand other foxes. But if you tame me, then we shall need each

other. To me, you will be unique in all the world. To you, I shall be unique
in all the world ...”

One realisation which dawns at the time of documenting any work of this measure is :

Contrary to what the title page may indicate, any work of this measure cannot be credited to

one single person (or to a small group of persons). To be of any real value, such a work must,

necessarily have contributions from a wide variety of people. While their kind and degree of

involvement may vary, each one of such persons plays a very vital role in shaping the work,

and eventually, the person who is often credited with the work.

One person who stands apart among all is my guide Prof. D. M. Dhamdhere. I must thank

him for providing a very clear-cut and objective direction to my research, as also for letting

me deviate from it time and again, thus allowing evolution rather than just plain deduction of

ideas. Being a tough task master that he is, he often pushed me “beyond the wall” and I must

admit that on putting additional effort, I have almost always discovered that no wall existed.

Prof. S. Biswas, Prof. A. Sanyal and Prof. A. A. Diwan have been associated with this

work from the very beginning in that they were entrusted with the responsibility of evaluating

my work from time to time and they indeed provided very constructive criticism.

I also take this opportunity to express my gratitude to all the faculty members of this

department, particularly Prof. D. B. Phatak for encouraging me in every possible way. The

administrative staff too, particularly Mr. Chandran and Mrs. Athwankar have been extremely

helpful. Their help and co-operation simplified many things which otherwise could have been

very difficult to manage. The department also provided an excellent company of extremely

close friends — Sachin Chitnis, Manoranjan Satpathy, Vinod Kulkarni, Mukesh Mohania,

Sandeep Pagey, Rubin Parekhji, Ramesh Babu, to name a few. Never in my life can I expect

such a large group of intimate friends available for participating in absolutely any kind of

activity that I may be interested in/required to indulge in. One unwritten rule that we observed,

and I must thank them all for that, was that we would never ever discuss our research with each

other. In spite of this rule, or may be because of this rule, all of them have been extremely

supportive in the face of any mental/physical adversity and have been equally demanding in

their share in the moments of happiness.

I am also thankful to the faculty, staff and students of the Department of Computer Science,

University of Pune, for providing a very congenial atmosphere for winding up the remaining

part of my research. The students in particular bore the brunt of having to study a large part of

this research in a course titled “Advanced Topics in Compiling”. I express my deep gratitude

to Prof. H. V. Sahasrabuddhe for making all this possible.

Several persons have contributed directly/indirectly to the implementation carried out for

verifying the claims made in the theory. I would particularly like to thank Kurien Jacob, Rajit

Manohar, Kavita Bala, Girija Narlikar, Sandeep Kumar, Moses Charikar and Viral Acharya.

Sachin Chitnis and Manoranjan Satpathy were the first victims of early versions of the incre-

mental data flow analysis algorithm. Sachin Chitnis and Vinod Kulkarni have been very eager

to make me use the computers more effectively; I don’t know how much I have learnt in the

process, but most of my work progressed smoothly because of that. Sandeep Pagey was the

person who introduced me to LATEXand thereby made my life simpler.

Last, but not the least, I would like to thank my parents for being the driving force of my

life all throughout. And I must thank my wife Arundhati for her patience while I was devoting

my time to my research (and for her impatience while I wasn’t, asking why I wasn’t!). My

twin daughters, Sneha and Mugdha, arrived in this world at a very opportune time and forced

me to hasten the submission of this thesis.

Contents

Abstract xi

List of Symbols xii

1 Introduction 1

1.1 What Is Data Flow Analysis? . 1

1.2 Bidirectional Data Flow Analysis . 3

1.3 Incremental Data Flow Analysis . 7

1.4 Scope of Work . 9

I Exhaustive Data Flow Analysis

2 Classical Data Flow Analysis 12

2.1 Data Flow Frameworks . 12

2.2 Data Flow Equations . 14

2.3 Solutions of a Data Flow Problem . 15

2.4 Performing Data Flow Analysis . 16

2.5 Limitations of the Classical Theory . 17

3 A Generalised Theory of Data Flow Analysis 19

3.1 Preliminary Concepts . 19

3.2 Characterising the Flow of Information . 24

3.3 Specification of a Data Flow Problem . 30

3.4 Solutions of Data Flow Problems . 33

3.5 Looking Back . 33

4 Performing Data Flow Analysis 35

4.1 Characteristics of Data Flow Frameworks 35

vi

viii CONTENTS

4.2 Performing Data Flow Analysis . 38

4.3 Complexity of Data Flow Analysis . 43

4.4 Correctness of Data Flow Analysis . 47

4.5 Looking Back . 53

5 An Efficient Solution Procedure for MRA 55

5.1 Speedy Solution of MRA-Class of Algorithms 55

5.2 Adapting the Generic Algorithm for MRA 57

5.3 Empirical Performance of the Algorithm . 57

5.4 Concluding Remarks . 61

6 The Width of a Graph 62

6.1 General Data Flow Problems . 63

6.2 The Width of a Graph . 66

6.3 The Width and the Depth . 70

6.4 Efficiency of Data Flow Analysis . 71

6.5 Decomposing Bidirectional Flows into Unidirectional Flows 75

6.6 Results and Conclusions . 76

6.7 Looking Back . 77

II Incremental Data Flow Analysis

7 Approaches to Incremental Data Flow Analysis 79

7.1 A Paradigm for Incremental Computation 79

7.2 Traditional Approaches to Incremental Data Flow Analysis 80

7.3 Limitations of the Traditional Approaches 83

7.4 Towards a Functional Abstraction . 85

8 Background 86

8.1 Data Flow Frameworks . 86

8.2 Data Flow Properties . 87

8.3 Flow Functions . 88

8.4 The Flow of Information . 89

8.5 Performing Exhaustive Data Flow Analysis 91

8.6 Refinement of the Notions from the Generalised Theory 91

CONTENTS ix

9 A Functional Model for Incremental Data Flow Analysis 94

9.1 Motivation . 95

9.2 A Functional Model for Incremental Data Flow Analysis 99

9.3 Examples Revisited . 106

9.4 Miscellaneous Issues in Incremental Data Flow Analysis 111

9.5 Looking Back . 119

10 Performing Incremental Data Flow Analysis : The Bitwise Approach 121

10.1 Preliminaries . 121

10.2 Computing TR0 . 123

10.3 Computing the Local Change . 123

10.4 Computing the Global Change . 124

10.5 A Generic Algorithm for Incremental Data Flow Analysis 128

10.6 Implementation Notes . 129

10.7 Looking Back . 131

11 Performing Incremental Data Flow Analysis : The Wordwise Approach 133

11.1 Issues in Wordwise Incremental Data Flow Analysis 133

11.2 A Wordwise Algorithm . 139

11.3 Four Variants of the Wordwise Algorithm 141

11.4 Complexity of Incremental Data Flow Analysis 145

11.5 Implementation Notes . 147

12 Correctness of Incremental Data Flow Analysis 149

12.1 Defining Correctness . 150

12.2 Influence of a Function Change . 150

12.3 TR0 Computation . 154

12.4 Correctness of S . 156

12.5 Multiple Function Changes . 169

III Concluding Remarks

13 Loose Ends and Final Thoughts 171

13.1 Contributions of this Work . 172

13.2 Applicability . 172

x CONTENTS

A Constructing ifp Patterns 174

B Performance of MRA Solution Procedure 178

C Width as a Complexity Measure 181

D Bitwise Algorithm for Incremental Data Flow Analysis : Some Measurements 183

E Wordwise Algorithm for Incremental Data Flow Analysis : Some Measurements 185

Bibliography 187

Abstract

The classical theory of data flow analysis, which has its roots in unidirectional flows, is inade-

quate to characterise bidirectional data flow problems. We present a generalized theory of bit

vector data flow analysis which explains the known results in unidirectional and bidirectional

data flows and provides a deeper insight into the process of data flow analysis. This is achieved

by carefully distinguishing between the information flow through a node and the information

flow along an edge. This, in essence, facilitates a more powerful characterization of informa-

tion flow paths which is more general than the classical notion based on graph theoretic paths.

This careful distinction has far reaching consequences, both on the theory and practice of data

flow analysis.

Based on the theory, we develop a worklist-based generic algorithm which is uniformly

applicable to unidirectional and bidirectional data flow problems. It is simple, versatile and

easy to adapt for a specific problem. The theory and the algorithm are applicable to all bounded

monotone data flow problems which possess the property of the separability of solution.

The theory yields valuable information about the complexity of data flow analysis. We

show that the complexity of worklist-based iterative analysis is same for unidirectional and

bidirectional problems. We also define a measure of the complexity of round-robin iterative

analysis which captures the influence of graph structures on the flow of information. It is

uniformly applicable to unidirectional and bidirectional problems and provides a tighter bound

for unidirectional problems than the traditional measure of the depth of a graph.

We also extend the proposed theory and methods to incremental data flow analysis. This

is achieved by proposing a functional model for incremental data flow analysis which is in-

dependent of any technique/algorithm used for performing analysis, unlike the traditional ap-

proaches. This separation of algorithm from the process of analysis leads to a better theori-

sation of the notions involved in incremental data flow analysis. In particular, it facilitates a

concrete definition of incremental solution making it possible to show the correctness of incre-

mental data flow analysis, apart from providing a general algorithm-independent explanation

of incremental data flow analysis.

xi

List of Symbols

Symbols used in localised contexts have not been included in this list.

u : Confluence operator

> : Top element of L

? : Bottom element of L

 : Update operation for updating the old MFP solution incrementally

δ f : Traversal along a forward edge in direction δ
δb : Traversal along a back edge in direction δ
δ�f : Traversal along a forward edge in direction δ�

δ�b : Traversal along a back edge in direction δ�

δG : Traversal over the graph in direction δ
δ�G : Traversal over the graph in direction δ�

∝(p) : The set of properties corresponding to p

π(x) : A partition of the set x

σ(x) : A subset in π(x)
∂Bm

h : A change in the bit function Bh

∆ : The set containing possible changes in a bit function

∆P : Incremental change in P

∆S : Incremental change in S

Ω(p) : The set of functions influencing the value of p

Π : Boolean product

Ψ? : Set of the distinct cases that may arise due to a change ∂Bm
h

Σ : Boolean sum

< u;v;ρ > : The information flow path ρ from program point u to program point v

f b
i : Backward node flow function for node i

f
f

i : Forward node flow function for node i

xii

LIST OF SYMBOLS xiii

gb
(i; j)

: Backward node flow function for edge (i; j)

g
f

(i; j)
: Forward node flow function for edge (i; j)

hm : Modified (bit vector) function

n : j N j, number of nodes in G

p : Some property

p h(p0) : The property p0 influences the value of p through the function h

p B
(

h p0) : The property p0 influences the value of p through the bit function Bh of h

r : Number of properties associated with a node

entry(G) : Set of entry nodes of G

exit(G) : Set of exit nodes of G

in(i) : Entry point of node i

old (x) : Old entity x in the previous instance of D

out(i) : Exit point of node i

D : Data flow framework

F : False or 0 value of a bit

I : Instance of a data flow framework

S : Specification of a data flow framework

T : True or 1 value of a bit

F : All bits in the bit vector are F

T : All bits in the bit vector are T

BOT : Value of an individual property in the bit vector corresponding to the ?

element of L

CH(p; p0) : The chain from p to p0 (In the context of exhaustive data flow analysis)

CH(p; p0) : The set of chains from p to p0 (In the context of incremental data flow

analysis)

CONST INi : Constant properties associated with the in(i)

CONST OUTi : Constant properties associated with the out(i)

FLOWPr
: Path flow function for an information flow path Pr

FP(i) : Information associated with node i in a Fixed Point Assignment FP

INi : Information associated with in(i)

MOP(i) : Information associated with node i in a Maximum Safe Assignment MOP

xiv LIST OF SYMBOLS

OUTi : Information associated with out(i)

SA(i) : Information associated with node i in a Safe Assignment SA

TOP : Value of an individual property in the bit vector corresponding to the >

element of L

E : Set of edges in G

G : Program flow graph

M : N! F (In the context of exhaustive data flow analysis)

M : < MF ;MG > (In the context of incremental data flow analysis)

MF : N! F

MG : E! G

N : Set of nodes in G

Q : Data flow equations

S : Solution of some problem P

S0 : Solution of the problem P +∆P

T
f

b : Forward traversal along a back edge

T b
b : Backward traversal along a back edge

T
f

e : Forward traversal along an edge

T b
e : Backward traversal along an edge

T b
f : Backward traversal along a forward edge

T
f

f : Forward traversal along a forward edge

TR0 : Initial trigger set

X0 : Initial values of the variables in Q

X(u) : Bit vector representing the properties at program point u

X i
(u) : Property represented by the ith bit at program point u

Pos(p) : Bit position of a property p in the bit vectors

P p(p) : Program point with which p is associated

Pr : An information flow path reaching node r

P in
r : An information flow path reaching in(r)

P out
r : An information flow path reaching out(r)

B i
h : Bit function for the ith property in a bit vector

Bm
h : Modified bit function of hm

D(p) : The set of properties which p depends on for its value

F : Set of node flow functions

LIST OF SYMBOLS xv

G : Set of edge flow functions

L : Lattice containing the elements representing the information that may be

associated with the nodes of a program flow graph

N (p) : The set of neighbouring properties of p (i.e. the properties which are influ-

enced by p)

N �1
(p) : Inverse of N (p) (i.e. the properties which influence p)

AR p : Affected region for the property p 2 B2T

BR p : Boundary of AR p

B2T : Set of properties which have changed from BOT to TOP, locally

B2T ? : Set of properties which have changed from BOT to TOP, globally

GC : Set of properties which change globally

GCB(p) : Set of properties corresponding to p which must change to BOT due to a

TOP to BOT change in p

GCT (p) : Set of properties corresponding to p which may change to TOP due to a

BOT to TOP change in p

LC : Set of properties which change locally

N CT (p) : Those properties in GCT (p) which cannot be TOP

T R + : Set of properties that must be added to TR0

T R �

: Set of properties that must be removed from TR0

T 2B : Set of properties which have changed from TOP to BOT, locally

T 2B? : Set of properties which have changed from TOP to BOT, globally

V T : Set of TOP properties in the MFP solution

V B : Set of BOT properties in the MFP solution

Chapter 1

Introduction

The Earth is not just an ordinary planet! One can count, there, 111 kings,

7,000 geographers, 900,000 businessmen, 7,500,000 tiplers, 311,000,000

conceited men — that is to say, about 2,000,000,000 grown-ups.
To give you an idea of the size of the Earth, I will tell you that before

the invention of electricity it was necessary to maintain, over the whole of
the six continents, a veritable army of 462,511 lamplighters for the street

lamps.

An optimising compiler performs code improvements by applying transformations which

are based on the information concerning the uses and definitions of data items is collected

through the process of pre-execution (i.e. compile-time) analysis of a program which includes

control flow analysis and data flow analysis [2, 32].

1.1 What Is Data Flow Analysis?

Control flow analysis traces the patterns of possible execution paths in a program. For this

purpose the program is represented as a directed graph. A call graph depicts the transfer of

control between procedures whereas a control flow graph shows control flow within a pro-

cedure. The construction, representation, structure, and properties of such graphs are part of

control flow analysis.

Data flow analysis traces the possible definitions and uses of data along the potential con-

trol flow paths and collects the information about attributes of certain data items. A data flow

analysis problem is formulated by representing the data flow information associated with the

nodes of the flow graph by variables; interdependencies of the values of these variables give

rise to simultaneous equations. Data flow analysis is performed by solving the system of

simultaneous equations.

2 CHAPTER 1. INTRODUCTION

Data flow analysis can be inter-procedural or intra-procedural; the former is performed

over the call graph of a program while the latter is performed over the control flow graph of a

procedure in a program. This thesis restricts itself to the latter.

Exhaustive data flow analysis computes the information from scratch. When repeated

applications of an optimising transformation are required, it should be possible to update the

information gathered for the previous application of the transformation rather than recompute

it. This is called incremental data flow analysis.

An optimising compiler needs to perform many analyses during the process of optimi-

sation. Thus the issues concerning the correctness, efficiency and profitability of data flow

analysis become important for the optimising compiler theory and practice. Though these

aspects have been explored in details and a formal theory for exhaustive data flow analysis

exists [2, 32, 46], its scope is restricted to unidirectional data flow problems in which the data

flow information associated with a node of the program flow graph is influenced either by

its predecessors (viz. available expressions and reaching definitions), or by its successors (viz.

live variables and busy expressions). Such data flows can be readily classified into forward and

backward data flows [2, 32]. Data flow problems which unify several optimisations remain

outside the purview of this theory since they typically involve bidirectional dependencies, i.e.

the data flow information associated with a node depends on its predecessors as well as its

successors. Section 1.2 introduces bidirectional data flow analysis.

Though bidirectional data flow problems have been known for over a decade, it has not

been possible to explain the intricacies of bidirectional flows using the traditional theory of

data flow analysis. Although a fixed point solution for a bidirectional problem exists, the flow

of information and the safety of an assignment can not be characterised formally. Because of

this theoretical lacuna, efficient solution techniques to bidirectional data flow problems have

not been found though some isolated and ad hoc results have been obtained [17, 24, 25].

Incremental data flow analysis has received considerable attention [9], however most of the

work reported in the literature consists of isolated techniques and there is little or no theoretical

treatment independent of the technique being proposed. Besides, almost all approaches are

restricted to unidirectional data flow problems and the issue of incremental algorithms for

bidirectional problems has remained un-addressed.

1.2. BIDIRECTIONAL DATA FLOW ANALYSIS 3

1.2 Bidirectional Data Flow Analysis

1.2.1 Unified Optimising Transformations

The use of advanced data flow problems can be said to have begun with two independent

efforts – one by Morel & Renvoise [45] and the other by Dhamdhere & Isaac [22], almost

around the same time.

The Morel-Renvoise Algorithm for partial redundancy elimination (called MRA in the fol-

lowing) unifies several traditional optimising transformations, viz. code movement, common

subexpression elimination and loop optimisation. Besides, the use of this algorithm does not

require awareness of the program structure, i.e. control flow analysis need not be performed

for a program in spite of the loop optimisation. These advantages lead to a reduction in the

size as well as the running time of an optimiser. A 35% reduction in the size and a 30% to 70%

reduction in the execution cost has been reported in [45]. It has been implemented in several

production compilers viz. MIPS, PL.8 and Harris Night Hawk compilers for C, FORTRAN,

and Ada.

The other pioneering effort towards unification [22] involved code movement, loop opti-

misation and strength reduction. It used the notion of optimal placement of code using exe-

cution frequency information for various paths in a program. While the conceptual features

of optimal placement and the incorporation of strength reduction are important, feasibility of

this approach is limited to those programs for which the execution frequency information is

available.

1.2.2 An Introduction to Morel-Renvoise Algorithm

This section introduces the Morel and Renvoise Algorithm (MRA) [45] which is used as a

representative bidirectional problem throughout the thesis.

The data flow properties and the data flow equations for MRA are given in Figure 1.1. Note

that PPINi is the bit vector for node i which represents the property PPIN for all expressions,

whereas PPINl
i is the bit representing the expression el .

Local property ANTLOCl
i represents local anticipability, i.e. existence of an upwards

exposed expression el in node i, while TRANSPl
i reflects transparency, i.e. the absence

of definition(s) of any operand(s) of el in the node. The global property of anticipability

(ANTINl
i/ANTOUTl

i) indicates whether expression el is very busy at the entry/exit of node

i — a necessary and sufficient condition for the safety of placing an evaluation of el at the

4 CHAPTER 1. INTRODUCTION

Local data flow properties :

ANTLOCl
i Node i contains a computation of el , not preceded by a definition

of any of its operands.

COMPl
i Node i contains a computation of el , not followed by a definition

of any of its operands.

TRANSPl
i Node i does not contain a definition of any operand of el .

Global data flow properties :

AVINl
i/AVOUTl

i el is available at the entry/exit of node i.

PAVINl
i/PAVOUTl

i el is partially available at the entry/exit of node i.

ANTINl
i/ANTOUTl

i el is anticipated at the entry/exit of node i.

PPINl
i/PPOUTl

i Computation of el may be placed at the entry/exit of node i.

INSERTl
i Computation of el should be inserted at the exit of node i.

REDUNDl
i First computation of el existing in node i is redundant.

Data flow equations :

PPINi = PAVINi � (ANTLOCi + TRANSPi �PPOUTi) � (1.1)

∏
j 2 pred(i)

(AVOUT j + PPOUT j)

PPOUTi = ∏
k 2 succ(i)

(PPINk) (1.2)

INSERTi = PPOUTi � :AVOUTi � (:PPINi + :TRANSPi)

REDUNDi = PPINi �ANTLOCi

Figure 1.1: The Morel-Renvoise Algorithm

entry/exit of the node [37]. Equations 1.1 and 1.2 do not use ANTINl
i/ANTOUTl

i properties

explicitly; they are implied by PPINl
i/PPOUTl

i properties. The data flow property of avail-

ability (AVINl
i/AVOUTl

i) is computed using the classical forward data flow problem [2]. The

partial redundancy of an expression is represented by the partial availability of the expression

(PAVINl
i) at the entry of node i. PPINl

i indicates the feasibility of placing an evaluation of el

at the entry of i while PPOUTl
i indicates the feasibility of placing it at the exit. Computations

of an expression el are inserted at the exit of node i if INSERTl
i = T. REDUNDl

i indicates that

the upwards exposed occurrence of el in node i is redundant and may be deleted.

The PPINi equation is slightly different from the original equation in MRA; the term

PAVINi is used instead of the original term ANTINi� (PAVINi +:ANTLOCi�TRANSPi) to

prohibit redundant hoisting when the expression is not partially available. The PAVINi term

represents the profitability of hoisting in that there exists at least one possible execution path

along which the expression is computed more than once. The other two terms in the PPINi

1.2. BIDIRECTIONAL DATA FLOW ANALYSIS 5

��

��

1

��

��

2

��

��

3

��

��

4 a�b

��

��

5a�b

��

��

8

��

��

9 a:=

��

��

11 a�b

��

��

6 a�b

��

��

7 a:=

��

��

10 a�b

��

��

12 a�b

�

�	

�

�R

�

�R

?

??

�

�	

�

�R

?

�

�R

�

�	

�

�	

�

�R

�

�	

6

6

Node Transp Antloc Pavin Avout Ppin Ppout Insert Redund

1 T F F F F F F F

2 T F F F F T T F

3 T F T F T T F F

4 T T T T T F F T

5 T T T T T T F T

6 T T T T T F F T

7 F F T F F T T F

8 T F F F F F F F

9 F F F F F F F F

10 T T F T F F F F

11 T T T T F T F F

12 T T T T T F F T

Figure 1.2: Program flow graph and properties for example 1.1

equation represent the feasibility of hoisting.

Bidirectional dependencies of MRA arise as follows : Redundancy of an expression is

based on the notion of availability of the expression which gives rise to forward data flow

dependencies (reflected by the ∏ term in the PPINi equation). The safety of code movement

is based on the notion of anticipability of the expression which introduces backward depen-

dencies in the data flow problem (reflected by the ∏ term in the PPOUTi equation).

Example 1.1 : Consider the program flow graph in Figure 1.2. The partial redundancy

6 CHAPTER 1. INTRODUCTION

elimination performed by MRA subsumes the following three optimisations :

� Loop Invariant Movement : The computations of a�b in node 4 and node 5 are hoisted

out of the loops and are inserted in node 2. It is readily seen from the table that

REDUNDl
4 = REDUNDl

5 = INSERTl
2 = T.

� Code Hoisting : The partially redundant computation of a � b in node 12 is hoisted to

node 7. As a result of suppressing this partial redundancy, the path 1-8-11-12 would

have only one computation of a�b; the unoptimised program has two.

� Common Subexpression Elimination : The totally redundant computation of a � b in

node 6 is deleted as an instance of common subexpression elimination.

Note that the partially redundant computation a � b in node 11 is not suppressed since

hoisting it to node 8 would be unsafe — the path 1-8-9 had no computation of a � b in the

original program. 2

1.2.3 Other Bidirectional Data Flow Problems

The algorithms by Morel & Renvoise and Dhamdhere & Isaac have inspired several other

unifications and several extensions have been reported in the literature. Strength reduction has

been incorporated within the Morel-Renvoise framework [19, 34, 35]. The applicability of

MRA has been extended to suppression of partial redundancy of assignments apart from that

of expressions within the same framework [21]. This increases the scope of optimisation. The

MRA framework has also been used for other optimisations, viz. placement of load and store

instructions in register optimisation [18].

Example 1.2 : Figure 1.3 presents the data flow equations of LSIA and CHSA which are

used for register assignment and strength reduction optimisations respectively. In the Load-

Store Insertion Algorithm [18], the problem of placing Load and Store instructions of a vari-

able to characterise its live range for register assignment is modelled as redundancy elimi-

nation of the Load and Store instructions. Here, we consider the problem of the placement

of Store instructions, which is a dual of MRA. This problem performs sinking of STORE

instructions using partial redundancy elimination techniques [18].

The Composite Hoisting and Strength Reduction Algorithm (CHSA) [34, 35] unifies strength

reduction and redundancy elimination into the same framework. Additive computations are

used to update the value of a high strength expression following an update of the induction

1.3. INCREMENTAL DATA FLOW ANALYSIS 7

� The Basic Load Store Insertion Algorithm (LSIA) [18]

SPPINi = ∏
j 2 pred(i)

(SPPOUT j)

SPPOUTi = DPANTOUTi � (DCOMPi + DTRANSPi �SPPINi) �

∏
k 2 succ(i)

(DANTINk + SPPINk)

� Composite Hoisting and Strength Reduction Algorithm (CHSA) [34, 35]

NOCOMINi = CONSTAi �NOCOMOUTi+

∑
j 2 pred(i)

CONSTBi �NOCOMOUT j

NOCOMOUTi = CONSTCi + CONSTDi �NOCOMINi+

∑
k 2 succ(i)

CONSTEi �NOCOMINk

Figure 1.3: Data flow equations of some other bidirectional problems

variable’s value. Recomputations of the high strength expression are placed at other strategic

places in the program. The NOCOMINi/NOCOMOUTi problem is used to limit the number of

additive computations along a path following a recomputation of the high strength expression.

2

1.3 Incremental Data Flow Analysis

1.3.1 The Need of Incremental Data Flow Analysis

A program undergoes changes during development and during compilation since one optimi-

sation often leads to others. Thus repeated applications of an optimising transformation may

be required. The issue of an optimal order of performing different optimisations is NP-hard.

However, even a single optimisation may enhance the scope for further optimisation.

Example 1.3 : Consider the optimisation of a statement x := i+ j � 5 occurring in a basic

block of a program graph. In the intermediate representation, this statement is represented as

follows :

8 CHAPTER 1. INTRODUCTION

t1 j �5

t2 i+ t1

x t2

z x

Even if the basic block is part of a loop, and the entire large expression i+ j�5 is invariant

in the loop, only the quadruple t1 j � 5 moves out of the loop in the first application of the

optimisation algorithm. Movement of t2 i+t1 can not be performed in the same application,

because of the presence of t1 j �5 preceding it in the same block. Movement of z := x can

only be performed after the assignment to x has been optimised. Thus, multiple passes of

optimisation are necessary for a good quality optimisation. 2

Clearly, it is not desirable to perform repeated optimisations if each application of an op-

timisation recomputes the information from scratch. Instead, it is preferable to update the

information computed earlier by an optimisation to reflect the changes caused by the same, or

some later optimisation. Thus, the flow analysis overheads for the second and every subse-

quent application of a transformation are reduced considerably. This provides valuable savings

in the optimisation costs.

1.3.2 Traditional Work in Incremental Data Flow Analysis

The development in incremental data flow analysis has been influenced more by its need in

the context of syntax directed editing than its need in the context of compiling. Consequently,

it has been viewed mostly as an offshoot of the exhaustive analysis. Though incremental data

flow analysis has received a considerable attention [9], most of the work reported in the liter-

ature consists of isolated techniques and there is little or no theoretical treatment independent

of the technique being proposed. Despite some common trends, the treatment of incremental

data flow analysis has been ad hoc in that all discussions remain specific to a technique. More

specifically, the issue of providing an algorithm-independent definition of the incremental so-

lution (i.e. the change in the old solution), has almost always been side-tracked by utilising

the definitions of the final solutions. Consequently, the issues of correctness and generality

(in terms of applicability to different data flow problems) have been adversely affected. Be-

sides, almost all approaches are restricted to unidirectional data flow problems and the issue

of incremental algorithms for bidirectional problems has remained un-addressed.

1.4. SCOPE OF WORK 9

1.4 Scope of Work

1.4.1 Current Status of Data Flow Analysis

There have been tremendous developments in the theory and applications of data flow anal-

ysis over past two decades [32, 46]. It has gradually progressed from the original domain

of code optimisation to include static semantics [1, 28, 29, 48], error recovery in parsers [5],

abstract interpretation [16] etc. and is more generally viewed as a theory of discrete dynamic

systems [15]. The applications to other domains, though based on rigourous theory, have their

own limitations; Rosen [51] does a good job of warning against some pitfalls.

In any case, these developments remain orthogonal from the viewpoint of traditional com-

piler writing for imperative languages : All of them inherit the same basic limitation – unidi-

rectional dependencies. One reason for the lack (or rarity) of research from this perspective

could be attributed to the practical performance of MRA which seems to be much better than

the intuitively expected notion of the performance of a general bidirectional problem.1 How-

ever, the recent additions to the class of bidirectional problems warrant serious explorations;

indeed several contemporary efforts have been reported [24, 25, 40].

1.4.2 Scope and Contributions of this Research

This research was motivated by a primary goal of explorations in bidirectional data flows,

though a secondary, but probably equally important goal has been a uniform treatment of

unidirectional and bidirectional flows.

The results presented in this work are applicable to all bit vector data flow problems —

most practical data flow problems fall under this category. We also introduce the notion of

the separability of solutions to define a larger class of the data flow frameworks which can be

explained by the generalised theory with minor extensions. The results in the incremental data

flow analysis are, however, restricted to bit vector data flow problems only.

The major contributions of this work are :

1. Formal characterisation of the notions in exhaustive and incremental data flow analy-

sis (viz. information flow paths, influence of incremental changes in flow functions,

dependence of data flow properties on other data flow properties etc.).

2. Formal models for exhaustive and incremental data flow analysis to :

1It has been observed that MRA rarely needs more than 5 iterations [34, 35, 45].

10 CHAPTER 1. INTRODUCTION

� define the exhaustive and incremental solutions of data flow problems.

� show the correctness of exhaustive and incremental solutions.

3. Generic worklist based iterative algorithms for performing exhaustive and incremental

data flow analysis.

4. Significant findings in complexity of exhaustive data flow analysis :

� Worklist based iterative data flow analysis - We show that the complexity of uni-

directional and bidirectional data flow analysis is same.

� Round robin iterative data flow analysis - We define the notion of width which

provides the first (strict) bound on the number of iterations for bidirectional data

flow analysis. For the unidirectional problems, the width provides a more accurate

bound than the traditional measure of depth.

5. Motivation and explanation of efficient solution techniques for exhaustive data flow

analysis.

It may be emphasised that these results are uniformly applicable to unidirectional and

bidirectional data flows. They unfold deep insights into the process of data flow analysis

and provide a firm theoretical foundation for understanding (and predicting) the behaviour

of various data flow problems making it easier to devise and experiment with more unified

optimising transformations.

1.4.3 An Outline

The thesis is divided into three parts. The first part deals with exhaustive data flow analysis

while the second part deals with incremental data flow analysis. The two parts have been made

almost independent by presenting a brief review of those concepts from part 1.4.3 which are

used in part 6.7. The third (rather short) part crisply summarises the results and puts them in

the perspective of some philosophical musings.

Chapter 2 – 6 constitute the first part. Chapter 2 reviews the notions from classical data

flow analysis and discusses the limitations of the classical theory. Chapter 3 eliminates these

limitations by proposing a formal and a more general notion of information flow. Chapter 4

presents a generic algorithm for exhaustive data flow analysis and shows its correctness by

defining a state transition model which provides an alternative definition of the MFP solution.

1.4. SCOPE OF WORK 11

This chapter also analyses the performance of the generic algorithm and shows that the com-

plexity of unidirectional and bidirectional data flow analysis is same. Chapter 5 provides an

efficient adaptation of the generic algorithm for MRA and discusses the experimental results.

Chapter 6 applies the generalised theory to complexity of data flow analysis and proposes the

first (strict) bound on the number of iterations of round robin analysis of bidirectional flows.

Chapter 7 – 12 constitute the second part. Chapter 7 reviews the traditional approaches

to incremental data flow analysis and discusses their limitations. Chapter 8 summarises those

concepts of part 1.4.3 which are used in part 6.7 thereby making the two parts as independent

as possible. Chapter 9 presents a functional model for incremental data flow analysis which

facilitates a formal definition of the change in the old solution. Chapter 10 develops a generic

algorithm for incremental data flow analysis which faithfully implements the definitions pro-

vided in chapter 9. Chapter 11 goes a step further by modifying the algorithm developed

in chapter 10 to incorporate wordwise processing of bit vectors as against original bitwise

processing. Chapter 12 demonstrates the correctness of the functional model.

The third part consists of a single chapter which provides a summary of the results.

Appendix A presents a procedure to compute the regular expressions representing the in-

formation flow paths. Appendix B contains the data on empirical performance of the solution

procedure for MRA presented in chapter 5 while appendix C contains the empirical data re-

lating the width to the number of iterations for round robin data flow analysis. Appendices D

and E present the empirical data about the performance of the incremental data flow analysis

algorithms.

Part I

Exhaustive Data Flow Analysis

Chapter 2

Classical Data Flow Analysis

“But where do you think he would go?”

“Anywhere. Straight ahead of him.”
Then the little prince said earnestly :

“That doesn’t matter. Where I live, everything is so small!”

And, with perhaps a hint of sadness, he added :
“Straight ahead of him, nobody can go very far ...”

This chapter presents an overview of the classical theory of data flow analysis and com-

pares various solution methods and their complexities. Our description is based mostly on [31,

32, 44]; a more detailed treatment can be found in [2, 31, 32, 36, 39, 44, 52]. The concluding

part of this chapter motivates the need for a more general setting.

2.1 Data Flow Frameworks

A data flow framework is defined as a triple D = < L ;u;F > (Figure 2.1). Elements in L

represent the information associated with the entry/exit of a basic block. Thus, each element

in L is a set of facts associated entry/exit of a basic block. u is the set union (alternatively,

boolean SUM denoted by Σ) or intersection (alternatively, boolean PRODUCT denoted by

Π) operation which determines the way the global information is combined when it reaches

a basic block. A function fi 2 F represents the effect on the information as it flows through

basic block i.1

A data flow framework is characterised by any or all of the following :

1Alternatively, the functions can be associated with in-edges(out-edges) of node i for forward(backward) flow

problems.

2.1. DATA FLOW FRAMEWORKS 13

Data Flow Framework : D = < L ;u;F >, where

. < L ;u> is a semi-lattice such that :

� L is a partially ordered set (often finite).

� u is a binary meet operation which is commutative, associative, and idempotent.

� The partial order (denoted v) is reflexive, antisymmetric, and transitive.

8 a;b 2 L : av b iff a u b = a

� There are two special elements top (denoted >) and bottom (denoted ?).a

8 a 2 L : a u >= a

a u ?=?

� L has finite height. (i.e. length of every strictly descending chain

a< b< � � �< z is finite).

If the length of every strictly descending chain is bounded by a constant, say H ,

we say that L has strictly finite height, or simply height H).

. F � f f : L ! Lg is a class of functions such that :

� F contains an identity function ı.

8 a 2 L ; ı(a) = a

� F is closed under composition.

8 f1; f2 2 F : f1 Æ f2 2 F

� 8 a 2 L ; 9 f 2 F such that a = f (?)

. D is monotone if and only if :

8 a;b 2 L ;8 f 2 F : f (a u b)v f (a) u f (b). This is same as

av b) f (a)v f (b)

. D is distributive if and only if :

8 a;b 2 L ;8 f 2 F : f (a u b) = f (a) u f (b)

. D is k-bounded if and only if :

8 f 2 F ; 9k :

k�1

i=0
f i
= f �, where f j+1

= f Æ f j, f 0
= ı, and f � � f 0

u f 1
u f 2
u�� �

Instance of a Data Flow Framework : I = < G;M>, where

. G =< N;E;n0 > is a control flow graph where N is the set of nodes representing

basic blocks, E is the set of edges, and n0 is a unique entry node with in-degree zero.

. M : N! F .It is extended to paths as follows :

� If ρ = (n0;n1; � � � ;ni) is a path in G then

M(ρ) = M(n0)ÆM(n1)Æ � � � ÆM(ni�1)

� If ρ is a null path then M(ρ) is an identity function.

aIn some cases either > or ? may not exist. However, it can always be added artificially. It may not be a

natural element of L but it helps in performing data flow analysis.

Figure 2.1: Data Flow Framework

14 CHAPTER 2. CLASSICAL DATA FLOW ANALYSIS

� Algebraic properties of functions in F (viz. monotonicity, distributivity, continuity,

etc. [32]).

� Finiteness properties of functions in F (viz. boundedness [44], fastness [31], rapid-

ity, [36] etc.).

� Finiteness properties of L (viz. height [32, 44]).

� Partitionability properties of L and F [63].

There is an important subclass of k-bounded partitionable problems2 called the bit vector

problems [32] which has been extensively discussed in the literature [25, 32, 44, 46], though

it is defined only informally (viz. in [32, 63]). We provide a formal definition in section 3.1.3

and use it in the exposition of our theory.

2.2 Data Flow Equations

To formulate a data flow problem, the data flow properties associated with each node of the

flow graph are represented as variables which, as noted earlier, are elements in L . Interdepen-

dencies of the values of these variables give rise to simultaneous equations. Thus, solving a

data flow problem reduces to solving a system of simultaneous equations.

A data flow problem is posed as a pair <Q;X0>, where Q is a system of equations pa-

rameterised by the nodes of the flow graph and whose terms may include constants. These

constants may represent information derived from other data flow problems. X0 : N! L is

a conservative initialisation. For the entry node it is usually, though not always, ?. For the

non-entry nodes, such an estimate is almost always > and is needed in the case of iterative

methods only.

Let pred(i) and succ(i) denote the set of predecessors and successors of node i. The

equations X = Q(Y) have the following form3 :

IN(i) =

8

<

:

X0(n0) if i = n0

j2pred(i)
M(j)(IN(j)) otherwise

(2.1)

2We use the terms data flow problem and data flow framework interchangeably, though the latter is more

formal.
3Though we present the definitions for forward problems only, analogous definitions exist for backward

problems.

2.3. SOLUTIONS OF A DATA FLOW PROBLEM 15

Note that the equations may well be written in terms of information at the node exit [56].

Alternatively, both IN and OUT may be used. Further, the function M may be dropped and

the node numbers may be used as subscripts of f 2 F as shown below.

INi =

8

<

:

X0(n0) if i = n0

j2pred(i)
(OUT j) otherwise

(2.2)

OUTi = fi(INi) (2.3)

We use this form in the thesis.

2.3 Solutions of a Data Flow Problem

The solution of a data flow problem is an assignment of values X : N! L to the nodes of the

flow graph.

2.3.1 Safe Solution

An assignment SA is safe if the information at a node does not exceed the information that

can be gathered along any path from n0 to that node [31], i.e.

8 i 2 N : SA(i)vM(ρ)(X0(n0))

where ρ is a path from n0 to i. A safe assignment guarantees the correctness of optimisations;

an unsafe assignment may result in semantics changing optimisations.

The Meet Over Paths solution of a data flow problem represents the information reaching

a basic block along all possible program paths [2, 32, 44]. Let paths(i) denote the set of all

paths from n0 to i. Then,

8 i 2 N : MOP(i) =
ρ2paths(i)

M(ρ)(X0(n0))

Note that MOP is the maximum safe assignment.

2.3.2 Fixed Point Solution

An assignment FP is a fixed point of an instance of a data flow framework if it is a fixed point

of equation 2.1.

A fixed point guarantees the consistency of information associated with the nodes of the

flow graph. A Maximum Fixed Point, MFP, contains all other fixed points. It can be shown that

MFP is contained in MOP. Thus, every fixed point is a safe assignment, though not vice-versa.

16 CHAPTER 2. CLASSICAL DATA FLOW ANALYSIS

An assignment X is acceptable4 if and only if it is safe and contains all fixed points of

Q. For the monotone data flow problems, MOP and MFP typically exist. For the distributive

problems, MFP is always equal to MOP. Since MFP represents the maximum information that

can be gathered in practice, the goal of data flow analysis can also be defined as finding MFP.5

Though this means that we may not be able to capture all information for the non-distributive

problems, it does not matter since no algorithm capable of computing MOP for all instances

of arbitrary monotone data flow problems exists anyway [36].

2.4 Performing Data Flow Analysis

There are two broad categories of the approaches to data flow analysis : iterative methods and

elimination methods.

2.4.1 Iterative Methods

The iterative method of data flow analysis solves the system of equations by initialising the

node variables to some conservative values and recomputing them successively till a fixed

point is reached. The round robin version (traced back to [62]) recomputes the data flow

properties of all the nodes repeatedly, till the values stabilise. If the size of the bit vector is

r, there are O(n�r) properties. Thus, in the worst case O(n�r) iterations over the graph may

be needed. Each iteration involves computation of the properties for n nodes. If all the r bits

can be processed in one step, the complexity becomes O(n2
�r). In the unidirectional problems

the flow is in one direction only, hence the nodes can be visited in the postorder or reverse

postorder depending upon the direction of flow. Thus, d+2 iterations are sufficient where, d is

the depth6 of the flow graph [2, 32]. Hence the complexity is (d+2) �n. The worklist version

visits the nodes selectively and involves O(n�r) work [32].

For programs with r = O(n), all the r bits can not be processed in one step; processing

the r bits of a bit vector would itself require O(n) steps. Hence the bounds on the iterative

methods are O(n4
) and O(n2

).

4Marlowe & Ryder [44] use this term for a slightly different notion; we follow Graham & Wegman [31].
5In some cases the desired information may be different from MFP. For example in the case of hoisting-

though-loop effect [24], the desired fixed point lies below MFP.

6Not to be confused with the nesting depth.

2.5. LIMITATIONS OF THE CLASSICAL THEORY 17

��

��

��

��

��

��

�

�

�

�/

S

S

S

Sw

w

7

��

��

��

��

��

��

�

�

�

�R

�

�

�

�	

�

R

Spouse effectSibling effect

Figure 2.2: Sibling and spouse effects

2.4.2 Elimination Methods

Elimination methods reduce the amount of effort required to solve a data flow problem by

utilising the structural properties of a flow graph [3, 31, 32, 46, 60]. The flow graph is reduced

to one node by successive applications of graph transformations which use graph parsing or

graph partitioning to identify regions to obtain a derived graph. The data flow properties of a

node in a region are determined from the data flow properties of the region’s header node. This

enables delayed substitution of some values in the simultaneous equations. For unidirectional

flow problems, these methods are typically O(N), where N is the total number of nodes in the

sequence of reduced graphs. A comparison of various elimination methods appears in [56].

It has been shown that the elimination methods cannot be extended to general bidirectional

data flow problems, though they have been used to solve a restricted class of bidirectional

problems [24].

For programs with r = O(n) the elimination methods are O(N �n).

2.5 Limitations of the Classical Theory

The limitations of the classical theory of data flow analysis are easy to trace. It is based on

strictly unidirectional flow — information reaches one end of a basic block, flows through it,

and emanates from the other end. As a consequence, the information flows from a node either

to its predecessors or its successors.

In bidirectional problems, apart from the above flows, the following kinds of information

flow may exist (refer to Figure 2.2) :

� information at one successor of a node may influence the information at another succes-

sor of the same node, and

18 CHAPTER 2. CLASSICAL DATA FLOW ANALYSIS

� information at one predecessor of a node may influence the information at another pre-

decessor of the same node.

We term these as the sibling effect and the spouse effect respectively. (Two nodes are

siblings if they have a common predecessor; we call them spouses if they have a common

successor.)

Example 2.1 : In example 1.1, ANTLOCl
9 = TRANSPl

9 = F, consequently PPINl
9 becomes

F. This makes PPOUTl
8 = F which sets PPINl

11 = F. This flow from the entry of 9 to the entry

of 11 is an example of the sibling effect. Since PPOUTl
8 is F, PPOUTl

10 also becomes F via

PPINl
11; this is an example of the spouse effect. 2

Such flows just can not arise in unidirectional data flow problems and it is not surpris-

ing that the traditional theory fails to characterise them. It follows that any characterisation

which can not handle these flows gracefully, will at best be an isolated and ad hoc attempt at

explaining bidirectional data flows [17, 24, 25, 40]. The present work overcomes this obsta-

cle by proposing a more refined notion of information flow which handles the sibling/spouse

effects elegantly and thereby provides a generalised theory which handles unidirectional and

bidirectional problems uniformly.

Chapter 3

A Generalised Theory of Data Flow

Analysis

Perhaps you will ask me, “Why there are no other drawings in this book as

magnificent and impressive as this drawing of the baobabs?”

The reply is simple. I have tried. But with others I have not been successful.
When I made the drawing of the baobabs I was carried beyond myself by

the inspiring force of urgent necessity.

This chapter defines the scope of the theory and generalises the traditional concepts to han-

dle unidirectional and bidirectional data flow problems uniformly. Section 3.1.3 defines the bit

vector problems by formalising the notion of separability of solutions. Section 3.2 generalises

the notions of edge, node, and path flow functions by defining the notion of information flow

which captures the manner in which the information could flow, including the complex flows

which arise when the spouse/sibling effects are present. Section 3.3 proposes generic data flow

equations which facilitate a uniform specification of data flow problems by parameterising the

equations appropriately. Finally, section 3.4 characterises the safety of assignment.

3.1 Preliminary Concepts

3.1.1 Traversals

We define a flow graph by G =< N;E;entry(G);exit(G)> where entry(G) and exit(G) de-

note the (non-null) sets of entry and exit nodes, i.e. nodes with zero in-degree and zero out-

degree, respectively.

20 CHAPTER 3. A GENERALISED THEORY OF DATA FLOW ANALYSIS

A program point refers to the entry/exit of a basic block. For a basic block i, its entry

and exit points are denoted by in(i) and out(i) respectively. Program point u is a neighbour

of program point v if u and v are adjacent in G and the information at u is influenced by

the information at v. Thus in(j) is a neighbour of out(i) where j 2 succ(i), and out(j) is a

neighbour in(j) for a forward data flow problem.

Given a depth first spanning tree of G, we differentiate between back edges and non-back

edges; we term the latter as forward edges.1 Thus the term forward edges, as used in this

thesis, includes the conventional notions of forward as well as cross edges [2]. A forward

traversal along an edge is a tail-to-head traversal of the edge, while a backward traversal is a

head-to-tail traversal. We use the following notations :

� T
f

e /T b
e : Forward/backward traversal along an edge.

� T
f

f /T b
f : Forward/backward traversal along a forward edge.

� T
f

b /T b
b : Forward/backward traversal along a back edge.

A forward edge traversal indicates traversal along the direction of control flow whereas a

backward edge traversal indicates a traversal against the direction of control flow.

3.1.2 Data Flow Information and Data Flow Properties

When the sets of information are implemented as bit vectors, each bit represents a data flow

property. There is one bit vector for the entry and one for the exit of each node. The lattice

elements> and? are “all bits true” (denoted T) and “all bits false” (denoted F) , or vice-versa,

depending on u. When u is Π,> is T while? is F; the situation is exactly opposite in when u

is Σ. TOP is the value of an individual property in a bit vector which represents the> element

of the lattice while BOT is the value of a property in the bit vector which represents the ?

element.

The data flow properties associated with program points in(i) and out(i) are denoted by

INi and OUTi respectively.

Definition 3.1 : Inflow/outflow Properties

Data flow properties that represent the information reaching/emanating from a node are called

1We use the terms forward edges and back edges as synonyms of advancing edges and retreating edges

respectively. We prefer the former because they express the intuitive notion of direction more clearly. For non-

reducible flow graphs, a back edge in this thesis means a retreating edge.

3.1. PRELIMINARY CONCEPTS 21

'

&

$

%

p

p1

node i

'

&

$

%

p3

node k

'

&

$

%

p2

node j

�

�

�

�/

S

S

S

Sw

�

h3
I

h2

?h1
P p(p) = out(i); P p(p1) = in(i)

P p(p2) = in(j); P p(p3) = in(k)

p h1(p1); p h2(p2); p h3(p3)

N �1
(p) = fp1; p2; p3g

p 2N (p1); p 2N (p2); p 2N (p3)

N �1
(out(i)) = fin(i); in(j); in(k)g

out(i) 2N (in(i));out(i) 2N (in(j))

Figure 3.1: Several functions may influence a property.

inflow/outflow properties.

The inflow/outflow properties are associated with the entry/exit of a node depending upon

the direction of the flow. From equations 2.2 and 2.3, it is evident that for a forward problem

INi represents the inflow properties while OUTi represents the outflow properties of node

i. However, for a backward problem, OUTi represents the inflow properties whereas INi

represents the outflow properties.

Example 3.1 : For the problem of Reaching Definitions, REACH INi represents the inflow

properties while REACH OUTi represents the outflow properties. However, in the case of

Live Variables, LIVE OUTi represents the inflow properties and LIVE INi represents the out-

flow properties. Note that for bidirectional problems (viz. MRA), the same property may be

an inflow as well as an outflow property. For instance, PPINl
i may become F due to PPOUTl

j

where j 2 pred(i), thus PPINl
i represents an inflow property. On becoming F, PPINl

i may

cause PPOUTl
j0

to become F, for some predecessor j0; here PPINl
i represents an outflow prop-

erty. 2

The program point for a property p is denoted by P p(p). Two properties belonging to dif-

ferent program points are called corresponding properties if they represent information about

the same data item, viz. the same variable or the same expression. By definition, the rela-

tion of correspondence is reflexive, i.e. a property corresponds to itself. Two corresponding

properties are neighbours of each other if their program points are neighbours in G.

If a property p0 influences the value of a neighbouring property p through a flow function

h, it is denoted by p h(p0). Clearly, p 2N (p0) and p0 2N �1
(p). Whenever the program

points of the two properties are required along with function, we write h as h
(u0

;u) where

22 CHAPTER 3. A GENERALISED THEORY OF DATA FLOW ANALYSIS

P p(p) is u and P p(p0) is u0. The notation describing neighbourhood is also extended to the

corresponding program points u and u0. Thus, u 2N (u0) and u0 2N �1
(u). The order (u0;u)

determines the direction of the flow. If p and p0 belong to neighbouring nodes i and j, p is an

inflow property of i while p0 is the corresponding outflow property of j. If p and p0 belong

to the same node, p is an outflow property whereas p0 is the corresponding inflow property.

Figure 3.1 contains an illustration of of these notions.

3.1.3 Bit Vector Frameworks

Definition 3.2 : Separability of Solutions2

A data flow framework D = < L ;u;F > possesses the property of the separability of solutions

if 9 semilattices L1;L2; � � � ;Ln such that an element X 2 L can be represented by a tuple

< X1
;X2

; : : : ;Xn
> where X i

2 Li; 1� i� n and :

1. 8 X ;Y 2 L : XuY �< X1
uY 1

;X2
uY 2

; : : : ;Xn
uY n

>

2. 9hi : Li! Li;1� i� n such that 8 h 2 F , h(X)�<h1
(X1

);h2
(X2

); : : : ;hn
(Xn

)>

3. The height of each Li is bounded by a constant.

Elements in each Li represent different values of a single data flow property. The first two

conditions ensure the independence of data flow properties while the third condition ensures

the number of distinct values of a property is bounded by a constant. Let the smallest bound on

the height of all Li be H. Then, a property may have at most H +1 distinct values. Note that

the separability of solutions implies that a factorisation exists for (L ;F) [52], the effective

height of L is H [52], and the functions in F are (H+1)-bounded [44].

It is easy to see that the bit vector problems satisfy all the three conditions : Data flow

properties, represented by single bits, are independent of each other and each property may

have two distinct values. Define bit functions start , stop, propagate, and negate such that for

a bit b, start (b) = T, stop(b) = F, propagate(b) = b, negate(b) = :b [25]. Let X i be the ith

bit in a bit vector X . Let the size of the bit vector be k.

Definition 3.3 : Bit vector function

A bit vector function h is a mapping f T, F gk
!f T, F gk such that h can be written as a

tuple of bit functions h�< B1
h ;B

2
h ; : : : ;B

k
h > where B i

h is the bit function for the ith bit, i.e. if

2This notion is analogous, though not identical, to Zadeck’s notion of cluster partitionability [63].

3.1. PRELIMINARY CONCEPTS 23

Y = h(X), then

X � < X1
;X2

; : : : ;X k
>

Y � < Y 1
;Y 2

; : : : ;Y k
> where; Y i

� B i
h(X

i
); 1� i� k:

Lemma 3.1 : A bit vector function h is monotonic if and only if it does not negate any bit.

Proof : A data flow framework is monotone if and only if all functions h satisfy the following :

8X ;Z 2 L : X v Z) h(X)v h(Z) (3.1)

Consider X ;Z 2 L3 such that X v Z. The three possibilities for the ordered pair <X i
;Zi

>

are <TOP, TOP>, <BOT, TOP> and <BOT, BOT>. Consider a bit vector function h such

that for all bits i, B i
h 2 fstart ;stop;propagateg. The result of application of h to X and Z is :

<X i
;Zi

> <B i
h(X

i
);B i

h(Z
i
)>

start stop propagate

<TOP, TOP> <T, T> <F, F> <TOP, TOP>

<BOT, TOP> <T, T> <F, F> <BOT, TOP>

<BOT, BOT> <T, T> <F, F> <BOT, BOT>

In all the nine cases, B i
h(X

i
)v B i

h(Z
i
). Since this holds for every bit i, h(X)v h(Z).

For the converse, consider a bit vector function h which satisfies (3.1). To prove that it can-

not negate a bit, assume that it has some B i
h � negate. Consider a pair<X i

;Zi
>=<BOT, TOP>.

The result of applying h to X and Z is <B i
h(X

i
);B i

h(Z
i
)> which is <TOP, BOT>. Hence

B i
h(X

i
) 6v B i

h(Z
i
), which is a contradiction. Hence h cannot have a negate bit function. 2

Definition 3.4 : Bit vector framework

A data flow framework is bit vector framework if and only if all flow functions are monotonic

bit vector functions.

Lemma 3.2 : A bit vector function h is a monotonic bit vector function if and only if it can be

expressed in the form h(X) =C1 +C2�X where C1;C2;X 2 f T, F gk.

Proof : Let h�< B1
h ;B

2
h ; : : : ;B

k
h > be a monotonic bit vector function. h(X) can be expressed

as C1 +C2�X where C1 �<C1
1 ;C

2
1; : : : ;C

k
1 > and C2 �<C1

2 ;C
2
2 ; : : : ;C

k
2 >. The bits Ci

1 and Ci
2

3Note that for bit vector problems, L is essentially f T, F g

k.

24 CHAPTER 3. A GENERALISED THEORY OF DATA FLOW ANALYSIS

can be set depending upon the bit function B i
h 2 fstart ;stop;propagateg.

B i
h Ci

1 Ci
2

start T don’t care

stop F F

propagate F T

For the converse, let there be a function h(X) =C1 +C2�X . The values of the bits Ci
1 and

Ci
2 define the corresponding bit function B i

h as follows :

Ci
1 Ci

2 B i
h

T T start

T F start

F F stop

F T propagate

Since B i
h 2 fstart ;stop;propagateg, from lemma 3.1 h is a monotonic bit vector function.

2

Lemma 3.3 : A bit vector framework is fast (i.e. 2-bounded).

Proof : Obvious. 2

The influence of p0 on p through a function h is denoted by p Bh(p0) where the context

demands a bit function and by p h(p0) where the context demands a bit vector function.

3.2 Characterising the Flow of Information

3.2.1 The Notion of Information Flow

Since xuTOP = x and xuBOT = BOT, a TOP value for a data flow property is an interme-

diate value until the data flow analysis is completed whereas BOT is a final value even during

analysis. Thus, a BOT value implies a useful item of information from the viewpoint of data

flow analysis, whereas a TOP value implies that such information can not be concluded during

analysis. For iterative data flow analysis, the data flow properties are initialised to TOP for

all nodes (except for the graph entry/exit nodes, which may have other values). Some prop-

erties change to BOT due to the local effect of computations in a node/along an edge, viz.

when a definition is generated, or an expression is killed. These properties, in turn, change the

neighbouring properties to BOT.

3.2. CHARACTERISING THE FLOW OF INFORMATION 25

&%

'$

j

&%

'$

i

?

?

?

?

?

?

f
f

i

g
f

(i; j)

f
f
j

6

6

6

f b
i

gb
(i; j)

f b
j

Figure 3.2: Flow functions

Definition 3.5 : Information flow

Information flows from a program point u to a program point v when a property at u, on

becoming BOT, causes the corresponding property at v to become BOT.

Note that the information flow is transitive. Section 4.4 shows that the incorporation of

information flows due to all BOT properties in the program flow graph leads to a fixed point

of the data flow equations.

3.2.2 Node and Edge Flow Functions

There are two fundamental kinds of flows in a data flow analysis problem :

(i) Information flows within a node, i.e. between the entry and exit of the node :

Represented by node flow functions f 2 F . These are the traditional transfer func-

tions.

(ii) Information flows along an edge :

Represented by edge flow functions g. We define a new set G to contain g.

The mapping between nodes and node flow functions is defined by the function MF : N! F

while the mapping between edges and edge flow functions is defined by the function MG : E! G .

As is customary, we drop these mappings and subscript the flow functions directly by nodes/edges

as the case may be. Thus, the node flow function for node i is denoted by fi while the edge

flow function for an edge e = (i; j) is denoted by ge or g
(i; j).

26 CHAPTER 3. A GENERALISED THEORY OF DATA FLOW ANALYSIS

PPINi = PAVINi � (ANTLOCi + TRANSPi �PPOUTi) �

∏
j 2 pred(i)

(AVOUT j + PPOUT j) �

∑
j 2 pred(i)

(PPIN j � :ANTLOC j + AVOUT j)

PPOUTi = ∏
k 2 succ(i)

(PPINk)

Figure 3.3: The MMRA Equations [21]

The flow functions are determined directly from the data flow equations governing a prob-

lem. We refer to the functions by their type names f and g respectively, with an appropriate

superscript f or b to indicate whether the flow is in the forward or the backward direction.

If a particular flow does not exist in a data flow problem, the corresponding function is

the constant function >. For example if forward flow of information through a node does not

exist, f f is >. Similarly, if forward flow of information reaching a node entry (and hence the

forward confluence of information) does not exist, g f is >. Analogous remarks hold for f b

and gb.

Example 3.2 : Table 3.1 summarises the flow functions for some data flow problems. Note

that there is no backward flow in the case of reaching definitions while there is no forward

flow in the case of live variables. 2

Definition 3.6 : Non-singular data flow problem

A data flow problem is non-singular if it involves more than one distinct confluence operator.

Clearly, a non-singular data flow problem is not a data flow framework as defined in Fig-

ure 2.1.

Example 3.3 : All examples considered in this thesis are singular except the Modified MRA

(MMRA, for short) data flow problem [21] which, apart from the Π term of MRA, contains a

Σ term to inhibit redundant code movement (Figure 3.3). 2

3.2.3 Information Flow Paths

Let Tei
denote a traversal along the graph edge ei, i.e. Tei

can be T
f

e /T b
e .

3.2. CHARACTERISING THE FLOW OF INFORMATION 27

� Reaching Definitions

h(X) Y h(X) X

f
f

i (X) = REACH GENi + : REACH KILLi� X REACH OUTi REACH INi

f b
i (X) = > REACH INi REACH OUTi

g
f

(j;i)
(X) = X (i.e. identity function ı) REACH INi REACH OUT j

gb
(i;k)

(X) = > REACH OUTi REACH INk

� Live Variables

h(X) Y h(X) X

f
f

i (X) = > LIVE OUTi LIVE INi

f b
i (X) = LIVE GENi + : LIVE KILLi� X LIVE INi LIVE OUTi

g
f

(j;i)
(X) = > LIVE INi LIVE OUT j

gb
(i;k)

(X) = X (i.e. identity function ı) LIVE OUTi LIVE INk

� Morel-Renvoise Algorithm (MRA)

h(X) Y h(X) X

f
f

i (X) = > PPOUTi PPINi

f b
i (X) = ANTLOCi + TRANSPi� X PPINi PPOUTi

g
f

(j;i)
(X) = AVOUT j + X PPINi PPOUT j

gb
(i;k)

(X) = X (i.e. identity function ı) PPOUTi PPINk

� Basic Load Store Insertion Algorithm (LSIA)

h(X) Y h(X) X

f
f

i (X) = DCOMPi + DTRANSPi� X SPPOUTi SPPINi

f b
i (X) = > SPPINi SPPOUTi

g
f

(j;i)
(X) = X (i.e. identity function ı) SPPINi SPPOUT j

gb
(i;k)

(X) = DANTINk + X SPPOUTi SPPINk

� Composite Hoisting and Strength Reduction Algorithm (CHSA)

h(X) Y h(X) X

f
f

i (X) = CONSTDi � X NOCOMOUTi NOCOMINi

f b
i (X) = CONSTAi � X NOCOMINi NOCOMOUTi

g
f

(j;i)
(X) = CONSTBi � X NOCOMINi NOCOMOUT j

gb
(i;k)

(X) = CONSTEi � X NOCOMOUTi NOCOMINk

Table 3.1: Examples of Flow Functions

28 CHAPTER 3. A GENERALISED THEORY OF DATA FLOW ANALYSIS

Problem Function types Information flow paths

Reaching Def. f f
;g f (T

f
e)+

Live Variables f b
;gb (T b

e)+

MRA f b
;gb

;g f
((T b

e)
+

(T
f

e j ε))+

LSIA f f
;g f

;gb
((T

f
e)

+

(T b
e j ε))+

CHSA f f
; f b

;gb
;g f T

f
e (T b

e j T
f

e)

�

Table 3.2: Some examples of information flow paths

Definition 3.7 : Information flow path

An information flow path (ifp) is a sequence of edge traversals Te1
;Te2

; : : : ;Tek
along which

information can flow during data flow analysis.

We use the notation < u;v;ρ > for an ifp ρ from program point u to a program point v.

Note that an ifp may not follow a graph theoretic path. Where convenient, we will represent an

ifp as a sequence of nodes, leaving the traversal of the edges connecting these nodes implicit.

Since ifp’s can be statically determined from the flow functions, they follow a pattern

which can be described by a regular expression. Appendix A provides a procedure to construct

the regular expressions representing the ifp patterns. These regular expressions should be

contrasted with Tarjan’s path expressions [61]; the latter are restricted to graph theoretic paths

and can not be used to characterise ifp’s arising out of sibling/spouse effects.

Example 3.4 : Table 3.2 contains examples of the ifp patterns. These patterns provide valu-

able insights about how the information could flow in a given data flow problem. 2

Example 3.5 : Consider the graph in Figure 1.2. Some sequences of edge traversals which

may form ifp’s, and the data flow problems in which these ifp’s are valid, are :

� (1;8;11;12) = T
f

f T
f

f T
f

f : Reaching Definitions

� (11;10;9;8) = T b
f T b

f T b
f : Live variables

� (5;2;3;4;7) = T b
f T

f
f T b

b T
f

f : MRA

� (7;4;3;2) = T b
f T

f
b T b

f : LSIA

� (2;5;6;7;4;3) = T
f

f T
f

f T
f

f T b
f T b

f : CHSA
2

For bit vector frameworks, ifp’s are necessarily acyclic. Note, however, that the underlying

graph theoretic path may be cyclic since a node may appear in the path once for its entry point

and once for its exit point.

3.2. CHARACTERISING THE FLOW OF INFORMATION 29

3.2.4 The Path Flow Function

Consider an ifp < u;v;Pr > from a graph entry/exit node to the entry/exit of a node r. For such

an ifp, u 2 fin(n0);out(nx)g where n0 2 entry(G), nx 2 exit(G), and v 2 fin(r);out(r)g. Let

Pr = q1;q2; � � � ;qk;qk+1 = Te1
;Te2

; � � � ;Tek
. It follows that q1 2 fn0;nxg and qk+1 = r. Con-

sider an ifp fragment < u;v0;ρ > of Pr, terminating with edge ei = (qi;qi+1), such that

v0 = in(qi+1) if Tei
= T

f
e and v0 = out(qi+1) if Tei

= T b
e .

Let flowi denote the path flow function of ρ (i.e. the ifp terminating with ei). We define

flow1 =

(

g
f
e1
Æ f

f
n0

if Te1
= T

f
e (i.e. u = in(n0))

gb
e1
Æ f b

nx
if Te1

= T b
e (i.e. u = out(nx))

Since ei+1 = (qi+1;qi+2), information flows from qi+1 to qi+2. flowi+1 is obtained by com-

posing the functions fqi+1
and gei+1

with flowi, as shown in Table 3.3. Note that if v = out(r)

and Tek
= T

f
e then there is a forward flow through node r. Similarly, if v = in(r) and Tek

= T b
e

then there is a backward flow through node r. Thus, path function for the ifp Pr is :

FLOWPr
=

8

>

>

<

>

>

:

f
f

r Æflowk if Tek
= T

f
e and v = out(r)

f b
r Æflowk if Tek

= T b
e and v = in(r)

flowk otherwise

In a unidirectional problem, the typical sequence of edges in a path is either (T
f

e)� or

(T b
e)�. In either case, the information necessarily flows through all intermediate nodes. It can

be verified from Table 3.3 that in such a case, the edge flow functions appear in composition

with the node flow functions and never in isolation from them. Thus there is no need to

treat them separately. Under such circumstances, the flow can be adequately characterised by

functions which could be associated with the nodes or edges interchangeably. F has been the

set of such functions in the classical theory.

However, in bidirectional problems the sibling/spouse effects exist and the information

may flow from in(qi) to in(qi+2) via out(qi+1) or out(qi) to out(qi+2) via in(qi+1). Though

the information flows along the edges ei = (qi;qi+1) and ei+1 = (qi+1;qi+2), it does not flow

through node qi+1. Thus, unlike the unidirectional problems, the edge and node flows must be

represented distinctly. It is easy to see that all the above flows are handled uniformly by the

generalised path flow function.

30 CHAPTER 3. A GENERALISED THEORY OF DATA FLOW ANALYSIS

flowi+1

Tei+1
= T

f
e Tei+1

= T b
e

Tei
= T

f
e g

f
ei+1Æ f

f
qi+1 Æflowi gb

ei+1Æflowi

(Forward Flow) (Flow between spouses)

Tei
= T b

e g
f
ei+1
Æflowi gb

ei+1
Æ f b

qi+1
Æflowi

(Flow between siblings) (Backward Flow)

Table 3.3: Computing the flow function

3.3 Specification of a Data Flow Problem

A data flow problem is completely specified by the pair S = < Q;X0 >, where Q is the system

of equations and X0 is the set of initial values for the properties of the nodes.

3.3.1 Data Flow Equations

The entry/exit properties of node i can be computed from various flows as follows :

INi = IN
f
i INb

i CONST INi

OUTi = OUT
f
i OUTb

i CONST OUTi

CONST IN/CONST OUT are the constant properties which represent the information

already known concerning the entry/exit of a node. However, unlike the local properties of a

node, the constant properties typically represent lower order data flow properties, i.e. prop-

erties computed by an earlier data flow analysis. If no such information is involved in the

problem, the CONST IN/CONST OUT properties are >.

Example 3.6 : For all unidirectional problems referred in this thesis, the CONST IN and

CONST OUT properties are>. However, for MRA, CONST IN is PAVIN while CONST OUT

is >. For CHSA, CONST IN is > while CONST OUT is CONSTC. 2

IN
f
i /OUT

f
i and INb

i /OUTb
i represent the contributions from the forward and backward

flows respectively. Clearly, IN
f
i /OUTb

i represent the inflow while the INb
i /OUT

f
i represent

the outflow component of the entry/exit information of node i. They are computed as follows :

IN
f
i =

j2pred(i)
g

f

(j;i)
(OUT j)

INb
i = f b

i (OUTi)

OUTb
i =

k2succ(i)
gb
(i;k)

(INk)

OUT
f
i = f

f
i (INi)

3.3. SPECIFICATION OF A DATA FLOW PROBLEM 31

Thus, the data flow equations become

INi =

j2pred(i)
g

f

(j;i)
(OUT j) f b

i (OUTi) CONST INi (3.2)

OUTi =

k2succ(i)
gb
(i;k)

(INk) f
f

i (INi) CONST OUTi (3.3)

Equations 3.2 - 3.3 are the generic data flow equations. Specific problems can be treated

as special cases of these equations.

3.3.2 Initialisation

We define X0 to consist of two classes of values : Boundaryinfo and Initinfo.

Boundaryinfo contains values specifying the inter-procedural information reaching the en-

try/exit of the graph. For an entry node, Boundaryinfo specifies the value associated with

in(i) while for an exit node, Boundaryinfo specifies the value associated with out(i). These

values are important for the correctness of any optimisation based on the solution of the data

flow problem. A wrong specification may lead to an unsafe solution and may thus lead to an

incorrect optimisation.

Let Boundaryinfoi denote the value associated with an entry/exit node i.

� Boundaryinfoi is >, if either i 2 entry(G) and the forward confluence does not exist, or

i 2 exit(G) and the backward confluence does not exist.

� If i 2 entry(G) and the forward confluence exists, or i 2 exit(G) and the backward con-

fluence exists, Boundaryinfoi is determined by inter-procedural information if available,

else, by the semantics of the data flow problem as explained in the following.

Let T and F denote “all bits T” and “all bits F” respectively. Table 3.4 provides Boundaryinfo

for some representative data flow problems for local variables/expressions involving local

variables. Consider the example of live variable analysis. For local variables, the values

in Boundaryinfo are determined as follows : The information being gathered is a set of predi-

cates, each of which represents that a variable is live. For local variables, all these predicates

are false at the exit of a program, hence the values in Boundaryinfo are F for the exit nodes.

Since there is no forward flow, Boundaryinfo values for entry nodes are > which is F for a

union problem.

Initinfo specifies values for the internal nodes of the program flow graph. These are re-

quired in the case of iterative methods only. Using the confluence operator as a criterion,

the Initinfo values are defined to be >; anything else might lead to a fixed point lower than

32 CHAPTER 3. A GENERALISED THEORY OF DATA FLOW ANALYSIS

Data Flow Problem Direction u > ? Boundaryinfoi

i 2 entry(G) i 2 exit(G)

Reaching Definitions Forward OR F T F F

Live Variables Backward OR F T F F

Available Expressions Forward AND T F F T

Very Busy Expressions Backward AND T F T F

Dead Variables Backward AND T F T T

MRA Bidirectional AND T F F F

Table 3.4: Boundaryinfo values for local variables/expressions involving local variables.

MFP. Given correct Boundaryinfo, Initinfo influences the quality of information (vis-a-vis the

maximality of information), but not its safety.

The distinction between Boundaryinfo and Initinfo is usually not made in the literature,

leading to avoidable confusion. Although Boundaryinfo has no connection with the confluence

operator, the values in Boundaryinfo are often recommended as?.4 To correctly determine the

Boundaryinfo, we only need to ask the following two questions : (i) What is the information

being gathered ? and (ii) What is the information available from the caller procedure ?

Example 3.7 : Consider the problem of dead variable analysis which is a dual of the problem

of live variable analysis. It is an intersection problem in which a predicate indicates that a

variable is dead. For local variables, all predicates are true at the exit of a program. Hence the

values in Boundaryinfo are T for the exit nodes.

This should be contrasted with the problem of Very Busy Expressions for which the

Boundaryinfo values are F for the expressions involving local variables. Both the problems

are backward intersection problems with an identical form of data flow equations, yet they

have different Boundaryinfo values. 2

Clearly, it is incorrect to link the confluence operator with Boundaryinfo.

4[32] specifies?, [44] cautiously mentions “often?” while [2] specifies > with a remark that the values may

be ? in some cases.

3.4. SOLUTIONS OF DATA FLOW PROBLEMS 33

3.4 Solutions of Data Flow Problems

As noted in section 2.3, an acceptable solution is characterised by the safety and maximality

of fixed point.

3.4.1 Safe Solution

Let const (u) return the value of the constant property associated with program point u. For

all p; p0 and h 2 F [G such that p h(p0), we replace h in FLOW by huconst(P p(p)). Let

< u;v;Pr > be denoted by P in
r if v = in(r) and by P out

r if v = out(r). Further, let η denote

Boundaryinfo at the program point u which belongs to a graph entry/exit node.

A safe assignment SA : N! L is a function with two components, < SIN;SOUT > such

that, for a node r, and all P in
r /P out

r :

SIN(r) v FLOWP in
r

(η) (3.4)

SOUT(r) v FLOWP out
r

(η) (3.5)

Maximum SA represents the MOP solution. Any solution which is not contained in MOP

is unsafe.

The ifp’s reduce to graph theoretic paths for unidirectional problems. For a forward unidi-

rectional problem, P in
r reduces to graph paths from in(n0) to in(r) where n0 is an entry node,

and P out
r does not exist. Thus, the path flow function FLOWP in

r
reduces to M(ρ) defined in

Figure 2.1 and used for characterising MOP solution in section 2.3. Analogous remarks hold

for backward problems.

3.4.2 Fixed Point Solution

A fixed point solution is the fixed point of equations 3.2 - 3.3. Maximum fixed point is obtained

by setting Initinfo values to >.

For a forward unidirectional problem, the generic data flow equations reduce to equa-

tions 2.2 and 2.3. Analogous remarks hold for backward problems.

3.5 Looking Back

As promised towards the end of chapter 2, this chapter provides a neat and elegant character-

isation to handle the sibling and spouse effects rather naturally. A closer look at the proposi-

tions in this chapter reveal that this powerful characterisation is based on an extremely simple

34 CHAPTER 3. A GENERALISED THEORY OF DATA FLOW ANALYSIS

idea : distinction between the node flows and the edge flows. This careful distinction has far

reaching consequences, both on the theory and practice of data flow analysis.

Chapter 4

Performing Data Flow Analysis

“It may well be that this man is absurd. But he is not so absurd as the king,

the conceited man, the businessman, and the tippler. For, at least his work
has some meaning. When he lights his street lamp, it is as if he brought

one more star to life, or one flower. When he puts out his lamp, he sends

the flower, or the star, to sleep. That is a beautiful occupation. And since it
is beautiful, it is truly useful.”

This chapter presents a worklist based generic algorithm for performing data flow analysis.

Arising out of a generalised theory, this algorithm is uniformly applicable to unidirectional as

well as bidirectional data flow problems. This unification establishes the fact that the bidirec-

tional data flow problems are inherently no more complex than the unidirectional problems.

Section 4.3 analyses the complexity of the algorithm and makes several suggestions to im-

prove its practical performance. Section 4.4 establishes the correctness of the algorithm by

defining the solution computed by the algorithm in terms of a state transition model, and by

showing that the solution obtained is acceptable.

4.1 Characteristics of Data Flow Frameworks

Let p Bh(p0). If p0 is BOT, it may cause p to become BOT.

All bit vector problems have the following important characteristics :

� MBVP : A property changes from TOP to BOT only.

� SBVP : 8 p0;8 h such that p h(p0), if p0 causes p to become BOT, it does so on its

own and not in combination with other corresponding properties.

These characteristics arise from monotonicity and singularity respectively :

36 CHAPTER 4. PERFORMING DATA FLOW ANALYSIS

(i) For convergence on MFP, Initinfo is >. Since the functions involved are mono-

tonic, if there is a change, it must be from TOP to BOT only.

(ii) Data flow frameworks have been defined in terms of a semilattice which implies a

single confluence operator.

Since unidirectional flow problems typically have only one confluence, SBVP was never

emphasised or mentioned explicitly in the literature. In the case of bidirectional problems, if

all confluences merge the global information using the same boolean operator, as is the case

in MRA, SBVP holds automatically.

Example 4.1 : As noted in example 3.3, MMRA uses two confluences. Consequently, SBVP

is violated : PPIN j = F can not set the PPINi of a successor i to F on its own, but may do so

in combination with PPIN of other predecessors of i. 2

Lemma 4.1 : All bit vector data flow frameworks possess the SBVP property.

Proof : Let X(u) represent the properties at program point u. The data flow equations can be

written in an abstract form as :

X(u) =
v 2 N �1

(u)
h(X(v))uCONST(u)

Let p be a property in X(u) and p0, the corresponding property in X(v). We know that

pv Bh(p0). By the definition of u, Bh(p0) = BOT) p = BOT. Thus, p can become BOT

regardless of the values of other properties. Thus, p0 changes p to BOT on its own and not in

combination with other properties. 2

There are two important implications of the characteristics MBVP and SBVP :

(i) A considerable reduction in the work for performing data flow analysis is possible

because :

(a) MBVP guarantees that a property p which has become BOT need not

be recomputed as it has attained its final value.

(b) SBVP guarantees that all neighbouring properties can be refined, rather

than recomputed, to incorporate the effect of a property changing to

BOT.1

1Refinement is not a new concept; it can be traced in the worklist-based iterative algorithm in [32]. Here we

just make it explicit.

4.1. CHARACTERISTICS OF DATA FLOW FRAMEWORKS 37

Let X(u) and X 0

(u) represent the old and new values at program point

u, and let v be the program point at which values have changed. Equa-

tion 4.1 defines recomputation, while equation 4.2 defines refinement :

X 0

(u) =

v 2 N �1
(u)

h(X 0

(v))uCONST(u) (4.1)

X 0

(u) = X(u)uh(X 0

(v)) (4.2)

When contrasted with recomputation, which uses the values of all neigh-

bouring properties, refinement decreases the amount of work by a factor

that depends on the number of in-edges/out-edges of a node. Lemma 4.2

shows the equivalence between refinement and recomputation.

(ii) MBVP guarantees the termination of data flow analysis — the values of properties

change in one direction only.

Lemma 4.2 : Refinement and recomputation yield identical results for singular data flow

problems.

Proof : The equation for recomputation can be rewritten as

X
0

(u) = h1(X
0

(v1))u�� �uhi(X
0

(vi))u�� �uCONST(u)

Let the properties change at the neighbouring point vi only, i.e. X0

(v j) = X(v j); j 6= i. Further,

X0

(vi) 6= X(vi)

) X0

(vi)v X(vi) . . . since properties can change towards ? only

) hi(X0

(vi))v hi(X(vi)) . . . from monotonicity

) hi(X0

(vi))uhi(X(vi)) = hi(X0

(vi)) (4.2.A)

X0

(u) = h1(X(v1))u�� �uhi(X0

(vi))u�� �uCONST(u)

= h1(X(v1))u�� �uhi(X0

(vi))uhi(X(vi))u�� �uCONST(u) . . . from (4.2.A)

= h1(X(v1))u�� �uhi(X(vi))u�� �uCONST(u)uhi(X0

(vi))

= X(u)uhi(X0

(vi))

Since refinement is applied for every neighbour vi whenever X(vi) changes, refinement yields

the same result as recomputation. 2

38 CHAPTER 4. PERFORMING DATA FLOW ANALYSIS

4.2 Performing Data Flow Analysis

4.2.1 Wordwise Analysis

Since the size of a bit vector may vary with the size of the program, we propose to process the

bit vectors in parts. Further, we partition the problem of data flow analysis so as to process

a specific part of a bit vector, rather than the entire bit vector, in each step. We select a part,

process it all over the graph and then select the next part which needs to be processed. At

one extreme, each part may consist of one bit as in [25]; at the other extreme, each part may

be the largest chunk of a bit vector which can be processed in one machine operation, which

typically is a machine word. We follow the latter approach, which we term wordwise analysis.

Wordwise analysis results in considerable savings in the work to be performed since all

parts may not require processing for all nodes of the graph. More formally, let N be the

set of nodes, and M, the set of words. The set N�M is partitioned into two subsets, the

set NMp which requires processing, and the set NMnp which does not. Wordwise analysis

implies selecting all entries for a specific word from NMp and processing them. The traditional

approach of processing all words of a bit vector partitions only N. Let Np and Nnp be the

partitions. Since all words in M are processed for each node in Np, it results in more work.

Henceforth, the discussion will be in terms of properties belonging to < u;w > where u is

a program point and w is a word.

4.2.2 The Basic Algorithm

Figure 4.1 contains the basic algorithm which is a generalisation of the worklist-based iterative

method. The work is divided in two phases : initialisation and propagation, performed by the

procedures init and settle respectively.

Initialisation

As noted in section 3.2, information flow is initiated by the properties whose initial values are

BOT due to local effects of computations existing within a node/along an edge. The Initial

Trigger Set, denoted TR0, contains all such properties.

Bprops = fp j either P p(p) = in(i); i 2 entry(G) or

P p(p) = out(i); i 2 exit(G)g

TR0 = fp j p Bh(p0) such that Bh(TOP) = BOT or

p 2 Bprops and p = BOTg (4.3)

4.2. PERFORMING DATA FLOW ANALYSIS 39

1. procedure dfa()

2. f init()

3. settle()

4. g

5. procedure init()

6. f for each word w

7. for each node i of the graph

8. f Set all inflow properties in word w to TOP

9. Compute the outflow properties in word w

10. if any property is BOT then /? it belongs to TR0 ?/

11. Insert i in the worklist for word w

12. g

13. g

14. procedure settle()

15. f for each word w

16. for each node i in the worklist of w

17. propagate(i;w)

18. g

19. procedure propagate(i;w)

20. /? propagate the effect of the outflow properties of i ?/

21. f for each neighbouring node k of i

22. f Refine the inflow properties of k in word w /? using ge ?/

23. Compute the outflow properties of k in word w /? using fk ?/

24. if some property changes to BOT then

25. propagate(k;w)

26. g

27. g

Figure 4.1: The Basic Algorithm

After incorporating the initialisation in equations 3.2 and 3.3, TR0 can be computed from the

following equations :

INi =

8

<

:

Boundaryinfoi if i 2 entry(G)

j2pred(i)
g

f

(j;i)
(>) f b

i (>) CONST INi otherwise
(4.4)

40 CHAPTER 4. PERFORMING DATA FLOW ANALYSIS

OUTi =

8

<

:

Boundaryinfoi if i 2 exit(G)

k2succ(i)
gb
(i;k)

(>) f
f

i (>) CONST OUTi otherwise
(4.5)

Example 4.2 : For MRA, TR0 contains the following properties :

TR0 = fPPINl
i j i 2 entry(G) or PAVINl

i = F or ANTLOCl
i = TRANSPl

i = Fg

[fPPOUTl
i j i 2 exit(G)g

2

Procedure init constructs TR0 by computing the outflow properties for each node i. If any

property p in word w is BOT, node i is inserted in the worklist for word w.

Propagation

Propagation selects a node from the worklist of a given word and propagates the transitive

influence of its BOT properties. Effectively, many bits in a word are processed simultane-

ously. The outflow properties in the current word of a node’s bit vector may change the inflow

properties of neighbouring nodes, which are refined to incorporate their influence. From these

inflow properties, the corresponding outflow properties of the node are computed. If any out-

flow property changes to BOT, it becomes a candidate for propagation whose influence is

propagated to its neighbours by the recursive call in procedure propagate.

4.2.3 A Generic Algorithm for Data Flow Analysis

The generic algorithm embodies two major deviations from the traditional algorithms :

1. Wordwise analysis :

This reduces the amount of work required for data flow analysis.

2. Distinction between entry and exit points of a node :

This is necessary for the treatment of bidirectional flows.

Figures 4.2 and 4.3 contain the algorithm which uses equations 3.2, 3.3 and 4.4, 4.5 for

the IN and OUT properties of a node. The specific points to be noted are :

� Some speedup can be achieved by accumulating as many changes as possible for a

<program point, word> pair before refining the properties of neighbouring program

points. Hence the pairs with fewer BOT properties are processed later by maintaining

the worklists in sorted order according to the number of BOT properties.

4.2. PERFORMING DATA FLOW ANALYSIS 41

1. procedure dfa ()

2. f init ()

3. settle ()

4. g

5. procedure init ()

6. f for each word w

7. for each node i

8. f if i 2 entry(G) then

9. INi = Boundaryinfoi

10. else

11. INi =
j2pred(i)

g
f

(j;i)
(>) f b

i (>) CONST INi

12. if any property in INi is BOT then /? it belongs to TR0 ?/

13. Insert < i; in(i)> in LISTw

14. if i 2 exit(G) then

15. OUTi = Boundaryinfoi

16. else

17. OUTi =
k2succ(i)

gb
(i;k)

(>) f
f

i (>) CONST OUTi

18. if any property in OUTi is BOT then /? it belongs to TR0 ?/

19. Insert < i;out(i)> in LISTw

20. g

21. g

22. procedure settle ()

23. f for each word w

24. f while 9 an entry <node, program point> in LISTw

25. Delete <node, program point> from LISTw

26. if program point = in(node) then

27. propagate in (node;w)

28. else propagate out (node;w)

29. g

30. g

Figure 4.2: A Generic Algorithm for Data Flow Analysis

� The recursive calls during propagation have been eliminated by inserting a node in the

worklist during propagation also. Apart from eliminating the overheads associated with

42 CHAPTER 4. PERFORMING DATA FLOW ANALYSIS

31. procedure propagate in (i;w)

32. f OUTi = OUTi f
f

i (INi) /? refinement using f
f

i ?/

33. if any property in OUTi becomes BOT then

34. Insert < i,out(i)> in LISTw if not already present

35. for all j 2 pred (i)

36. f OUT j = OUT j gb
(j;i)

(INi) /? refinement using gb
(j;i)

?/

37. if any property in OUT j becomes BOT then

38. Insert < j,out(j)> in LISTw if not already present

39. g

40. g

41. procedure propagate out (i;w)

42. f INi = INi f b
i (OUTi) /? refinement using f b

i ?/

43. if any property in INi becomes BOT then

44. Insert < i,in(i)> in LISTw if not already present

45. for all k 2 succ (i)

46. f INk = INk g
f

(i;k)
(OUTi) /? refinement using g

f

(i;k)
?/

47. if any property in INk becomes BOT then

48. Insert < k,in(k)> in LISTw if not already present

49. g

50. g

Figure 4.3: A Generic Algorithm for Data Flow Analysis (contd. from Fig. 4.2)

recursion, this aids in delayed propagation.

� For refinement of properties during propagation, it is sufficient to apply a function h0

instead of h(Z) = C1 +C2 �Z where h0 is defined as follows.

– For intersection problems : 8Z 2 L , h0(Z) = C1 +Z, since

X0

(u) = X(u) �h(X0

(v)) . . . from equation (4.2)

= X(u) �h(X(v)) �h(X0

(v)) . . . since X(u)v h(X(v))

= X(u) � (C1+C2 �X(v)) � (C1+C2 �X
0

(v))

= X(u) � (C1+C2 �X(v) �X
0

(v))

= X(u) � ((C1+C2 �X(v)) � (C1+X0

(v)))

= X(u) �h(X(v)) �h0(X0

(v))

= X(u) �h0(X0

(v)) . . . since X(u)v h(X(v))

4.3. COMPLEXITY OF DATA FLOW ANALYSIS 43

– For union problems : 8Z 2 L , h0(Z) = C2 �Z, since

X0

(u) = X(u)+h(X0

(v)) . . . from equation (4.2)

= X(u)+h(X(v))+h(X0

(v)) . . . since X(u)v h(X(v))

= X(u)+(C1 +C2 �X(v))+(C1 +C2 �X
0

(v))

= X(u)+C1 +C2 �X(v)+C2 �X
0

(v)

= X(u)+(C1 +C2 �X(v))+(C2 �X
0

(v))

= X(u)+h(X(v))+h0(X0

(v))

= X(u)+h0(X0

(v)) . . . since X(u)v h(X(v))

Thus, only two operations are required per function application instead of three.

The generic algorithm is uniformly applicable to unidirectional and bidirectional flows.

Since the algorithm belongs to iterative class of methods, a data flow analysis algorithm for

a given problem can be automatically constructed from the data flow equations without the

knowledge of the semantics of the underlying problem.2 Alternatively, the generic algorithm

can be augmented to interpret the data flow equations and execute the appropriate lines. Adap-

tation of the algorithm is a significant advantage as far as reliability and ease of development

of a data flow analysis module is concerned.

Chapter 5 presents an adaptation of the algorithm for MRA

4.3 Complexity of Data Flow Analysis

4.3.1 Complexity of the Generic Algorithm

Since the size of a bit vector may vary with the size of the program (section 4.2.1), the unit of

work for performance analysis should be the work required to process one word rather than

the work required to process one bit vector. Hence, in the following, an operation refers to one

bit vector operation on the properties located in one word of a node. The bounds derived in

this section assume that the number of edges, e, is O(n) where n denotes the number of nodes.

Figure 4.4 gives the notations used in this section.

To estimate the complexity, we develop a notion of orthogonality in bit vector processing.

Let n1 and n2 be some two nodes in the worklist for the word being processed. The order in

which the effect of n1 and n2 is propagated does not matter; final result is a superposition of

the effects of various nodes regardless of the order in which they are processed. Similarly,

2Elimination methods cannot be extended to general bidirectional data flow problems [24].

44 CHAPTER 4. PERFORMING DATA FLOW ANALYSIS

n number of nodes.

e number of edges.

no w number of words.

d ini the in-degree of node i.

d outi the out-degree of node i.

B j fk j k is a bit in word j and figures in TR0 for some node g.

b j jB j j.

n j number of nodes in the worklist for word j after TR0 construction.

op prop
j
k number of operations performed while processing the properties

corresponding to the bit k in B j.

max op prop max(op prop
j
k) 0� k � bi; 1� j � no w.

op word
j
i number of operations performed while propagating the effect of

word j of node i.

max op word max(op word
j
i) 0� j � no w; 1� i� n

t op j total number of operations required to refine the properties of word j.

t work total work performed during propagation.

Figure 4.4: Notations used for performance analysis

since the bits are independent, the words may also be processed in any order. Thus, while

propagating the effect of a node on some worklist, we may safely ignore the presence of other

nodes in the same worklist, and all nodes in all other worklists. If we can estimate the amount

of work done for one node in one worklist, it is easy to estimate the total work done — it is

the sum of the work done for all nodes in all worklists.

Note that due to the orthogonality among words and among the nodes in one worklist, all

changes that have to take place in a given word due to a given node in the worklist, will take

place simultaneously. If some bit changes later, it must be due to the effect of some other node

in the same worklist. This argument forms the basis of the following lemma.

Lemma 4.3 : After constructing TR0, the effect of the BOT properties of a given node in the

worklist for a given word can be completely propagated in O(n) operations.

Proof : Let node i be reached while propagating the effect of properties in word m of some

node r. Without loss of generality, assume that the effect of INi properties is propagated first.

Since two operations are required for refinement (section 4.2.3), the effect of changes in INi

can be propagated in 2�d ini+2 operations — 2�d ini operations for refining the OUT proper-

ties of predecessors and two operations for refining OUTi. The effect of the BOT properties

in OUTi, if any, can be propagated in 2�d outi operations. Thus, the maximum number of op-

erations performed on visiting node i is 2�d ini +2�d outi +2. In the worst case all the nodes

4.3. COMPLEXITY OF DATA FLOW ANALYSIS 45

may have to be visited. Hence,

max op word =

n

∑
i=1

(2�d ini +2�d outi +2) = 4�e+2�n

which is O(n). 2

Lemma 4.4 : The effect of a given property in TR0 can be completely propagated in O(n)

operations.

Proof : As in lemma 4.3, it can be shown that max op prop = 4�e+2�n. 2

Lemma 4.5 : O(n2
) operations are needed to propagate the influence of all properties in

TR0.

Proof : Propagating the influence of the properties of a node may subsume the influence of

the properties of some other node. Thus,

t op j � n j �max op word

t work =

no w

∑
j=1

t op j

�

no w

∑
j=1

n j �max op word

� max op word �
no w

∑
j=1

n j (4.6)

Further, since all properties in a word are processed simultaneously,

t op j � b j �max op prop

t work =

no w

∑
j=1

t op j

�

no w

∑
j=1

b j �max op prop

� max op prop �
no w

∑
j=1

b j (4.7)

Both max op word and max op prop are 4�e+2�n). Hence, it follows from 4.6 and 4.7 that,

t work � 4�e+2�n �min(
no w

∑
j=1

n j;

no w

∑
j=1

b j) (4.8)

The worklist length for a word is O(n) hence ∑n j could be O(n2). Since no w is O(n), ∑b j is

O(n) and hence, min(∑n j;∑b j) is O(n). Since e = O(n), t work is O(n2). 2

46 CHAPTER 4. PERFORMING DATA FLOW ANALYSIS

Lemma 4.6 : TR0 can be constructed in O(n2) operations.

Proof : It is evident from equations 4.4 and 4.5 that 3�d ini +3 operations are required to

compute the values of INi — two operations for computing each g
f

(j;i)
(>), two operations

for computing f b
i (>) and d ini +1 operations for meet. Similarly, 3�d outi +3 operations are

required to compute the values of OUTi. Hence the total number of operations for one word

is

n

∑
i=1

(3�d ini +3�d outi +6) = 6�(e+n)

which is O(n). Since there are O(n) words, the complexity is O(n2
). 2

Theorem 4.1 : Total work done by the proposed algorithm is O(n2
).

A closer look at the proofs of lemmas 4.5 and 4.6 reveals that refinement does not seem to

play any role in the complexity. Since e is O(n), it is perfectly valid to assume that the degree

of a node is bounded by a constant. In such a case even if the properties are recomputed, the

order of the work involved remains the same. However, refinement has a practical significance

as it reduces the number of operations by a constant factor.

4.3.2 Performance in Practical Situations

Though the theoretical complexity of the algorithm is O(n2
), there are several reasons to

believe that the performance would be better in practice.

Initialisation

The edge flow functions for almost all known data flow frameworks are either identity func-

tions or functions of the form h(X) = C1 +X for the intersection problems (viz. MRA and

LSIA) and h(X) = C1 �X for union problems (viz. CHSA). Thus the application of edge flow

functions, h(>), required for the TR0 construction (equations 4.4, 4.5), is almost always >

and the number of operations per word reduces from 3�d ini +3�d outi +6 to 3 — two oper-

ations for the node flow function and one for the meet with constant properties. In the case

of unidirectional problems, since the constant properties CONST IN and CONST OUT are

typically >, the number of operations further reduces to 2. These operations incorporate the

local effect of a node and represent the minimum amount of work that must be done for any

data flow problem. Note that though the bound on initialisation is O(n2
), it requires only one

traversal over the graph.

4.4. CORRECTNESS OF DATA FLOW ANALYSIS 47

Propagation

Let K be defined as follows :

K = min(
no w

∑
j=1

n j;

no w

∑
j=1

b j) (4.9)

Then the bound on the propagation becomes O((e+n) �K).

After the initialisation is performed, we can evaluate K and determine a more realistic

bound on the work required by propagation. In the best case, both no w and K might be 1, in

which case the work is O(n). The actual work performed by the propagation is likely to be

even better than the estimate in terms of K :

� We do not process the individual bits but words of bits.

� In practice, the effect of the BOT properties of a node in the worklist may not propagate

over the entire graph.

� Since propagation is delayed as far as possible, the effect of some nodes may be sub-

sumed by propagation for other nodes. Hence the effect of all nodes in the worklist may

not have to be propagated separately.

� Some other heuristics can be employed for the worklist organisation to select appro-

priate nodes for propagation. In the case of MRA, forward node flow does not exist

(i.e. f
f

k is >) hence the information flow is predominantly backwards. Thus, it may be

beneficial to process the nodes in the postorder as it may propagate the effect of some

changes more rapidly.

4.4 Correctness of Data Flow Analysis

Instead of directly showing the correctness of an algorithm, it is often easier to define the

solution obtained by the algorithm and show the correctness of the solution. In this section

we first define an abstraction of the generic algorithm. Then we provide a definition of the

solution obtained by the algorithm. Finally, we show the correctness of the solution.

4.4.1 A State Transition Model for Data Flow Analysis

Following section 4.1, data flow analysis can be viewed as a process of successive refinement

of properties, each refinement changing some property from TOP to BOT. We can visualise

48 CHAPTER 4. PERFORMING DATA FLOW ANALYSIS

each configuration of data flow properties as a state. Thus each refinement constitutes one

state transition. We propose a state transition model of data flow analysis in this section.

Definition 4.1 : Dependence

A property p depends on a property p0 if p0 is capable of changing p to BOT.

Depends(p) = fp0 j p Bh(p0) and Bh � propagateg

Definition 4.2 : Seed

A property p0 is a seed of a property p if p depends on p0 and p0 is BOT.

Seed(p) = fp0 j p0 2 Depends(p) and p0 = BOTg

Since a property could influence the corresponding properties of several neighbouring

nodes, many properties may have a common seed. Similarly, a property may have multiple

seeds.

States and State Transitions

Definition 4.3 : State

A state Si is a configuration of the values of properties defined by the pair <TRi;CAi>, where

the sets TRi and CAi are defined as follows.

Definition 4.4 : Trigger Set

Trigger set TRi is a set of properties which are BOT in state Si.

Definition 4.5 : Candidate Set

Candidate set CAi is a set of properties which are TOP in state Si and have a seed in TRi, i.e.

CAi = fp j p = TOP and Seed(p)\TRi 6= /0g

The properties contained in a trigger set are the properties which are not going to change

any further. However, they influence the properties contained in the candidate set.

Observation 4.1 : i1 < i2) TRi1 � TRi2 . 2

Let S0;S1;S2; : : : ;S f be the sequence of states during an analysis where S0 is the initial

state and S f is the final state.

� The initial state S0 is characterised by TR0 which was defined in section 4.2.2.

Note that a p 2 TR0 has no seed. A p 62 TR0 may have multiple seeds.

4.4. CORRECTNESS OF DATA FLOW ANALYSIS 49

� The final state S f is characterised by CA f = /0.

For a given set of Boundaryinfo values, there is a unique start and a unique final state.

A state transition is caused by a change in the value of some property. We denote a transi-

tion from state Si to state Si+1 on a property p becoming BOT, by Si
p
! Si+1.

Observation 4.2 : Si
p
! Si+1) Seed(p)\TRi 6= /0 and p 2 TRi+1. 2

Consider a transition Si
p
! Si+1. The property p may have multiple seeds and several

properties may depend on p. Since any sequence of transitions is necessarily acyclic, the state

transition diagram for the complete model is a directed acyclic graph. For a given model,

different analyses may follow different sequences of transitions, all starting in state S0 and

ending in state S f .

Definition 4.6 : Chain3

A chain CH(p0; p) is the sequence p0; p1; : : : ; pn where p0 = p0; pn = p and p j�1 2 Seed(p j),

0 < j � n. The first property p0 may or may not have a seed.

The length of a chain CH(p0; p) = p0; p1; : : : ; pn is n. The properties p0; � � � ; pn�1, are

the transitive seeds of p. Let Depends?(p) and Seed?(p) denote the transitive closures of

Depends(p) and Seed(p) respectively. It follows that,

8p; Seed?(p)� Depends?(p)

Since a property can have multiple seeds, a property may belong to several chains. Two

chains CH(p1; pn) and CH(p01; p0n) are said to overlap if they share a property which is not the

first property of any of them (i.e. either p1 or p01). Since a property changes only once, a chain

is necessarily acyclic.

A chain is realized by a sequence of state transitions.

Number of States and State Transitions

It is obvious that the total number of states is exponential in the number of properties. More

formally, if the size of the bit vector is r and there are n nodes in the program flow graph, the

total number of properties is 2nr. Since each property could be either T or F the total number

of combinations is 22nr.

3Not to be confused with the lattice chains.

50 CHAPTER 4. PERFORMING DATA FLOW ANALYSIS

��

��

1e1 : a�b

?

��

��

2e2 : b� c

��

��

4c :=
��

��

3b :=

��

��

5e3 : c�d

?

��

��

6

S

Sw

�

�/

S

Sw

�

�/

+

Figure 4.5: Graph for state transition model of available expressions.

Since a chain fragment is itself a chain, the total number of chains is exponential in the

number of properties. However, a property changes only once and the total number of transi-

tions during an analysis is bounded by the sum of the lengths of all non-overlapping chains.

For a given property, this sum cannot exceed the number of program points (which is 2n). If

there are r bits, the number of transitions is bounded by 2nr.

The goal of data flow analysis is to construct TR f for the final state S f . This is achieved

by constructing TR0 and tracing all chains for all properties. This approach can be applied

uniformly irrespective of the direction of data flow, the confluence operator and the graph

topology.

Example 4.3 contains an illustration of a state transition model.

Example 4.3 : For the simplicity of exposition, consider a forward unidirectional problem

viz. the problem of available expressions analysis for the program flow graph in Figure 4.5.

Assume that all the variables are local variables. Then Boundaryinfo is F (see section 3.3.2).

Let INl
i and OUTl

i represent the AVINl
i and AVOUTl

i properties respectively.

� Start State : S0 =< TR0;CA0 >.

(i) Boundaryinfo is F for node 1, and T (i.e. >) for node 6. Further, since

COMP and TRANSP are F for e1 and e2 in node 3 and for e2 and e3 in node

4,

TR0 = fIN
1
1; IN2

1; IN3
1;OUT1

3;OUT2
3;OUT2

4;OUT3
4g.

(ii) CA0 = fOUT2
1;OUT3

1; IN1
5; IN2

5; IN3
5g.

4.4. CORRECTNESS OF DATA FLOW ANALYSIS 51

� Dependences and Chains :

Let p and p0 be the properties for the expression el 2 fe1;e2;e2g. The dependence

relation Depends(p) = fp0g holds for the following pairs < p; p0>

(i) < INl
j;OUTl

i > such that edge (i; j) exists in the graph, and

(ii) < OUTl
i; INl

i > such that COMPl
i = F and TRANSPl

i = T.

In particular, dependence does not hold for the pairs < OUTl
i; INl

i >, for the (expression,

node) pairs (l; i) 2 f(1;1);(2;2);(1;3);(2;3);(2;4);(3;4);(3;5)g.

The possible chains for the property OUT1
3 2 TR0 are :

(i) OUT1
3; IN1

5;OUT1
5; IN1

6;OUT1
6.

(ii) OUT1
3; IN1

5;OUT1
5; IN1

2;OUT1
2; IN1

3.

(iii) OUT1
3; IN1

5;OUT1
5; IN1

2;OUT1
2; IN1

4;OUT1
4.

The underlines indicate the non-overlapping chains.

� State Transitions :

If OUT1
3 is selected from TR0 as the first property and the chains are traced in the order

they are enumerated, the sequence of transitions is

S0
IN1

5
! S1

OUT1
5

! S2
IN1

6
! S3

OUT1
6

! S4
IN1

2
! S5

OUT1
2

! S6
IN1

3
! S7

IN1
4
! S8

OUT1
4

! S9 � � �S f :

� Final State : S f =< TR f ;CA f >

(i) From the definition of the final state, CA f = /0.

(ii) TR f contains all properties except the following properties which are TOP

in the final state : fOUT1
1;OUT2

2; IN2
3; IN2

4;OUT3
5; IN3

6;OUT3
6g.

� Number of States and State Transitions :

Since there are 3 bits and 6 nodes, total number of states is 22�6�3 which is 236. The

number of transitions during an analysis is bounded by the sum of the lengths of all non-

overlapping chains which, for expression e1, is 9. Even if the chains for all expressions

are not enumerated, the upper bound on the number of transitions (for all expressions)

is 2nr which is 36.

2

52 CHAPTER 4. PERFORMING DATA FLOW ANALYSIS

4.4.2 Correctness of the Generic Algorithm

Correctness is established by showing that the solution obtained is acceptable. From the dis-

cussion in section 2.3, it is evident that the acceptability of a solution follows if it can be shown

that a solution procedure converges on MFP. There are three steps in the proof :

(a) existence of a fixed point solution,

(b) convergence on a fixed point, and

(c) maximality of the fixed point.

Step (a) follows from monotonicity and the fact that every strictly descending chain in

the lattice is of finite length. We prove (b) and (c) in this section. Recall that our solution

procedure consists of two steps :

(i) Initialisation : Constructing TR0.

(ii) Propagation : Constructing all chains for all properties in TR0.

Lemma 4.7 : A property p changes to BOT iff either p 2 TR0 or Seed?(p) \TR0 6= /0.

Proof : Follows directly from the solution procedure. 2

Lemma 4.8 : Propagation converges on a fixed point.

Proof : Termination is guaranteed by monotonicity. We show here that the propagation termi-

nates on a fixed point. Recall that a fixed point is defined as the fixed point of equations 3.2 –

3.3. We can rewrite the equations in a more abstract form as

Y = h(X) CONST

where h(X) represents the meet of the edge/node flow functions.

Assume that after the algorithm terminates, the resulting assignment Y is not a fixed point,

i.e. if Z = h(X) CONST, then Y 6= Z. Let X i denote the ith bit of X . Then some Y i and

Zi have different values.

(a) Y i = TOP, Zi = BOT.

Zi could be BOT if

(i) X i = BOT or,

(ii) X i = TOP but B i
h(X

i
) = BOT or,

4.5. LOOKING BACK 53

(iii) X i = TOP, B i
h(X

i
) = TOP but CONSTi = BOT.

In case (i) X i
2 Seed(Y i

). In cases (ii) and (iii) Y i
2 TR0. By lemma 4.7, Y i must

be BOT in all the cases which leads to a contradiction.

(b) Y i = BOT, Zi = TOP.

If Zi is TOP, Y i can not have a seed nor does it belong to TR0. From lemma 4.7, Y i

cannot be BOT.

2

Theorem 4.2 : The fixed point obtained by the solution procedure is the maximum fixed point.

Proof : This can be proved by induction on states. Let S0;S1;S2; : : : ;S f be the sequence of

states during an analysis. Let FP be some fixed point, and let the assignment in state S j be

AS j.

For the basis case, we know that TR0 computation involves only constants and hence, all

the properties which are in TR0 would necessarily be BOT in any fixed point solution. In other

words, all the bits which are BOT in AS0 are necessarily BOT in FP; the bits which are TOP

in AS0 may or may not be TOP in FP. Thus,

8 i 2 N : FP(i) v AS0(i)

Assume that the containment holds for some state Sk. Let Sk
p
! Sk+1. This is possible only

if Seed(p) \TRk 6= /0. Since some seed of p is BOT in FP (by the virtue of being in TRk), p

must be BOT in FP. Hence,

8 i 2 N : FP(i) v ASk+1(i)

Since the containment holds for k+ 1, by induction it holds for the final state S f i.e., FP is

contained in AS f . Since this holds for any FP, all fixed points are contained in AS f which

itself is a fixed point (from lemma 4.8). Hence AS f is the maximum fixed point. 2

Since MFP is same as MOP for all bit vector problems, the algorithm computes the MOP

solution for all bit vector problems.

4.5 Looking Back

Transition from chapter 3 to this chapter is a transition from theory to practice. This transition

is backed up by a detailed analysis of performance and a proof of correctness of the proposed

54 CHAPTER 4. PERFORMING DATA FLOW ANALYSIS

algorithm. Generality and adaptability are two significant features of the algorithm. These

advantages follow almost automatically since the algorithm is based on a generalised theory

and belongs to the iterative class of methods. This is so by design, and not by accident, though!

Chapter 5

An Efficient Solution Procedure for MRA

This was the merchant who sold pills that had been invented to quench the

thirst. You need only swallow one pill a week, and you would feel no need
of anything to drink.

“Why are you selling those ?” asked the little prince.
“Because they save a tremendous amount of time,” said the merchant.

“Computations have been made by experts. With these pills, you save fifty-

three minutes in every week.”

This chapter reviews some approaches of solving the partial redundancy elimination algo-

rithms, discusses their limitations and presents an efficient solution procedure for MRA which

is an adaptation of the generic algorithm. Section 5.3.2 compares its performance with the

round robin iterative method for MRA.

5.1 Speedy Solution of MRA-Class of Algorithms

The classical elimination methods are not directly applicable to the solution of bidirectional

data flow problems [24], hence they have been solved conventionally using the round robin

iterative approach. The observable complexity of this approach is reported to be 5 or fewer

iterations for most programs [34, 35, 45]. The first (strict) bound on the number of iterations

is derived in [23] which is discussed in chapter 6. In this section we discuss some other

approaches which solve MRA indirectly in the sense that they solve equivalent problems but

fail to solve MRA directly. These approaches will also be discussed in chapter 6.

56 CHAPTER 5. AN EFFICIENT SOLUTION PROCEDURE FOR MRA

5.1.1 The Edge Placement Approach

The forward dependency of MRA arises due to safety considerations, and the desire to place

a hoisted computation strictly in a node of the original program flow graph. If the latter

condition is relaxed, it is possible to eliminate the forward dependencies. In such an event,

a computation which is hoisted out of node i, but which can not be placed in a predecessor

node j due to safety considerations, is placed along the edge (i, j). A special synthetic node

is introduced in the program flow graph to accommodate such computations. A complete

description of such an algorithm, called the edge placement algorithm (EPA), and its solution

aspects is contained in [17]. This approach also has some specific advantages when used

for Load-Store placement in register assignment [20]. Other related work can be found in

[21, 12, 58, 27].

Elimination of the forward dependencies in this manner reduces the primary code place-

ment problem to a unidirectional problem which has lower solution complexities. However,

this approach faces the following difficulties :

� The approach may perform poorly due to code proliferation [17]. To inhibit such pro-

liferation, it becomes necessary to introduce an additional profitability criterion, which

re-introduces forward dependencies. [17] suggests a fast solution technique for the data

flows involved, however the approach continues to suffer from the drawback mentioned

below.

� Introduction of synthetic nodes in the program introduces run time overheads (upto 2

additional branch instructions per synthetic node [17]).

5.1.2 The Edge-Splitting Approach

The edge-splitting approach a priori splits edges which run from a fork node (i.e. a node

with more that one successor) to a join node (i.e. a node with more that one predecessor).

The placement problem is then solved as a backward unidirectional problem, followed by

a forward correction pass over the program (note that the forward correction is not a data

flow problem, it is simply one pass over the program) [25]. This approach suffers from the

following drawbacks :

� It is more expensive than solving the primary data flow in EPA, which is simply a back-

ward unidirectional data flow problem.

5.2. ADAPTING THE GENERIC ALGORITHM FOR MRA 57

� It requires an additional edge-splitting pass, which amounts to introducing synthetic

nodes along edges which are to be split.

� Its solution is different from the MRA solution, in the sense that expressions may be

needlessly put along edges, whereas they would have been put into program nodes by

MRA. This problem is not faced by the edge placement approach.

� Some of the synthetic nodes introduced due to edge splitting may be redundant. These

have to be removed.

5.2 Adapting the Generic Algorithm for MRA

The generic algorithm can be easily adapted for any bit vector data flow problem. The mod-

ifications involve omission/replication of some computations and are governed by the flow

functions of a data flow framework, which can be derived from the data flow equations syn-

tactically without requiring any knowledge of the underlying problem.

Figures 5.1 and 5.2 contain a straightforward adaptation for MRA assuming the Boundaryinfo

values to be F. Since there is no forward node flow in MRA the lines corresponding to f f are

omitted from the generic algorithm. Besides, there is no need to use separate bit vectors for

CONST OUT properties since they are TOP.

5.3 Empirical Performance of the Algorithm

The algorithm was implemented and integrated in the optimiser of an optimising compiler

developed at IIT Bombay. Extensive experiments were carried out with a a set of scientific

programs written in Fortran.

5.3.1 Speeding Up the Algorithm

Empirical profiling revealed that even without any heuristic for list organisation, the proposed

algorithm performed much better in terms of the number of bit vector operations than the

round robin method which is how MRA has been solved traditionally. However, regardless of

the heuristic, it fared poorly in terms of actual time initially. This was due to the ‘ overheads

associated with :

1. Function calls : Round robin method does not make any function calls.

58 CHAPTER 5. AN EFFICIENT SOLUTION PROCEDURE FOR MRA

1. procedure mra ()

2. f init ()

3. settle ()

4. g

5. procedure init ()

6. f for each word w

7. for each node i

8. f if i 2 entry(G) then

9. PPINi = F

10. else

11. PPINi = PAVINi�(ANTLOCi + TRANSPi)

12. if any property in PPINi is F then /? it belongs to TR0 ?/

13. Insert < i; in(i)> in LISTw

14. if i 2 exit(G) then

15. PPOUTi = F

16. else

17. PPOUTi = T

18. if any property in PPOUTi is F then /? it belongs to TR0 ?/

19. Insert < i;out(i)> in LISTw

20. g

21. g

22. procedure settle ()

23. f for each word w

24. f while 9 an entry <node, program point> in LISTw

25. Delete <node, program point> from LISTw

26. if program point = in(node) then

27. propagate in (node;w)

28. else propagate out (node;w)

29. g

30. g

Figure 5.1: A Straightforward Adaptation for MRA

2. Worklist maintenance : Round robin method does not require any worklist.

The performance of the algorithm was improved by changes at three levels :

5.3. EMPIRICAL PERFORMANCE OF THE ALGORITHM 59

31. procedure propagate in (i;w)

32. f for all j 2 pred (i)

33. f PPOUT j = PPOUT j �PPINi /? refinement using gb
(j;i)

?/

34. if any property in PPOUT j becomes F then

35. Insert < j;out(j)> in LISTw if not already present

36. g

37. g

38. procedure propagate out (i;w)

39. f PPINi = PPINi � (ANTLOCi +PPOUTi) /? refinement using f b
i ?/

40. if any property in PPINi becomes F then

41. Insert < i; in(i)> in LISTw if not already present

42. for all k 2 succ (i)

43. f PPINk = PPINk � (AVOUTi+PPOUTi) /? refinement using g
f

(i;k)
?/

44. if any property in PPINk becomes F then

45. Insert < k; in(k)> in LISTw if not already present

46. g

47. g

Figure 5.2: A Straightforward Adaptation for MRA (contd. from Figure 5.1)

1. As a first optimisation, the function calls were removed from the algorithm by in-line

expansion. The difference was remarkable. Still, the round robin method out-performed

the algorithm in some list organisations.

2. As a second optimisation, the lists were implemented using arrays with the indices serv-

ing as pointers. This was possible since for a given word the number of nodes in the list

can never exceed n (i.e. total number of nodes).

3. The third level optimisations concerned the heuristics for list organisation.

5.3.2 A Comparison of Different Heuristics

The experimental results are contained in appendix B. Each heuristic is compared with the

round robin method in terms of both time and bitwise operations.

60 CHAPTER 5. AN EFFICIENT SOLUTION PROCEDURE FOR MRA

1. FIFO :

The simplest heuristic for list organisation is the First in first out strategy. Though, the

number of bit vector operations reduces (average speed-up factor is 1.58), it remains

slower than the round robin method in terms of time; the overheads associated with the

list manipulation more than nullify the gains in terms of bit vector operations.

2. MBOT :

Section 4.2.3 suggests propagating the influence of the node with Maximum number of

BOT properties. It indeed saves on bit vector operations and the average speed up factor

is 2.84 (in fact it is less than 2 in only one case). However, the added complexity of

maintaining a sorted list makes this heuristic slower than FIFO.

3. PORD :

Section 4.3.2 suggests maintaining the list of nodes in Postorder for MRA since the

information flow is predominantly backwards in MRA. It can be verified that gains in

bit vector operations are comparable to the gains made by MBOT. In terms of time it is

much faster than MBOT, though still slower than round robin method.

Intuitively, this heuristic tries to combine the best of both worlds : a preferred order

of traversal of round robin method and the requirement driven processing of worklist

method.

4. IPLM :

Our final heuristic is an Improved postorder list management scheme which tries to

eliminate the redundant list manipulations that are made by PORD.

Apart from maintaining a list, we maintain a global array PROCESS where the entry

PROCESS[i] indicates whether node i needs processing or not. Let the properties at

program point u (node i) influence the properties at program point v (node j). If the

postorder number of j is higher than the postorder number of i, PROCESS[i] is set to

T. It is inserted in the list only when its postorder number is lower than the postorder

number of i. Whenever there is a node in the list, it is processed first. If the list is

empty (which is what happens most of the times), the nodes which need processing are

processed in postorder.

This heuristic minimises the overheads of list organisation and the savings in bit op-

erations truly get reflected in the time requirements. It can be easily verified that this

heuristic results in superb gains both in bit operations as well as time.

5.4. CONCLUDING REMARKS 61

5.4 Concluding Remarks

The transition from chapter 3 to this chapter has been a smooth transition from theoretical

insights to practical gains. The algorithm for MRA presented in this chapter is far more

superior than the traditional approach of the round robin iterative analysis. For compilers

making heavy use of MRA in the optimisation phase, this algorithm offers obvious advantages.

Unlike other efforts, this algorithm provides solutions of MRA rather than of algorithms which

are deemed equivalents of MRA.

Chapter 6

The Width of a Graph

When a mystery is too overpowering, one dare not disobey. Absurd as it

might seem to me, a thousand miles away from any human habitation and
in danger of death, I took out of my pocket a sheet of paper and my fountain

pen. But then ... I told the little chap (a little crossly, too) that I did not

know how to draw. He answered me “That does not matter. Draw me a
sheep ...”

Though chapter 4 shows that the bidirectional problems are no more complex than the

unidirectional problems, certain complexity issues, viz. the bound on the number of iterations

in the round robin data flow analysis of bidirectional flows, remain outside the purview of

chapter 4.

This chapter relates the information flow paths to the complexity of data flow analysis

by defining the notion of the width of a graph for a data flow problem. The width is shown

to bound the number of iterations required for round-robin iterative data flow analysis. This

notion is uniformly applicable to unidirectional and bidirectional flows and provides a more

accurate bound than the traditional notion of the depth of a graph. More importantly, width

provides the first (strict) bound on the round-robin analysis of bidirectional flows. Other ap-

plications include explanation of isolated results in efficient solution techniques and motiva-

tion of new techniques for bidirectional flows. In particular, we discuss edge-splitting, edge

placement and develop a feasibility criterion for decomposition of a bidirectional flow into

a sequence of unidirectional flows. Among the efficient methods for the solution of bidirec-

tional flows are the method of alternating iterations, and an interval analysis based elimination

method for MRA.

6.1. GENERAL DATA FLOW PROBLEMS 63

��

��

j

��

��

i

?

?

?

g1

g2

g3
g4

Figure 6.1: General edge flow functions

6.1 General Data Flow Problems

The concepts in this chapter are applicable to a wider class of problems than the one covered

by previous chapters. This generality is in terms of :

� The confluence operator : It is possible to analyse the complexity of non-singular prob-

lems too, using the notions defined in this chapter despite the fact that the ifp’s for such

problems cannot be defined precisely without a knowledge of the semantics of a data

flow problem.1

� The edge flow functions : In general, the information flow along/against an edge (i; j)

need not be between out(i) and in(j) only; other combinations involving in(i) and

out(j) too are possible.

Non-singular problems are already defined in section 3.2.2. Apart from MMRA, we consider

the Edge Placement Algorithm [17] (EPA, for short) which is another non-singular data flow

problem.

6.1.1 General Flow Functions

A complete list of possible flow functions in a data flow problem, is :

(i) Information flows within a node, i.e. between the entry and exit of node i : Repre-

sented by node flow functions fi.

(ii) Information flows along edge (i; j) : Represented by edge flow functions g
(i; j).

(Figure 6.1)

g1
(i; j) : Information flow between the exit of i and the entry of j.

1In this chapter we relax the condition of a single confluence operator in the definition of a data flow

framework.

64 CHAPTER 6. THE WIDTH OF A GRAPH

Problem Function types Class C

Reaching Def. f f
;g

f
1 < fOUTg;f f f

;g f
(1000)g>

Live Variables f b
;gb

1 < fINg;f f b
;gb

(1000)g>

MRA f b
;gb

1;g
f
1 < fINg;f f b

;g f
(1000);gb

(1000)g>

LSIA f f
;g

f
1 ;g

b
1 < fOUTg;f f f

;gb
(1000);g f

(1000)g>

MMRA f b
;gb

1;g
f
1 ;g

f
3 < fINg;f f b

;g
f
Π(1000);g

f
Σ(0010);gb

Π(1000)g>

EPA f b
;gb

1;g
f
3 < fINg;f f b

;g
f
Σ(0010);gb

Π(1000)g>

CHSA f f
; f b

;gb
1;g

f
1 < fOUTg;f f f

; f b
;g f

(1000);gb
(1000)g>

Table 6.1: Classification of data flow problems considered in this thesis

g2
(i; j) : Information flow between the exit of i and the exit of j.

g3
(i; j) : Information flow between the entry of i and the entry of j.

g4
(i; j) : Information flow between the entry of i and the exit of j.

As in chapter 3, the flow functions are superscripted by f or b to indicate whether the flow

is in the forward or the backward direction. We refer to the functions by their type names

f , g1, g2, g3 and g4 respectively with an appropriate superscript f or b. Table 6.1 lists the

function types for the data flow problems defined in the appendix.

6.1.2 Classification of Data Flow Problems

We classify data flow problems according to the nature of the information flow paths. A class

C is a tuple <fpath origing, fflow function typesg> where :

(i) Path origin is a program point indicated by IN/OUT.

(ii) The node flow function types are represented by f f / f b. Edge flow functions are

represented by g(b1b2b3b4) where bi is 1 if the corresponding flow function is 6=>.

For non-singular data flows, the function name is subscripted by the operator.

Table 6.1 contains the classification of the problems referred in the thesis. Note the dualism

among the classes with respect to the path origin and the function types. For simplicity, we

will name the classes by their representative data flow problems. Hence we will use the names

appearing in the first column of Table 6.1 as the class names.

6.1. GENERAL DATA FLOW PROBLEMS 65

PPINi = PAVINi � (ANTLOCi + TRANSPi �PPOUTi)

� ∑
p 2 pred(i)

(PPINp �:ANTLOCp + AVOUTp)

PPOUTi = ∏
s 2 succ(i)

(PPINs)

Figure 6.2: EPA equations.

Problem Function types Information flow paths

Reaching Def. f f
;g

f
1 T

f
e
+

Live Variables f b
;gb

1 T b
e
+

MRA f b
;gb

1;g
f
1 (T b

e

+

(T
f

e j ε))+

LSIA f f
;g

f
1 ;g

b
1 (T

f
e

+

(T b
e j ε))+

MMRA f b
;gb

1;g
f
1 ;g

f
3 (T b

e j T
f

e)

+

EPA f b
;gb

1;g
f
3 (T b

e

+

j T
f

e)T
f

e

�

(T b
e j ε)

CHSA f f
; f b

;gb
1;g

f
1 T b

e (T
b

e j T
f

e)

�

Table 6.2: Information flow paths of some data flow problems.

The significance of classes lies in the fact that for a given graph, all problems in a class

possess similar ifp’s and hence obey the same complexity bound. However, using the knowl-

edge of a data flow problem it may be possible to develop a more specific definition of its ifp’s,

and hence a more specific bound for it.

Example 6.1 : Consider the MMRA and EPA problems. MMRA, and other members of its

class, have ifp’s which can be represented by the regular expression (T b
e j T

f
e)

+. The ifp’s of

the EPA class of problems are represented by the same regular expression. However, the ifp’s

of the EPA data flow problem can be more precisely represented by (T b
e

+

j T
f

e)(T
f

e

�

T b
e j T

f
e

�

).

This is due to the nature of the EPA data flow (Figure 6.2), which restricts the backward flow

resulting from the PPIN property turning BOT due to the g
f
Σ function merely to the OUT

property of the predecessors (since the IN property of the predecessors is already BOT). Thus,

we can have at most one backward edge traversal after a forward edge traversal. 2

66 CHAPTER 6. THE WIDTH OF A GRAPH

δ f : Traversal along a forward edge in direction δ
δb : Traversal along a back edge in direction δ
δ�f : Traversal along a forward edge in direction δ�

δ�b : Traversal along a back edge in direction δ�

δG : Traversal over the graph in direction δ
δ�G : Traversal over the graph in direction δ�

Figure 6.3: Generic notation for various traversals.

6.2 The Width of a Graph

We extend the notation of edge traversals to the traversals over the graphs. Thus T
f

G indicates

a graph traversal in reverse postorder while T b
G indicates graph traversal in postorder.2 One

traversal over the graph implies one iteration of the round-robin analysis. To simplify the

presentation, we represent the forward and backward directions generically by δ. For example,

if δ is the forward direction, then a T f is replaced by δ while a T b is replaced by δ�. Thus

δG = T
f

G if the graph traversal visits the nodes of a graph in a reverse postorder. Figure 6.3

summarises the generic notation.

A graph traversal cannot realize the effect of all kinds of edge traversals. The following

definition captures the relationship between edge and graph traversals.

Definition 6.1 : Conforming and Non-conforming edge traversals

For a δG traversal, δ f and δ�b edge traversals are conforming edge traversals while δ�f and δb

are non-conforming edge traversals.

A graph traversal realizes the effect of conforming edge-traversals, but fails to realize the

effect of non-conforming edge traversals. This is illustrated in the following example.

Example 6.2 : Consider program flow graphs in Figure 6.4. For the reaching definitions

analysis, the graph is traversed in reverse postorder. The fact that the definition of a in node 1

reaches all other nodes (via T
f

f edge traversals) is known in the first iteration over the graph.

Similarly, the definition of b in node 3 is known to reach node 5 (T
f

f traversal) in the same

iteration. However, the fact that this definition also reaches node 2 along the back edge (T
f

b

traversal) is known only in the next iteration. Thus an T
f

b edge traversal is non-conforming

whereas an T
f

f traversal is conforming.

2For a node i, T
f

G visits in(i) followed by out(i) while T b
G visits out(i) followed by in(i).

6.2. THE WIDTH OF A GRAPH 67

��

��

1 a:=

?

��

��

2

��

��

4
��

��

3 b:=

��

��

5

?

��

��

6

Reaching Definitions Analysis

S

Sw

�

�/

S

Sw

�

�/

?

δG= T
f

G

+

6

δb

?

?

δ f

δ f

��

��

1

?

��

��

2 :=a

��

��

4
��

��

3

��

��

5 :=b

?

��

��

6

Live Variables Analysis

:=c

S

Sw

�

�/

S

Sw

�

�/

6

δG= T b
G

+

?

δb

6

6

δ f

δ f

Figure 6.4: Conforming and non-conforming edge traversals

Analogous comments hold for the graph for live variable analysis with T b replacing T f .

Assuming that the graph is traversed in postorder, the fact that b is live at out(1) is known in

the first iteration but its liveness at out(5) is known in the next iteration only. 2

An ifp consists of conforming and non-conforming edge-traversals.

Definition 6.2 : Span

A span is a maximal sequence of conforming edge traversals in an ifp.

Spans are separated by a non-conforming edge traversal and vice-versa. Thus, two succes-

sive non-conforming edge traversals have a null span between them. Further, an information

flow path may begin and/or end with a null span.

The information along a span can be propagated in one δG traversal; the same graph traver-

sal also realizes the information flow along the preceding non-conforming edge traversal.

Definition 6.3 : Segment

A segment is a maximal sequence of edge traversals in the same direction.

Successive T
f

e ’s constitute a forward segment while successive T b
e ’s constitute a backward

segment. A segment may be bounded or unbounded.

Example 6.3 : Consider a T
f

G graph traversal and an ifp

z }| {

T
f

f T
f

f T
f

f
| {z }

T
f

b

z}|{

T b
b

z}|{

T
f

f
| {z }

z }| {

T b
f T b

f

68 CHAPTER 6. THE WIDTH OF A GRAPH

The underbraces denote the (non-null) spans, overbraces denote the segments, while under-

scores denote the non-conforming edge traversals. Note that there is a null span between the

two successive T b
f ’s. 2

Example 6.4 : From Table 3.2, it is clear that the ifp’s of unidirectional data flow prob-

lems consist of a single unbounded segment. MRA and CHSA have unbounded backward

segments. CHSA has unbounded forward segments too, while MRA has a bounded forward

segment consisting of a single edge traversal. 2

Definition 6.4 : Information preserving path

An ifp is an information preserving path (ipp) if all flow functions in the ifp are identity func-

tions.

Definition 6.5 : Clustered flow functions

The edge flow functions of the type g f (gb) are said to be clustered if the information flow is

identical for all out-edges (in-edges) of a node.

For an ifp < u;v;ρ >, let length(ρ) and width(ρ) denote the total number of edge flow

functions and the number of edge flow functions along non-conforming edge traversals, re-

spectively.

Definition 6.6 : Bypassed information flow path

An ifp < p;q;ρ1 > is said to be bypassed by < p;q;ρ2 > if the edge functions of p are clus-

tered, and

(i) either ρ2 is an ipp or length(ρ2) = 1, and

(ii) width(ρ2)< width(ρ1).

Intuitively, < p;q;ρ1 > is bypassed by < p;q;ρ2 > if the same information is guaranteed

to flow along ρ2 and length(ρ2)< length(ρ1).

In practical data flow problems, bypassing usually occurs due to length(ρ2) = 1.

Definition 6.7 : Width

Width w of a graph G for a class of data flow problems with respect to a traversal δG is

the maximum number of non-conforming edge traversals along an ifp, no part of which is

bypassed.

If we represent the number of spans by s then s = w+1 for the width determining path.

6.2. THE WIDTH OF A GRAPH 69

Theorem 6.1 : w+ 1 iterations are sufficient for the round robin algorithm to converge on a

fixed point.

Proof : The information flow can be initiated only after the IN and OUT properties of all nodes

are computed to determine the information originating within the nodes (i.e. the information

represented by TR0). This can be achieved in the first iteration. The same iteration also

realizes the propagation of information along a non-null span (if any) at the beginning of an

ifp. However, every non-conforming edge traversal, and the span that follows it, requires a

separate iteration. Thus, w+ 1 iterations are sufficient for information propagation along the

width determining path.

Now consider an ifp < p;q;ρ1 > such that width(ρ1)> w. This is possible only if a section

ρ0 of ρ1 is bypassed by another ifp ρ00. Let width(ρ0) be w0, width(ρ00) be w00 and width(ρ1)

be w1. Then (w1�w0

)+w00

� w. Again w+ 1 iterations suffice for information to propagate

from p to q. 2

Note that the bound w+ 1 is a static prediction. For a particular instance of a data flow

problem, the number of iterations could be less as the behaviour of the non-preserving ifp’s

(i.e. ifp’s containing functions of the form h(X) = A+:B �X) is governed by the constants A

and B for that instance.

Example 6.5 : Consider the following graph

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�

�

�

�	

?

�

S

S

Sw

�

�

�/

J

J

Ĵ

S

S

Sw

�

�

�/

�

�

�/

J

J

Ĵ

1

2

3 4

7

8 9

5 10

11

12

�

�

�

�R

��

��

�

�R

�

�R

�

�

�

�	

6

6

70 CHAPTER 6. THE WIDTH OF A GRAPH

We choose δG = T b
G , for MRA, EPA and MMRA. T b

b and T
f

f are the non-conforming edge

traversals. The width determining paths for these problems are :

� MRA : (6;1;2;5;11;10;9;7;8) = T b
f T

f
f T b

b T
f

f T b
f T b

f T b
f T

f
f

� EPA : (1;6;7;8;10;11;12) = T
f

f T
f

f T
f

f T
f

f T
f

f T
f

f

� MMRA : (1;6;7;8;10;11;12) = T
f

f T
f

f T
f

f T
f

f T
f

f T
f

f

The widths for these problems are 4, 6, and 6, respectively. 2

6.3 The Width and the Depth

Depth (d) is defined as the maximum number of back edges along any acyclic path [2]. To use

the notion of width for unidirectional flows, choose δ as the natural direction of the flow in the

problem. There are no flows along δ�f and δ�b edge traversals, and the only non-conforming

edge traversal is δb. Since the width considers only those paths which do not have bypassed

fragments, w � d. Thus, width provides a tighter bound on the number of iterations.

Example 6.6 : Consider a spiral graph [7] whose depth increases linearly with the nesting

depth.3

?

��

��

1

?

��

��

2

?

��

��

3

?

��

��

4

?

��

��

5

?

��

��

6

?

��

��

7

?

6 6 6

???

Here d = 3, while w = 1 for a unidirectional problem with clustered edge flow functions

since every part of an ifp beginning on a back edge is bypassed, viz. path (5;2;6) is bypassed

3Spiral structures result from repeat . . . until loops with multiple exits.

6.4. EFFICIENCY OF DATA FLOW ANALYSIS 71

by the path (5;6). This explains the observation that the number of iterations remains constant

even as the size of the spiral graph grows. 2

Further, the notion of depth assumes a fixed pattern for information flow governed by

the directed paths in the flow graph, hence it is only applicable to unidirectional data flow

problems.

6.4 Efficiency of Data Flow Analysis

The notions of bounded and unbounded segments yield several insights when applied to the

efficiency of data flow analysis. In particular, the generalised theory :

� motivates efficient solution techniques viz. interval analysis technique for MRA [23],

and the method of alternating iterations,

� explains several known results in bidirectional flows.

6.4.1 Choice of Direction in graph traversal

Consider a data flow problem whose ifp’s have unbounded segments in one direction and

bounded segments in the other direction. Recall that w = #δb +#δ�f , i.e. width has contribu-

tions from the back edges in the δ segments and forward edges in the δ� segments. Typically,

forward edges outnumber the back edges. Hence, #δ�f is likely to be smaller when the seg-

ments in the δ� direction are bounded rather than unbounded. Hence the appropriate direction

for graph traversal is the one that makes the bounded segments lie in the δ� direction, and

unbounded segments, in the δ direction.

Example 6.7 : MRA has unbounded backward segments but bounded forward segments,

hence backward graph traversal would require fewer iterations than forward traversal. For

unidirectional problems, the favoured direction of traversal is trivially the direction of the data

flow. 2

Alternating Iterations

For problems with unbounded segments in both directions, alternating the direction of graph

traversal between successive iterations can effectively reduce the solution complexity. This

can be explained as follows : A segment in the δ direction may consist of a number of spans

72 CHAPTER 6. THE WIDTH OF A GRAPH

separated by non-conforming edges, which may themselves form sizable spans in the δ� di-

rection. Since the effect of a span in the δ direction is incorporated by a single iteration in the

δ direction, alternating the direction of graph traversal between successive iterations would

yield better results. Thus, the alternating iterations approach is clearly warranted in the case

of CHSA.

Let sρ be the number of non-null spans along an ifp ρ. The width of ρ for alternating

iterations is defined as follows : widtha(ρ) = 2sρ + c, where c = 1 if ρ ends with a non-null

span, else c = 0. The number of iterations for the method of alternating iterations is then

wa + 1 where wa is defined analogous to w, viz. wa = max(widtha(ρ)) 8ρ, where ρ is an ifp,

no part of which is bypassed.

Note that this is advantageous only if there are many null spans. i.e. if the number of

non-null spans is small. In particular if sρ > s=2 then wa � w and alternating iterations may

actually require a higher number iterations for convergence on MFP. The requirement that

there should be many null spans implies that there should be many successive non-conforming

edge traversals for the method of alternating iterations to be beneficial. Such a possibility is

enhanced by the existence of unbounded segments in δ� direction. This is in consonance

with the fact that if we perform round robin analysis for available expressions with postorder

traversal over the graph (i.e. T b
G), then we need more iterations than the number of iterations

required when we alternate the direction of graph traversal between successive iterations. In

the former case, we traverse the graph against the direction of information flow in all the

iterations; in the latter case we traverse the graph against the direction of flow in alternate

iterations only.

6.4.2 Reducing Complexity by Reducing Width

When a data flow problem has bounded segments in one direction, and unbounded segments

in the other direction, complexity of the data flow analysis can be reduced by attempting to

truncate the information flow paths. Consider an ifp ρ = (� � � ; ēi; ēi+1; ēi+2), where edge ēi+1

constitutes a bounded segment of length 1, i.e. ēi and ēi+2 belong to the segments in the

opposite direction. Truncation can be effected by transforming the program flow graph or

the data flow equations so as to terminate each ifp analogous to ρ before it reaches the edge

ēi+2. Effectively, ρ is split into two ifp’s ρ1 and ρ2. Since width(ρ1);width(ρ2) � width(ρ),
this could reduce the width. In this section, we present three transformations based on this

approach.

6.4. EFFICIENCY OF DATA FLOW ANALYSIS 73

��

��

i

��

��

j

��

��

j0

��

��

k

��

��

l0

��

��

l

��

��

m

�

J

Ĵ

J

Ĵ

�

�

J

J

J

J

Ĵ

Figure 6.5: Edge splitting

Edge Splitting

An edge which runs from a branch node (i.e. a node with more than one successor) to a

join node (i.e. a node with more than one predecessor) is called a critical edge. It has been

reported [25] that when such an edge is split by inserting a new node, the solution complexity

of MRA is reduced. The following lemma captures the influence of the edge splitting graph

transformation on the solution complexity of MRA.

Lemma 6.1 : Following edge splitting, MRA can be solved with the complexity of a unidirec-

tional problem.

Proof : Following section 6.4.1, we choose as δG = T b
G for MRA. Consider the information

flow path from node i to node m (ρ = (i; j;k; l;m) = T b
f T

f
f T b

f T
f

f) in figure 6.5. Before edge

splitting, it would have contained two δ�f (i.e. T
f

f) edge traversals. With the insertion of j0,

ρ is split into two ifp’s ρ1 = (i; j; j0) and ρ2 = (k; l0; l;m), which contain a single δ�f traversal

each. (This is because a ρ0 = (i; j; j0;k; l0; l;m) is not an ifp for MRA since two successive δ�f
traversals (j; j0) and (j0;k) cannot exist in ifp’s for MRA). In general, edge splitting restricts

the number of δ�f edge traversals along any information path to� 1 in the transformed graph.4

Thus w � w0

+ 1, where w0 is the width of the graph for a unidirectional data flow problem.

2

As a result of edge splitting, the MRA ifp’s become T b
e
+

(T
f

e j ε) for the transformed graph,

instead of the original (T b
e
+

(T
f

e j ε))+.

Edge Placement

The technique of edge placement eliminates a partial redundancy of an expression e in node

i, which cannot be safely hoisted into a predecessor j, by creating a synthetic node along the

edge (j; i) and hoisting e into it [17]. Unlike edge splitting, however, a synthetic node is con-

ceptual; it does not participate in data flow analysis. It becomes real only when a computation

4
< 1 in the original graph.

74 CHAPTER 6. THE WIDTH OF A GRAPH

��

��

i

��

��

j

��

��

j0

��

��

k

?

�

J

Ĵ

J

Ĵ

��

��

l

?

J

Ĵ

��

��

m

� � �

6

Figure 6.6: Interval based solution for MRA

is inserted in it during optimisation phase following the data flow analysis.

Use of edge placement in MRA results in elimination of the Π term from the PPINi equa-

tion (eq. 1.1 of figure 6.2). It thus transforms the data flow, rather than the flow graph, to

achieve the same effect as edge splitting, viz. restricting the number of δ�f traversals along any

ifp to < 1. Solution efficiency vis-a-vis MRA is guaranteed by the fact that the resulting data

flow is simply (backwards) unidirectional in nature.

Interval Pre-headers

[24] mentions that an interval based elimination method can not be extended to MRA. The

notion of width can be used to justify this, and to motivate an edge splitting graph transfor-

mation which enables an elimination approach to MRA solution. Consider a forward edge

(j;k) terminating on the interval header (figure 6.6). The information flowing forward along

this edge can flow (backwards) along the latching edge (k; l) of the interval to reach the exit

edge (l;m) of the interval. Thus, information can flow forward ‘through’ an interval, as well

as back through it due to the mostly backward nature of MRA.

However, if we introduce an interval pre-header by splitting every inter-interval edge (i.e.

every edge in a reduced graph), we will effectively truncate an information flow path be-

fore it reaches an interval-header along a forward edge, viz. the path ρ = (i; j;k; l;m) would

be truncated to ρ1 = (i; j; j0). This restricts the information flow between two intervals to a

unidirectional flow. Thus the bidirectional problem is partitioned into smaller sub-problems

related to each other by a unidirectional data flow. This makes the classical interval analysis

approach feasible for MRA.

6.5. DECOMPOSING BIDIRECTIONAL FLOWS INTO UNIDIRECTIONAL FLOWS 75

6.5 Decomposing Bidirectional Flows into Unidirectional Flows

Decomposition of a bidirectional data flow problem into a sequence of unidirectional problems

(i.e. solving a bidirectional problem as a sequence of cascaded unidirectional problems) is

motivated by the desire to reduce the amount of work or to improve the understandability

of the data flow involved. Prior work on decomposition has been ad hoc and/or directed at

specific bidirectional data flow problems [17, 25, 40]. In this section we provide a condition

for the decomposability of a bidirectional data flow problem.

Observation 6.1 : For a program graph G, wu
� wb where wu and wb are the widths of G for

arbitrary unidirectional and bidirectional data flows with respect to δG such that δG is along

the natural direction of data flow for the unidirectional problem. 2

Lemma 6.2 : It is feasible to decompose a bidirectional data flow problem into a sequence of

unidirectional data flow problems if and only if the number of segments in every information

flow path for the data flow problem is bounded by a constant.

Proof : Let δ be the direction of the first segment in an information flow path. Information

propagation along the segment can be realized by a unidirectional data flow problem which has

δ as its natural direction of flow. Information flow along the following segment would require

a unidirectional problem in the opposite direction, etc. Thus, the number of unidirectional

problems required will equal the number of segments, which should be bounded by a constant

for the decomposition to be feasible. Further, the order of solving the unidirectional problems

will have to be the same as the order of segments in the information flow paths. 2

Corollary 6.1 : MRA cannot be solved by cascaded unidirectional problems.5

The ifp’s of MRA have the form (T b
e

+

(T
f

e j ε))+, thus they can have an unbounded num-

ber of forward and backward segments. Similar statements hold for the LSIA and CHSA

problems.2

In the following, we explain two decompositions reported in literature, and motivate a third

one.

Corollary 6.2 : It is possible to decompose MRA if edge splitting is performed.

Following section 6.4.2, the information flow paths in the resulting program flow graph

can be characterised by the regular expression T b
e

+

(T
f

e j ε). Since the number of segments

can at most be 2, it is possible to solve MRA by cascaded unidirectional problems. Further,

5unless edge splitting is performed.

76 CHAPTER 6. THE WIDTH OF A GRAPH

since the second (i.e. the forward) segment has a length � 1, it is possible to solve MRA on

a graph in which critical edges have been split as a backward problem followed by a forward

correction [25].2

Corollary 6.3 : EPA can be decomposed into cascaded unidirectional problems.

The decomposition of the Edge Placement Algorithm(EPA) [17] is feasible since its infor-

mation flow paths are characterised by (T b
e

+

j T
f

e)T
f

e

�

(T b
e j ε) (refer table 6.2). The number

of segments in an ifp can at most be 3, hence the condition of lemma 6.2 is satisfied. A

decomposition for EPA is presented in [17, 24].2

Corollary 6.4 : It is possible to decompose MMRA if edge splitting is performed.

The ifp’s of MMRA incorporate two distinct effects :

(i) The mostly backward propagation of MRA which leads to ifp sections described

by the regular expression (T b
e
+

(T
f

e j ε))+, and

(ii) The forward propagation of EPA which leads to ifp sections described by the reg-

ular expression T
f

e

�

(T b
e j ε).

Edge splitting truncates the ifp sections of the first kind to simply T b
e

+

(T
f

e j ε) in the trans-

formed flow graph, and T b
e
+

in the original graph, respectively (refer lemma 6.1). The result-

ing ifp’s are described by the regular expression (T b
e

+

j T
f

e)T
f

e

�

(T b
e j ε) in both the transformed

as well as the original graphs. Since this is the same as the regular expression for EPA in corol-

lary 6.3, the decomposability of MMRA follows. The resulting decomposition is described

in [26].2

This result in not surprising since EPA differs from MMRA only in the use of the edge

placement technique (refer appendix) which has already been shown to achieve an effect

equivalent to edge splitting in the original program flow graph (refer section 6.4.2).

Corollary 6.5 : It is not possible to decompose CHSA even if edge splitting is performed.

Since both forward and backward segments are unbounded for CHSA, edge splitting does

not truncate any ifp and the ifp pattern remains T
f

e (T b
e j T

f
e)

�. Hence the number of segments

remains unbounded.2

6.6 Results and Conclusions

The results of analysing a suit of scientific programs written in Fortran-77 are presented in

appendix C. The following observations can be made concerning these results :

6.7. LOOKING BACK 77

(i) Very good correlation is seen between the width and the number of iterations for

the problems which have bounded segments in the δ� direction (viz. MRA).

(ii) For EPA and MMRA, the predicted and observed widths for backward iterations

differed by very large margins. This can be attributed to the following :

(a) Width is a static prediction. Many of the long ifp’s traced during width

computation may not be realized during data flow analysis. This fact is

well accepted by practitioners of data flow analysis.

(b) The ifp’s of EPA and MMRA have unbounded δ� segments. Hence, the

computed widths are very large. This accentuates the effect mentioned

in (a) above. A similar effect is observed in the case of unidirectional

problems having unbounded δ� segments. For example, the problem of

available expressions has unbounded δ� segments when solved using

backward iterations. Its width is therefore the number of edges along

the longest acyclic forward path in the program. In practice, informa-

tion does not propagate so much.

(iii) For problems with unbounded segments in both directions (viz. EPA and MMRA),

the method of alternating iterations scored over the backward direction of graph

traversal by a large margin in a total of 11 cases. In 10 cases, it performed only

marginally worse than backward traversal. On the whole, alternating iterations

should be the favoured solution method for EPA and MMRA. When compared to

MRA, the additional complexities of data flow in EPA and MMRA do not appear

to make them very expensive in practice. (Note that MRA is also known to take up

to 5 iterations in practice [45]).

(iv) Despite observation (ii), observation (iii) above demonstrates the applicability of

the concept of an information flow path to non-singular data flows as well, thereby

vindicating the use of ifp’s as the basis of a study of the complexity of data flow

analysis.

6.7 Looking Back

Classical data flow analysis uses two key features : properties of graph structures and patterns

of information flow. Different methods blend and use these features in different ways. Elimi-

78 CHAPTER 6. THE WIDTH OF A GRAPH

nation methods use graph regions to divide the data flow problems into smaller subproblems,

while round-robin methods follow postorder or reverse postorder for graph traversal. Worklist

versions do not use properties of the graphs but follow the data flow pattern dynamically.

These features have traditionally been used in isolation. We combine them to evolve the

notions of the width and the related concepts which provide valuable insights in the com-

plexity and efficiency of data flow analysis. Again, these results are uniformly applicable to

unidirectional and bidirectional data flow analysis.

Part II

Incremental Data Flow Analysis

Chapter 7

Approaches to Incremental Data Flow

Analysis

“Men,” said the little prince, “set out on their way in express trains, but

they do not know what they are looking for. Then they rush about, and get
excited, and turn round and round ...”

And he added : “It is not worth the trouble.”

When a program undergoes change during development or compilation (i.e. during the

optimisation phase), the data flow information can be updated either by repeating the original

exhaustive analysis, or by using incremental techniques that attempt to reuse the old infor-

mation and recompute only the information affected by the change. Presuming that a change

typically has a localised effect, or at least does not affect all of the program’s data flow, incre-

mental algorithms are more cost-effective than the exhaustive algorithms.

This chapter surveys the traditional approaches to incremental data flow analysis. The

problems with the traditional paradigm are discussed and a modified paradigm is proposed

which paves the way for an algorithm-independent theoretical discussion of incremental data

flow analysis in the succeeding chapters.

7.1 A Paradigm for Incremental Computation

Let P be a problem, A , an algorithm to solve P , and S , the resulting solution. Then, their inter-

relationship can be described by S = A(P). Let P be modified such that the new P , denoted

P 0, is P 0

= P +∆P .1 The corresponding solution, S 0

= A(P 0

), is S 0

= S +∆S . Computing S 0

1The operation + should be taken to mean “combination” i.e. “∆P combines with P to give P 0.”

80 CHAPTER 7. APPROACHES TO INCREMENTAL DATA FLOW ANALYSIS

using A amounts to exhaustive computation. Instead, if it is possible to devise an algorithm

A I such that A I
(S ;∆P) computes ∆S and combines it with S to give S 0, then the computation

S 0

= A I
(S ;∆P) is an incremental computation.

7.2 Traditional Approaches to Incremental Data Flow Anal-

ysis

Incremental data flow analysis has received a considerable attention lately. There is a plethora

of algorithms in the literature, both elimination [8, 11, 54, 55, 57], as well as iterative [13,

14, 30, 49]. [43] falls into both the categories while [63] falls into neither. A comparison or

various approaches is contained in [9].

7.2.1 Iterative Methods

The early efforts in iterative incremental methods were based on the technique of restarting

iteration [13, 14, 30] which really is as simple as the name suggests : Given the set of changes

and the old solution, this technique computes the new solution by propagating the changes

through the affected area of the flow graph. Unaffected areas of the graph are not examined as

would be required by an exhaustive recomputation.

Before restarting iteration, the solution at the immediately affected nodes is altered. Given

these adjusted solutions at the immediately affected nodes and the old solution at other nodes,

iterative analysis is restarted and repeats till a fixed point is reached. It is easy to see that this

fixed point is not always the MFP [9]. Since any change can only be towards?, the properties

are either changed to BOT or remain same.2 As a result of function changes, a property may

very well change from BOT to TOP. The influence of such a change can obviously not be

propagated to other nodes; the properties at other nodes will remain BOT. Thus the calculated

solution at a node cannot be higher than the value that it assumes before the iteration is started.

Given an arbitrary set of changes to the data flow functions, it is possible for the new MFP

solution at a node to be higher than previous MFP solution (and higher than in the restart

configuration). In such a case, the incrementally computed fixed point will be lower than the

(desired) fixed point. [4] presents a general condition under which restarting iteration results

in the same solution as an exhaustive iterative analysis; however, this result is a sufficient

2TOP is the value of a bit in the bit vector representing the > element of the lattice while BOT is the value of

a bit in the bit vector representing the ? element of the lattice. See chapter 3 or 8 for the details.

7.2. TRADITIONAL APPROACHES TO INCREMENTAL DATA FLOW ANALYSIS 81

condition, not a necessary one. Counter examples to restarting iteration are also presented.

Pollock and Soffa [49] present an incremental iterative algorithm which yields the max-

imum fixed point after a program change. This algorithm is a combination of two different

techniques : one for changes where restarting iteration will yield precise results and another

where it will not. The latter involves reinitialising lattice values at nodes so that those facts

potentially affected by the program change assume their original initialised value TOP. Then

iteration is started from those nodes where direct changes are observed and continues until a

new fixed point is obtained. Although Pollock and Soffa explain their algorithm in terms of the

classical union and intersection problems, it is clearly of a wider utility. It handles all changes

to a flow graph, including structural changes (i.e. edge and node insertions and deletions),

although those involving node changes are not explicitly outlined.

Since it is developed in the context of editing, the method heavily depends on an exhaustive

case analysis of each change and its possible implication. This approach makes it a little

difficult to apply this method to new data flow problems.

7.2.2 Elimination Methods

Modelling the data flow problem by a system of linear equations, Ryder developed methods

for incremental data flow analysis [54, 57, 55] including Allen-Cocke interval analysis [3],

Tarjan interval analysis [59], and the Hecht-Ullman T1-T2 technique. The incremental up-

date algorithms consist of two phases, namely recalculating all coefficients and constants in

all data flow equations that are affected by the program change, and then recalculating all af-

fected solutions. The original work was limited to handle only non-structural program change;

however, recently the work was extended to handle structural changes [11] using an immediate

dominator decomposition of the flow graph. Based on the elimination methods, the work is

not easily applicable in an environment where program changes may result in irreducible flow

graphs.

Burke reformulates interval analysis so that it can be applied to any monotone data flow

problem including the nonfast problems of flow-insensitive inter-procedural analysis for ex-

haustive as well as incremental computation [8]. With a single update, the incremental al-

gorithm can accommodate any sequence of program changes that do not alter the structure

of program call graph; other structural changes are accommodated in the algorithm. The pa-

per also presents an incremental algorithm for alias analysis that obtains the exact solution as

computed by an exhaustive algorithm.

Among other elimination based methods, Rosen has developed an elimination technique

82 CHAPTER 7. APPROACHES TO INCREMENTAL DATA FLOW ANALYSIS

based on finding the flow cover of a flow graph; he has shown that, in principle, his technique

is applicable in the presence of small changes to the flow graph [50].

Though the iterative techniques are simpler to understand and code than the elimination

techniques, the limitations of these techniques have not been explained. In contrast, the elim-

ination methods are more formal and are usually proven correct; also their breadth of applica-

bility is clearly specified.

7.2.3 Other Methods

Marlowe and Ryder’s hybrid incremental technique [44] uses an elimination-like flow graph

decomposition, a data flow solution factorisation on component regions, and solution on re-

gions by fixed point iteration. More specifically, the main idea is to factor the data flow solu-

tion on strongly connected components of the flow graph into local and external parts, solving

for local parts by iteration and propagating these effects on the condensation of the flow graph

to obtain the entire data flow solution. The incremental hybrid algorithm re-performs those

algorithm steps affected by the program changes. The algorithm handles all changes for the

common distributive intra-procedural and inter-procedural data flow problems and can deal

with irreducibilities.

Zadeck’s incremental technique [63] is applicable to data flow problems that are parti-

tionable into a series of independent problems called clusters. This technique is called the

partitioned variable technique (PVT, for short) since a different cluster must be solved for

each variable in the program. This avoids the added complexity of cycles in the flow graph.

Focussing on the update of a single cluster, the flow graph is manipulated according to infor-

mation contained within each block. The graph is split at each block that stops the propagation

of variable’s information chain. This ensures that any cycle in the resulting graph will have

the property that information reachable from any block in the cycle is reachable from every

block in the cycle since the cycle can be executed any number of times. Thus the strongly

connected regions of the flow graph can be collapsed to form a directed acyclic graph. Infor-

mation is propagated globally on the return from a depth first traversal starting at the blocks

that end information chains. The incremental algorithm calculates changes to affected clusters

and performs a reinitialised recomputation on them. It handles all program changes (including

structural changes) for partitionable problems.

7.3. LIMITATIONS OF THE TRADITIONAL APPROACHES 83

7.3 Limitations of the Traditional Approaches

7.3.1 The Cause

Almost all traditional approaches to incremental data flow analysis are based on the paradigm

defined in section 7.1 :

An algorithm for incremental data flow analysis (A I) takes old solution (S) and

the changes in the old instance of a data flow problem (∆P) as input, manipulates

the old solution (S) and produces the new solution (S 0).

The key feature of the traditional approaches is that they modify the old solution by apply-

ing some technique. The expected change in the old solution is not defined explicitly.

We modify the traditional paradigm to define :

∆S = A I
(S ;∆P)

S 0

= S +∆S

)

(7.1)

Paradigm 7.1 breaks up the task into two steps by explicitly defining the computation of

∆S which is later combined with S to produce S 0. The traditional paradigm mixes the two

issues by defining ∆S implicitly. No algorithm for incremental data flow analysis defines

exactly what constitutes the incremental part of an overall solution — all of them rely on the

definition of the final solution which is directly carried over from exhaustive methods (and the

corresponding theory).

It must be admitted that the lack of a concrete definition ∆S is an outcome of the primary

concern of incremental computation — achieving efficiency. It is only too natural to devise in-

cremental methods which would directly manipulate S . Unfortunately, the formal abstractions

which form the basis of such methods remain ad hoc and restrictive.

Apart from efficiency considerations, the other reason due to which the need of defining

∆S was not felt, has been the widely held belief that incremental computation is an offshoot

of exhaustive computation [8, 43, 57, 63]. This is best exemplified by the “rule of thumb”

suggested by Barry Rosen in his pioneering paper on theorising incremental computation [53] :

“For sake of clarity and reliability, it is good to arrive at incremental algorithms

indirectly. Begin with an exhaustive algorithm ALG and argue for (perhaps even

prove) its correctness. Convert ALG for incremental use by some systematic

changes (not necessarily the ones that we have studied) that preserve correctness,

and tidy up the result.”

84 CHAPTER 7. APPROACHES TO INCREMENTAL DATA FLOW ANALYSIS

It can be easily verified from section 7.2 that almost all methods are developed as refine-

ments of the corresponding exhaustive methods.

7.3.2 The Consequences

The formal abstractions of the solutions of a data flow problem (viz. the notions of MFP/MOP

solutions), are pure mathematical concepts not restricted to any particular algorithm. While

the same definitions are used for incremental data flow analysis, the incremental algorithms are

devised with a goal of actually computing something much less than these complete solutions.3

So what exactly is an incremental algorithm expected to compute? The traditional approaches

do not attempt to provide a general answer independent of any particular algorithm. Con-

sequently, two important issues in theory and practice of data flow analysis are adversely

affected :

� Generality.

The approaches remain ad hoc. No theoretical explanation of incremental data flow

analysis is possible. All explanations remain specific to a particular algorithm. It is

clear from section 7.2 that the literature is abundant with techniques for incremental

data flow analysis; there is little or no theory.4

Though some common trends can certainly be seen, they do not in any way help to argue

about the applicability of an algorithm to a new data flow problem.

– One of the most common trends is handling of some kind of a region, usually a

strongly connected region, in a special way [8, 10, 42, 11, 55, 57, 63]. This is done

in elimination as well as iterative algorithms (viz. [49]). Such algorithms cannot

be possibly extended to bidirectional data flow problems viz. MRA since in such

problems, the self-dependence of properties may arise even without the existence

of a strongly connected region.

– Another common trend is change/implication classification which heavily depends

on a comprehensive case analysis5 which in turn cannot be performed without a

3If they are not devised with this goal, they are not incremental.
4This should be contrasted with the exhaustive data flow analysis. Chapter 2 is dominated by theory, and not

by methods.
5Its origin lies in the fact that most incremental algorithms were conceived in the context of interactive

programming environments (or simple syntax-directed editors).

7.4. TOWARDS A FUNCTIONAL ABSTRACTION 85

thorough knowledge of what is being solved. Thus, extending these algorithms [8,

43, 49, 63] to new problems is likely to be error-prone.

Despite some common trends, the approaches remain isolated, and the insights devel-

oped in one approach may not help much in other approaches.

� Correctness.

The incremental part of the solution cannot be predicted theoretically, it is known only

retrospectively. Any attempt to define ∆S in the traditional approaches results in al-

gorithmic or operational definitions. Though some elimination techniques show the

correctness formally [57], most others (presumably following the “rule of thumb” men-

tioned in section 7.3.1), assume that correctness is preserved as one systematically mod-

ifies an exhaustive algorithm to create an incremental version. Sometimes a case for cor-

rectness is made through an appeal to intuition by discussing several examples. Often,

showing correctness remains a matter of empirical testing.

7.4 Towards a Functional Abstraction

We conclude this chapter by another quote from Barry Rosen on his efforts of theorising

incremental data flow analysis in [53] :

“Better verbalizations can be expected, as theoreticians realize that exhaustive

analysis is not the only kind needing careful mathematical treatment.”

This goal cannot be achieved through the traditional paradigms. What is desired is a functional

abstraction (totally devoid of any procedural or algorithmic element) of the process of incre-

mental data flow analysis. This can only be achieved if a formal mechanism is devised which

answers the following question : What change should be expected in the solution, following a

change in an instance of D? Importantly, it should be possible to answer this question

(i) without requiring any algorithm, and

(ii) without the need of knowing the resulting MFP solution since computing the MFP

solution is the very goal of answering this question.

This part of the thesis tries to provide such a mechanism.

Chapter 8

Background

My drawing was not a picture of a hat. It was a picture of a boa constrictor
digesting an elephant. But since the grown-ups were not able to understand

it, I made another drawing : I drew the inside of the boa constrictor, so
that the grown-ups could see it clearly. They always need to have things

explained.

In order to make the two parts as independent as possible, this chapter reviews those con-

cepts of part I which are used in our treatment of incremental data flow analysis in chapter 9.

Not all concepts defined in the generalised theory are used in this part and those which are

used, are scattered throughout part I. This chapter puts them all in one place and prepares a

cohesive background. Some of the concepts and notations have been altered to suit to the work

presented; section 8.6 lists these changes.

8.1 Data Flow Frameworks

A data flow framework is defined as a triple D = < L ;u;F [G >. Elements in lattice L rep-

resent the information associated with the entry/exit of a basic block. Thus, each element in L

represents a set of information associated with the entry/exit of a basic block. u is the set union

(alternatively, boolean SUM denoted by Σ) or intersection (alternatively, boolean PRODUCT

denoted by Π) operation which determines the way the global information is combined when

it reaches a basic block. F is the set of node flow functions while G is the set of edge flow

functions.

An instance I of a data flow framework D is defined by the ordered pair I =< G;M >.

� G is the control flow graph G =< N;E;entry(G);exit(G)> where N is the set of nodes

8.2. DATA FLOW PROPERTIES 87

∝(p) : The set of properties corresponding to p.

Ω(p) : The set of functions influencing the value of p.

D(p) : The set of properties which p depends on for its value.

P p(p) : Program point of p.

N (p) : The set of neighbouring properties of p

(i.e. the properties which are influenced by p).

N �1
(p) : Inverse of N (p) (i.e. the properties which influence p).a

aThe notation N and N �1 is also extended to program points.

Figure 8.1: Various entities for a property p.

(i.e. basic blocks), E is the set of edges, and entry(G) and exit(G) denote the (non-null)

sets of graph entry and exit nodes, i.e. nodes with zero in-degree and zero out-degree,

respectively.

A program point refers to the entry/exit of a basic block. For a basic block i, its entry and

exit points are denoted by in(i) and out(i) respectively. Program point u is a neighbour

of program point v if u and v are adjacent in the underlying undirected graph of G and

the information at u is influenced by the information at v. Thus in(j) is a neighbour

of out(i) where j 2 succ(i), and out(j) is a neighbour in(j) for a forward data flow

problem.

� M �< MF ;MG > such that MF : N! F maps the nodes to the node flow functions

and MG : E ! G maps the edges to the edge flow functions.

In our treatment, we drop this mapping and directly subscript the functions by program

points.1

8.2 Data Flow Properties

Data flow properties represent the information to be gathered during data flow analysis. When

the sets of information are implemented as bit vectors, each bit represents a data flow property

1This is different from part I where the functions are subscripted by nodes and edges rather than program

points. Thus, a flow function corresponding to node i is denoted by fi while a flow function corresponding to

edge (i; j) is denoted by g
(i; j) in part 1.4.3. Use of program point facilitates a uniform treatment of the edge and

node flow functions in that fi is denoted by h
(u;v) where u and v are the end points of node i while g

(i; j) is denoted

by g
(v;w)

where v and w are the end points of the edge (i; j).

88 CHAPTER 8. BACKGROUND

'

&

$

%

p

p1

node i

'

&

$

%

p3

node k

'

&

$

%

p2

node j

�

�

�

�/

S

S

S

Sw

�

Bh3
I

Bh2

?Bh1

P p(p) = out(i); P p(p1) = in(i)

P p(p2) = in(j); P p(p3) = in(k)

N �1
(p) = fp1; p2; p3g

p 2N (p1); p 2N (p2); p 2N (p3)

N �1
(out(i)) = fin(i); in(j); in(k)g

out(i) 2N (in(i))

p Bh1(p1); Bh1 2 F

p Bh2(p2); Bh2 2 G

p Bh3(p3); Bh3 2 G

Ω(p) = fBh1;Bh2;Bh3g

Figure 8.2: Several functions may influence a property.

which may either be true (denoted T) or false (denoted F). There is one bit vector for the entry

and one for the exit of each node. The lattice elements > and ? are “all bits true” (denoted T)

and “all bits false” (denoted F) , or vice-versa, depending on u. When u is Π, > is T while

? is F; the situation is exactly opposite in when u is Σ. TOP is the value of an individual

property in a bit vector representing the> element of the lattice, while BOT is the value of an

individual property in a bit vector representing the ? element of the lattice.

The data flow properties associated with program points in(i) and out(i) are denoted by

INi and OUTi respectively. The program point for a property p is denoted by P p(p). Two

properties belonging to different program points are called corresponding properties if they

represent information about the same entity, viz. the same variable or the same expression.

By definition, the relation of correspondence is reflexive, i.e. a property corresponds to itself.

A property p associated with program point u is a neighbour of a corresponding property p0

associated with a program point v, if u is a neighbour of v.

8.3 Flow Functions

Let a property p be influenced by the value of a neighbouring property p0 through a flow func-

tion h. This fact is denoted by p h(p0). Clearly, p 2N (p0) and p0 2N �1
(p). Whenever

the program points of the two properties are required along with function, we write h as h
(u0

;u)

where P p(p) is u and P p(p0) is u0. The notation describing neighbourhood is also extended to

the corresponding program points u and u0. Analogous remarks hold for the bit functions of h,

denoted by Bh. As shown in Figure 8.2, a property p may have several functions influencing

it. We define Ω(p) as the set of functions influencing the property p. Thus,

8.4. THE FLOW OF INFORMATION 89

Bh Bh(TOP) Bh(BOT) Behaviour

raise TOP TOP Result is always TOP.

lower BOT BOT Result is always BOT.

propagate TOP BOT Result is same as the function argument.

negate BOT TOP Negates the function argument.

Table 8.1: Four possibilities for a bit function

Ω(p) = fBh j p Bh(p0)g

A bit function Bh(u;u
0

) has several attributes :

1. Direction : A bit function may be a forward flow function or a backward flow function.

2. Association : A bit function may be associated with an edge or a node. This attribute is

required due to the presence of self loops to distinguish between the flow between the

entry/exit of a node through the node and along a self loop, if any.

3. Type : Since a bit may have two values (i.e. TOP and BOT) there may be at most four

different possibilities for a bit function [25] (Table 8.1) out of which the negate function

is forbidden in monotone data flow frameworks.

In our treatment of incremental data flow analysis, we will be referring to a bit function

and its type interchangeably. Thus, while we may write Ω(p) = fBh1;Bh2;Bh3g in Figure 8.2,

we may also write Ω(p) = fpropagate;propagate;propagateg if the three bit functions are

propagate.

8.4 The Flow of Information

Information flows from a program point u to a program point v when a property at u, on

becoming BOT, causes the corresponding property at v to become BOT.

Definition 8.1 : Information flow path

An information flow path (ifp) is a sequence of program points along which information can

flow during data flow analysis.

It is easy to see from Table 8.1 that propagate is the only function for which the function

value depends on the argument. Thus we say that p depends on the argument property for its

value. This notion of dependence forms a fundamental concept in the generalised theory and

90 CHAPTER 8. BACKGROUND

will be used extensively in this work since incremental data flow analysis involves computing

the influence of a change on the rest of the graph. This is achieved by finding out the properties

which depend on the changed property.

Definition 8.2 : Dependence

A property p depends on a property p0 if p0 is capable of changing p to BOT. The dependence

relation of p is denoted by D(p) where,

D(p) = fp0 j p Bh(p0); Bh � propagate and lower 62 Ω(p)g

If the condition lower 62Ω(p) is violated, p will always be BOT and hence would not

depend on any property. In such a case D(p) = /0.

Definition 8.3 : Chain2

A chain ch from a property p to property p0 is a sequence p0
T1
! p1

T2
! p2 � � �

Tn
! pn such that

p0 � p, pn � p0, and pi�1 2D(pi), 0 < i� n. Ti indicates the association of function h with

either an edge or a node for pi h(pi�1).

In terms of program points, pi h
(u;v)(pi�1) and h

(u;v) � propagate where u = P p(pi�1)

and v = P p(pi). Further, Ti is f if h is a node flow function, g if h is an edge flow function.

Note that pi�1 2D(pi) implies that lower 62D(pi).

Since the set D(p) for a p may contain multiple elements, multiple chains may exist

between two properties. Hence unlike part I, CH(p; p0) denotes a set of chains rather than one

chain.

Observation 8.1 : If 9p such that CH(p; p0) 6= /0 then p = BOT) p0 = BOT. 2

Observation 8.2 : If 9p such that CH(p; p0) 6= /0 then p = TOP 6) p0 = TOP. 2

Though the chains are acyclic, it is quite likely that p0 may depend on pn. A chain gives

rise to a cyclic dependence if pn 2D(p0).

Observation 8.3 : All properties in a chain which gives rise to a cyclic dependence, must

have the same value in a fixed point solution. 2

Observation 8.3 must be contrasted with observations 8.1 and 8.2. If any pi in a chain

is BOT, all properties p j; i� j � n must be BOT in any fixed point solution since all these

properties depend on pi. If the chain gives rise to a cyclic dependence, all other properties

pk; 0� k < i must also be BOT. If the chain does not give rise to a cyclic dependence, all

properties pk; 0� k < j must be TOP where j � i and p j is the first BOT property. It follows

that no property can be TOP in a chain giving rise to a cyclic dependence unless all other

properties are TOP.

2Not to be confused with the lattice chains.

8.5. PERFORMING EXHAUSTIVE DATA FLOW ANALYSIS 91

8.5 Performing Exhaustive Data Flow Analysis

Recall that the Initial Trigger Set, denoted TR0, contains the properties whose initial values

are BOT due to computations located within a node/along an edge. TR0 can also be defined

as :

Bprops = fp j either P p(p) = in(i) and i 2 entry(G); or

P p(p) = out(i); i 2 exit(G)g

TR0 = fp j either lower 2 Ω(p); or

p 2 Bprops and p = BOTg (8.1)

Observation 8.4 : p 2 TR0�Bprops)D(p) = /0. 2

The values of properties can only change from TOP to BOT and not the other way round.

Thus the properties whose initial values are BOT, do not change any further but instead tend

to influence other corresponding properties. Hence exhaustive data flow analysis is performed

by

(i) constructing TR0, and

(ii) constructing chains for the properties in TR0.

The MFP solution of a data flow problem can thus be defined as follows :

8p; p = BOT iff p 2 TR0 or 9p0 2 TR0 such that CH(p0; p) 6= /0 (8.2)

This definition will be used later to show the correctness of incremental data flow analysis.

In particular, it will be shown later that the old MFP solution, when updated incrementally to

reflect the changes, satisfies the above condition.

8.6 Refinement of the Notions from the Generalised Theory

The discussion in this section can perhaps be appreciated better in retrospect. We nevertheless

present it at the outset to avoid any confusion.

There is a subtle difference between exhaustive and incremental analysis : The discussion

of incremental analysis tries to captures specificities of an instance of a data flow framework

which are ignored by the discussion of exhaustive analysis. Thus the notions in incremental

analysis are more refined than the notions in exhaustive analysis.

It is the above subtle difference that warrants the following alterations :

92 CHAPTER 8. BACKGROUND

1. Unlike the generalised theory,the entire discussion of incremental analysis is in terms of

program points rather than nodes/edges. When the discussion is in terms of the notion of

program points, the entry and exit of a node are represented by distinct program points

so the distinction between the entry and exit points of a node, comes about inherently.

2. In the exhaustive analysis, the flow functions are in terms of nodes and edges (distinct

sets G and F). This evolved in contrast to the traditional notion of transfer functions

which may be associated with the edges or the nodes.

In incremental analysis since the attribute of the association of a function (with either a

node or an edge) is introduced, it does not matter much if the function is in G or in F

so long as the attribute association is correctly defined.

3. The discussion of exhaustive analysis is in terms of information flow paths which can

be determined from the data flow equations. In incremental analysis we talk in terms of

chains which capture the information flow more precisely since they are governed by the

individual functions (i.e. if the functions are propagate, raise, or lower). In exhaustive

analysis, we distinguish between only existing and non-existing functions (this informa-

tion is derived from data flow equations) without looking at the constants. Hence, the

discussion of exhaustive analysis involves only the propagate and non-propagate func-

tions whereas the discussion of incremental analysis divides the class of non-propagate

functions further into raise and lower functions.

This finer distinction is denoted by the attribute type of a function. Note that in exhaus-

tive analysis, the attribute typename denotes what is called the association of a function

in incremental data flow analysis.

4. The notion of dependence has been defined in the context of the state transition model

for exhaustive data flow analysis. Since incremental data flow analysis distinguishes

between lower and raise functions, the definition of dependence changes slightly and

the condition that the property should not be influenced by a lower function, is added.3

5. The notion of chain is defined in terms of the notion of the seed of a property in ex-

haustive data flow analysis. Since, there exists a unique seed of a property during any

analysis, there exists a unique chain from a property p to a property p0 in exhaustive

analysis. In incremental data flow analysis, a chain is defined in terms of the notion

3Besides, a more compact notation is used for brevity since the discussion of incremental data flow analysis

involves complicated rigourous statements.

8.6. REFINEMENT OF THE NOTIONS FROM THE GENERALISED THEORY 93

of dependence. Since a property depends on multiple properties, multiple chains may

exist from a property p to a property p0 in incremental data flow analysis. Hence the

set CH(p; p0) denotes a unique chain in exhaustive analysis but a set of chains in incre-

mental analysis. Due to the multiplicity of chains, it becomes imperative to distinguish

between chains and hence the attribute of the association of a function with either an

edge or a node is included.4

We chose the option of not changing the notations and concepts in the generalised theory

since it already is a part of the published literature [23, 38].

4In exhaustive analysis, this distinction is required in the case of information flow paths.

Chapter 9

A Functional Model for Incremental Data

Flow Analysis

So I tossed off this drawing. And I threw out an explanation with it.

“This is only his box. The sheep you asked for is inside.”
I was very surprised to see a light break over the face of my young judge :

“That is exactly the way I wanted it !

The fundamental concepts of the generalised theory have been presented with a lot of

intuitive explanations in Part I of the thesis. This chapter presents the material much more

formally. The rigour used in this chapter is not redundant — it provides a formalism to de-

fine the notion of incremental solution concretely. More detailed insights into the process of

incremental data flow analysis are contained in chapter 12 which proves correctness of the

model.

Equation pair 7.1 defines a high level abstraction of the proposed paradigm; we use a

more specific notation in the context of incremental data flow analysis. Section 9.2.1 defines

the notation using which we differentiate between the entities of the old instance of a data

flow framework (for which the MFP solution is available) and the new instance (for which

the solution needs to be computed incrementally). The model is presented in an evolutionary

style; additional notation is introduced as and when required.

Section 9.1 develops the fundamental concepts of incremental data flow analysis intu-

itively. This section also provides two examples of incremental data flow analysis which are

later used to illustrate the application of the proposed functional model. Section 9.2.2 de-

fines a formalism for classifying the changes that may take place in a data flow problem and

discusses their influence on TR0 and chains. Section 9.2.3 defines the change in the old so-

9.1. MOTIVATION 95

lution and shows how the old solution may be updated to reflect the changes in the previous

instance of a data flow problem. Section 9.2.4 summarises the model. Section 9.3 computes

the incremental solutions of the examples in section 9.1 using the proposed functional model.

Section 9.4 shows how the proposed model handles the cyclic dependences and suggests ex-

tensions to handle bidirectional data flows, multiple function changes, and structural changes.

9.1 Motivation

This section contains an intuitive discussion of incremental data flow analysis. Concepts

evolved in this section are used in section 9.2.3 to formally define the concepts used in the

proposed functional model for incremental data flow analysis. For the simplicity of exposi-

tion, available expressions analysis is used for motivating the concepts.

Let INl
i and OUTl

i be the properties for the expression el at the program points in(i) and

out(i) respectively. Assuming that the interprocedural information is not available, the data

flow equations for available expressions analysis are :

IN
l
i =

8

>

<

>

:

F if i 2 entry(G)

∏
p2pred(i)

OUT
l
p otherwise

OUT
l
i = Compl

i +Transpl
i � IN

l
i

The flow functions involved in available expressions analysis are of the following form :

� Node flow functions f 2 F : f f
(X) = Comp+Transp �X ; f b

(X) = >

� Edge flow functions g 2 G : g f
(X) = X ; gb

(X) = >

Since u is Π, TOP is T and BOT is F.

As a consequence of some change in a node,

(i) some properties may change from T to F, i.e. from TOP to BOT,

(ii) some properties may change from F to T, i.e. from BOT to TOP, and

(iii) some properties may remain the same.

These changes may take place locally (i.e., the properties undergoing a change may be the

properties associated with the node in which the original change has taken place), or globally

(i.e., the properties may be associated with some other node). Global changes can be found

by incorporating the effect of local changes over the rest of the graph. It is easy to see that

96 CHAPTER 9. FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANAL.

��

��

1a�b
��

��

2a�b

��

��

3

�

�

�

�R

�

�

�

�	

Figure 9.1: Incorporating TOP to BOT and BOT to TOP changes

the work involved in incremental data flow analysis would mostly be centered around finding

global changes. The rest of this section discusses global changes only.

The notions discussed in the following two subsections are essentially the same as the Any

Path Effect and the All Paths Effect, respectively, defined in [49]. However, their categorisation

is based on an adhoc reasoning of a change and its implication. Thus in some cases, a change

which belongs to a particular category in our approach, may belong to a different category

in their approach. We, on the other hand use these notions consistently and develop a model

which handles all the cases uniformly.

9.1.1 Incorporating TOP to BOT changes

Consider figure 9.1 which represents (a part of) a program flow graph. In this case OUT1
1,

OUT1
2, IN1

3, and OUT1
3 are TOP (i.e. T). Let an assignment to variable “a” be inserted after the

computation of expression “a � b” in node 1. After this change, OUT1
1 becomes BOT (i.e. F)

while OUT1
2 remains TOP. IN1

3 also becomes BOT since IN1
3 = OUT1

1uOUT1
2. The important

point to note is that the value of IN1
3 is determined by the value of OUT1

1 alone in such a case.1

Thus, the effect of TOP to BOT changes can be incorporated directly by using the notion of

propagation as defined in section 4.2.2.

9.1.2 Incorporating BOT to TOP changes

Note that if the change in the value of OUT1
1 is from BOT to TOP, the value of IN1

3 cannot be

determined directly since now it depends on the value of OUT1
2 also, which is not the case for

a TOP to BOT change in OUT1
1. All that we can infer about IN1

3 in the case of a BOT to TOP

change in OUT1
1 is that it may be TOP. Its actual value will be determined by the value of

OUT1
2.

1Refer to the SBVP property in section 4.1.

9.1. MOTIVATION 97

��

��

1e1 : a�b

?

��

��

2e2 : b� c

��

��

4c :=
��

��

3b :=

��

��

5e3 : c�d

?

��

��

6

S

Sw

�

�/

S

Sw

�

�/

+

Figure 9.2: Program flow graph for incremental data flow analysis of available expressions.

Thus, incorporating the effect of BOT to TOP changes requires more processing which

can be summarised in the following two steps.

1. Identify the properties which may become TOP.

2. From the properties identified in the above step, find out the properties which must

remain BOT due to the effect of some other property.

9.1.3 Examples of Incremental Data Flow Analysis

We consider two examples of incremental data flow analysis where the new solutions are

computed intuitively. The same solutions are then computed formally using the proposed

model in section 9.3.

We use the program flow graph in Figure 9.2. For convenience, we define the universal set

of properties :

U = fIN
l
i j 1� l � 3; 1� i� 6g[fOUT

l
i j 1� l � 3; 1� i� 6g

The MFP solution for this instance of available expressions analysis is contained in Ta-

ble 9.1.

Example 9.1 : Assume that the assignment to c in node 4 is deleted. Since expressions e2

and e3 become available at the exit of node 4, some properties which are F may now become

T. We calculate the new solution in two steps :

98 CHAPTER 9. FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANAL.

Expression el

Node e1 e2 e3

INl
i OUTl

i INl
i OUTl

i INl
i OUTl

i

1 F T F F F F

2 F F F T F F

3 F F T F F F

4 F F T F F F

5 F F F F F T

6 F F F F T T

Table 9.1: MFP solution for program flow graph in Figure 9.2

1. The properties which were F and may become T due to this change are :

fOUT2
4;OUT3

4; IN2
5; IN3

5;OUT2
5; IN2

2; IN2
6;OUT2

6g

2. From the above properties, the properties which must remain F are :

(a) Properties for expression e2 : IN2
5 cannot become T since OUT2

3 is F.

Hence IN2
5;OUT2

5; IN2
6;OUT2

6; IN2
2 must remain F.

(b) Properties for expression e3 : OUT3
4 cannot become T since IN3

4 is F. Thus, IN3
5

must also be F.

Thus, in the final solution, only OUT2
4 becomes T. No other property changes. 2

Example 9.2 : Consider another change in the program of previous example. Let the ex-

pression e3 in node 5 be deleted. The new solution computed in the previous example now

becomes old solution for this example and we need to find out the changes in that solution due

to deletion of expression e3. Since the expression ceases to be available at the exit of node 5,

some properties which were T, will now become F. In particular, the following properties will

become F : fOUT3
5; IN3

6;OUT3
6g. 2

Thus, the final solution after incorporating the effect of the above two changes is contained

in Table 9.2.

9.2. A FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANALYSIS 99

Expression el

Node e1 e2 e3

IN OUT IN OUT IN OUT

1 F T F F F F

2 F F F T F F

3 F F T F F F

4 F F T T F F

5 F F F F F F

6 F F F F F F

Table 9.2: New MFP solution for program flow graph in Figure 9.2

9.2 A Functional Model for Incremental Data Flow Analysis

9.2.1 Preliminaries

Let π(x) and σ(x) denote a partition of the set x and a subset in the partition π(x), respectively.

We use a subscript to denote a specific partition and a superscript to denote a specific subset

within a partition. Thus, a partition πµ consisting of k subsets is :

πµ(x) = fσ1
µ(x);σ

2
µ(x); : : : ;σ

k
µ(x)g

Let I = < G;M> represent the instance for which incremental data flow analysis is to be

performed.2 Let x be an entity in instance I. old (x) represents the corresponding entity in the

old instance which itself it denoted by old (I). In particular, old (x) denotes :

� old chain x if x is a chain,

� old value of x if x is a property,

� old function x if x is a function,

� old solution x if x is a solution,

� old set x if x is a set.

2Recall that incremental data flow analysis can be performed only if the solution of the previous analysis is

available. Thus, whenever we talk about performing incremental data flow analysis for an instance of a data flow

framework, we will be referring to both the old and the current instance.

100 CHAPTER 9. FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANAL.

old (Bm
h)

raise

lower

propagate

Bm
h

raise

lower

propagate

H

H

H

H

H

Hj

�

�

�

�

�

�R

H

H

H

H

H

Hj

�

�

�

�

�

�*

�

�

�

�

�

�*

�

�

�

�

�

��

Figure 9.3: Change in the function Bm
h , for p Bm

h (p0).

Thus, old (I) =< old (G);old (M)> represents the old instance of D. We assume that

old (G)� G, i.e. we restrict ourselves to the changes in M (alternatively, in F and G), only.

Extensions to structural changes (i.e. changes in G) will be discussed later. We also presume

that there is no change in L , i.e. no bit is added to, or deleted from, the bit vector representing

the data flow properties.

Let the MFP solution for the instance I be S. Then, old (S) represents the MFP solution

for old (I). The goal of incremental data flow analysis is to compute S from old (S).

9.2.2 Change in Data Flow Problem

9.2.2.1 Change in Flow Functions

Consider a function hm
2 F [G which is modified. Let Bm

h be a modified bit function of hm,

i.e. 9 x 2 fTOP;BOTg such that [old (Bm
h)℄ (x) 6= Bm

h (x). ∂Bm
h denotes the change

old (Bm
h)�. Bm

h . Figure 9.3 summarises the six possible changes. We abbreviate the functions

raise, lower, and propagate by r, l, and p3, respectively, to define ∆, the set containing these

changes.

∆ = fr�.l ; r�.p ; l�.r ; l�.p ; p�.r ; p�.l g

∆ forms the base set for the discussion of incremental data flow analysis. In particular, we

define three partitions of ∆ which will be used later4 :

πα(∆) = fσ1
α(∆);σ2

α(∆);σ3
α(∆)g

3Use of p as an abbreviation for propagate is an unfortunate choice since it overloads p which also denotes

a property. However, the context is sufficient to remove the ambiguity : p denotes the bit function propagate

only when it appears in conjunction with the arrow “�.” which denotes a change. In all other cases, p denotes a

property.
4Though the order of elements in a set does not matter, we define an ordering on the subsets in a partition to

allow for positional correspondence.

9.2. A FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANALYSIS 101

= ffr�.l ; p�.lg;fl�.r ; l�.pg;fp�.r ; r�.pgg (9.1)

πβ(∆) = fσ1
β(∆);σ

2
β(∆)g

= ffr�.l ; r�.p ; p�.lg;fl�.r ; l�.p ; p�.rgg (9.2)

πγ(∆) = fσ1
γ (∆);σ2

γ (∆);σ3
γ (∆)g

= ffp�.l ; p�.rg;fl�.p ; r�.pg;fl�.r ; r�.lgg (9.3)

(i) πα(∆) uses the lower function to partition ∆. σ1
α(∆) contains the changes in which

the new function is lower, σ2
α(∆) contains the changes in which the old function is

lower, and σ3
α(∆) contains the changes in which lower function is not involved.

(ii) πβ(∆) uses the possible value of the bit function Bm
h to partition ∆. σ1

β(∆) contains

the changes which may result in the new function computing BOT while the old

function may have computed TOP. Similarly, σ2
β(∆) contains the changes which

may result in the new function computing TOP while the old function would have

computed BOT.

(iii) πγ(∆) uses the propagate function to partition ∆. σ1
γ (∆) contains the changes in

which old function is propagate, σ2
γ (∆) contains the changes in which the new

function is propagate, and σ3
γ (∆) contains the changes in which propagate function

is not involved.

Observation 9.1 : σ1
β(∆) = σ1

α(∆)[fr�.pg

σ2
β(∆) = σ2

α(∆)[fp�.rg
2

9.2.2.2 Influence of Function Change

We know from section 8.5 that the MFP solution is defined in terms of the chains originating

from the properties which are in TR0. Thus we need to define TR0 and chains for I.

Influence of Function Change on Initial Trigger Set

In order to find the change in TR0 due to a change in hm, we define

T R +

= fp j p Bm
h (p0) s.t. Bm

h � lowerg (9.4)

T R �

= fp j p Bm
h (p0) s.t. old (Bm

h)� lower and lower 62 Ω(p)g (9.5)

TR0 corresponding to instance I is defined as follows :

TR0 = old (TR0)[T R +

�T R � (9.6)

102 CHAPTER 9. FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANAL.

where the operations are performed left to right.

Observation 9.2 : T R +

\T R �

=

/0. 2

Observation 9.3 : T R +

= fp j p Bm
h (p0) s.t. ∂Bm

h 2 σ1
α(∆)g

T R �

= fp j p Bm
h (p0) s.t. ∂Bm

h 2 σ2
α(∆)and lower 62Ω(p)g

2

Observation 9.4 : 8p; p Bm
h (p0); ∂Bm

h 2 σ3
α(∆)) p 2 TR0 iff p 2 old (TR0). 2

Influence of Function Change on Chains

As a consequence of a function change, some chains may become non-existent while some

new chains may come into existence. In order to capture this influence formally, we define the

following notions.5

� A chain ch involves a tuple < p1; p2;Bh > if :

(i) p2 Bh(p1) and Bh � propagate and lower 62 Ω(p2).

(ii) p1
T
! p2 appears in ch where T indicates the association of Bh.

� A chain ch includes a property p if ch involves a tuple < p0; p;Bh >. Thus, by definition,

the first property is not included in a chain.

� A chain ch existing in old (I) becomes non-existent in I if function Bh of a tuple< p1; p2;Bh >

involved in ch becomes either lower or raise in I.

� Consider a tuple < p1; p2;Bh > such that p1 2N �1
(p2) and p2 Bh(p1). A chain

p1
T
! p2 is created in I if old (Bh) 6� propagate, Bh � propagate, and lower 62Ω(p2).

More precisely, one chain involving the tuple < p1; p2;Bh > will be created and added

to every set CH(p01; p02) where p01 and p02 are defined thus,

– if p1 is the last property of a chain ch1 which exists in I, then p01 is any property in

ch1 else p01 is p1.

– if p2 is the first property of a chain ch2 which exists in I, then p02 is any property

in ch2 else p02 is p2.

5This part of this sections is required mostly for the correctness proofs. However, it is included here for sake

of completeness of the definition of the model.

9.2. A FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANALYSIS 103

� Finally, the following chains exist in I :

– The chains which exist in old (I) and do not become non-existent in I.

– The chains which are created in I.

Let p Bm
h (p0). It is clear that only the chains which include the property p may change

due to the change ∂Bm
h . All other chains remain unaffected. Also, if lower 2Ω(p)�fBm

h g, no

chain is affected. Thus, only if lower 62 Ω(p)�fBm
h g, the following chains for the properties

corresponding to p may change :

1. chains involving < p0; p;Bm
h >.

2. chains involving < p00; p;Bh > for p00 2N �1
(p); p00 6� p0 (i.e. Bh 2 Ω(p)�fBm

h g)if

(a) Bh � old (Bh)� propagate, and

(b) ∂Bm
h 2 σ1

α(∆)[σ2
α(∆).

We consider the two classes separately and enumerate each possible case and its influence

on the chains in the class :

1. Chains involving < p0; p;Bm
h > : We use the partition πγ(∆) to enumerate the distinct

cases.

(a) ∂Bm
h 2 σ1

γ (∆).

In these cases, old (Bm
h) is propagate. Thus, these chains existed in old (I) but

become non-existent in I.

(b) ∂Bm
h 2 σ2

γ (∆).

In these cases Bm
h is propagate. Since old (Bm

h) is not propagate, no such chains

existed in old (I). They are created in I.

(c) ∂Bm
h 2 σ3

γ (∆).

In these cases, propagate function is not involved. Thus such chains neither existed

nor are created.

2. Chains involving < p00; p;Bh > : If there exists a lower function in Ω(p)i, then p cannot

be included in a chain. Since Bm
h is the only function in Ω(p) which changes, these

chains may be influenced only if either Bm
h or old (Bm

h) is lower.6 Hence we use the

partition πα(∆) to enumerate the distinct cases.

6Note that we are considering those chains which do not involve < p0; p;Bm
h >, but < p00; p;Bh >.

104 CHAPTER 9. FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANAL.

(a) ∂Bm
h 2 σ1

α(∆).

Since Bm
h is lower, p 2 TR0. Hence chains involving < p00; p;Bh > cannot exist in

I. However, since Bh is propagate and lower 62 old (Ω(p)), such chains existed in

old (I).

(b) ∂Bm
h 2 σ2

α(∆).

Since old (Bm
h) is lower, p 2 old (TR0). Hence chains involving < p00; p;Bh > did

not exist in old (I). However, since Bh is propagate and lower 62Ω(p) in I, such

chains are created in I.

(c) ∂Bm
h 2 σ3

α(∆).

Since lower function is not involved, the chains are not influenced in any way.

9.2.3 Updating the Old Solution

9.2.3.1 Local change

The local change caused by changes in hm is denoted by LC =< B2T ;T 2B >. Sets B2T

and T 2B contain the BOT-to-TOP and TOP-to-BOT changes respectively.

B2T = fp j p Bm
h (p0); Bm

h (TOP) = TOP; [old (Bm
h)℄ (old (p0)) = BOT;

and lower 62 (Ω(p)�fBm
h g)g (9.7)

T 2B = fp j p Bm
h (p0); Bm

h (BOT) = BOT; and old (p) = TOP and

old (p0) = BOT if Bm
h � propagateg (9.8)

Note the asymmetry in the definition of B2T and T 2B . In the case of T 2B , it is enough

to know if the old value of p is TOP. However, in the case of B2T , p could have been BOT

due to any other function; since Bm
h is the only function that is changing, p cannot be included

in B2T unless it was BOT in old (I) due to the influence of old (Bm
h).

Observation 9.5 : B2T \T 2B =

/0. 2

Observation 9.6 :

B2T = fp j p Bm
h (p0); ∂Bm

h 2 σ2
β(∆); [old (Bm

h)℄ (old (p0)) = BOT; and

lower 62 Ω(p)g

T 2B = fp j p Bm
h (p0); ∂Bm

h 2 σ1
β(∆); old (p) = TOP; and

old (p0) = BOT if Bm
h � propagateg

2

9.2. A FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANALYSIS 105

old (Bm
h)

lower

propagate

Bm
h

raise

propagate

-

�

�

�R�

�

��

(a) p 2 B2T

old (Bm
h)

raise

propagate

Bm
h

lower

propagate

-

�

�

�R�

�

��

(a) p 2 T 2B

Figure 9.4: Change in the function Bm
h , for p Bm

h (p0).

9.2.3.2 Global change

The global change, GC =< B2T ?;T 2B?> is determined by incorporating the transitive in-

fluence of properties in B2T and T 2B sets.

� The influence of T 2B is computed by defining the set GCB(p) which contains the

properties which depend on p, and which should change to BOT.

GCB(p) =

(

fpg[fp00 j CH(p; p00) 6= /0 and old (p00) = TOPg if p 2 T 2B

/0 if p 62 T 2B
(9.9)

T 2B? =

[

p 2 T 2B

GCB(p) (9.10)

� As noted in section 9.1, the influence of B2T cannot be computed directly since some

properties which depend on the properties in B2T , may actually remain BOT due to

the influence of some other properties. For a p 2 B2T , let GCT (p) denote the set of

properties which may change to TOP. The properties which do not change to TOP are

contained in N CT (p).

GCT (p) =

(

fpg[fp00 j CH(p; p00) 6= /0 and old (p00) = BOTg if p 2 B2T

/0 if p 62 B2T
(9.11)

N CT (p) = fp00 j p00 2 GCT (p) and 9p000 2 TR0 such that CH(p000; p00) 6= /0g (9.12)

B2T ? =

[

p 2 B2T

(GCT (p)�N CT (p)) (9.13)

9.2.3.3 Incremental Computation of S

Any solution of a bit vector data flow problem can be represented by a tuple consisting of

two mutually exclusive and complementary sets : one containing the properties which are

106 CHAPTER 9. FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANAL.

TOP and the other containing the properties which are BOT. Let S =< V T ;V B > and

old (S) =< old (V T) ;old (V B)>.

Let
 be a binary operation updates, defined on tuples consisting of two disjoint sets such

that :

η
ξ = < η1;η2 >
 < ξ1;ξ2 >

= < ξ1�η2[η1;ξ2�η1[η2 >

The set operations� and [are performed left to right, i.e. ξ1�η2[η1 = (ξ1�η2)[η1.

S is computed by updating old (S) with GC :

S = GC
old (S)

= < B2T ?;T 2B?>
 < old (V T) ;old (V B)>

= < old (V T)�T 2B?[B2T ? ; old (V B)�B2T ?[T 2B?> (9.14)

9.2.4 Summarising the Model

Figure 9.5 summaries the proposed model for incremental data flow analysis. The desired

incremental solution, ∆S , is represented by the global change (GC), which in turn consists of

two sets : B2T ? and T 2B?. These sets are defined in terms of the sets GCT (p) and N CT (p)

for each property p 2 B2T and the set GCB(p) for each property p 2 T 2B . Computation of

GCT (p), N CT (p), and GCB(p) requires the set TR0, which is defined in terms of old (TR0),

T R �, and T R +. The first level sets (B2T , T 2B , T R �, T R +) are defined in terms of the

function changes. Note that we have not shown the old sets except where the old solution is

updated by ∆S .

We call this a functional model since all definitions are pure mathematical definitions to-

tally devoid of any procedural element; it is easy to see that computing the incremental solution

defined by this model is independent of any particular technique. Section 9.3 illustrates this

through two examples of incremental data flow analysis where S is obtained by computing the

sets from their fundamental definitions.

9.3 Examples Revisited

We use the examples in section 9.1.3 and compute the incremental solutions using the func-

tional model.

9.3. EXAMPLES REVISITED 107

T R � T R +

TR0

? ?

8p 2 B2T ;

GCT (p)

N CT (p)

8p 2 T 2B;

GCB(p)

= ~=

T 2BB2T

~ =

= ~

T 2B?B2T ?

∆S

S

?

?

old (S) -

Figure 9.5: A functional model for incremental data flow analysis.

Example 9.3 : We consider example 9.1 in which the assignment to c in node 4 is deleted.

� old (I) =< old (G);old (M)> :

Since old (Comp) and old (Transp) are F for e1 and e2 in node 3 and for e2 and e3 in

node 4,

old (TR0) = fIN
1
1; IN

2
1; IN

3
1;OUT

1
3;OUT

2
3;OUT

2
4;OUT

3
4g

The MFP solution for old (I) is old (S) =< old (V T);old (V B)> where

old (V T) = fOUT
1
1;OUT

2
2; IN

2
3; IN

2
4;OUT

3
5; IN

3
6;OUT

3
6g

old (V B) = U�old (V T)

108 CHAPTER 9. FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANAL.

� I =< G;M >=< old (G);M > :

The deletion of assignment to c in node 4 modifies the bit functions for expressions e2

and e3.

– Preliminary observations :

1. Function change : Since available expressions analysis is an intersection prob-

lem, TOP is T and BOT is F. The following are the constant properties and

the functions associated with node 4 :

Transp Comp Bm
h (x) Bm

h

e2 e3 e2 e3 e2 e3 (for both e2 and e3)

old F F F F F F lower

new T T F F x x propagate

Thus, ∂Bm
h � l�.p for both the expressions. The affected properties are : OUT2

4

and OUT3
4.

2. Sets containing the influencing functions are :

Ω(OUT
2
4) = Ω(OUT

3
4) = fpropagateg

3. Sets containing the corresponding properties are :

∝(OUT
2
4) = fOUT

2
i j 1� i� 6g[fIN2

i j 1� i� 6g

∝(OUT
3
4) = fOUT

3
i j 1� i� 6g[fIN3

i j 1� i� 6g

– TR0 computation :

Since old (Bm
h)� lower, lower 62 Ω(OUT2

4) and lower 62 Ω(OUT3
4),

T R +

=

/0

T R �

= fOUT
2
4;OUT

3
4g

TR0 = old (TR0)�T R �

= fIN
1
1; IN

2
1; IN

3
1;OUT

1
3;OUT

2
3g

– Computing the new MFP :

1. Computing LC =< B2T ;T 2B >

B2T = fOUT
2
4;OUT

3
4g

T 2B =

/0

2. Computing GC =< B2T ?;T 2B? > :

Since T 2B is /0, T 2B? is /0.

9.3. EXAMPLES REVISITED 109

We need to identify chains starting from the properties in B2T . It is easy to

see that the chains exist between OUT2
4 and the following properties :

IN2
5;OUT2

5; IN2
2; IN2

6;OUT2
6 (i.e. there exists an information flow path along which

all flow functions are propagate). It can be verified that all of them are in

old (V B) (i.e. all of them are BOT in old (S)). Of these, some properties tran-

sitively depend on OUT2
3 (i.e. chains exist between OUT2

3 and these properties)

which is in TR0. Thus,

GCT (OUT2
4) = fOUT

2
4; IN

2
5;OUT

2
5; IN

2
2; IN

2
6;OUT

2
6g

N CT (OUT2
4) = fIN

2
5;OUT

2
5; IN

2
2; IN

2
6;OUT

2
6g

Similarly, GCT (OUT3
4) = fOUT3

4; IN3
5g. However, both the properties transi-

tively depend on IN3
1 (i.e. chains exist between IN3

1 and these properties) which

is F (IN3
1 2 TR0). Hence, N CT (OUT3

4) is fOUT3
4; IN3

5g. Thus,

B2T ? =

[

p 2 B2T

(GCT (p)�N CT (p))

= (GCT (OUT2
4)�N CT (OUT2

4))[

(GCT (OUT3
4)�N CT (OUT3

4))

= fOUT
2
4g

Thus the only property that changes is OUT2
4. All other properties retain their

old values.

3. Computing S =< V T ;V B > :

V T = old (V T)�T 2B ?[B2T ?

= old (V T)[B2T ?

= fOUT
1
1;OUT

2
2; IN

2
3; IN

2
4;OUT

3
5; IN

3
6;OUT

3
6g[fOUT

2
4g

= fOUT
1
1;OUT

2
2; IN

2
3;OUT

2
4; IN

2
4;OUT

3
5; IN

3
6;OUT

3
6g (9.15)

V B = old (V B)�B2T ?[T 2B ?

= old (V B)�B2T ?

= U�old (V T)�B2T ?

= U� (old (V T)[B2T ?)

= U�V T

2

Example 9.4 : Now we consider example 9.2 in which the expression e3 in node 5 is deleted.

The MFP solution S defined in the previous example now becomes old (S) for this example

110 CHAPTER 9. FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANAL.

and V T defined in (9.15) becomes old (V T).

� Function change :

Transp3
5 Comp3

5 Bm
h (x) Bm

h

old T T T raise

new T F x propagate

Thus, ∂Bm
h � r�.p.

� TR0 computation :

Since lower function is not involved in the change, T R +

= T R �

=

/0 and TR0 is the

same as old (TR0).

� Computing the new MFP :

1. Computing LC =< B2T ;T 2B >

It is clear that B2T =

/0.

It can be verified from (9.15) that old (p0) = old (IN3
5) = BOT (since IN3

5 is not in

old (V T)). Hence from equation 9.8,

T 2B = fOUT
3
5g

2. Computing GC =< B2T ?;T 2B? >

Since B2T is /0, B2T ? is /0.

There is no definition of either c or d in the program for this instance and the

properties which depend on OUT3
5 through some chain are : IN3

6;OUT3
6; IN3

2;OUT3
2;

IN3
3;OUT3

3; IN3
4; OUT3

4; and IN3
5. However, most of these properties are BOT in

old (S). From (9.15), the only properties which are TOP are : IN3
6 and OUT3

6. Thus,

from equation 9.9,

GCB(OUT3
5) = fOUT

3
5; IN

3
6;OUT

3
6g

T 2B? = GCB(OUT3
5) = fOUT

3
5; IN

3
6;OUT

3
6g

3. Computing S =< V T ;V B > :

V T = old (V T)�T 2B ?[B2T ?

= old (V T)�T 2B ?

9.4. MISCELLANEOUS ISSUES IN INCREMENTAL DATA FLOW ANALYSIS 111

= fOUT
1
1;OUT

2
2; IN

2
3;OUT

2
4; IN

2
4;OUT

3
5; IN

3
6;OUT

3
6g�

fOUT
3
5; IN

3
6;OUT

3
6g

= fOUT
1
1;OUT

2
2; IN

2
3;OUT

2
4; IN

2
4g

V B = U�V T

2

9.4 Miscellaneous Issues in Incremental Data Flow Analysis

This section discusses several issues which were not addressed till now for the sake of simplic-

ity. As this discussion reveals, the proposed model is elegant in that it handles many seemingly

complicated situations very naturally, without requiring any special treatment. This is possi-

ble only because the concepts and the definitions of the model are based on sound theoretical

foundations are not ad hoc.

9.4.1 Handling Bidirectional Data Flows

The functional model of incremental data flow analysis derives its basis from the fundamental

principles of the generalised theory of data flow analysis. Thus, it inherently distinguishes

between the entry and exit points of a node thereby handling unidirectional and bidirectional

data flows uniformly. Though it goes further and develops additional concepts and principles

to theorise incremental data flow analysis, it does not make any assumption/proposition which

contradicts the notions involved in bidirectional data flows. However, the following three

issues specific to bidirectional data flows may seem to require special treatment.

1. All known unidirectional problems have only one flow function associated with a node

and all flow functions associated with edges are identity functions. Changes in a node

do not affect edge flow functions in any way but may cause the node flow function to

change. The important point to note is that at most one flow function may change due

to a change in a node.

Bidirectional problems may, however, have more than one function associated with a

node. Besides, the edge flow functions may be of the form h(X) =C1 + C2 �X where

C1 and C2 could change due to a change in the node. Thus, multiple flow functions could

change simultaneously due to a change in a single node. It is shown in section 9.4.3

that such a situation can be handled by the model very easily. In fact, the changes

112 CHAPTER 9. FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANAL.

��

��

1

?

��

��

2
For the chain ch � PPINl

3

gb

! PPOUTl
2

f b

! PPINl
2

gb

! PPOUTl
1,

PPOUTl
1 2D(PPINl

3), i.e. PPINl
3 depends on PPOUTl

1 through g f

��

��

3

�

�/

S

Sw

Figure 9.6: Cyclic dependence in MRA in the absence of a strongly connected component

need not be restricted to a single node; changes in several nodes can also be processed

simultaneously.

Example 9.5 : Consider node 2 in the program flow graph of Figure 9.2. If expression

b� c is deleted, then ANTLOCl
2 becomes F hence f b

2 for e2 (which is

ANTLOCl
2 + TRANSPl

2 �X), changes. Similarly, since AVOUTl
2 becomes F, the edge

flow function g
f

(2;3)
for e2 (which is AVOUTl

2+X), also changes. Thus, due to a single

change, multiple flow functions for the same property could change. In the case of

available expressions analysis, only f
f

2 would have changed due to the removal of b� c

from node 2. 2

2. Due to the presence of flows in both the directions, cyclic dependences may arise in

bidirectional flows even in the absence of a strongly connected component. Figure 9.6

contains such an example for MRA. It is shown in section 9.4.2 that the definitions

in the functional model handle the cyclic dependences automatically without requiring

any special treatment. Thus, neither the unidirectional nor the bidirectional data flow

analysis requires any special provision for handling the cyclic dependences.

3. The CONST IN/CONST OUT properties (i.e. the constant properties associated with

the entry/exit of a node) are > for all known unidirectional problems. They may be

non-> for bidirectional problems (see section 3.3). Thus a property could be in TR0

due to the influence of CONST IN/CONST OUT and computing new TR0 from flow

functions alone may not suffice.

Example 9.6 : For MRA, CONST INi is PAVINi. The initial value of PPINl
i is BOT

if PAVINl
i is BOT. Thus if PAVINl

i changes, this change is not a change in any flow

function, and yet the value of PPINl
i and its membership in TR0 is affected. 2

9.4. MISCELLANEOUS ISSUES IN INCREMENTAL DATA FLOW ANALYSIS 113

Handling this situation is really very easy. Recall that the data flow equations can be

written in an abstract form as :

X(u) =
v 2 N �1

(u)
h(X(v))uCONST(u)

where CONST(u) is either CONST INi or CONST OUTi depending upon whether u

is in(i) or out(i). Let the flow function h be h(X) =C1 + C2 �X . Then the data flow

equation can be re-written as

X(u) =
v 2 N �1

(u)
h0(X(v))

where h0 is defined as h0(X) = (CONST(u)uC1) + (CONST(u)uC2) �X . Effectively,

the constant property which was “outside” is “pulled inside” the flow function7, and a

change in a constant property can be treated as a change in a flow function. No additional

provision is required for handling constant properties.

9.4.2 Handling Cyclic Dependences

Consider an influence p Bm
h (p0). Let there be an information flow path from p to p0. Then,

p0 Bh(p) where Bh represents the composition of all flow functions along the information

flow path from p to p0. It is easy to see that :

p Bm
h (p0) and p0 Bh(p)) p Bm

h (Bh(p))

Traditionally, such a situation is handled in two steps :

1. Identify the existence of an information flow path from p to p0.

This involves identifying a strongly connected component in the graph. This approach

is error prone in case of bidirectional problems where information flow paths do not

necessarily follow the graph theoretic paths and a cyclic dependence may exist even in

the absence of a strongly connected component.

2. Find the influence of Bh(p) to determine the final value of p.

This involves traversing the strongly connected component.

In this section, we show that these two steps are redundant in the proposed model.

7This needs to be done for the node flow functions only.

114 CHAPTER 9. FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANAL.

Observation 9.7 : For an influence p Bm
h (p0). There is no need to identify strongly con-

nected components unless CH(p; p0) 6= /0. 2

Even if an information flow path along a strongly connected component exists, p cannot in-

fluence p0 unless (i) all the functions along the information flow path are propagate, and (ii) no

property along the path is influenced by a lower function. Further, unless Bm
h is propagate, p

does not depend on p0 (i.e. the value of p0 does not influence p). Hence we conclude that there

is no need to identify and traverse the strongly connected component unless Bm
h � propagate,

and a chain from p to p0 exists.

From observation 8.3, all properties in a chain giving rise to a cyclic dependence must

necessarily have the same value in a fixed point solution. The functional model ensures this

without requiring any special treatment of strongly connected components.

Lemma 9.1 : Consider an influence p Bm
h (p0) and a ch 2 CH (p; p0) such that ch gives

rise to a cyclic dependence. Then, all properties in ch have the same value in the solution

computed by the functional model.

Proof : Let old (ch) � p1
T1
! p1

T2
! p2 � � �

Tn
! pn where p1 � p and p2 � p0. Since ch does not

include p, we know that ch � old (ch). Let pi be the first BOT property in old (ch). Then, all

properties from pi to pn (both inclusive) must necessarily be BOT and all properties from p1

to pi�1 (both inclusive) must necessarily be TOP in old (I).

Since Bm
h is propagate, ∂Bm

h 2 σ2
γ (∆). We consider all cases in the following :

1. old (p) = BOT. By the above argument, old (p0) must be BOT. The two changes in

σ2
γ (∆) are,

(a) ∂Bm
h � l�.p : From equation 9.7, p 2 B2T . Since ch exists in I, every pi is

contained in GCT (p). Two possibilities exist for these properties :

i. 9 p00 2 TR0 such that CH(p00; p j) 6= /0. In such a case, since a cyclic depen-

dence exists, a chain exists from p00 to every pi (via p j). Thus every pi is in

N CT (p) and its value is BOT.

ii. 6 9 p00 2 TR0 such that CH(p00; p j) 6= /0 for any p j. Then, all properties are in

GCT (p)�N CT (p) and all of them are TOP.

(b) ∂Bm
h � r�.p : Since old (p) is BOT, p 62 T 2B . Hence the value of p remains BOT

and no property changes.

2. old (p) = TOP. We consider the two cases in σ2
γ (∆),

9.4. MISCELLANEOUS ISSUES IN INCREMENTAL DATA FLOW ANALYSIS 115

T RI
+

(hm
) : T R +

set for a function hm
2H m.

T RI
�

(hm
) : T R � set for a function hm

2H m.

T 2BI (h
m
) : T 2B set for a function hm

2H m.

B2TI (h
m
) : B2T set for a function hm

2H m.

Figure 9.7: Intermediate sets corresponding to h

(a) ∂Bm
h � l�.p : Since old (Bm

h) is lower, old (p) cannot be TOP and hence this

possibility is ruled out.

(b) ∂Bm
h � r�.p : This is very much possible and we need to consider old (p0) for

further analysis.

i. old (p0) = BOT : In this case, p 2 T 2B . Let pi be the first BOT property in

old (ch). Then, the old values of all properties from p1 to pi�1 must be TOP.

All these properties will be contained in GCB(p). Since all properties from

pi to pn retain their old values, once again all properties in ch are BOT.

ii. old (p0) = TOP : In this case, p is neither in T 2B nor in B2T , and

GCB(p) = GCT (p) = /0. However, since old (p0) is TOP, it implies that all

the properties in ch are TOP. Now, the value of p remains TOP, and once

again, all the properties in ch have the same value.

Thus, in each case all properties in ch have the same value. This is achieved by the functional

model automatically without the need of knowing about the presence of a strongly connected

component. 2

It is shown in chapter 12 that the resulting solution is the MFP solution.

9.4.3 Handling Multiple Function Changes

The proposed model is easily extended to multiple function changes. Instead of processing a

single modified bit vector function hm, we define a set H m to contain all functions which have

changed. For each set in the proposed model, we define a corresponding set for each function

hm
2 H m (see Figure 9.7). Each of these sets is defined much in the same way like the original

set.

116 CHAPTER 9. FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANAL.

9.4.3.1 Computing TR0

In the presence of multiple function changes, T R +

and T R �

are defined as follows :

T RI
+

(hm
) = fp j p Bm

h (p0) s.t. Bm
h � lower; hm

2H m
g

T RI
�

(hm
) = fp j p Bm

h (p0) s.t. old (Bm
h)� lower; hm

2 H m and lower 62Ω(p)g

T R +

=

[

hm
2 H m

T RI
+

(hm
)

T R �

=

[

hm
2 H m

T RI
�

(hm
)

TR0 definition is same as in the case of a single function change :

TR0 = old (TR0)[T R +

�T R �

where the operations are performed left to right.

9.4.3.2 Local change

Recall that local change LC is defined as LC =< B2T ;T 2B >. The sets B2T and T 2B are

defined in terms of B2TI (h) and T 2BI (h) sets for individual functions in H m.

B2TI (h
m
) = fp j p Bm

h (p0); Bm
h (TOP) = TOP; [old (Bm

h)℄ (old (p0)) = BOT

and lower 62 Ω(p);hm
2H m

g

T 2BI (h
m
) = fp j p Bm

h (p0); Bm
h (BOT) = BOT and old (p) = TOP and

old (p0) = BOT if Bm
h � propagate;hm

2H m
g

These definition are essentially the same as the original definitions (equations 9.7 – 9.8).

The overall B2T and T 2B sets are defined as follows :

B2T =

[

hm
2 H m

B2TI (h
m
)

T 2B =

[

hm
2 H m

T 2BI (h
m
)

Effectively, local change computation accumulates the local changes all over the graph8,

i.e. the sets B2T and T 2B may contain the properties at different program points unlike in the

case of a single function change when they contain the properties at a single program point.

8Is it fair to call them local?

9.4. MISCELLANEOUS ISSUES IN INCREMENTAL DATA FLOW ANALYSIS 117

9.4.3.3 Global change

Having accumulated the influence of all bit vector functions which have changed, we compute

the global change GC which is < B2T ?;T 2B? > by computing GCT (p), N CT (p) sets for

all properties in B2T and GCB(p) for all properties in T 2B . Interestingly, all definitions for

global change computation remain same even if there are multiple function changes. This is

possible since even though there could be conflicting influences on the value of a property, it

is automatically taken care of by the definitions in the model.

It is shown in section 12.5 that the possibility of several functions changing together does

not constrain any proposition of the model and there is no need to perform separate analysis

for different changes; all changes can be handled simultaneously. This facilitates handling the

structural changes because a structural change often implies changes in several functions.

9.4.4 Handling Structural Changes

Recall that a data flow framework is defined as a triple D = < L ;u;F [G > while its in-

stance is defined by the ordered pair I =< G;M > where M maps the flow functions to the

nodes/edges of the control flow graph. So far we have considered the changes in M (alterna-

tively, in F or G) only. Now we consider the other changes called the structural changes.

Two kinds of structural changes may take place in an instance of a data flow framework :

1. Changes in the lattice L .

This implies changing the structure of a lattice element, i.e. adding a new expression in

the program or removing all computations of an existing expression from the program.

Such a change implies that some bits are added to or deleted from each lattice element.

Such a change needs to be processed using exhaustive analysis since old MFP solution

for these bits is not available; it must be computed from scratch. Thus, this problem is

beyond the purview of incremental data flow analysis.

2. Changes in the graph G.

The following kinds of changes may take place in a graph :

(a) Deletion of an edge :

Consider an edge e = (i; j). Then, possibly two flow functions h(u;u0) and h0(u0;u)

have been deleted where u� out(i) and u0 � in(j). We know that a non-existent

function is essentially a constant function >. Thus effectively, some functions

118 CHAPTER 9. FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANAL.

may have changed to > and hence the properties may change from BOT to TOP.

Thus, B2T should be computed at u and u0. Global change can then be found by

computing GCT and N CT sets.

(b) Insertion of an edge :

Let the inserted edge be e = (i; j). Then, possibly two new flow functions h(u;u0)

and h0(u0;u) may have been created where u� out(i) and u0 � in(j). These func-

tions did not exist in old (I). In other words, the influence of these function was >

in old (I). Thus, the changes can only be from TOP to BOT which can be identified

by computing T 2B at u and u0. Global change can then be found by computing

GCB sets.

(c) Deletion of a node :

Deletion of a node may have the following two connotations :

i. All in/out edges of the node are deleted.

This basically is the mathematical notion deletion of a node. In this case, the

desired change can be modelled in terms of the approach mentioned in step 2a.

Note that the multiplicity of edges does not affect the complexity since the

number of edges can be safely assumed to be bounded by a constant.9

ii. The in-edges of the node are joined with out-edges, i.e. every successor of the

node becomes a successor of every predecessor of the node.

This is what the node deletion may practically imply. In this case the desired

computation can be defined as in the next step.

(d) Insertion of a node :

Let node k be inserted by splitting an edge (i; j). For brevity, let u and v denote

out(i) and in(j) respectively. Let u0 and v0 denote in(k) and out(k) respectively.

Then, the following changes have taken place :

� h(u;v) and h(v;u) have become >.

� The following functions which were non-existent (i.e. >) in old (I), have been

added,

– h(u;u0) and h(u0;u),

– h(u0;v0) and h(v0;u0),

– h(v0;v) and h(v;v0),

9This is in consonance with the assumption that j E j is O(j N j).

9.5. LOOKING BACK 119

We need to find T 2B and B2T sets for all these functions. The influence of

some flow functions becoming > can be incorporated in the influence of the new

functions. As a first step, compute (mutually consistent) INk and OUTk. Then,

compute the T 2B and B2T sets as defined below :

� Local change at u.

T 2B(h(u0;u)) = fp j p is TOP in old (OUTi) and is BOT in

[h(u0;u)℄(INk)g

B2T (h(u0;u)) = fp j p is BOT in [old (h(v;u))](old (IN j)),

is TOP in [h(u0;u)℄(INk); and lower 62Ω(p)g

� Local change at u0.

T 2B(h(u;u0)) = fp j p is BOT in INk and the corresponding

property is TOP in old (IN j) g

B2T (h(u;u0)) = fp j p is TOP in INk and the corresponding

property is BOT in old (IN j) g

� Local change at v0.

T 2B(h(v;v0)) = fp j p is BOT in OUTk and the corresponding

property is TOP in old (OUTi) g

B2T (h(v;v0)) = fp j p is TOP in OUTk and the corresponding

property is BOT in old (OUTi) g

� Local change at v.

T 2B(h(v0;v)) = fp j p is TOP in old (IN j) and is BOT in

[h(v0;v)℄(OUTk)g

B2T (h(v0;v)) = fp j p is BOT in [old (h(u;v))](old (OUTi)),

is TOP in [h(v0;v)℄(OUTk); and lower 62 Ω(p)g

9.5 Looking Back

It is easy to see that the proposed model is independent of any particular technique. This in-

dependence is achieved by clearly defining the incremental solution of a data flow problem.

The advantage of this model is that since the correctness of this model is formally proved

(chapter 12), the correctness of any technique of incremental data flow analysis automatically

120 CHAPTER 9. FUNCTIONAL MODEL FOR INCREMENTAL DATA FLOW ANAL.

follows if it can be shown that it computes the sets defined in the model correctly. Another

significant advantage is that no special treatment is required for strongly connected compo-

nents. Besides, it is capable of handling bidirectional data flows, multiple function changes,

and structural changes. Chapter 10 develops an iterative algorithm which is based on the

proposed model; chapter 11 develops four variants of a wordwise algorithm.

Chapter 10

Performing Incremental Data Flow

Analysis : The Bitwise Approach

I pointed out to the little prince that baobabs were not little bushes, but, on

the contrary, trees as big as castles; ... But he made a wise comment :
“Before they grow so big, the baobabs start out by being little.”

This chapter presents an iterative algorithm for performing incremental data flow analy-

sis according to the functional model proposed in chapter 9. This algorithm processes each

property in the bit vector separately. For the sake of simplicity, we ignore the extensions for

multiple function changes and structural changes and restrict ourselves to changes in one bit

vector function.

We start from the basic definitions and develop the algorithm in an evolutionary style. The

pseudo-code is written in Pascal-like language.

10.1 Preliminaries

We use the terms sets and bit vectors interchangeably. We assume that the bit function B i
h is

B i
h(x) =Ci

1 +Ci
2 � x. We use the following notation for presenting the algorithm :

Pos(p) : Bit position of a property p in the bit vectors.

X(u) : Bit vector representing the properties at program point u.

X i
(u) : Property represented by the ith bit at program point u.

B i
h : Bit function for the ith property in a bit vector.

Let the modified bit vector function be hm. The first task is to determine those bit functions

122 CHAPTER 10. BITWISE INCREMENTAL DATA FLOW ANALYSIS

of hm which have changed. Let hm
(Y) =Cm

1 +Cm
2 �Y and Hm be the bit vector representing

the bit functions which have changed.1 Let � represent the boolean EX-OR operation. Then,

Hm
= old (Cm

1)�Cm
1 +old (Cm

2)�Cm
2 .

1. procedure retain TOP bits(x;y)

2. f /? Identify those bits in y which are TOP in y and are T in x ?/

3. if (u is Π) then

4. return x � y

5. else if (u is Σ) then

6. return x � :y

7. g

8. procedure retain BOT bits(x;y)

9. f /? Identify those bits in y which are BOT in y and are T in x ?/

10. if (u is Π) then

11. return x � :y

12. else if (u is Σ) then

13. return x � y

14. g

15. procedure make bits BOT(x;y)

16. f /? If a bit is T in y, make it BOT in x ?/

17. if (u is Π) then

18. return x � :y

19. else if (u is Σ) then

20. return x+ y

21. g

22. procedure make bits TOP(x;y)

23. f /? If a bit is T in y, make it TOP in x ?/

24. if (u is Π) then

25. return x+ y

26. else if (u is Σ) then

27. return x � :y

28. g

Figure 10.1: Some binary operations on lattice elements

Since the algorithm should handle both confluence operators (i.e. union and intersection),

we abstract out the operator dependent computations. Figures 10.1 contains procedures for

some binary operations on the lattice elements while Figure 10.2 contains some procedures to

compute the sets of functions.

1Note that Hm is different from H m defined in section 9.4.3.

10.2. COMPUTING TR0 123

1. procedure lower functions(h) /? h(X) =C1 + C2 �X ?/

2. f if (u is Π) then

3. return :C1 � :C2

4. else if (u is Σ) then

5. return C1

6. g

7. procedure raise functions(h) /? h(X) =C1 + C2 �X ?/

8. f if (u is Π) then

9. return C1

10. else if (u is Σ) then

11. return :C1 � :C2

12. g

13. procedure propagate functions(h) /? h(X) =C1 + C2 �X ?/

14. f return :C1 �C2

15. g

Figure 10.2: Computing sets of functions

10.2 Computing TR0

TR0 is implemented as a property vector, i.e. if a property associated with the program point u

is in TR0, the corresponding bit is T in the bit vector TR0(u). Thus, the sets T R +

and T R �

influence the bit vector TR0(u) where u = P p(p) such that p Bm
h (p0). For a p 2 T R �,

there should be no lower function in Ω(p).

Presence of a lower function in Ω(p) influences the chains and and B2T set. Thus, we

need to identify if a property is being influenced by a lower function. Testing whether there

exists a lower function can be carried out by simply testing for the membership of p in TR0.

This is precisely why the TR0 computation is required.

10.3 Computing the Local Change

Procedure find local change in Figure 10.4 computes the local influence of the modifica-

tions in function hm : X(u) hm
(X(u0)). Since B2T and T 2B contain the properties which

change, we need to know the influence of the properties at u0 through old (hm
) on the properties

at u. Note that Bm
h (BOT) = BOT covers the lower as well as propagate functions. Procedure

find local change identifies them separately since T 2B computation has an additional condi-

124 CHAPTER 10. BITWISE INCREMENTAL DATA FLOW ANALYSIS

1. procedure compute TR0(h
m
;Hm

;u)

2. f T R +

:= Hm
� lower functions(hm

)

3. T R �

:= Hm
� old lower functions(hm

)

4. for each u00 2N �1
(u)

5. f temp := [h(u00;u)℄(>)

6. T R �

:= retain TOP bits(T R �

; temp)

7. g

8. TR0(u) := old (TR0(u)) � :T R �

+T R +

9. g

10. procedure old lower functions(h) /? h(X) =C1 + C2 �X ?/

11. f if (u is Π) then

12. return :old (C1) � :old (C2)

13. else if (u is Σ) then

14. return old (C1)

15. g

Figure 10.3: Computing TR0

1. procedure find local change(hm
;Hm

;u0;u) /? hm
(X) =Cm

1 + Cm
2 �X ?/

2. f oldinfluence := old (Cm
1)+old (Cm

2) �old (X(u0))

3. temp := retain BOT bits(propagate functions(hm
),old (X(u0)))

4. botinfluence := lower functions(hm
) + temp

5. topinfluence := raise functions(hm
) + propagate functions(hm

)

6. B2T := Hm
�retain BOT bits (topinfluence,oldinfluence) �:TR0(u)

7. T 2B := Hm
�retain TOP bits (botinfluence,oldinfluence)

8. X(u) := make bits BOT(old (X(u)),T 2B)

9. X(u) := make bits TOP(X(u);B2T)

10. g

Figure 10.4: Computing LC =< B2T ;T 2B >

tion that the old value of p0 should be BOT if Bm
h is propagate.

10.4 Computing the Global Change

In order to compute the global change, we need to know the properties which depend on the

changed property. Figure 10.5 contains a procedure for tracing the chains of a property.

10.4. COMPUTING THE GLOBAL CHANGE 125

1. procedure causes dependence(u;u0 ; i)

2. f /? [B i
h(u;u

0

)℄(x) =Ci
1 +Ci

2 � x ?/

3. if :Ci
1 �C

i
2 = T then /? B i

h � propagate ?/

4. if TR0
i
(u0) = F then

5. return T

6. return F

7. g

Figure 10.5: Determining if p 2D(p0) (i.e. if X i
(u0) depends on X i

(u)).

We compute T 2B? by constructing GCB(p) for each property p in T 2B . B2T ? is com-

puted by constructing GCT (p) and N CT (p) for each property p in B2T . The sets GCB(p)

and N CT (p) are not constructed explicitly; instead, the graph is traversed and the value of

a property is set to BOT. Since N CT (p) computation requires GCT (p), we remember the

program points of the properties in GCT (p). The properties in GCT (p) are changed to TOP

which may then be reset to BOT if they belong to N CT (p).

We consider the simpler case of T 2B? first.

10.4.1 Computing T 2B?

From equation 9.9, for a p 2 T 2B

GCB(p) = fpg[fp00 j CH(p; p00) 6= /0 and old (p00) = TOPg

Thus, GCB(p) can be computed in two steps :

1. GCB(p) = fpg[fp00 j p 2D(p00) and old (p00) = TOPg

2. Repeat until no more properties can be added to GCB(p)

GCB(p) = GCB(p) [fp00 j 9p0 2D(p00)\GCB(p) and old (p00) = TOPg

Procedure propagate bot influence (Figure 10.6) computes GCB(p) recursively, where p

is represented by X i
(u).

126 CHAPTER 10. BITWISE INCREMENTAL DATA FLOW ANALYSIS

1. procedure propagate bot influence(u; i) /? i is Pos(p) and u is P p(p) ?/

2. f for each u0 2N (u)

3. f if ((causes dependence (u;u0 ; i) = T) and (X i
(u0) = TOP)) then

4. f X i
(u) := BOT

5. propagate bot influence(u0 ; i)

6. g

7. g

8. g

Figure 10.6: Computing GCB(p)�fpg

10.4.2 Computing B2T ?

10.4.2.1 Computing GCT (p)

From equation 9.11, for a p 2 B2T

GCT (p) = fpg[fp00 j CH(p; p00) 6= /0 and old (p00) = BOTg

Thus, GCT (p) also can be computed in two steps :

1. GCT (p) = fpg[fp00 j p 2D(p00) and old (p00) = BOTg

2. Repeat until no more properties can be added to GCT (p).

GCT (p) = GCT (p) [fp00 j 9p0 2D(p00)\GCT (p) and old (p00) = BOTg

The set GCT (p) is effectively represented by the affected region which is defined as :

AR p = fP p(p0) j p0 2 GCT (p)g: (10.1)

The affected region represents the portion of the graph which needs to be processed for incor-

porating the effect of the changes in B2T . The recursive procedure which implements this

definition is given in Figure 10.7, where p is represented by X i
(u).

10.4.2.2 Computing N CT (p)

From equation 9.12,

N CT (p) = fp00 j p00 2 GCT (p) and 9 p000 2 TR0 s.t. CH(p000; p00) 6= /0g

10.4. COMPUTING THE GLOBAL CHANGE 127

1. procedure find global change to top(u; i) /? i is Pos(p) and u is P p(p) ?/

2. f AR p := AR p[fug

3. for each u0 2N (u)

4. f if ((causes dependence (u;u0 ; i) = T) and (X i
(u0) = BOT)) then

5. f X i
(u0) := TOP

6. find global change to top(u0; i)

7. g

8. g

9. g

Figure 10.7: Computing GCT (p) and AR p

1. procedure propagate boundary effect(u; i) /? i is Pos(p) and u is P p(p) ?/

2. f for each u 2 AR p

3. for each u0 2N �1
(u)

4. if (u0 62 AR p) then /? Then u is in BR p ?/

5. if (causes dependence (u;u0 ; i) = T) then

6. if ((X i
(u0) = BOT) and (X i

(u) = TOP)) then

7. f X i
(u) := BOT

8. propagate bot influence(u; i)

9. g

10. g

Figure 10.8: Computing N CT (p)

This equation can be rewritten as :

N CT (p) = fp00 j p00 2 GCT (p) and 9p0 62 GCT (p) s.t. CH(p0; p00) 6= /0; and

p0 = BOTg

Thus, N CT (p) also can be computed in two steps :

1. N CT (p) = fp00 j p00 2 GCT (p) and 9p0 62 GCT (p) s.t. p0 2D(p00) and

p0 = BOTg

2. Repeat until no more properties can be added to N CT (p).

N CT (p) = N CT (p) [fp00 j p00 2 GCT (p) and 9p0 2D(p00)\N CT (p)g

128 CHAPTER 10. BITWISE INCREMENTAL DATA FLOW ANALYSIS

The first step effectively identifies the boundary of affected region which may be defined as :

BR p = fP p(p0) j P p(p0) 2 AR p and 9 p00 2N �1
(p0) s.t. P p(p00) 62 AR pg (10.2)

Procedure propagate boundary effect in Figure 10.8 computes N CT (p) by finding out

those properties in GCT (p) which are neighbours of properties outside GCT (p). If a prop-

erty outside GCT (p) is BOT and the property in GCT (p) depends on it, the latter is set to

BOT and its influence is propagated to other nodes of the region.

10.5 A Generic Algorithm for Incremental Data Flow Anal-

ysis

1. procedure incremental dfa(hm
;u0;u)

2. f /? X(u) hm
(X(u0)) and hm

(X) =C1 +C2 �X ?/

3. Hm := old (C1) � :C1 +:old (C1) �C1 + old (C2) � :C2 +:old (C2) �C2

4. compute TR0(h
m
;Hm

;u) /? TR0 is globally available ?/

5. find local change(hm
;Hm

;u0;u) /? T 2B and B2T are globally available ?/

6. for each p 2 T 2B
7. f i := Pos(p)

8. propagate bot influence(u; i)

9. g

10. for each p 2 B2T
11. f AR p := /0 /? AR p is globally available ?/

12. i := Pos(p)

13. find global change to top(u; i)

14. propagate boundary effect(u; i)

15. g

16. g

Figure 10.9: A generic algorithm for incremental data flow analysis

The main procedure which calls various procedures is given in Figure 10.9. Since the

algorithm is a straight-forward implementation of the functional model of incremental data

flow analysis, it inherits several advantages of the model.

1. It can be extended to handle multiple function changes without any significant increase

in the amount of work.

10.6. IMPLEMENTATION NOTES 129

2. It can handle structural changes with slight modification.

3. It is uniformly applicable to union as well as intersection problems.

4. It is uniformly applicable to unidirectional and bidirectional data flow problems.

(a) This is the first algorithm for incremental data flow analysis of bidirectional data

flow problems.

(b) Most other techniques have to provide separate procedures for forward and back-

ward data flow problems. In contrast this algorithm is uniformly applicable to

forward and backward data flow problems.

5. Unlike most other approaches, this algorithms does not require the implementor to per-

form an exhaustive case analysis of changes and their possible implications. In this

sense this a rather clean and elegant algorithm which can be very easily adapted to any

(singular) bit vector data flow problem.

6. Since the algorithm faithfully implements the definitions of the entities constituting the

functional model, its correctness automatically follows.

7. Unlike most other algorithms (elimination as well as iterative), this algorithm does not

need to identify any strongly connected component.

10.6 Implementation Notes

The generic incremental data flow analysis algorithm proposed in this chapter has been im-

plemented and thoroughly tested for both unidirectional and bidirectional data flows. The

problem of available expressions analysis was chosen as a representative unidirectional data

flow problem while MRA was chosen as a representative bidirectional data flow problem.

The implementation framework consisted of the global optimiser phase of the optimising

FORTRAN compiler developed at IIT Bombay as a part of ongoing research in code optimi-

sation. The following strategy was used for performing incremental data flow analysis :

The global optimiser performs exhaustive analysis for a host of data flow problems

including the problem of available expressions analysis and MRA. The resulting

solutions are stored for a later use in incremental analysis. Global optimisation is

performed using the Composite Hoisting and Strength Reduction Algorithm (see

130 CHAPTER 10. BITWISE INCREMENTAL DATA FLOW ANALYSIS

section 1.2.3). This causes several (non-structural) changes in the program flow

graph. The local properties are recomputed and data flow analysis is performed

incrementally by retaining the changes in one node at a time. After computing

the MFP solution by the proposed algorithm, exhaustive data flow analysis is per-

formed independently using the round robin iterative method. The two solutions

thus obtained are compared. If found identical, the process of incremental analy-

sis is repeated by retaining the changes in the next node.

A test suite of 16 scientific FORTRAN programs was used for the purpose of analysis.

These programs are from the same suite used for testing the generic exhaustive data flow

analysis algorithm (proposed in chapter 4) and for making width measurements. The empirical

results are contained in appendix D. Here, we record the following points concerning the

implementation.

1. Procedures mentioned in figures 10.1 and 10.2 are actually implemented as inline com-

putation since u is known.

2. In practice there is no need to remember TR0. As noted in section 10.2, TR0 computation

is required mainly to find out the presence of a lower function influencing a property.

(a) In the case of available expressions analysis, the functions influencing AVINl
i can

never be lower. AVOUTl
i has only one function influencing it which is f

f
i . When

a property at out(i) is being included in GCT (p), there is no other function influ-

encing it. Hence, the condition that there should be no lower function influencing

it, is vacuously satisfied.

(b) In MRA, the functions influencing PPOUTl
i can never be lower. PPINl

i is influ-

enced by two kinds of functions :

� g
f

(j;i)
, j 2 pred(i) : This can never be lower.

� f b
i : This may be lower. As mentioned in section 9.4.1, the influence of

PAVINl
i also is included in f b

i .

When a property is being included in GCT (p), the presence of a lower function

is found out by the following computation.

props inTR0 = :ANTLOCi �:TRANSPi + :PAVINi

3. The local change computation refers to the old influence of the modified bit function (i.e.

old (Bm
h (p0)) for the purpose of computing B2T . In the case of unidirectional data flow

10.7. LOOKING BACK 131

problems, the edge flow functions are identity functions and only node flow functions

can change. Since there is only one node flow function per node in unidirectional data

flow problems, the old influence of such a function is same as the old value of the

property that it influences. Thus, the implementation for available expressions analysis

refers to old (AVOUTi) rather than to old (COMPi) + old (TRANSPi) �old (AVINi).

This must be contrasted with MRA where the old value of PPINi is not necessarily the

same as the old influence of f b
i .

4. Even though the definitions of GCT (p) and N CT (p) refer to old (p00) for a property

p00, in practice, we refer to current value of p00 where the old value of p00 is copied to the

current value before the analysis begins. This allows us to use the same

propagate bot influence procedure for GCB(p) and N CT (p) construction. This also

helps in processing the multiple function changes : If a property p00 is in GCT (p) and

GCT (p0) for two properties p and p0, then p00 is processed only once rather than twice

since p00 is made TOP while constructing GCT (p) and can be safely ignored later while

constructing GCT (p0).

5. In the case of MRA, as noted in section 9.4.1, multiple bit vector functions may change

due to changes in a single node. Thus we need to compute T 2B and B2T sets for each

changed function.

(a) It is erroneous to process the changed functions separately. All B2T and T 2B

sets must be computed before finding out the global change. This is so since if we

decide to process one function change fully, we are effectively ignoring the change

in chains due to other functions which have changed.

(b) In practice, a flow function is identified by the program points it is associated

with. Let there be a self-loop around node i. Then, B2T sets for f b
i and g

f

(i;i)
are

effectively referring to the properties at the same program point viz. in(i). The two

B2T sets and the two T 2B are merged to give one B2T set and one T 2B set per

program point. A property is included in the resulting B2T set only if it is in either

of the B2T sets and is not in any of the T 2B sets.

10.7 Looking Back

The algorithm proposed in this chapter is a straight-forward iterative implementation of the

functional model of incremental data flow analysis. In order to implement this algorithm, one

132 CHAPTER 10. BITWISE INCREMENTAL DATA FLOW ANALYSIS

does not require any detailed understanding of the data flows involved in the problem being

solved. In fact our experience has been to the contrary. When we started implementing this

algorithm, we implicitly made several assumptions mainly due to the familiarity of the data

flows involved. However, we could get it working only after we carefully avoided all devia-

tions from the algorithm. The fact that even small deviations proved erroneous, vindicates the

belief that the whole process of incremental data flow analysis is a rather complicated process

to visualise. On the other hand, a straight-forward implementation of the algorithm giving cor-

rect results can be achieved quickly (even for new data flow problems). This fact high-lights

the strength and the generality of the algorithm. It would not be inappropriate to mention

though, that the algorithm (being a straight-forward implementation of the functional model)

is incidental; the real strength lies in the model. Any technique that correctly implements the

definitions in the model is guaranteed to inherit this strength.

Chapter 11

Performing Incremental Data Flow

Analysis : The Wordwise Approach

I raised the bucket to his lips. He drank, his eyes closed. It was as sweet

as some special festival treat. This water was indeed a different thing from
ordinary nourishment. Its sweetness was born of the walk under the stars,

the song of the pulley, the effort of my arms. It was good for the heart, like
a present.

The bitwise algorithm developed in chapter 10 is a faithful implementation of the func-

tional model of data flow analysis and as such inherits the advantages mentioned in sec-

tion 10.5. However, from a practical viewpoint it is preferable to be able to process several

bits together. In this chapter we develop the wordwise approach in which all bits in a word are

processed simultaneously. Like the previous chapter, we restrict ourselves to changes in only

one bit vector function.

Section 11.1 investigates the issues which need to be addressed when many bits at a pro-

gram point are processed simultaneously. Section 11.2 presents the algorithm while sec-

tion 11.3 presents four variants of the algorithm. Section 11.4 analyses the complexity of

the algorithm, while section 11.5 discusses some issues concerning the implementation.

11.1 Issues in Wordwise Incremental Data Flow Analysis

Consider the problem of available expressions analysis over the program flow graph in Fig-

ure 11.1. Let the properties at a program point be denoted by a tuple. In this case, since

we have only two expressions, INi =< IN1
i ; IN2

i > and OUTi =< OUT1
i ;OUT2

i >. The MFP

solution of this instance is INi =< F;F > and OUTi =< F;F > for each node i.

134 CHAPTER 11. WORDWISE INCREMENTAL DATA FLOW ANALYSIS

e1 : a�b

e2 : b� c

d1 : b :=

1

d2 : a := 2 3

4

�

�

�=

Z

Z

Z~

Z

Z

Z~

�

�

�=

Figure 11.1: Motivating example for wordwise approach.

Let the assignment to b in node 1 be deleted. Both e1 and e2 now become available

at the exit of node 1. Thus, OUT1 =< T;T >. Since available expressions analysis is an

intersection problem, TOP is T and BOT is F. Thus the above change is a case of BOT-to-

TOPchange. We discuss in details, the steps involved in incorporating the effect of this change

over the rest of the graph. Important observations which form the basis of the wordwise

approach are highlighted in the following discussion.

Constructing the affected region

Two information flow paths (i.e. 1,2,4 and 1,3,4) need to be traversed for the purpose.

1. Traversing the path 1,2,4

IN2 is made < T;T >. However, OUT2 cannot become < T;T >; OUT1
2 remains F due

to the presence an assignment to a in node 2. Thus, OUT2 become < F;T > and hence

both IN4 and OUT4 become < F;T >. In other words, visit to node 4 is essential even

though OUT1
2 is F.

At this stage, the affected region consists of the following program points : out(1),

in(2), out(2), in(4), and out(4).

2. Traversing the path 1,3,4

Both IN3 and OUT3 are made < T;T >. When node 4 is reached, IN1
4 is found to be

F. Since OUT1
3 has been made T, IN4 is made < T;T >. Hence OUT4 also becomes

< T;T >.

11.1. ISSUES IN WORDWISE INCREMENTAL DATA FLOW ANALYSIS 135

Observation 11.1 : Several properties are considered simultaneously for global change

for constructing the affected region. While traversing a given information flow path, the

effect of some properties becoming TOP may terminate at some program point — the

information flow path may still have to be traversed further to incorporate the effect of

some other properties becoming TOP. 2

Observation 11.2 : A node may be visited several times due to the existence of multiple

information flow paths reaching the node and the value of a property, which was not

changed in an earlier traversal (viz. IN1
4 while traversing the path 1,2,4), may have to

be changed during a later traversal (along path 1,3,4 in this case). 2

This must be contrasted with the situation in the bitwise algorithm : While processing

e1, the traversal of path 1,2,4 would terminate at out(2). Thus before path 1,3,4 is

traversed, the affected region consists of out(1), in(2). Neither out(2) nor in(4) is in

the affected region at this stage. Later when path 1,3,4 is traversed, in(4) is visited for

the first time and IN1
4 is made T.

Finding the boundary and propagating the effect of its BOT properties

Since in(1) is not in the affected region, out(1) is a boundary point. Recomputation of OUT1

results in < T;T >. This is same as the previous value and no propagation is required. There

is no other boundary point in the region. The process terminates and we get the following

values :

Expression el

Node e1 e2

IN1
i OUT1

i IN2
i OUT2

i

1 F T F T

2 T F T T

3 T T T T

4 T T T T

Note that this is not a fixed point solution since OUT1
2 and IN1

4 have inconsistent values —

OUT1
2 is F while IN1

4 is T in spite of 2 being a predecessor of 4.

Why do we get inconsistent values?

This happens because the values computed at multi-entry nodes may be different along dif-

ferent paths. A property may remain BOT (IN1
4 in this case) while traversing one path (path

136 CHAPTER 11. WORDWISE INCREMENTAL DATA FLOW ANALYSIS

e1 : a�b

e2 : b� c

d1 : b :=

1

d2 : a := 2

a�b 5

33

4

�

�

�=

Z

Z

Z~

A

AU

A

AU

�

�

�

�

�

�

��

Figure 11.2: Another program flow graph for wordwise approach.

1,2,4 in this case) and it may be made TOP while traversing some other path (path 1,3,4 in this

case).

A naive but erroneous solution

One may be tempted to conclude that IN1
4 should not be made T when path 1,3,4 is traversed.

Though it may give a correct result in this particular case, it is wrong to do so for the following

reasons :

1. If path 1,3,4 is traversed first, IN4 is made < T;T > the first time node 4 is visited.

Unless the path 1,2,4 is traversed, it is not possible to infer that IN1
4 should not be made

T when path 1,3,4 is traversed.

2. Consider the program flow graph in Figure 11.2 which is essentially the same as the

flow graph of Figure 11.1 but for the existence of node 5 between nodes 2 and 4. The

presence of expression a�b in node 5 has the following consequences :

When path 1,2,5,4 is traversed, IN2 is made < T;T > and OUT2 is made < F;T >. At

this stage we note the fact that the effect of OUT1
1 becoming T has stopped at out(2)

and we need not consider the corresponding properties along the remaining path for a

11.1. ISSUES IN WORDWISE INCREMENTAL DATA FLOW ANALYSIS 137

change. Thus we make IN5 = < F;T >. OUT5, which originally was < T;F >, is made

< T;T >. IN4 which originally was < F;F > is made < F;T >.

Later when path 1,3,4 is traversed, IN1
4 is made T as in the previous example. In this

case though, it turns out to be correct. Not making it T would have been wrong since

both OUT1
5 and OUT1

3 are T — OUT1
5 was originally T and OUT1

3 has been made T during

the process of incremental analysis.

The first argument above shows that it may not be possible to identify a situation when a

property should not be made T and the second argument shows that not making it T may be

wrong in some cases. Thus, we conclude that the suggestion made by observation 11.2 is a

valid suggestion and that the problem lies elsewhere.

Computing consistent values

Note that we get inconsistent values because we may make a property TOP when it should

not be made TOP. This must be contrasted with the other possible cause of inconsistency viz.

making a property BOT when it should have been TOP. The latter doesn’t arise in our case

and we err on the conservative side in that some properties are re-initialised to TOP. Thus if

we are in a position to identify such properties, it would be possible to find out if their final

values are actually BOT. This is same as identifying a boundary point and propagating the

effect of its BOT properties, except that the program point may not be a boundary point of the

affected region, topologically.1

Observation 11.3 : The program point which is visited more than once while constructing

the affected region must be treated as a boundary point even though, topologically, all its

neighbours are in the affected region. Note that this needs to be done only for those program

points u for which the condition jN �1
(u) j> 1 holds. 2

In the above example, only the program points with multiple entries need to be remem-

bered for propagation.

Thus, a revisit to in(4) must be remembered while a revisit to in(2) can be safely ignored

since such a revisit cannot happen unless in(1) is revisited.

With this modification, IN4 will be recalculated. It becomes < F;T > in the case of pro-

gram flow graph in Figure 11.1 and hence OUT4 will also be made < F;T >. In the case of

program flow graph in Figure 11.2, IN4 remains < T;T > and no propagation is required. The

resulting solutions are MFP solutions.

1i.e. all program points in N �1
(u) may be in the affected region.

138 CHAPTER 11. WORDWISE INCREMENTAL DATA FLOW ANALYSIS

We conclude this section by developing one more insight. Let the program point for which

B2T is computed and the affected region is constructed (out(1) in the above example), be

called the header.

Observation 11.4 : The header (u) is considered a boundary point regardless of whether it is

revisited and/or whether jN �1
(u) j> 1. 2

Let hm be hm
(u0;u). Consider a p in B2T represented by X i

(u). Let the corresponding

property at u0 be p0. Thus p0 is represented by X i
(u0). After constructing the affected region,

following possibilities exist for the status of u0 and the value X i
(u0).

1. u0 is in the affected region.

This implies that some X j
(u0) corresponding to a property X j

(u) 2 B2T , has been made

TOP. Two possibilities arise :

(a) j = i, i.e. X i
(u0) is made TOP.

In this case X i
(u0) cannot change the value of X i

(u) (X i
(u) has already been made

TOP since it is in B2T).

(b) j 6= i, i.e. X i
(u0) remains unchanged.

In this case X i
(u0) = old (X i

(u0)). It may be either TOP or BOT.

i. X i
(u0) is TOP.

In this case too, X i
(u0) cannot change the value of X i

(u). (X i
(u) has already

been made TOP since it is in B2T).

ii. X i
(u0) is BOT.

X i
(u0) may change X i

(u) to BOT. We need to incorporate the influence of

X i
(u0) and hence u must be treated as a boundary point though u0 is in the

region.

2. u0 is not in the affected region.

In this case u is anyway a boundary point.

Note that situation in step (1b) cannot arise in the bitwise approach. While processing

p, if X i
(u0) is not made TOP, there is no way u0 can be in the affected region (and vice-

versa). Hence there is no need to include u in the set of boundary points separately in bitwise

approach.

11.2. A WORDWISE ALGORITHM 139

11.2 A Wordwise Algorithm

11.2.1 A Functional Model for Wordwise Analysis

From the discussion in the previous section, it is clear that the local change computation

remains same.

The sets used by the functional model for computing the global change (i.e. GCB(p),

GCT (p), N CT (p)) are defined in terms of a single property.2 For a wordwise implementa-

tion of the algorithm, we need to redefine these sets. This extension is really straight-forward.

We use the notation T 2B(w), B2T (w), GCB(w), GCT (w), N CT (w) to denote the sets for

a word w. Thus, GCB(w) contains the properties in word w which have changed from TOP

to BOT at various program points while GCT (w) contains the properties in w which may

change to TOP.

As in the previous case, the global change is defined by GC =< B2T ?;T 2B?> where

B2T ? and T 2B? are defined as :

GCB(w) = T 2B(w)[fp0 j CH(p; p0) 6= /0; p 2 T 2B(w);old (p0) = TOPg (11.1)

T 2B? =

[

w

GCB(w) (11.2)

GCT (w) = B2T (w)[fp0 j CH(p; p0) 6= /0; p 2 B2T (w);old (p0) = BOTg (11.3)

N CT (w) = fp0 j p0 2 GCT (w) and 9p00 2 TR0 such that CH(p00; p0) 6= /0g (11.4)

B2T ? =

[

w

(GCT (w)�N CT (w)) (11.5)

11.2.2 A Wordwise Incremental Data Flow Analysis Algorithm

Given the changes in one bit vector function hm
(u0;u), following steps are carried out by the

wordwise algorithm for each word w :

1. Identify the bit functions that have changed in w.

2. Compute the new TR0.

3. Compute the local change LC =< B2T ;T 2B >.

4. Compute the global change GC =< B2T ?;T 2B?>.

(a) Compute GCB(w) by propagating the effect of the properties in T 2B(w).

2The sets used for the local change (i.e. T 2B and B2T), however, are not defined for each property

separately.

140 CHAPTER 11. WORDWISE INCREMENTAL DATA FLOW ANALYSIS

1. procedure incremental dfa(hm
;u0;u)

2. f /? X(u) hm
(X(u0)) and hm

(X) =C1 +C2 �X ?/

3. Hm := (old (C1) � :C1 +:old (C1) �C1)

4. compute TR0(h
m
;Hm

;u)

5. find local change(hm
;Hm

;u0;u)

6. for each word w

7. f propagate bot influence(w;u;T 2B(w))

8. AR w := BR w := /0
9. find global change to top(w;u;B2T (w))

10. propagate boundary effect(w;u)

11. g

12. g

Figure 11.3: A generic algorithm for incremental data flow analysis

1. procedure propagate bot influence(w;u;bot influence)

2. f for each u0 2N (u) /? Let hw
(u0;u) be Cw

1 + Cw
2 �X ?/

3. f change := bot influence � propagate functions(hw
(u0;u))

4. change := retain TOP bits(change,Xw
(u0))

5. if (change is not F) then

6. f Xw
(u0) := make bits BOT(Xw

(u0),change)

7. propagate bot influence(w;u0 ;change)

8. g

9. g

10. g

Figure 11.4: Computing GCB(w)

(b) Compute GCT (w) by constructing the affected region AR w. The program points

which are revisited and are neighbours of more than one program point (i.e.

jN �1
(u0) j< 1), are added to BR w which denotes the boundary of the region.

(c) Identify those program points in AR w which are neighbours of some program

point which is not in AR w. Include such points in BR w. Add the header u to

BR w.

(d) Compute the values of the properties in word w for each program point in BR w.

Propagate the effect of BOT properties (if any) to the program points in AR w.

11.3. FOUR VARIANTS OF THE WORDWISE ALGORITHM 141

1. procedure find global change to top(w;u;top influence)

2. f if (u is in AR w) then

3. f if (jN �1
(u) j> 1) then

4. BR w := BR w +fug

5. g

6. else AR w := AR w +fug

7. for each u0 2N (u) /? Let hw
(u0;u) be Cw

1 + Cw
2 �X ?/

8. f change := top influence � propagate functions(hw
(u0;u))

9. change := retain BOT bits(change,Xw
(u0))

10. if (change is not F) then

11. f Xw
(u0) := make bits TOP(Xw

(u0),change)

12. find global change to top(w;u0;change)

13. g

14. g

15. g

Figure 11.5: Computing AR w

Note that we do not spell out the details of the TR0 computation and the local change com-

putation in terms of words and retain these computations exactly as in the bitwise algorithm.3

11.3 Four Variants of the Wordwise Algorithm

The local change computation, being a fixed sequence of boolean operations, offers little scope

for any variations. Global change computation, on the other hand, can be performed in many

different ways. In this section, we suggest two heuristics which lead to four variants of the

wordwise algorithm.

11.3.1 Revisits to a Program Point

We refer to the program flow graphs in figures 11.1 and 11.2 and make some useful observa-

tions.

3In practice, even in the bitwise algorithm, these computations will have to be performed on words since

computations on entire bit vectors are not possible if the size of the bit vector exceeds the size of the machine

word.

142 CHAPTER 11. WORDWISE INCREMENTAL DATA FLOW ANALYSIS

1. procedure propagate boundary effect(w;u) /? u is the header. ?/

2. f for each u0 2 BR w[fug

3. f temp :=>

4. for each u00 2N �1
(u0)

5. temp := temp u [hw
(u00;u0)℄(Xw

(u00))

6. old X := Xw
(u0)

7. Xw
(u0) := temp

8. change to bot := find BOT change (old X;Xw
(u0))

9. if (change to bot is not F) then

10. propagate bot influence(w;u0 ;change to bot)

11. g

12. g

13. procedure find BOT change(x;y)

14. f if (u is Π) then

15. return x � :y

16. else if (u is Σ) then

17. return :x � y

18. g

Figure 11.6: Computing N CT (w)

Observation 11.5 : If a property is not included in GCT (w) on the first visit to a program

point and is a neighbour of a BOT property, then its final value can never be TOP regardless

of its inclusion in GCT (w) on any subsequent visit. 2

Example 11.1 : In Figure 11.1, IN1
4 is not included in GCT (w) on the first visit to the

program point in(4). IN1
4 is a neighbour of OUT1

2 which is BOT. Thus, though IN1
4 is included

in GCT (w) on a subsequent visit along path 1,3,4, its final value can never be TOP due to the

influence of OUT1
2. 2

This observation can be used to decide which properties must necessarily be BOT. The

following observation identifies the properties which may be TOP.

Observation 11.6 : If a property is not included in GCT (w) but its value is TOP, and if the

old values of the corresponding properties on the following portion of the information flow

path are BOT, the final values of these corresponding properties may be TOP and hence they

could be included in GCT (w) unless it is known that they are influenced by lower functions.

2

11.3. FOUR VARIANTS OF THE WORDWISE ALGORITHM 143

Example 11.2 : In Figure 11.2, OUT1
5 is not included in GCT (w) but its value is TOP. The

old values of IN1
4 and OUT1

4 are BOT. Since these properties are not influenced by a lower

function, the final values of these properties are be TOP and hence they could be included in

GCT (w) during the first traversal. 2

If such properties are included in GCT (w) on the first visit, all subsequent visits to that

program point can be safely avoided since :

1. if a property is not included in GCT (w) on the first visit then it is not the neighbour of

a TOP property and hence would be BOT. Thus, it need not be included in GCT (w) on

any subsequent visit.

2. Assume that a property p00 associated with a program point u00 is included in GCT (w)

on the first visit to u00 following observation 11.6. Assume further that u00 is revisited

and p00 is found to be a neighbour of a BOT property. Since a revisited program point is

included in BR w, u00 would be treated as a boundary point. When the properties at u00 are

recomputed, p00 would turn out to be BOT. Thus, procedure propagate boundary effect

will remove such properties by including them in N CT (w).

So we can avoid revisits to a node if we make the modification summarised by the follow-

ing observation :

Observation 11.7 : While computing the change set (i.e. the set of properties which may

change) on line number 8 and 9 of procedure find global change to top (Figure 11.5), instead

of retaining only those properties for which the flow function is propagate (line number 8)

and which are TOP (line number 9), retain all properties (corresponding to the properties in

B2T (w)) regardless of their values and/or flow functions except the properties for which the

flow function is lower. 2

Intuitively, if a property is influenced by a lower function, it can never be TOP. Barring

such properties, all properties corresponding to the properties in B2T (w) can be made TOP

and hence, no additional property will have to be made TOP on a subsequent visit to a program

point.

11.3.2 Size of GC T (w)

The modification suggested above may have adverse effect on the size of GCT (w). The

change set computed in the original algorithm reduces faster since the properties influenced

by both raise and lower functions are removed from it. With this modification, effectively, the

144 CHAPTER 11. WORDWISE INCREMENTAL DATA FLOW ANALYSIS

properties which are influenced by raise functions (and which may have been removed from

the change set), are included in the change set again.

On the other hand, if we reach a node along a path which has BOT influence on a property

then it is guaranteed to be excluded from GCT (w). Since the algorithm does not have enough

information to decide a-priori as to which path should be selected, the size of GCT (w) could

be small in some case and could be large in some other case. This dependence on the path

chosen could be reduced if instead of traversing one path fully, the paths are traversed in an

interleaved fashion, i.e. instead of propagating the TOP effect as far as possible along one

path, it could be first propagated to all neighbouring program points and only then to their

neighbours.

Thus, our heuristic for reducing the size of GCT (w) on an average is summarised by the

following observation :

Observation 11.8 : Instead of visiting the nodes in the depth first order in procedure

find global change to top, the calls could be made in the breadth first order. 2

11.3.3 Incorporating the Heuristics

Since the two heuristics (i.e. avoiding revisits and using breadth-first traversal over the graph)

are orthogonal, we get four possible combinations :

1. Revisits to program points with depth first traversal over the graph.

This is the original algorithm as suggested in section 11.2.

2. No revisits with depth first traversal over the graph.

In this case, lines 8 and 9 of procedure find global change to top are replaced by the

following line :

change := B2T (w) �: lower functions(hw
(u0;u))

Similarly, line 10 is replaced by :

if ((change is not F) and (u0 62 AR w)) then

3. Revisits to program points with breadth first traversal over the graph.

11.4. COMPLEXITY OF INCREMENTAL DATA FLOW ANALYSIS 145

In this case instead of making recursive call directly on line 12 of procedure

find global change to top, program point u0 is added to a list and the next program point

is selected from the list.4 Essentially, we inherit all the advantages of the breadth first

traversal.

4. No revisits with breadth first traversal over the graph.

This variant is basically a combination of the changes suggested in steps 2 and 3.

11.4 Complexity of Incremental Data Flow Analysis

It is already an accepted fact that the worst case performance of incremental algorithms can be

much worse than the exhaustive algorithms [53]. In our context, this can be very simply con-

cluded by the following argument: Let there be some change in a word w so that B2T (w) 6= /0
but B2T ?=

/0. It is clear in such a case that GCT (w) = N CT (w)5 and if the entire graph

is included in AR w, the entire graph will have to revisited to compute N CT (w). Thus, the

work done by the incremental algorithm is at least twice as much as the work done by the

exhaustive algorithm for the same change.

In this section we show that for one change in a word, the order of the work done by the

incremental algorithm in the worst case is same as the order of the work done by the exhaustive

algorithm. In practice though, the amount of work required in the worst case may be much

more than the amount of work required for exhaustive algorithm.

We estimate the complexity of the first variant of the wordwise algorithm. The order of

the work remains same for all the four variants and even for the bitwise algorithm except that

in the case of bitwise algorithm, a multiplying factor which is equal to the number of bits in

a word, may be involved. The estimate is subject to the assumption that the number of edges

of a node is be bounded by a constant. This is justified since, the total number of edges in

practical flow graphs is linear in the number of nodes.

The wordwise algorithm consists of the following steps (Figure 11.3).

1. TR0 computation.

2. Local change computation.

3. Propagating the influence of properties in T 2B .

4Thus the selection of a node being made on line 7 will have to be changed appropriately.

5Note that N C T (w) is a subset of GC T (w), hence the equality in the case of empty set difference.

146 CHAPTER 11. WORDWISE INCREMENTAL DATA FLOW ANALYSIS

4. Computing AR w (and BR w).

5. Computing the values of properties in BR w and propagating the effect of BOT proper-

ties.

We consider the work done in each step separately. The order of the algorithm will be the

maximum work done in any step.

1. TR0 computation.

For any word this work is bounded by the number of functions influencing the properties

at u (alternatively, by jN �1
(u) j) which in turn is bounded by the sum of the number of

in-edges and out-edges of a node. Since the number of edges of a node is bounded by a

constant, the amount of work is constant.

2. Local change computation.

This is just a series of boolean operations and the amount of work involved is constant.

3. Propagating the influence of properties in T 2B .

For a given word, the order of this work is same as the propagation phase of the exhaus-

tive algorithm for a word which is linear in the number of nodes of the graph.

4. Computing AR w.

This is also linear in the number of nodes since at most all program points may be

included in AR w. The possibility of several visits to a program point may imply more

work but this work is bounded by the number of bits in a word since every revisit implies

that some additional property must be included in GCT (w) and hence a program point

would not be revisited after all its properties are included in GCT (w). Since the number

of bits in a word is constant, the order of work is linear.

5. Computing the values of properties in BR w and propagating the effect of BOT proper-

ties.

The work involved is similar to the work done in step (3) above except that the values of

the properties at the boundary points are also computed. Since the number of functions

influencing the properties at a program point is bounded by a constant, the amount of

work required for recomputing the properties is bounded by the number of program

points in BR w. In the worst case, all program points may be boundary points. Thus, the

total work done in this step is linear in the size of the graph.

11.5. IMPLEMENTATION NOTES 147

We conclude from the above discussion, that the order of the work involved in perform-

ing incremental data flow analysis is same as the order of the work involved in exhaustive

analysis, though practically, the work may be much more in the worst case. Even though the

discussion is restricted to one change only, it has already been argued in section 9.4.3 that

multiple changes too can be handled in the same run of the algorithm. The possibility of mul-

tiple function changes affects only the local change computation and since the complexity is

dominated by global change computation, the order of work remains same. Similar remarks

hold for structural changes.

11.5 Implementation Notes

The wordwise algorithm was implemented in the same environment in which the bitwise al-

gorithm was implemented (see section 10.6). The motivation behind this implementation was

to demonstrate the correctness of the algorithm practically. This was more important since

this is the first algorithm for incremental data flow analysis of bidirectional data flows.

The experimental results are contained in appendix E. We record the following points

concerning the implementation :

1. We have taken measurements only in terms of bit vector operations. The current imple-

mentation of the algorithm is bound to be much slower in terms of execution time than

the exhaustive round robin method since it involves many overheads (in terms of recur-

sion, function calls, list management etc.). This situation is much the same as it was in

the case of initial implementations of the generic (exhaustive) algorithm for MRA (see

chapter 5). Even there the algorithm was faster in terms of bit vector operations but was

slower in terms of execution time. A careful implementation may well lead to gains in

terms of execution time as it did in the case of exhaustive analysis.

The improvements can be made on four levels :

(a) Elimination of function calls by in-line expansion.

(b) Implementing the lists using arrays with the indices serving as pointers.

(c) The third level optimisations concerns the heuristics for list organisation. More

specifically, selection of the next node for further processing is a rather crucial

decision.

(d) The bit vector operations performed can be reduced by minimising the boolean

expressions appropriately.

148 CHAPTER 11. WORDWISE INCREMENTAL DATA FLOW ANALYSIS

2. It is readily seen from Table E.1 that the proposed algorithm for incremental data flow

analysis requires much less work than the round robin exhaustive algorithm so much so

that we talk about improvement by a factor rather than in terms of percentage.

The speed up factor for available expressions analysis is substantially smaller than the

factor for MRA. This vindicates the fact that the information flow paths in bidirectional

data flow problems are much more complex than the information flow paths for unidi-

rectional problems.

3. The fact that the algorithm computes the MFP solution for MRA, confirms the claim

that multiple function changes can be handled in wordwise algorithm too, without any

special requirements.

4. The performance of the four variants seems to be comparable.6

(a) The variants using breadth first traversal seem to be marginally better than the ones

involving depth first traversal for unidirectional data flow problems. It seems to be

the other way round for bidirectional data flow problems.

(b) The speed up factor seems to go down if revisits to a node are avoided. This

may be because of the fact that fewer bits are removed from the change set (see

section 11.3.2) and hence a larger GCT (w) set is computed.

6Note that the notions of “depth first” and “breadth first” traversals are used to traverse the information flow

paths rather than graph theoretic paths. In the case of MRA, “breadth first” implies visiting all neighbours of a

program point before visiting a “neighbour of a neighbour”.

Chapter 12

Correctness of Incremental Data Flow

Analysis

Just so, you might say to them : “The proof that the little prince existed

is that he was charming, that he laughed and that he was looking for a
sheep. If anybody wants a sheep, that is a proof that he exists.” ... They

would shrug their shoulders, and treat you like a child. But if you said to

them : “The planet he came from is Asteroid B-612,” then they would be
convinced, and leave you in peace from their questions.

The process of incremental data flow analysis is a complicated process. In order to simplify

the task of showing correctness, we make the following assumptions :

1. We assume that there are no structural changes.

2. We assume that only one bit vector function hm has changed.

3. We assume that only one bit function Bm
h in hm has changed.

These assumptions are simplifying assumptions rather than constraining in that the cor-

rectness proofs remain valid (in spirit, if not in letter) even if these assumptions do not hold.

This is very easily justified for the first and the third assumption; we do that in the following

paragraphs. Justification for the second assumption is far from obvious and we relegate the

task to section 12.5.

It has already been shown in section 9.4.4 that structural changes can be modelled in

terms of functions changes. Thus, once the correctness of the model with function changes is

established, the correctness of the model for structural changes follows automatically.

150 CHAPTER 12. CORRECTNESS OF INCREMENTAL DATA FLOW ANALYSIS

A bit vector function consists of many independent bit functions (section 3.1.3). Thus,

even if many bit functions change in hm, they do not influence each other due to bit-independence.

Hence we can assume, without any loss of generality, that only one bit function of hm has

changed. The correctness of the properties corresponding to unchanged bit functions follows

automatically since their chains and their membership in TR0 remains unchanged.

12.1 Defining Correctness

Recall that old (S) =< old (V T) ;old (V B)> and S =< V T ;V B > are the MFP solutions

for the instances old (I) and I respectively, if :

old (S) : 8p; old (p) = BOT iff

p 2 old (TR0) or 9 p0 2 old (TR0) such that old (CH(p0; p)) 6= /0 (12.1)

S : 8p; p = BOT iff p 2 TR0 or 9 p0 2 TR0 such that CH(p0; p) 6= /0 (12.2)

Showing correctness of the proposed model implies showing that if old (S) is the MFP

solution for old (I), then S as defined by equation 9.14 is the MFP solution of I (i.e. S satisfies

condition 8.2). This is achieved in three steps :

(i) Section 12.2 enumerates various cases that arise due to a change in a bit function.

We use the partition πβ(∆) (section 9.2.2.1) for this purpose.

(ii) Section 12.3 shows the correctness of TR0 computation. We use the partition πα(∆)
(section 9.2.2.1) for this purpose.

(iii) Finally, section 12.4 shows that condition 12.2 is satisfied by every property in the

MFP solution.

12.2 Influence of a Function Change

12.2.1 Local Influence

Consider a function p Bm
h (p0). A change in Bm

h may influence the property p in three

different ways.

1. p 2 T 2B : The new value of p is BOT.

2. p 2 B2T : The new value of p may be TOP.

12.2. INFLUENCE OF A FUNCTION CHANGE 151

3. p 62 (T 2B [B2T) : The value of p does not change.

From observation 9.6 the following three factors, each having multiple possibilities, deter-

mine the exact influence :

(i) The function change ∂Bm
h .

(ii) (a) For ∂Bm
h 2 σ1

β(∆) : Old value of p.

(b) For ∂Bm
h 2 σ2

β(∆) : Old influence of Bm
h (p0).

(iii) (a) For ∂Bm
h 2 σ1

β(∆) : Old value of p0.

(b) For ∂Bm
h 2 σ2

β(∆) : Existence of a lower function in Ω(p).

The lower function has been abbreviated by l in the both the figures.

First factor has six possible values (j∆ j= 6) while second and third factors have two values

each. Of the 24 possible combinations,

� some may be ruled out (for instance, if there exists a lower function in Ω(p)�Bm
h , then

the old value of p cannot be TOP),

� some may be irrelevant (viz. old value of p0 is relevant only if Bm
h is propagate),

� some may have the same influence (viz. ∂Bm
h � r�.l and ∂Bm

h � p�.l have the same

influence).

We enumerate the distinct cases in Figures 12.1 and 12.2. Together, the two figures cover

the partition πβ(∆). Each factor mentioned above, introduces branching in the tree, exhausting

all possibilities for that factor.1 This guarantees that we cover all the cases that may arise. In

particular, the figures answer following two questions for each case :

(i) Does p belong to TR0? (Is p in T R �, T R +?)

(ii) Is the value of p likely to change? (Is p in T 2B , B2T ?)

The lower function is abbreviated by l in the figure for convenience.

Figure 12.1 : ∂Bm
h 2 σ1

β(∆)
The first branching occurs with the two partitions of σ1

β(∆) which are σ1
α(∆) and fr�.pg

(observation 9.1). Left branch covers the cases when p 2 T R + while the right branch covers

1Different combinations having same influence are combined into one.

152 CHAPTER 12. CORRECTNESS OF INCREMENTAL DATA FLOW ANALYSIS

p Bm
h (p0)

∂Bm
h 2 σ1

β(∆)
�

�

�

�

�

�

�

�

�=

Z

Z

Z

Z

Z

Z

Z

Z

Z~

∂Bm
h 2 σ1

α(∆)
(i.e. ∂Bm

h 2 fr�.l; p�.lg)

p 2 T R +

; p ? T 2B

∂Bm
h 62 σ1

α(∆)
(i.e. ∂Bm

h � r�.p)

p 62 T R +

; p ? T 2B

�

�

�

�

�

�	

�

�

�

�

�

�R

�

�

�

�

�

�	

�

�

�

�

�

�R

old (p)=TOP old (p)=BOT old (p)=BOT old (p)=TOP

? ? ?

�

�

�

�	

�

�

�

�R

old (p0) = BOT old (p0) = TOP

? ?

p 2 T R +

p 2 T 2B

p 2 T R +

p 62 T 2B

p 62 T R +

p 62 T 2B

p 62 T R +

p 2 T 2B

p 62 T R +

p 62 T 2B

Case Ψ1 Case Ψ2 Case Ψ3 Case Ψ4 Case Ψ5

Figure 12.1: Various cases for ∂Bm
h 2 σ1

β(∆)

the cases when p 62 T R +. However, it is not known at this level in the tree whether p is in

T 2B ; this is indicated by “p ? T 2B”.

The second branching occurs with the second factor, i.e. the old value of p. Since old (p)

is BOT in cases Ψ2 and Ψ3, p 62 T 2B . Since old (p) is TOP in case Ψ1, p 2 T 2B . However,

though old (p) is TOP in cases Ψ4 and Ψ5, old (Bm
h) is raise, and Bm

h is propagate. Hence the

membership of p in T 2B depends on old (p0). This is the third factor which introduces the

third branching which is restricted to cases Ψ4 and Ψ5 only.

Figure 12.2 : ∂Bm
h 2 σ2

β(∆)

The first branching occurs with the two partitions of σ2
β(∆) which are σ2

α(∆) and fp�.rg

(observation 9.1). Right branch covers the cases when p 62 T R �. Note that the membership

of p in T R �

is not known along the left branch since there may exist a lower function in

Ω(p). The membership of p in B2T is not known at this level along either of the branches.

12.2. INFLUENCE OF A FUNCTION CHANGE 153

p Bm
h (p0)

∂Bm
h 2 σ2

β(∆)
�

�

�

�

�

�

�

�

�=

Z

Z

Z

Z

Z

Z

Z

Z

Z~

∂Bm
h 2 σ2

α(∆)
(i.e. ∂Bm

h 2 fl�.r; l�.pg)

p ? T R �

; p ? B2T

∂Bm
h 62 σ2

α(∆)
(i.e. ∂Bm

h � p�. r)

p 62 T R �

; p ? B2T

�

�

�

�

�

�	

�

�

�

�

�

�R

�

�

�

�

�

�	

�

�

�

�

�

�R

l 62 (Ω(p)�fBm
h g) l 2 (Ω(p)�fBm

h g) l 2 (Ω(p)�fBm
h g) l 62 (Ω(p)�fBm

h g)

? ? ?

�

�

�

�	

�

�

�

�

�

�R

old (p0) = TOP

old (p0) = BOT

? ?

p 2 T R �

p 2 B2T

p 62 T R �

p 62 B2T

p 62 T R �

p 62 B2T

p 62 T R �

p 62 B2T

p 62 T R �

p 2 B2T

Case Ψ6 Case Ψ7 Case Ψ8 Case Ψ9 Case Ψ10

Figure 12.2: Various cases for ∂Bm
h 2 σ2

β(∆)

The second factor, i.e. the old influence of Bm
h (p0) is subsumed for the partition σ2

α(∆)
since old (Bm

h) is lower. Hence the second branching is introduced by the third factor, i.e.

existence of a lower function influencing p. Since there exists such a function in cases Ψ7 and

Ψ8, p cannot be deleted from TR0 and hence is not included in T R �. Also, its value remains

BOT due to the lower function and it cannot be included in B2T . However, no lower function

exists in Ω(p) in case Ψ6, which implies that p must be deleted from TR0 and its value may

genuinely be TOP. Hence p is in both T R � and B2T .

Note that there is no lower function in Ω(p) in cases Ψ9 and Ψ10 but this is not sufficient to

decide the membership of p in B2T ; since old (Bm
h) is propagate, the old influence on p may

well have been TOP in which case p 62 B2T . This factor cannot be ignored in these cases.

This introduces the third branching which helps to distinguish between the cases Ψ9 and Ψ10.

154 CHAPTER 12. CORRECTNESS OF INCREMENTAL DATA FLOW ANALYSIS

In all we have 10 distinct cases. We define a set Ψ? to contain these cases, and a partition

πλ on Ψ? such that each subset corresponds to one of the three influences mentioned at the

beginning of the section :

Ψ? = fΨ1;Ψ2;Ψ3;Ψ4;Ψ5;Ψ6;Ψ7;Ψ8;Ψ9;Ψ10g

πλ(Ψ?) = fσ1
λ(Ψ?);σ2

λ(Ψ?);σ3
λ(Ψ?)g

= ffΨ1;Ψ4g;fΨ6;Ψ10g;fΨ2;Ψ3;Ψ5;Ψ7;Ψ8;Ψ9gg

This partition captures the following influences :

1. σ1
λ(Ψ?) contains the cases in which p may change to BOT since p 2 T 2B and p 62 B2T .

2. σ2
λ(Ψ?) contains the cases in which p may change to TOP since p 62 T 2B and p 2 B2T .

3. σ3
λ(Ψ?) contains the cases in which do not affect p since p 62 (T 2B [B2T).

12.2.2 Global Influence

The global influence is captured in terms of the possible change in the value of a property

p00 2∝(p) for p Bm
h (p0). The three possible influences on p00 are :

1. p00 2 GCB(p) : The value of p00 is BOT.

2. p00 2 GCT (p)�N CT (p) : The value of p00 is TOP.

3. p00 62 GCB(p)[GCT (p) : The value of p00 does not change.

The exact influence is determined by the chains that reach the property p00.

12.3 TR0 Computation

Lemma 12.1 : TR0 update as defined by equation (9.6) satisfies equation (4.3).

Proof : The lemma trivially holds for the properties for which no flow function changes as

also for the properties in Boundaryinfo since there values are constant. We use partition πα(∆)
for other properties.

Figure 12.3 summarises all possible cases for the property p Bm
h (p0). A “?” in the figure

indicates that the set-membership of an element is not known.

Case 1 : p 2 T R +

) p 2 TR0.

12.3. TR0 COMPUTATION 155

p Bm
h (p0)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�� ?

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

Hj

∂Bm
h 2 σ1

α(∆) ∂Bm
h 2 σ2

α(∆) ∂Bm
h 2 σ3

α(∆)
[Bm

h � lower℄ [old (Bm
h)� lower℄ [old (Bm

h) 6� lower;Bm
h 6� lower℄

? ? ?

p ? old (TR0)

p 2 T R +

; p 62 T R �

p 2 old (TR0)

p 62 T R +

; p ? T R �

p ? old (TR0)

p 62 T R +

; p 62 T R �

?

�

�

�

�

�

�	

�

�

�

�

�

�R

�

�

�

�	

�

�

�

�R

l 2 (Ω(p)�fBm
h g) l 62 (Ω(p)�fBm

h g)

l 2 (Ω(p)�fBm
h g) l 62 (Ω(p)�fBm

h g)

? ?

? ?

p ? old (TR0)

p 62 T R �

p 2 T R �

p 2 old (TR0) p 62 old (TR0)

(1)

(2) (3)

(4) (5)

Figure 12.3: Various cases for lemma 12.1.

Bm
h � lower) lower 2 Ω(p).

Case 2 : p 2 old (TR0) and p 62 T R �

) p 2 TR0.

lower 2 (Ω(p)�fBm
h g)) lower 2 Ω(p).

Case 3 : p 2 old (TR0) and p 2 T R �

) p 62 TR0.

lower 62 (Ω(p)�fBm
h g) and Bm

h 6� lower) lower 62 Ω(p).

Case 4 : p 2 old (TR0) and p 62 T R �

) p 2 TR0.

lower 2 (Ω(p)�fBm
h g)) lower 2 Ω(p).

Case 5 : p 62 old (TR0) and p 62 T R +

) p 62 TR0.

lower 62 (Ω(p)�fBm
h g) and Bm

h 6� lower) lower 62 Ω(p).

156 CHAPTER 12. CORRECTNESS OF INCREMENTAL DATA FLOW ANALYSIS

Hence it follows that p 2 TR0 iff there exists a function Bh such that p Bh(p0) and Bh � lower.

2

12.4 Correctness of S

12.4.1 An Outline of the Proof

Recall our convention that p Bm
h (p0) is the property which is likely to be locally affected

while p00 such that p00 2∝(p), is a property elsewhere in the graph which is likely to be

affected due to a change in p. We use the chains in CH(p; p00) to discuss the possible influence

on p00. Since chains are acyclic, p00 cannot be p, i.e. this discussion does not cover p. Hence

we have to treat p and p00 distinctly and discuss the case of p separately.

Recall that showing correctness of S implies showing that each property in S satisfies

condition 12.2 which is reproduced below :

8p; p = BOT iff p 2 TR0 or 9 p0 2 TR0 such that CH(p0; p) 6= /0 (12.2)

It is easy to see that condition 12.2 implies the following two conditions :

8p; p = BOT) p 2 TR0 or 9 p0 2 TR0 such that CH(p0; p) 6= /0 (12.2.1)

8p; p = TOP) p 62 TR0 and 6 9 p0 2 TR0 such that CH(p0; p) 6= /0 (12.2.2)

The discussion in section 12.2 provides a neat outline for proving that the solution S as

defined by the equation 9.14 is indeed the MFP solution. In the following, we consider only p

and the properties corresponding to p.

1. Correctness of unchanged properties.

A property p00 2∝(p) may be influenced only if CH(p; p00) 6= /0. Lemma 12.2 shows that

a property p00 such that CH(p; p00) = /0 satisfies condition 12.2 in the new MFP solution.

2. Correctness of local change.

(a) Cases in σ1
λ(Ψ?) :

In these cases,

p 2 T 2B) p 2 GCB(p)) p = BOT

Since p cannot be TOP, condition 12.2.2 holds vacuously. Lemma 12.3 shows that

the property p satisfies condition 12.2.1 for the cases in σ1
λ(Ψ?).

12.4. CORRECTNESS OF S 157

p Bm
h (p0); p00 2∝(p)

�

�

�

�

�

�

�

�

�

�

�

�	

�

�

�

�

�

�R

p00 � p

p00 6� p

�

�

�

�

�	

�

�

�

�

�R

CH(p; p00) = /0
Lemma 12.2

CH(p; p00) 6= /0
�

�

�

�

�

�=

?

Z

Z

Z

Z

Z

Z~

σ1
λ(Ψ?) σ2

λ(Ψ?)
σ3

λ(Ψ?)

Lemma 12.6 Lemma 12.7 Lemma 12.8

�

�

�

�

�

�=

?

Z

Z

Z

Z

Z

Z~

σ1
λ(Ψ?) σ2

λ(Ψ?)
σ3

λ(Ψ?)

Lemma 12.3 Lemma 12.4 Lemma 12.5

Figure 12.4: An outline of the proof

(b) Cases in σ2
λ(Ψ?) :

In these cases, p is in B2T and its value could be either TOP or BOT. Lemma 12.4

shows that the property p satisfies conditions 12.2.1 and 12.2.2 for the cases in

σ2
λ(Ψ?).

(c) Cases in σ3
λ(Ψ?) :

In these cases p 62 B2T [B2T i.e. the value of p does not change. It retains its

old value which could be either TOP or BOT. Lemma 12.5 shows that the property

p satisfies conditions 12.2.1 and 12.2.2 for the cases in σ3
λ(Ψ?).

3. Correctness of global change.

In this category, we consider the properties p00 2∝(p) such that CH(p; p00) 6= /0.2

(a) Cases in σ1
λ(Ψ?) :

In these cases, p may or may not be in GCB(p). However, in either case, the

value of p is BOT. Since p00 cannot be TOP, condition 12.2.2 holds vacuously.

Lemma 12.6 shows that a property p00 2∝ (p), p00 6� p such that CH(p; p00) 6= /0,

satisfies condition 12.2.1 for the cases in σ1
λ(Ψ?).

2Note that some these properties too may remain unchanged but all of them can potentially change unlike the

properties in step 1 above.

158 CHAPTER 12. CORRECTNESS OF INCREMENTAL DATA FLOW ANALYSIS

(b) Cases in σ2
λ(Ψ?) :

In these cases, p00 2 GCT (p). Its value could be either TOP or BOT. Lemma 12.7

shows that a property p00 2∝(p), p00 6� p such that CH(p; p00) 6= /0, satisfies condi-

tions 12.2.1 and 12.2.2 for the cases in σ2
λ(Ψ?).

(c) Cases in σ3
λ(Ψ?) :

GCB(p) = GCT (p) = /0 since p00 62 GCB(p)[GCT (p). Thus the value of p00

does not change; it could be either TOP or BOT. Lemma 12.8 shows that a property

p00 2∝(p), p00 6� p such that CH(p; p00) 6= /0, satisfies conditions 12.2.1 and 12.2.2

for the cases in σ3
λ(Ψ?).

Figure 12.4 presents an outline of the proof.

12.4.2 Correctness of Unchanged Properties

Lemma 12.2 : Let p Bm
h (p0) and p00 2∝(p), p00 6� p such that CH(p; p00) = /0. Then,

p00 = BOT iff p00 2 TR0 or 9 p000 2 TR0 such that CH(p000; p00) 6= /0.

Proof : We first show the following :

1. p00 = BOT iff old (p00) = BOT, and

2. p00 2 TR0 iff old (p00) 2 old (TR0), and

3. 9 p000 2 TR0 such that CH(p000; p00) 6= /0 iff

9 p000 2 old (TR0) such that old (CH(p000; p00)) 6= /0.

Thus, our proof consists of the following steps :

1. CH(p; p00) = /0

) p00 62 GCB(p) and p00 62 GCT (p)

) p00 = old (p00)

) p00 = BOT iff old (p00) = old (BOT)

2. p00 6� p

) p00 62 T R +

[T R �

) p00 2 TR0 iff p00 2 old (TR0)

3. . CH(p; p00) = /0

12.4. CORRECTNESS OF S 159

) no chain in
[

pi

CH(pi; p00) includes p

) no chain in
[

pi

CH(pi; p00) changes . . . from section 9.2.2.2

) 8pi;CH(pi; p00) = old (CH(pi; p00)) (12.2.A)

) old (CH(p; p00)) = /0 (12.2.B)

. 9 p000 2 old (TR0) such that old (CH(p000; p00)) 6= /0

) p000 cannot be p . . . since old (CH(p; p00)) = /0

) p000 2 old (TR0) iff p000 2 TR0
3 (12.2.C)

. 9 p000 2 old (TR0) such that old (CH(p000; p00)) 6= /0

iff 9 p000 2 TR0 such that CH(p000; p00) 6= /0 . . . from (12.2.A) and (12.2.C)

Since condition 12.1 holds for old (I), it follows that

p00 = BOT iff p00 2 TR0 or 9 p000 2 TR0 such that CH(p000; p00) 6= /0. 2

12.4.3 Correctness of Local Change

Lemma 12.3 : Let p Bm
h (p0) for the cases in σ1

λ(Ψ?). Then,

p = BOT) p 2 TR0 or 9 p000 2 TR0 such that CH(p000; p) 6= /0.

Proof : As noted earlier, p 2 T 2B) p 2 GCB(p)) p = BOT. We consider the two cases

in σ1
λ(Ψ?) separately.

1. Ψ1 : p 2 T R +

) p 2 TR0. (12.3.A)

2. Ψ4 : Since old (p0) = BOT, either

(a) p0 2 old (TR0), or

(b) 9 p000 2 old (TR0) such that old (CH(p000; p0)) 6= /0.

We consider the two cases separately. We know that CH(p0; p) 6= /0 since p0 2D(p).

. p0 2 old (TR0)

) p0 2 TR0 . . . since p0 62 T R �

) 9 p0 2 TR0 such that CH(p0; p) 6= /0 (12.3.B)

. 9 p000 2 old (TR0) such that old (CH(p000; p0)) 6= /0

3 p is the only property that can be removed from or added to TR0.

160 CHAPTER 12. CORRECTNESS OF INCREMENTAL DATA FLOW ANALYSIS

) p000 2 old (TR0)

) p000 cannot be p . . . since old (p) is TOP.

) p000 2 TR0 (12.3.C)

. 9 p000 2 old (TR0) such that old (CH(p000; p0)) 6= /0 (12.3.D)

) p000 cannot be p . . . since old (p) is TOP.

) old (CH(p000; p0)) cannot include p . . . since old (p) is TOP.

) old (CH(p000; p0)) = CH(p000; p0)

) Chains in CH(p000; p) are created . . . since CH(p0; p) 6= /0.

) 9 p000 2 TR0 such that CH(p000; p) 6= /0 12.3.E

. . . from (12.3.C) and (12.3.D)

It follows from statements (12.3.A), (12.3.B), and (12.3.E) that

p = BOT) p 2 TR0 or 9 p000 2 TR0 such that CH(p000; p) 6= /0. 2

Lemma 12.4 : Let p Bm
h (p0) for the cases in σ2

λ(Ψ?). Then,

p = BOT iff p 2 TR0 or 9 p000 2 TR0 such that CH(p000; p) 6= /0.

Proof : From equation 9.9, p 2 GCT (p). The two possible cases are

1. p 2N CT (p)) p = BOT . . . from section (12.2.2)

p 2N CT (p))9 p000 2 TR0 such that CH(p000; p) 6= /0 . . . from equation 9.12

2. p 2 (GCT (p)�N CT (p))) p = TOP . . . from section (12.2.2)

. p 2 B2T

) lower 62Ω(p) . . . from equation 9.7

) p 62 TR0 . . . from Lemma 12.1

. p 2 (GCT (p)�N CT (p))

) p 62N CT (p) and p 2 GCT (p)

) 69 p000 2 TR0 such that CH(p000; p) 6= /0 . . . from equation 9.12

Hence it follows that

p = TOP) p 62 TR0 and 6 9 p000 2 TR0 such that CH(p000; p) 6= /0.

2

12.4. CORRECTNESS OF S 161

Lemma 12.5 : Let p Bm
h (p0) for the cases in σ3

λ(Ψ?). Then,

p = BOT iff p 2 TR0 or 9 p000 2 TR0 such that CH(p000; p) 6= /0.

Proof : Since p 62 T R +

and p 62 T R �

, TR0 = old (TR0) (12.5.A)

There are two possibilities : p = BOT and p = TOP.

1. p = old (p) = TOP.

Out of the six cases in σ3
λ(Ψ?), only two cases qualify in this class : Ψ5 and Ψ9. In all

other cases, i.e. in Ψ2;Ψ3;Ψ7 and Ψ8, old (p) is BOT.4

We need to show that p 62 TR0 and 6 9 p000 2 TR0 such that CH(p000; p) 6= /0. The first part

is very easily to shown :

old (p) = TOP

) p 62 old (TR0)

) p 62 TR0 . . . from (12.5.A)

In the following, we show that 6 9 p000 2 TR0 such that CH(p000; p) 6= /0.

�Ψ5 : . ∂Bm
h � r�.p

) chains involving < p0; p;Bm
h > are created in CH(p0; p) (12.5.B)

. Acyclicity of chains

) 8p000; 8ch 2 CH(p000; p0), ch does not involve < p0; p;Bm
h >

) 8p000, no chains are added to CH(p000; p0)

(nor are chains deleted since ∂Bm
h � r�.p)

) 8p000, CH(p000; p0) = old (CH(p000; p0)) (12.5.C)

. old (p0) = TOP

) p0 62 old (TR0) and 6 9 p000 2 old (TR0) s.t. old (CH(p000; p0)) 6= /0
) p0 62 TR0 and 6 9 p000 2 TR0 s.t. CH(p000; p0) 6= /0

. . . from (12.5.A) and (12.5.C)

) 69 p000 2 TR0 s.t. CH(p000; p) 6= /0 . . . from (12.5.B)

�Ψ9 : . old (p) = TOP

) 69 p000 2 old (TR0) s.t. old (CH(p000; p)) 6= /0
) 69 p000 2 TR0 s.t. CH(p000; p) 6= /0

(since ∂Bm
h � p�.r, chains may only be deleted from CH(p000; p))

4old (p) is BOT in Ψ7 and Ψ8 since lower 2 Ω(p).

162 CHAPTER 12. CORRECTNESS OF INCREMENTAL DATA FLOW ANALYSIS

Thus it follows that p = TOP) p 62 TR0 and 6 9 p000 2 TR0 s.t. CH(p000; p) 6= /0.

2. p = old (p) = BOT.

The remaining four cases in σ3
λ(Ψ?) qualify in this class. Additionally, though old (p0)

is TOP in Ψ9, old (p), and hence, p could be BOT due to the influence of some other

property. Thus, in all we have five cases in this class. For each case, we have to show

that either p 2 TR0 or 9 p000 2 TR0 s.t. CH(p000; p) 6= /0.

�Ψ2 : p 2 T R +

) p 2 TR0.

�Ψ3 : Since old (p) = BOT, either

(a) p 2 old (TR0), or

(b) 9 p000 2 old (TR0) such that old (CH(p000; p)) 6= /0.

We consider the two cases separately.

. p 2 old (TR0)

) p 2 TR0 . . . from (12.5.A)

. 9 p000 2 old (TR0) s.t. old (CH(p000; p)) 6= /0
) 9 p000 2 TR0 s.t. CH(p000; p) 6= /0 . . . from (12.5.A)

(since ∂Bm
h � r�.p, chains may only be added to CH(p000; p))

�Ψ7;Ψ8 : lower 2 (Ω(p)�fBm
h g) . . . from Figure 12.2

) p 2 TR0

�Ψ9 : . old (p0) = TOP and old (p) = BOT . . . from Figure 12.2

) 8p000;8ch2 old (CH(p000; p)), ch cannot involve< p0; p;old (Bm
h)>

) no chain is deleted from CH(p000; p)

(nor is any chain added to CH(p000; p) since ∂Bm
h � p�.r)

) 8p000; CH(p000; p) = old (CH(p000; p)) (12.5.D)

. old (p) = BOT and lower 62 (Ω(p)�fBm
h g) . . . from Figure 12.2

) 9 p000 2 old (TR0) s.t. old (CH(p000; p)) 6= /0 (12.5.E)

) 9 p000 2 TR0 s.t. CH(p000; p) 6= /0 . . . from (12.5.A) and (12.5.D)

Thus it follows that p = BOT) p 2 TR0 or 9 p000 2 TR0 s.t. CH(p000; p) 6= /0.

2

12.4. CORRECTNESS OF S 163

12.4.4 Correctness of Global Change

In this section, we are considering p00 2∝(p), p00 6� p such that CH(p; p00) 6= /0.

Lemma 12.6 : Let p Bm
h (p0) for the cases in σ1

λ(Ψ?). Let p00 2∝(p), p00 6� p such that

CH(p; p00) 6= /0. Then,

p00 = BOT) p00 2 TR0 or 9 p000 2 TR0 such that CH(p000; p00) 6= /0.

Proof : In these cases, p00 may or may not be in GCB(p); the latter situation arises if old (p00)

is BOT. In either case, p00 = BOT and condition 12.2.2 holds vacuously. Further, though the

cause of p00 being BOT may differ, the following argument holds for both the cases.

p 2 T 2B

) either p 2 TR0 or 9 p000 2 TR0 such that CH(p000; p) 6= /0 . . . from Lemma 12.3

) 9 p000 2 TR0 such that CH(p000; p00) 6= /0 . . . since CH(p; p00) 6= /0

2

Lemma 12.7 : Let p Bm
h (p0) for the cases in σ2

λ(Ψ?). Let p00 2∝(p), p00 6� p such that

CH(p; p00) 6= /0. Then,

p00 = BOT iff p00 2 TR0 or 9 p000 2 TR0 such that CH(p000; p00) 6= /0.

Proof : We first show that p00 2 GCT (p) for the cases in σ2
λ(Ψ?).

. p 2 B2T) old (p) = BOT . . . from equation 9.7

. 8ch 2 CH(p; p00), ch does not include p

) CH(p; p00) = old (CH(p; p00))

) old (p00) = BOT . . . since old (p) is BOT

) p00 2 GCT (p) . . . since p 2 B2T and CH(p; p00) 6= /0

The only two cases which are possible, are

1. p00 2N CT (p)) p00 = BOT. . . . from section (12.2.2)

p00 2N CT (p))9 p000 2 TR0 such that CH(p000; p00) 6= /0 . . . from equation 9.12

2. p00 2 (GCT (p)�N CT (p))) p00 = TOP . . . from section (12.2.2)

CH(p; p00) 6= /0 . . . from definitions (8.2) and (8.3)

) lower 62Ω(p00) . . . from Lemma 12.1

164 CHAPTER 12. CORRECTNESS OF INCREMENTAL DATA FLOW ANALYSIS

) p00 62 TR0

p00 62N CT (p))69 p000 2 TR0 such that CH(p000; p00) 6= /0 . . . from equation 9.12

Thus it follows that

p00 = TOP) p00 62 TR0 and 6 9 p000 2 TR0 such that CH(p000; p00) 6= /0.

2

Lemma 12.8 : Let p Bm
h (p0) for the cases in σ3

λ(Ψ?). Let p00 2∝(p), p00 6� p such that

CH(p; p00) 6= /0. Then,

p00 = BOT iff p00 2 TR0 or 9 p000 2 TR0 such that CH(p000; p00) 6= /0.

Proof : Consider the chains from some property p000 to the property p00. Such chains are

contained in CH(p000; p00). These chains can be divided into two categories :

1. Chains which involve < p0; p;Bm
h > : Let the set containing such chains be denoted by

CHp(p000; p00).

2. Chains which do not involve < p0; p;Bm
h > : Let the set containing such chains be

denoted by CHnp(p000; p00).

Thus, it follows that,

8p000; CH(p000; p00) = CHnp(p000; p00) [CHp(p000; p00)

Hence this lemma can be proved by proving the following.

p00 = BOT iff p00 2 TR0 or

9 p000 2 TR0 s.t. either CHnp(p000; p00) 6= /0 or CHp(p000; p00) 6= /05

We make some useful observations for proving the lemma.

. p 62 T R + and p 62 T R �

) TR0 = old (TR0) (12.8.A)

. Cases Ψ5 and Ψ9

) neither old (Bm
h) nor Bm

h is lower

) only the chains which involve < p0; p;Bm
h > may change6

5We do not exclude the possibility that both of them could be non-empty.
6If lower function is involved in ∂Bm

h , the chains which include p, but do not involve < p0; p;Bm
h > may also

change. See section 9.2.2.2 for details.

12.4. CORRECTNESS OF S 165

Cases in σ3
γ

?

GCB(p) = /0
GCT (p) = /0
�

�

�

�

�

�

�

�

�=

Z

Z

Z

Z

Z

Z

Z

Z

Z~

p = TOP p = BOT

�

�

�

�

�

�	

�

�

�

�

�

�R

�

�

�

�

�

�R

old (p00) = TOP old (p00) = BOT old (p00) = BOT

Cases Ψ5(a);Ψ9(a) Cases Ψ5(b);Ψ9(b) Cases Ψ2;Ψ3;Ψ7;Ψ8;Ψ9(c)

Figure 12.5: Various cases for a property p00 such that CH(p; p00) 6= /0 for cases in σ1
γ .

) 8p000; CHnp(p000; p00) = old (CHnp(p000; p00)) (12.8.B)

. Chains in CH(p; p00) do not include p

) 8p00; CH(p; p00) = old (CH(p; p00)) (12.8.C)

Since GCT (p) = GCB(p) = /0, no property changes. p and p00 retain their old values and

the following possibilities exist :

1. As noted in lemma 12.5, p is necessarily BOT in cases Ψ2;Ψ3;Ψ7 and Ψ8. Additionally,

p may be BOT in case Ψ9 also. In the cases when p is BOT, p00 can only be BOT since

CH(p; p00) 6= /0.

2. p is necessarily TOP in case Ψ5; it may be TOP in Ψ9 too. p00 may or may not be TOP.

3. In the other cases, p00 could be TOP or BOT.

We consider the following three categories separately.

1. p = TOP and p00 = TOP : Cases Ψ5(a) and Ψ9(a)

166 CHAPTER 12. CORRECTNESS OF INCREMENTAL DATA FLOW ANALYSIS

2. p = TOP and p00 = BOT : Cases Ψ5(b) and Ψ9(b)

3. p = BOT and p00 = BOT : Cases Ψ2;Ψ3;Ψ7;Ψ8 and Ψ9(c)

Figure 12.5 contains the details.7

1. Ψ5(a);Ψ9(a) : p = old (p) = TOP and p00 = old (p00) = TOP.

We need to show that

� p00 62 TR0, and (12.8.D)

� 69 p000 2 TR0 such that CHnp(p000; p00) 6= /0, and (12.8.E)

� 69 p000 2 TR0 such that CHp(p000; p00) 6= /0 (12.8.F)

Showing (12.8.D) and (12.8.E) is straightforward :

. old (p00) = TOP

) p00 62 old (TR0)

) p00 62 TR0 . . . from (12.8.A)

. old (p00) = TOP

) 69 p000 2 old (TR0) s.t. old (CHnp(p000; p00)) 6= /0

) 69 p000 2 TR0 s.t. CHnp(p000; p00) 6= /0 . . . from (12.8.A) and (12.8.B)

(12.8.F) is shown as follows. We consider the cases Ψ5 and Ψ9 separately.

�Ψ5(a) : Since old (Bm
h) is raise, old (CHp(p000; p00)) = /0, i.e. no chain from p000 to p00

involving < p0; p;old (Bm
h)> existed in old (I). Since ∂Bm

h � r�.p, chains

are created in CHp(p0; p00).

. Acyclicity of chains

) 8p000; 8ch 2 CH(p000; p0), ch does not involve < p0; p;Bm
h >

) 8p000, no chains are added to CH(p000; p0)

(nor are chains deleted since ∂Bm
h � r�.p)

) 8p000, CH(p000; p0) = old (CH(p000; p0)) (12.8.G)

. old (p0) = TOP

) 69 p000 2 old (TR0) s.t. old (CH(p000; p0)) 6= /0
) 69 p000 2 TR0 s.t. CH(p000; p0) 6= /0

. . . from (12.8.A) and (12.8.G)

7Note that the possibility that p = BOT and p00 = TOP cannot arise since CH(p; p00) 6= /0.

12.4. CORRECTNESS OF S 167

) 69 p000 2 TR0 s.t. CHp(p000; p00) 6= /08

�Ψ9(a) : Since old (Bm
h) is propagate, old (CHp(p000; p00)) may or may not have been

empty, i.e. such chains may have existed in old (I). They become non-

existent in I since ∂Bm
h � p�.r.

. Bm
h � raise,

) CHp(p000; p00) = /0 (12.8.H)

. old (p00) = TOP

) p00 62 old (TR0) and 6 9p000 2 old (TR0) s.t. old (CH(p000; p00)) 6= /0
) 69p000 2 old (TR0) s.t. old (CH(p000; p00)) 6= /0
) 69p000 2 TR0 s.t. CH(p000; p00) 6= /0

(from (12.8.A) and the fact that no chains are added)

) 69 p000 2 TR0 s.t. CHp(p000; p00) 6= /0
. . . from (12.8.A) and (12.8.H)

Thus it follows that

p00 = TOP) p00 62 TR0 and 6 9 p000 2 TR0 such that CH(p000; p00) 6= /0.

2. Ψ5(b);Ψ9(b) : p = old (p) = TOP and p00 = old (p00) = BOT.

For these cases, we need to show that

p00 2 TR0 or

9 p000 2 TR0 such that either CHnp(p000; p00) 6= /0 or CHp(p000; p00) 6= /0

. old (p) = TOP

) 8p000 2 old (TR0);old (CHp(p000; p00)) = /0 (12.8.I)

. old (p00) = BOT

) p00 2 old (TR0) or 9 p000 2 old (TR0) s.t. old (CH(p000; p00)) 6= /0

) p00 2 old (TR0) or 9 p000 2 old (TR0) s.t. old (CHnp(p000; p00)) 6= /0
(since old (CH(p000; p00)) = old (CHp(p000; p00)) [old (CHnp(p000; p00)), and

old (CHp(p000; p00)) = /0 from (12.8.I))

) p00 2 TR0 or 9 p000 2 TR0 s.t. CHnp(p000; p00) 6= /0
. . . from (12.8.A) and (12.8.B)

8This is, admittedly, a difficult step to figure out. It can be explained intuitively as follows : Since there is

no p000 in TR0 such that a chain from p000 to p0 exists, there can be no p000 in TR0 such that a chain from p000 to p00

involving < p0; p;Bm
h > exists.

168 CHAPTER 12. CORRECTNESS OF INCREMENTAL DATA FLOW ANALYSIS

p00, p Bm
h (p0)

�

�

�

�

�	

�

�

�

�

�R

p00 62∝(p) p00 2∝(p)

Part I Part II

�

�

�

�

�

�

�

�

�

�

�

�	

�

�

�

�

�

�R

p00 � p

p00 6� p

�

�

�

�

�	

�

�

�

�

�R

CH(p; p00) = /0
Lemma 12.2

CH(p; p00) 6= /0
�

�

�

�

�

�=

?

Z

Z

Z

Z

Z

Z~

σ1
γ σ2

γ σ3
γ

Lemma 12.6 Lemma 12.7 Lemma 12.8

�

�

�

�

�

�=

?

Z

Z

Z

Z

Z

Z~

σ1
γ σ2

γ σ3
γ

Lemma 12.3 Lemma 12.4 Lemma 12.5

Figure 12.6: Various cases for theorem 12.1

Thus it follows that

p00 = BOT) p00 2 TR0 or 9 p000 2 TR0 such that CH(p000; p00) 6= /0.

3. Ψ2;Ψ3;Ψ7;Ψ8;Ψ9(c) : p = old (p) = BOT.

. old (p) is BOT and CH(p; p00) 6= /0

) old (p) is BOT and old (CH(p; p00)) 6= /0 . . . from (12.8.C)

) old (p00) = BOT

Thus, p00 = old (p00) = BOT and we need to show that,

p00 2 TR0 or 9 p000 2 TR0 such that CH(p000; p00) 6= /0

. p = BOT

12.5. MULTIPLE FUNCTION CHANGES 169

) p 2 TR0 or 9 p000 2 TR0 such that CH(p000; p) 6= /0 . . . from lemma 12.5

) 9 p000 2 TR0 such that CH(p000; p00) 6= /0 . . . since CH(p; p00) 6= /0

Thus it follows that

p00 = BOT) p00 2 TR0 or 9 p000 2 TR0 such that CH(p000; p00) 6= /0.

2

Theorem 12.1 : S as defined by equation 9.14 is the MFP solution for the instance I.

Proof : For a property p such that p Bm
h (p0), a property p00 may belong to either of the

following categories :

� p00 62∝(p).

Since such properties and their chains are unaffected by a change in Bm
h , the theorem

trivially follows.

� p00 2∝(p).

Various sub-cases, and the lemmas which prove them are presented in Figure 12.6.

It is easy to see from Figure 12.6, that all possible cases for a property p00 are covered. Hence

the theorem follows. 2

12.5 Multiple Function Changes

Devising formal proofs of correctness in the case of multiple function changes seems a rather

formidable task. In this section, we provide intuitive arguments to justify why correctness

should hold even if the assumption of a single function change is violated. Empirically, it has

been found that the algorithm based on the model is capable of handling multiple function

changes. This has been ascertained by implementing incremental data flow analysis algorithm

for MRA (section 10.6).

Though there could be conflicting influences on the value of a property, it is automatically

taken care of by the definitions in the model. We make some useful observations in this regard.

Observation 12.1 : (
[

hm
2 H m

B2TI (h
m
))

\

(

[

hm
2 H m

T 2BI (h
m
)) =

/0. 2

This observation follows from the fact that a property belongs to either B2TI (h
m
1) set or

T 2BI (h
m
2) set depending upon its old value. Thus, in no case can it belong to both of them

170 CHAPTER 12. CORRECTNESS OF INCREMENTAL DATA FLOW ANALYSIS

despite the possibility of two functions influencing a property in conflicting ways, directly.

Let there be two functions hm
1 (u

0

;u) and hm
2 (u

00

;u) influencing the properties at u. If Bm
h1 and

Bm
h2 change in such a way that Bm

h1 has TOP influence on a property at u while the Bm
h2 has

BOT influence, then the value of the property would be BOT. This is handled by the model as

follows :

1. If the old value of a property p is BOT then

� if Bm
h2 is lower, p cannot be in B2TI (h

m
1) since lower 2 Ω(p). Its value remains

BOT.

� if Bm
h2 is propagate, p cannot be in T 2BI (h

m
2) but would be in B2TI (h

m
1) and hence

would be included in GCT (p). However, since the influence of Bm
h2 is BOT, p will

also be included in N CT (p) and its final value will be BOT.

2. If the old value of p is TOP, p would be in T 2BI (h
m
2) and its final value would be BOT.

Observation 12.2 : Let p0 2 ∝(p) such that p 2 T 2B and p0 2 B2T . Let p00 2 ∝(p). If

CH(p; p00) 6= /0 and CH(p0; p00) 6= /0, then p00 2 GCB(p) if and only if p00 62 GCT (p0). 2

We consider two possible situations separately :

1. old (p00) is TOP.

In such a case, p00 2 GCB(p) and since its old value is TOP, it cannot be in GCT (p0).

Thus, p00 is BOT due to the BOT influence of p, regardless of the influence of p0.

2. old (p00) is BOT.

In such a case, p00 2 GCT (p0) and since its old value is BOT, it cannot be in GCB(p).

However since CH(p; p00) 6= /0, p00 must be in N CT (p0) and it would again be BOT.

Observation 12.3 : Let p0 2 ∝(p) such that both p and p0 are in B2T . Consider a p00 such

that p00 2 GCT (p) and p00 2 GCT (p0). Then, p00 2N CT (p) if and only if p00 2N CT (p0).

2

This is obviously so since if 9 p000 2 TR0 such that CH(p000; p00) 6= /0 then p00 must be in-

cluded in N CT set for every property for which it is included in GCT set.

In conclusion, the possibility of several functions changing together does not constrain

any proposition of the model and there is no need to perform separate analysis for different

changes; all changes can be handled simultaneously.

Part III

Concluding Remarks

Chapter 13

Loose Ends and Final Thoughts

But seeds are invisible. They sleep deep in the heart of the earth’s darkness,

until someone among them is seized with the desire to awaken. Then this
seed will stretch itself and begin — timidly at first — to push a charming

little sprig, inoffensively upward toward the sun. If it is only a sprout of

radish or the sprig of a rose-bush, one would let it grow wherever it might
wish.

The generalised theory has evolved from some rather simple but fundamental observations.

In particular, the basic insights revolve around the need to distinguish between :

� the edge flow and the node flow,

� the graph theoretic path and the information flow path,

� the characterisation of incremental data flow analysis and the algorithm to perform in-

cremental data flow analysis.

� the incremental change in solution and the overall solution

The realisation that these distinctions need to be made, arises out of a series of not-so-satisfactory

efforts at characterising bidirectional flows. Since these distinctions raise much more fun-

damental questions than the ones raised by the earlier (pioneering) efforts, they need much

deeper probings which deliver much more than the earlier efforts — both, in terms of the num-

ber, as well as the significance of the results. The fact that this seems to have been achieved

in an elegant manner may have something to do with the profoundness of the fundamental

observations.

172 CHAPTER 13. LOOSE ENDS AND FINAL THOUGHTS

13.1 Contributions of this Work

The major contributions of this work are :

1. Formal characterisation of the notions in exhaustive and incremental data flow analy-

sis (viz. information flow paths, influence of incremental changes in flow functions,

dependence of data flow properties on other data flow properties etc.).

2. Formal models for exhaustive and incremental data flow analysis to :

� define the exhaustive and incremental solutions of data flow problems.

� show the correctness of exhaustive and incremental solutions.

3. Generic worklist based iterative algorithms for performing exhaustive and incremental

data flow analysis.

4. Significant findings in complexity of exhaustive data flow analysis :

� Worklist based iterative data flow analysis - We show that the complexity of uni-

directional and bidirectional data flow analysis is same.

� Round robin iterative data flow analysis - We define the notion of width which

provides the first (strict) bound on the number of iterations for bidirectional data

flow analysis. For the unidirectional problems, the width provides a more accurate

bound than the traditional measure of depth.

5. Motivation and explanation of efficient solution techniques for exhaustive data flow

analysis.

These results unfold deep insights into the process of data flow analysis and provide a firm

theoretical foundation for understanding (and predicting) the behaviour of various data flow

problems making it easier to devise and experiment with more unified optimising transforma-

tions.

13.2 Applicability

All formulations in this work have been conceived for bidirectional flows which subsume uni-

directional flows as a special case. As a consequence, all results of this research are uniformly

applicable to unidirectional and bidirectional data flows.

13.2. APPLICABILITY 173

13.2.1 Applicability of the Results in Exhaustive Analysis

Though the exposition of the theory in this thesis is restricted to bit vector problems only, it is

applicable to all bounded monotone data flow frameworks which possess the property of the

separability of solution.

Let the effective height of L be H. Thus, a property can assume at most H + 1 values

during data flow analysis. This has the following consequences :

� MBVP now implies that a node variable changes from X1 to X2 where X1 = X2.

� The notion of information flow now becomes :

information flows from a program point u to a program point v when a change in a

property at u causes the corresponding property at v to change.

� A property may change H times rather than only once; hence a program point may

appear H times in an ifp.

These changes do not constrain any propositions in the theory except that a property may

have to be processed H times rather than only once. The generic algorithm is also applicable

to such problems by

� replacing the single-bit representations of a data flow property by a suitable data struc-

ture, and by

� replacing the words “is BOT” and “becomes BOT” by “is not TOP” and “changes”,

respectively.

If H is constant (i.e. independent of the number of nodes in the flow graph), the complexity

of the algorithm remains same.

13.2.2 Applicability of the Results in Incremental Analysis

The results in incremental analysis are restricted to bit vector data flow problems only. The

six possibilities of changes in flow functions introduced in chapter 9 form the basis of the

functional model, and hence the entire discussion of incremental data flow analysis. The idea

of extending the functional model to more general bounded problems1 seems forbidding since

one may have to consider many more possibilities and the whole treatment of incremental

analysis would become unwieldy (not that it is very simple now!).

1Recall that bit vector problems are 2–bounded.

Appendix A

Constructing ifp Patterns

Seen from a slight distance, that would make a splendid spectacle. The

movements of this army would be regulated like those of the ballet in the
opera ... And never would they make a mistake in the order of their entry

upon the stage. It would be magnificent.

We define the following predicates :

� E(h) indicates the existence of function h (i.e. h is non->).

� T (h) indicates that h(>) =>.

� C (in) indicates that CONST IN could be ?.

� C (out) indicates that CONST OUT could be ?.

These predicates can be determined directly from the data flow equations. A regular expres-

sion defining the ifp’s of a data flow framework is constructed in two steps :

1. Constructing DFA (Deterministic Finite Automaton) from flow functions.

2. Constructing a regular expression from DFA.

Standard techniques exist for constructing regular expressions from DFA [2, 33]. Here,

we describe step (1).

Constructing DFA from flow functions

Define DFA D =<Q ;Γ;∆;QS ;QF > where,

� Q � fSs;S f ;Sbg is the set of states where,

APPENDIX A. CONSTRUCTING ifp PATTERNS 175

∆ T
f

e T b
e

Condition State Condition State

Ss (:T (f f
)+C (out)) �E(g f

) S f (:T (f b
)+C (in)) �E(gb

) Sb

S f E(f f
) S f E(g f

) �E(gb
) Sb

Sb E(g f
) �E(gb

) S f E(f b
) Sb

Table A.1: Conditional transitional table for constructing DFA

– Ss is the start state.

– S f is the state reached after a forward edge traversal (T
f

e) is made.

– Sb is the state reached after a backward edge traversal (T b
e) is made.

� Γ� fT f
e ;T

b
e g is the alphabet.

� ∆ is the state transition table which is derived from the conditional transition table (Ta-

ble A.1) where a transition is possible only if the associated condition holds.

� QS = Ss.

� QF � fS f ;Sbg is the set of final states.

Note that the regular expression describing ifp’s for non-singular data flow problems, can

be defined more precisely by examining the influence of two different confluence operators as

discussed in example 6.1.

Example A.1 : For the problem of reaching definitions, both C (in) and C (out) are F. The

predicates defined for flow functions have following values.

f f f b g f gb

E T T F F

T F T F F

The resulting transition table and its transition diagram is :

176 APPENDIX A. CONSTRUCTING ifp PATTERNS

∆ T
f

e

Ss S f

S f S f

��

��

Ss
��

��

S f-

6

T
f

e

T
f

e

Γ = fT
f

e g, Q = fSs;S f g and QF = fS fg. The regular expression describing the ifp’s is

(T
f

e)

+. 2

Example A.2 : For MRA, C (in) is T while C (out) is F. The predicates defined for flow

functions have following values.

f f f b g f gb

E F T T T

T T F F T

The resulting transition table and its transition diagram is :

∆ T
f

e T b
e

Ss Sb

S f Sb

Sb S f Sb

��

��

Ss
��

��

Sb
-

T b
e

��

��

S f

-

�

T
f

e

T b
e

�

T b
e

Γ = fT
f

e ;T
b

e g, Q = fSs;S f ;Sbg and QF = fS f ;Sbg. Note that the transition from Ss to S f

is not possible indicating that the ifp’s of MRA cannot begin with a forward edge traversal.

The regular expression in this case is ((T b
e)

+

(T
f

e j ε))+. 2

Example A.3 : For CHSA, C (in) is F while C (out) is T. The predicates defined for flow

functions have following values.

f f f b g f gb

E T T T T

T T T T T

The resulting transition table and its transition diagram is :

APPENDIX A. CONSTRUCTING ifp PATTERNS 177

∆ T
f

e T b
e

Ss S f

S f S f Sb

Sb S f Sb

��

��

Ss
��

��

S f-

T
f

e

��

��

Sb

-

�

T b
e

T
f

e

�

T
f

e

6

T b
e

Γ = fT
f

e ;T
b

e g, Q = fSs;S f ;Sbg and QF = fS f ;Sbg. T (f b
) is T and C (in) is F. Thus,

there is no transition from Ss to Sb and the ifp’s cannot begin with T b
e (table 3.2); they begin

with T
f

e since C (out) is T.

The regular expression in this case is (T
f

e)(T
f

e j T
b

e)
�. 2

Appendix B

Performance of MRA Solution Procedure

On making his discovery, the astronomer had presented it to the Interna-
tional Astronomical Congress, in a great demonstration. But he was in

Turkish costume, and nobody would believe what he said.

Grown-ups are like that . . .
Fortunately, however, for the reputation of Asteroid B-612, a Turkish dic-

tator made a law that his subjects, under pain of death, should change to

European costume. . . . And this time everybody accepted his report.

The algorithm was implemented and integrated in the optimiser of an optimising compiler

developed at IIT Bombay. Extensive experiments were carried out with a set of scientific

programs written in Fortran. All measurements were taken on a SPARC machine.1

Four heuristics were implemented and their performance was compared with the round

robin method in terms of bit vector operations as well as time.

� RR refers to the round robin method.

� FIFO refers to First in first out strategy.

� MBOT refers to propagating the effect of node with Maximum number of BOT proper-

ties.

� PORD refers to maintaining the list sorted according Postorder.

� IPLM refers to an Improved postorder list management scheme.

1Initial implementation was carried out by Kavita Bala [6].

APPENDIX B. PERFORMANCE OF MRA SOLUTION PROCEDURE 179

Bit vector operations

Table B.1 contains the results of measurements in terms of bit vector operations. The column

headings have the following meanings :

n : Number of nodes.

jX : Number of expressions.

no w : Number of words in a bit vector.

BO : Number of bit vector operations.

SF : Speed up factor over the round robin method.

Test Program RR FIFO MBOT PORD IPLM

Name n jX j no w BO BO SF BO SF BO SF BO SF

kbr1 36 168 6 7056 3916 1.80 2139 3.30 2429 2.90 1755 4.02

kbr2 36 63 2 2400 2201 1.09 1083 2.22 998 2.40 727 3.30

kbr3 48 111 4 4176 5174 0.81 1942 2.15 1814 2.30 1218 3.43

kbr4 60 143 5 6480 9200 0.70 3025 2.14 2817 2.30 1877 3.45

kbr5 45 241 8 4560 3011 1.51 2684 1.70 2692 1.69 1912 2.38

kbr6 30 160 6 5544 3079 1.80 1708 3.25 1700 3.26 1282 4.32

kbr7 140 360 12 51840 24047 2.16 15563 3.33 16986 3.05 13005 3.99

kbr8 26 215 7 4095 6494 0.63 1931 2.12 1871 2.19 1263 3.24

kbr9 34 140 5 3600 1974 1.82 1407 2.56 1513 2.38 1142 3.15

kbr10 73 344 11 23232 15395 1.51 7343 3.16 7254 3.20 5133 4.53

kbr11 72 477 15 33120 17500 1.89 10244 3.23 10560 3.14 7852 4.22

kbr12 78 351 11 28776 36411 0.79 9925 2.90 9542 3.02 6365 4.52

kbr13 130 750 24 87552 30473 2.87 25809 3.39 25835 3.39 19023 4.60

kbr14 62 365 12 20880 8678 2.41 6243 3.34 6270 3.33 4509 4.63

kbr15 80 225 8 19200 10269 1.87 5959 3.22 6000 3.20 4262 4.50

kbr16 37 205 7 7476 5598 1.34 2408 3.10 2381 3.14 1644 4.55

kbr17 80 225 8 19200 10072 1.91 5979 3.21 5988 3.21 4277 4.49

Average 19363 11381 1.58 6199 2.84 6273 2.83 4543 3.96

Table B.1: Performance of MRA solution procedure in terms of bit vector operations.

180 APPENDIX B. PERFORMANCE OF MRA SOLUTION PROCEDURE

Time measurements

Table B.2 contains the results of measurements in terms of time. The column headings have

the following meanings :

n : Number of nodes.

jX : Number of expressions.

no w : Number of words in a bit vector.

T : Number of bit vector operations.

SF : Speed up factor over the round robin method.

Test Program RR FIFO MBOT PORD IPLM

Name n jX j no w T T SF T SF T SF T SF

kbr1 36 168 6 0.30 0.51 0.59 1.09 0.28 0.34 0.88 0.12 2.50

kbr2 36 63 2 0.13 0.31 0.42 0.71 0.18 0.15 0.87 0.07 1.86

kbr3 48 111 4 0.17 0.71 0.24 1.33 0.13 0.32 0.53 0.10 1.70

kbr4 60 143 5 0.25 1.30 0.19 2.26 0.11 0.44 0.57 0.14 1.79

kbr5 45 241 8 0.19 0.50 0.38 1.42 0.13 0.43 0.44 0.17 1.12

kbr6 30 160 6 0.20 0.37 0.54 0.92 0.22 0.23 0.87 0.09 2.22

kbr7 140 360 12 1.97 3.28 0.60 8.85 0.22 2.29 0.86 0.73 2.70

kbr8 26 215 7 0.15 0.68 0.22 1.22 0.12 0.25 0.60 0.09 1.67

kbr9 34 140 5 0.19 0.31 0.61 0.77 0.25 0.22 0.86 0.10 1.90

kbr10 73 344 11 0.78 1.93 0.40 4.37 0.18 0.89 0.88 0.33 2.36

kbr11 72 477 15 1.08 2.13 0.51 5.49 0.20 1.25 0.86 0.41 2.63

kbr12 78 351 11 0.98 4.30 0.23 6.83 0.14 1.26 0.78 0.41 2.39

kbr13 130 750 24 2.98 4.07 0.73 12.96 0.23 3.15 0.95 1.33 2.24

kbr14 62 365 12 0.70 1.20 0.58 3.14 0.22 0.86 0.81 0.32 2.19

kbr15 80 225 8 0.73 1.37 0.53 3.60 0.20 0.81 0.90 0.31 2.35

kbr16 37 205 7 0.31 0.74 0.42 1.49 0.21 0.33 0.94 0.13 2.38

kbr17 80 225 8 0.72 1.31 0.55 3.40 0.21 0.86 0.84 0.28 2.57

Average 0.70 1.47 0.46 3.52 0.19 0.83 0.79 0.30 2.15

Table B.2: Performance of MRA solution procedure in terms of time in seconds.

Appendix C

Width as a Complexity Measure

“Because an explorer who told lies would bring disaster on the books of

the geographer. So would an explorer who drank too much.”
“Why is that?” asked the little prince.

“Because intoxicated men see double. Then the geographer would note
down two mountains in a place where there was only one.”

The round robin iterative algorithms for MRA, EPA, and MMRA were implemented and

integrated in the optimiser of an optimising compiler developed at IIT Bombay. Algorithms1

for computing the widths of given test programs for MRA, EPA, and MMRA were also im-

plemented. Extensive experiments were carried out with a a set of scientific programs written

in Fortran.2

Table C.1 contains the results of the measurements. The round robin method visited the

nodes in postorder for all the problems (i.e. T b
G graph traversal). A very co-relation is found

between the width and the number of iteration for MRA. For EPA and MMRA, the difference

can be attributed to the presence of unbounded segments in both the directions. See section 6.6

for a complete analysis of the results.

Note that though w+ 1 iterations are sufficient for converging on a fixed point, an addi-

tional iteration is required to ascertain that the fixed point is reached. Thus, the actual bound

on the number iterations for a round robin algorithm is w+2. It can easily be seen that on an

average, the method os alternating iterations seems to be performing better that the round robin

1These algorithms were admittedly exponential, though some heuristics (based on the knowledge of ifp’s)

were used which reduced the time requirements to almost half.

2Viral Acharya and Moses Charikar carried out the implementation and measurements.

182 APPENDIX C. WIDTH AS A COMPLEXITY MEASURE

MRA EPA MMRA

program jNj jEj jX j w0 Backward Backward Alternate Backward Alternate

w #i w #i wa #i w #i wa #i

pgm1 36 62 168 1 2 4 13 4 5 5 26 6 20 5

pgm2 36 64 63 1 3 4 12 3 5 4 27 5 22 5

pgm3 48 68 111 1 3 3 23 10 7 5 39 10 31 5

pgm4 60 84 143 1 3 3 27 9 7 5 50 18 39 5

pgm5 45 50 241 1 2 2 37 3 5 3 41 2 9 3

pgm6 30 47 160 1 2 4 13 4 5 5 23 4 17 5

pgm7 34 46 140 1 4 3 22 5 7 5 27 4 15 5

pgm8 37 52 204 1 2 4 18 7 5 5 28 7 19 5

pgm9 61 84 224 1 3 4 29 3 5 4 47 4 29 4

pgm10 40 53 343 2 3 4 24 6 8 5 37 4 25 6

pgm11 46 78 207 1 2 4 14 5 5 5 26 7 20 6

pgm12 33 48 305 1 2 4 14 3 4 3 28 7 23 5

pgm13 34 48 54 1 2 4 24 3 3 3 33 4 11 4

pgm14 37 43 98 1 2 4 35 3 3 3 36 7 3 3

pgm15 62 83 365 1 2 4 30 3 5 4 41 4 21 5

Table C.1: Width as a complexity measure

method for EPA and MMRA. The column headings in the table have the following meanings :

jNj : Number of nodes w0 : Width for unidirectional problems

jEj : Number of edges w : Width for bidirectional problems

jX j : Number of expressions wa : Width for alternating iterations

#i : Number of iterations

Appendix D

Bitwise Algorithm for Incremental Data

Flow Analysis : Some Measurements

Grown-ups love figures. When you tell them you have made a new friend,

they never ask you any questions about essential matters. They never say
to you, “What does his voice sound like ? What games does he love best?

Does he collect butterflies?” Instead, they demand : “How old is he? How
many brothers has he? How much does he weigh ? How much money does

his father make?” Only from these figures do they think they have learned

anything about him.

The algorithm was implemented and integrated in the optimiser of an optimising compiler

developed at IIT Bombay. Extensive experiments were carried out with a set of scientific

programs written in Fortran. All the measurements were taken on a SPARC machine.1

Table D.1 contains the results of measurements. It can be easily verified from the data

that most of the time a function change affects a small fraction of the program flow graph

vindicating the need for incremental analysis. Performance measurements were not carried

out since the bitwise algorithm traverses a program flow graph for each bit separately while

the exhaustive algorithm processes all the bits in a word simultaneously. On our machine, the

word size was 32 bits which rendered any such comparison meaningless.

1The implementation was carried out by Sandeep Kumar [41].

184 APPENDIX D. BITWISE ALGO. FOR INCREMENTAL ANAL. : MEASUREMENTS

The column headings have the following meanings :

n : Number of nodes.

jX j : Number of expressions.

no w : Number of words in a bit vector.

AVA : Available Expressions Analysis.

MRA : Morel-Renvoise Algorithm.

FC : Number of (bit vector) function changes.

T B : Total number of properties in all T 2B sets.

BT : Total number of properties in all B2T sets.

AR : Average size of the affected region as a fraction of the graph.

Test Program AVA MRA

Name n j X j no w FC T B BT AR FC T B BT AR

kbr1 36 168 6 79 8 503 0.3928 224 16 1093 0.2500

kbr2 36 63 2 20 6 96 0.2798 74 8 344 0.0833

kbr3 48 111 4 19 0 9 0.1574 111 33 89 0.1250

kbr4 60 143 5 21 5 0 0.0000 168 38 33 0.0500

kbr5 45 241 8 142 3 3818 0.0852 461 5 5579 0.0444

kbr6 30 160 6 31 0 397 0.2866 129 29 777 0.5333

kbr7 140 360 12 324 6 1355 0.1791 1810 26 15135 0.0571

kbr8 26 215 7 19 12 22 0.5018 97 22 48 0.1538

kbr9 34 140 5 95 0 1158 0.0294 0 0 0 0.0000

kbr10 73 344 11 157 14 3356 0.1254 539 16 3116 0.1369

kbr11 72 477 15 115 9 2122 0.3058 1167 30 14130 0.1250

kbr12 78 351 11 144 18 265 0.6890 903 55 7126 0.0384

kbr13 130 750 24 737 23 16644 0.0668 3148 43 34191 0.0307

kbr15 80 225 8 115 7 1356 0.3154 856 11 7873 0.1625

kbr16 37 205 7 16 15 17 0.2480 24 18 24 0.0810

kbr17 80 225 8 106 6 1355 0.3134 775 10 8119 0.1875

Table D.1: Bitwise algorithm of incremental data flow analysis : Some Measurements.

Appendix E

Wordwise Algorithm for Incremental

Data Flow Analysis : Some Measurements

If you were to say to the grown-ups : “I saw a beautiful house made of rosy
brick, with geraniums in the windows and doves on the roof. ” they would

not be able to get any idea of the house at all. You would have to say to

them : I saw a house that cost £4,000.” Then they would exclaim : “Oh,
what a pretty house that is !”

The algorithm was implemented and integrated in the optimiser of an optimising compiler

developed at IIT Bombay. Extensive experiments were carried out with a set of scientific

programs written in Fortran. All the measurements were taken on a SPARC machine.1

Table E.1 contains the results of the empirical performance of the algorithm in terms of bit

vector operations. No measurements were carried out for performance in terms of time since

the goal of the implementation was to demonstrate the correctness of the algorithm practically.

No function changed for MRA in the case of program kbr9 (see Table D.1); hence no

processing was required. Also, since information flow path do not necessary follow graph

theoretic paths in the case of MRA, breadth first traversal is taken to mean essentially a list

based traversal where nodes are added to and are selected from a list.

The column headings have the following meanings :

1Very early implementations of this algorithm were carried out by Kavita Bala [6] and Girija Narlikar [47].

Both the implementations failed to give correct results. Later, the approach of devising formal model before

designing the algorithm was chosen and this time, the implementation was relatively straight-forward.

186 APPENDIX E. WORDWISE ALGO. FOR INCR. ANAL. : MEASUREMENTS

n : Number of nodes.

jX j : Number of expressions.

no w : Number of words in a bit vector.

AVA : Available Expressions Analysis.

MRA : Morel-Renvoise Algorithm.

DR : Depth first traversal with revisits.

DN : Depth first traversal with no revisits.

BR : Breadth first traversal with revisits.

BN : Breadth first traversal with no revisits.

Test Program Speed up factor for AVA Speed up factor for MRA

Name n j X j no w DR DN BR BN DR DN BR BN

kbr1 36 168 6 6.58 6.48 6.67 6.67 2.85 1.23 1.33 2.79

kbr2 36 63 2 4.84 4.84 4.94 4.94 8.69 8.44 8.44 8.69

kbr3 48 111 4 24.23 24.20 24.37 24.37 4.45 4.48 4.50 4.40

kbr4 60 143 5 46.61 46.61 46.61 46.61 10.56 12.52 12.52 10.56

kbr5 45 241 8 11.82 11.82 12.25 12.25 4.56 4.10 4.17 4.56

kbr6 30 160 6 5.49 5.40 5.60 5.60 3.09 1.87 1.87 3.07

kbr7 140 360 12 31.91 31.54 32.61 32.61 10.20 5.50 5.79 9.60

kbr8 26 215 7 9.28 9.26 9.34 9.34 7.53 8.32 8.28 7.53

kbr9 34 140 5 13.43 13.43 13.43 13.43 — — — —

kbr10 73 344 11 25.34 25.28 25.93 25.93 4.98 2.62 2.68 4.93

kbr11 72 477 15 17.07 16.97 17.51 17.51 3.02 2.52 2.76 2.93

kbr12 78 351 11 39.46 39.08 39.35 39.35 13.86 12.21 12.19 13.85

kbr13 130 750 24 72.30 72.14 74.04 74.04 14.56 11.51 12.20 14.35

kbr15 80 225 8 21.73 21.79 22.21 22.21 3.41 2.79 2.89 3.37

kbr16 37 205 7 18.26 18.25 18.35 18.35 12.23 13.43 13.43 12.21

kbr17 80 225 8 18.03 18.06 18.51 18.51 3.42 2.69 2.89 3.36

Table E.1: Wordwise algorithm of incremental data flow analysis : Some Measurements.

Bibliography

[1] W. R. Adrion and M. A. Branstad J. C. Cherniacsky. Validation, verification, and testing

of computer software. ACM Computing Surveys, 14(2):159–192, 1982.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers – Principles, Techniques, and Tools.

Addison-Wesley, 1986.

[3] F. E. Allen and J. Cocke. A program data flow analysis procedure. Communications of

ACM, 19(3):137–147, 1977.

[4] T. J. Marlowe B. G. Ryder and M. C. Paull. Conditions for incremental iteration: exam-

ples and counterexamples. Science of Computer Programming, 11(1):1–15, 1988.

[5] R. C. Backhouse. Global data flow problems arising in locally least-cost error recovery.

ACM Transactions on Programming Languages and Systems, 13(2):291–294, 1991.

[6] Kavita Bala. Performance evaluation of bidirectional data flow analysis. Department of

Computer Science and Engineering, Indian Institute of Technology, Bombay, 1992. B.

Tech. project report.

[7] S. Biswas, G. P. Bhattacharjee, and P. Dhar. A comparison of some algorithms for live

variable analysis. International Journal of Computer Mathematics, 8:121–134, 1980.

[8] M. Burke. An interval analysis approach to exhaustive and incremental interprocedu-

ral data flow analysis. ACM Transactions on Programming Languages and Systems,

12(3):341–395, 1990.

[9] M. G. Burke and B. G. Ryder. A critical analysis of incremental iterative data flow

analysis algorithms. IEEE Transactions on Software Engineering, 16(7):723–728, 1990.

[10] J. Cai and R. Paige. Program derivation by fixed point computation. Science of Computer

Programming, 11(3):197–261, 1989.

187

188 BIBLIOGRAPHY

[11] M. Carroll and B. Ryder. Incremental data flow analysis via dominator and attribute ud-

pates. In Proceedings of the 15th Annual ACM Symposium on Principles of Programming

Languages, pages 274–284, 1988.

[12] F. C. Chow. A portable machine-independent global optimizer — Design and measure-

ments. PhD thesis, Computer Systems Laboratory, Stanford University, 1983.

[13] K. Cooper. Analyzing aliases of reference formal parameters. In Proceedings of the 12th

Annual ACM Symposium on Principles of Programming Languages, pages 281–290,

1985.

[14] K. Cooper and K. Kennedy. Efficient computation of flow insensitive interprocedural

summary information. SIGPLAN Notices, 19(6):247–258, 1984.

[15] P. Cousot. Semantic foundations of program analysis. (In [46]).

[16] P. Cousot and R. Cousot. Abstract interpretation : a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proceedings of

the 4th Annual ACM Symposium on Principles of Programming Languages, pages 238–

252, 1977.

[17] D. M. Dhamdhere. A fast algorithm for code movement optimization. ACM SIGPLAN

Notices, 23(10):172–180, 1988.

[18] D. M. Dhamdhere. Register assignment using code placement techniques. Computer

Languages, 13(2):75–93, 1988.

[19] D. M. Dhamdhere. A new algorithm for composite hoisting and strength reduction opti-

mization. International Journal of Computer Mathematics, 27(1):1–14, 1989.

[20] D. M. Dhamdhere. A usually linear algorithm for register assignment using edge place-

ment of load and store instruction. Computer Languages, 15(2):83–94, 1990.

[21] D. M. Dhamdhere. Comments on practical adaptation of the global optimization al-

gorithm by Morel & Renvoise. ACM Transactions on Programming Languages and

Systems, 13(2):291–294, 1994.

[22] D. M. Dhamdhere and J. R. Isaac. A composite algorithm for strength reduction and code

movement optimization. International Journal of Computers and Information Sciences,

9(3):243–273, 1980.

BIBLIOGRAPHY 189

[23] D. M. Dhamdhere and Uday P. Khedker. Complexity of bidirectional data flow analy-

sis. In Proceedings of the 20th Annual ACM Symposium on Principles of Programming

Languages, pages 397–408, 1993.

[24] D. M. Dhamdhere and Harish Patil. An elimination algorithm for bidirectional data flow

analysis using edge placement technique. ACM Transactions on Programming Lan-

guages and Systems, 15(2):312–336, 1993.

[25] D. M. Dhamdhere, B. K. Rosen, and F. K. Zadeck. How to analyze large programs effi-

ciently and informatively. In ACM SIGPLAN ’92 Conference on Programming Language

Design and Implementation, 1992.

[26] Vikram Dhaneshwar. M. Tech. dissertation (stage 1). Department of Computer Science

and Engineering, Indian Institute of Technology, Bombay, 1992.

[27] K. Drechsler and M. P. Stadel. A solution to a problem with Morel and Renvoise’s

“Global optimizations by suppression of partial redundancies”. ACM Transactions on

Programming Languages and Systems, 10(4):635–640, 1988.

[28] L. D. Fosdick and L. J. Osterweil. Data flow analysis in software reliability. ACM

Computing Surveys, 8(3):305–330, 1976.

[29] S. M. Freudenberger. On the use of global optimization algorithms for the detection of

semantic programming errors. Technical report NSO-24, NewYork University, 1984.

[30] V. Ghodssi. Incremental analysis of programs. PhD thesis, Department of Computer

Science, Central Florida University, 1983.

[31] S. Graham and M. Wegman. A fast and usually linear algorithm for global data flow

analysis. Journal of ACM, 23(1):172–202, 1976.

[32] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier North-Holland Inc., 1977.

[33] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.

[34] S. M. Joshi and D. M. Dhamdhere. A composite algorithm for strength reduction and

code movement : part I. International Journal of Computer Mathematics, 11(1):21–44,

1982.

190 BIBLIOGRAPHY

[35] S. M. Joshi and D. M. Dhamdhere. A composite algorithm for strength reduction and

code movement : part II. International Journal of Computer Mathematics, 11(2):111–

126, 1982.

[36] J. B. Kam and J. D. Ullman. Monotone data flow analysis frameworks. Acta Informatica,

7(3):305–318, 1977.

[37] K. Kennedy. Safety of code movement. International Journal of Computer Mathematics,

3:112–130, 1972.

[38] Uday P. Khedker and D. M. Dhamdhere. A generalized theory of bit vector data flow

analysis. ACM Transactions on Programming Languages and Systems, 16(5):1472–

1511, 1994.

[39] G. Kildall. A unified approach to global program optimization. In Proceedings of the

1st Annual ACM Symposium on Principles of Programming Languages, pages 194–206,

1973.

[40] J. Knoop, O. Ruthing, and B. Steffen. Lazy code motion. In ACM SIGPLAN ’92 Con-

ference on Programming Language Design and Implementation, 1992. Also Published

as SIGPLAN Notices, 27(7).

[41] Sandeep Kumar. Implementation of a framework for global data flow analysis. Depart-

ment of Computer Science, University of Pune, Pune, 1995. M. Tech. project report.

[42] T. J. Marlowe. Incremental iteration and data flow analysis. PhD thesis, Department of

Computer Science, Rutgers University, 1989.

[43] T. J. Marlowe and B. G. Ryder. An efficient hybrid algorithm for incremental data flow

analysis. In Proceedings of the 17th Annual ACM Symposium on Principles of Program-

ming Languages, pages 184–196, 1990.

[44] T. J. Marlowe and B. G. Ryder. Properties of data flow frameworks. Acta Informatica,

28:121–163, 1990.

[45] E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies.

Communications of ACM, 22(2):96–103, 1979.

[46] S. S. Muchnick and N. D. Jones. Program Flow Analysis : Theory and Applications.

Prentice-Hall, Inc., 1981.

BIBLIOGRAPHY 191

[47] Girija Narlikar. Formalization of a new model for incremental dataflow analysis. De-

partment of Computer Science and Engineering, Indian Institute of Technology, Bombay,

1993. B. Tech. project report.

[48] L. J. Osterweil. Using data flow tools in software engineering. (In [46]).

[49] L. L. Pollock and M. L. Soffa. An incremental version of iterative data flow analysis.

IEEE Transactions on Software Engineering, 15(12):1537–1549, 1989.

[50] B. Rosen. A lubricant for data flow analysis. SIAM Journal of Computing, 11(3):493–

511, 1982.

[51] B. K. Rosen. Degrees of availability as an introduction the general theory of data flow

analysis. (In [46]).

[52] B. K. Rosen. Monoids for rapid data flow analysis. SIAM Journal of Computing,

9(1):159–196, 1980.

[53] B. K. Rosen. Linear cost is sometimes quadratic. Proceedings of the 8th Annual ACM

Symposium on Principles of Programming Languages, pages 117–124, 1981.

[54] B. G. Ryder. Incremental data flow analysis. In Proceedings of the 10th Annual ACM

Symposium on Principles of Programming Languages, pages 167–176, 1983.

[55] B. G. Ryder and M. Carroll. An incremental algorithm for software analysis. In Pro-

ceedings of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-

tical Software Development Environments, pages 171–179, 1986. Also Published as

SIGPLAN Notices, 21(1).

[56] B. G. Ryder and M. C. Paull. Elimination algorithms for data flow analysis. ACM

Computing Surveys, 18:277–316, 1986.

[57] B. G. Ryder and M. C. Paull. Incremental data flow analysis algorithms. ACM Transac-

tions on Programming Languages and Systems, 10(1):1–50, 1988.

[58] A. Sorkin. Some comments on a solution to a problem with Morel and Renvoise’s

“Global optimizations by suppression of partial redundancies”. ACM Transactions on

Programming Languages and Systems, 11(4), 1989.

[59] R. E. Tarjan. Testing flow graph reducibility. Journal of Computer Systems and Science,

9(3):355–365, 1974.

192 BIBLIOGRAPHY

[60] R. E. Tarjan. Fast algorithms for solving path problems. Journal of ACM, 28(3):594–614,

1981.

[61] R. E. Tarjan. A unified approach to path problems. Journal of ACM, 28(3):577–593,

1981.

[62] V. Vyssotsky and P. Wegner. A graph theoretical fortran source language analyzer. AT

& T Bell Laboratories, Murray Hill, N. J., 1963. (Manuscript).

[63] F. K. Zadeck. Incremental data flow analysis in a structured program editor. In Pro-

ceedings of SIGPLAN’84 Symposium. on Compiler Construction, pages 132–143, 1984.

Also Published as SIGPLAN Notices, 19(6).

