
Scaling up Property Checking

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

by

Shrawan Kumar

(Roll No. 09405701)

Under the guidance of

Prof Amitabha Sanyal

and

Prof Uday Khedker

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY BOMBAY

2019

To my parents

iv

vi

Abstract

Historical data shows that there is an exorbitant cost involved in terms of loss of human lives

and/or financial loss when software bugs escape to production runs, particularly for mission

and safety critical systems. As a result, checking software correctness by static analysis has

been widely accepted as means to mitigate such losses. Since proving absolute correctness is

almost impossible, use of property checking is a widely accepted practice to prove correctness in

parts. There are plenty of state-of-the-art tools and techniques (verifiers) available for property

checking, such as CBMC [22], SLAM [5], SATABS [23] and ARMC [64], to name a few.

However, these verifiers fall short of scaling to large real life applications, particularly in the

presence of arrays of large size and loops with large bounds. In this thesis, we present two

approaches which help the existing verifiers to scale up to such software systems.

In our first approach, we created a new slicing technique, called value slice, which helps

reduce the program size considerably, while the resulting loss in precision is quite insignificant.

While a backward slice is a commonly used pre-processing step for scaling property checking,

for large programs, the reduced size of the slice may still be too large for verifiers to handle.

Our idea of value slice is an aggressive slicing method that, apart from slicing out the same

statements as backward slice, also eliminates computations that only decide whether the point

of property assertion is reachable. However, for precision, we also carefully identify and retain

all computations that influence the values of the variables in the property. The resulting slice is

smaller and scales better for property checking than backward slice.

We carried out experiments on property checking of industry strength programs using

three comparable slicing techniques: backward slice, value slice and thin slice, an even more

aggressive slicing technique slice that retains only those statements on which the variables in

the property are data dependent. While backward slicing enables highest precision and thin

vii

slice scales best, value slice based property checking comes close to the best in both scalability

and precision. This makes value slice a good compromise between backward and thin slice for

property checking.

Our second approach is focused on handling scalability issues arising due to the presence

of arrays of large size (> 100000). Most verifiers find it difficult to prove properties of programs

containing loops that process arrays of such large or unknown size. These verifiers can be

broadly classified into those that are abstract interpretation based and the ones that use model

checkers equipped with array theories. As part of this approach, we present two techniques to

handle the issue of scalability arising due to presence of such large arrays.

The first technique is based on a notion called loop shrinkability, which we have defined

for loops. In this technique, an array processing loop, that is shrinkable, is transformed to a

loop of much smaller bound that processes only a few non-deterministically chosen elements

of the array. The result is a finite state program with a drastically reduced state space that can

be analyzed by bounded model checkers. While the same bounded model checkers would have

failed to check the property on the original program. We show that the proposed transformation

is an over-approximation, i.e. if the property is true of the transformed program then it is also

true of the original. In addition, whenever applicable, the method is impervious to the size,or

existence of a bound, of the array. As an assessment of usefulness, a tool, VeriAbs, based on

our method, could successfully verify 87 of the 93 programs of the ArraysReach category of

SV-COMP 2017 benchmarks, with properties quantified over array indices. While several of

these programs had multiple loops, there were no nested loops.

The second technique that is part of the approach to address the issue of scalability arising

due to presence of such large arrays, is based on a notion called loop pruning. We have defined

the notion of loop pruning also for loops of a program. In this technique, each loop is trans-

formed to execute only the first few iterations of the loop from the beginning, and the property

is also checked only for those array elements which are accessed in the resulting pruned loop.

We present the criteria under which such transformation can be carried out and we show that

the transformation is a sound abstraction with respect to the property being checked. We have

implemented this technique also in the tool VeriAbs. The tool VeriAbs, equipped with both

the techniques (loop shrinking and loop pruning), stood first in the ArraysReach category of

SV-COMP 2018 competition.

viii

Contents

Abstract vii

List of Figures xi

List of Tables xiii

1 Introduction 3

1.1 Scalability and precision in property checking 4

1.2 Some motivating examples . 5

1.3 Our thesis . 7

1.4 Related work . 18

1.5 Organization . 21

I Scaling up Property Checking Using Value Slice 23

2 Background 25

2.1 Control flow graph . 25

2.2 Program states and traces . 26

2.3 Subprograms . 27

2.4 Backward slice . 27

2.5 Data and control dependence . 28

3 Value slice : A new slicing concept 31

3.1 Concept of value slice . 31

3.2 Value-impacting statements . 34

3.3 Value slice from value impacting statements 36

3.4 Identifying VI statements using data and control dependence 39

3.5 Value slice computation . 47

4 Implementation and measurements 53

4.1 Implementation . 53

4.2 Experiments . 57

5 Related work 67

ix

II Scaling up Property Checking of Array Programs 71

6 Background 73

6.1 Imperative programs and states . 73

6.2 Bounded model checking . 74

6.3 Loop acceleration . 75

6.4 Programs and properties of interest . 75

6.5 State approximation for residual loops . 78

7 Loop shrinkability 81

7.1 Definition of shrinkable loops . 81

7.2 Identifying shrinkable loops . 84

7.3 Checking shrinkability of iteration sequences of a size 92

7.4 Determining loop shrinkability empirically . 94

7.5 Property checking for shrinkable loops . 96

7.6 Multiple loops and nested loops . 97

8 Implementation and measurements 101

8.1 Implementation . 101

8.2 Experiments . 102

9 Loop pruning 107

9.1 Basic idea . 107

9.2 Programs of interest . 110

9.3 Loop dependence graph and semantic constraints 114

9.4 Replaying last value computations in the pruned loop 120

9.5 Last value assignments and bound on their numbers 122

9.6 Proof of soundness . 131

9.7 Implementation and measurements . 138

10 Related work 143

III Concluding Remarks 147

11 Conclusion and future directions 149

11.1 Scaling up property checking through value slice 149

11.2 Reducing the size of the loops . 153

x

List of Figures

1.1 Motivating examples to illustrate scalability issues 6

1.2 Usual backward slice, value slice and thin slice 10

1.3 Loop shrinking abstraction illustration . 12

1.4 Loop pruning abstraction illustration . 14

2.1 Example illustrating CFG and control dependence 26

3.1 Illustration of value slice . 32

3.2 Generalisation of value slice . 33

3.3 Example illustrating value impacting condition 35

3.4 (a) A property of CFG paths. (b)-(d) Situations that make a predicate value-

impacting. In Fig (c), path π1 is c→ t→ d → c→ u→ l 40

3.5 Example illustrating value impacting condition of type cond1 40

3.6 Example illustrating value impacting condition of type cond2 41

3.7 Example illustrating value impacting condition of type cond3 43

3.8 Algorithm to compute VI . 50

4.1 Program to illustrate interprocedural data dependence computation 56

4.2 A graphical view of scalability and precision of value slice 60

4.3 Example showing limitation of value slice over backward slice 62

6.1 Illustration of loop acceleration and property checking loops 76

6.2 Illustration of residual loop for iteration sequence [2,4] 77

6.3 Illustration of residual property for iteration sequence [2,4] 78

7.1 Illustration of contrapositive view of shrinkable loops definition 82

7.2 Illustration of programs with no loop carried dependence 83

7.3 Examples illustrating similar loops having different shrinkability 84

7.4 Illustration of contrapositive view of sequence shrinkability definition 86

7.5 Illustration of problem with adapted definition of sequence shrinkability 87

7.6 Illustration of contrapositive view of revised definition of sequence shrinkability 89

7.7 Program construction for determining shrinkability. Note that X and X initial

are vectors of variables, and nondet(), accordingly, generates a vector of val-

ues. 93

7.8 Process to determine loop shrinkability and finding shrink-factor. 95

7.9 Example illustrating the residual of a shrinkable loop. Program in (b) is an

abstract description of the residual, presented for ease of explanation. 97

xi

7.10 Illustration of multiple loops that can be coalesced 98

7.11 Illustration of handling nested loops . 99

9.1 Loop pruning abstraction illustration . 108

9.2 Illustration of loop pruning approach . 108

9.3 Grammar to describe the programs of interest 110

9.4 Illustration of loop dependence graph and cyclic dependence 115

9.5 Illustration of self control dependence . 116

9.6 Illustration of constraints on conditions . 117

9.7 Algorithm for span computation . 119

9.8 Illustration of value reproducibility of variables 121

9.9 Illustration of computing a theoretical bound on #LVA 126

9.10 Algorithm and illustration for computing instance-count 128

9.11 Illustration of bound computation . 130

9.12 Additional code patterns where loop pruning works 140

11.1 Illustration of limitation of value slice . 151

11.2 Illustration of limitation of value slice when property encoded as unreachable

error state . 152

11.3 Illustration of property outcome reproduction based loop pruning 155

xii

List of Tables

3.1 Description of variables used in the value slice computing algorithm 48

4.1 Program size and complexity . 63

4.2 Scalability and precision of property checking based on different kinds of slices 64

4.3 Comparison of scalability and (%) loss in precision 65

4.4 Impact of increase in timeout, and change in CEGAR iterations and time taken 66

8.1 Experimental results for SV-COMP 2017 ArraysReach benchmarks 104

9.1 Experimental results for SV-COMP 2018 ArraysReach benchmarks 142

xiii

xiv

Nomenclature

σ A program state as a map Var → Val , during execution of a program,

where Var is set of variables in the program, and Val is set of possible

values, which the variables in Var can take

⌊σ⌋X An X-restriction map X → Val of a program state σ : Var → Val ,

with respect to X ⊆ Var , such that ∀x ∈ X.⌊σ⌋X(x) = σ(x)

Υ A slicing criterion as a pair 〈l, V 〉 where l is a statement label (location)

and V is a set of variables

REF (s) Set of variables referred in the statement s of a program

LV (s) The slicing criterion 〈l′, REF (s)〉, where l′ is the label of statement s

DU(l, X) Set of definitions on which variables in X are dependent at location l

c
b
֌ n Node n is control dependent on conditional out-edge b of predicate node

c

c
b
 n Node n is transitively control dependent on conditional out-edge b of

predicate node c

(l , σ) An execution state, in a trace, where l is a program location

[(li , σi)], 0 ≤ i ≤ k Sequence of execution states [(l0 , σ0), (l1 , σ1), ..., (lk , σk)], represent-

ing a trace

π A path in the control flow graph between two nodes

〈π1, π2, t〉 A witness for a predicate c to be value impacting for a given slicing

criterion. Here, π1 and π2 are paths from the node c to slicing criterion

point, and t is first value impacting node on π1, but not so on π2

VI (Υ) Set of nodes value impacting the slicing criterion Υ

AP(Υ) Set of predicates that are not value impacting for Υ, but other value-

impacting nodes are transitively control dependent on these predicates

PVS Subprogram constructed from program P , using statements of VI (Υ),
and predicates of AP(Υ) in abstract form

AVI Set of concrete statements in subprogram PVS

xv

AREF (s) Set of variables referred in statement s of an augmented program. It

is REF (s) when s ∈ V I(Υ), V when s is SKIP and {} when s is

ENTRY, where V is set of variables in the slicing criterion Υ

Φ A set of program states, usually used for denoting a pre-condition

ψ A set of program states, usually used for denoting a post-condition or a

property as a formula

{Φ}P{ψ} A Hoare triple

i : T A sequence whose first element is i and the suffix of the sequence, ex-

cluding the first element, is same as T

Pk(T) Set of all k-sized subsequences of a sequence T

LT Residual loop of a loop L with respect to a sequence T of loop iteration

numbers

ψT Residual property of a property ψ with respect to a sequence T of loop

iteration numbers

ϕ Set of program states at the beginning of first iteration of a loop

ϕi An approximation of the set of program states at the beginning of ith
iteration of a loop

ℓ Loop counter variable in a for loop

τ Trace of original program

τp Trace of pruned program

((l , i), σ) An execution state, in a trace, where l is a program location, and i is

loop counter variable’s value

ac An array reference a[ℓ + c], or a variable introduced for a loop depen-

dence graph to represent all array accesses a[ℓ+ c] in the loop

ω An execution state

(l, i) A trace-point, in a trace, where l is a program location, and i is loop

counter variable’s value

((l , i), σ)τ An execution state belonging to the trace τ

la Location of the assert statement in the program

ia Iteration of interest of the property loop

δlow Minimum of low values of the spans of all array operands in a program

δhigh Maximum of high values of the spans of all array operands in a program

xvi

δ δhigh − δlow

lcv Loop counter value

cinit The initial value of the loop counter varaiable of a for loop

cfinal Value of the loop counter varaiable in last iteration of a for loop

cub Bound appearing in loop exit condition of a for loop

VDG Variable dependence graph

L Set of loops in the program

La The property loop containing assert statement

Lτ Set of loops appearing in a given trace τ of the program

Pτ A program produced from the sequence of statements corresponding to

the trace τ

Pτs Program created from Pτ by replacing all the self-controlling condition

tests and all the occurrences of the assert statement, except the one at

a given trace-point (la, ia)τ , by a SKIP statement

l̄L Location of the first statement in the loop body of a loop L

l̂L Location of the last statement in the loop body of a loop L

(̂lL, îL) In a given trace, last trace-point belonging to the loop L ∈ Lτ

live at(l , i) Set of strongly live variables at a trace-point (l, i) in Pτs

all lvas(l , i) Set of assignments appearing in the loops that are not dead in the pro-

gram Pτs , when considering values of variables that are strongly live at

a trace-point (l, i)

(lL, iL) A trace-point belonging a loop L ∈ Lτ

loop lvas(x , lL, iL) Set of last value assignments, belonging to a loop L, of a variable x, at

a trace-point (lL , iL)

loop lvas(U , lL, iL) Set of last value assignments, belonging to a loop L, of a set of variables

U , at a trace-point (lL , iL)

loop lvas live(lL , iL) Set of last value assignments, belonging to a loop L, for the set of

strongly live variables at (lL , iL), with respect to the trace-point (lL , iL)

(̄lLa
, ia) Trace-point at the beginning of the loop iteration, of the property loop,

corresponding to (la, ia)

LVA lcv appearing in the trace-point of a last value assignment

xvii

GL The VDG of a loop L

G Graph representing integrated view of the VDGs of all the loops in the

program, considering the inter-loop dependence edges

lvas-count Maximum number of last value assignments needed within the loop to

compute a value of a variable belonging to VDG of a loop

lvas count(v ,GL) Maximum number of last value assignments needed within the loop to

compute a value of a variable v belonging to the VDG of a loop L

lvas count(U ,GL) Sum of lvas-count of the variables in a set U of variables in GL

CL Sum of product of lvas-count and instance-count of each node in GL

C One more than the sum of CL of all the loops L in the program

β Largest constant index used in array accesses of a program

Kconst Largest lcv for a loop with which some array element, with index β, can

be accessed inside the loop

Kc Maximum of Kconst of all the loops of the program

cinit Minimum of cinit across all the loops

Θ lcm of steps of all the loops of the program

N̂ Maximum cfinal across all the loops

N Minimum cfinal across all the loops

Γ The computed loop counter value bound, for the pruned loop, corre-

sponding to the loop with maximum cfinal

σ0 Initial state of trace τ

σp
0 Initial state of a trace τp

loop-LVAs Set of the LVAs corresponding to the last value assignments all lvas(la, ia)

χ An index map such that for an array element a[n], σp
0 (a[n]) = σ0 (a[χ(n)])

and for a scalar variable x, σp
0 (x) = σ0 (x)

χ−1 Inverse map of χ

Pr A program created from a trace, as the sequence of all the statements,

corresponding to only those trace-points which are either outside a loop

or whose lcv corresponds to an LVA. In addition, in Pr, the statements

corresponding to initialisation, test and increment of the loop counter

variables are replaced by SKIP statement

xviii

Pr
s A program created from a Pr, by replacing all conditional checks by

SKIP statement

LV (P, (l, i)) Set of live variables at (l, i) in the trace program P , assuming variables

used in the assert statement at (la, ia) are live at (la, ia)

Vsc(l) Set of self-controlled variables at the location l in a program

RLV (Pr, (l, i)) For a given trace-point (l, i), if l is outside any loop then it is same as

LV (Pr, (l, i)), else it is (LV (Pr, (l, i)) \ Vsc(l)) ∪ LV (Pr
s , (l, i))

ω′ � ω Execution stateω′ is modulo-index equivalent to execution stateω, where

ω′ and and ω are from a trace of pruned program and original program,

respectively

JeKσ Value of expression e, when evaluated in a state σ

first Location of the loop exit condition check of a loop

last Location of the loop counter increment operation of a loop

firstst(τ, i) Exceution state ((first , i), σ) in the trace τ

lastst(τ, i) Exceution state ((last , i), σ) in the trace τ

.

Chapter 1

Introduction

Software touches the lives of almost every human being in a variety of ways. On one hand it is

the backbone of large commercial systems like banking, and plays a key role in the management

of large scale enterprises like the Indian Railways. On the other, it is present in personal devices

like mobile phones and household gadgets like washing machines, as well as in large mechanical

systems like automobiles and aircrafts. Obviously, any malfunctioning of such systems will also

adversely affect human beings in varying measures.

The impact of malfunctioning of software can vary from being mild, like mere annoyance,

to very severe, e.g. huge financial losses or loss of human lives. History has several such

instances of severe losses due to bugs in software systems. An illustrative compilation of such

failures and resulting losses can be found in work by Huckle [47] and at wikipedia [73]. Here

are a couple of well-known examples. In January 1987, a computer controlled radiation therapy

machine, called the Therac25, massively overdosed six people due to a software bug and three

people lost their lives. A decade later, in September 1997, the Arian 5 rocket of European Space

Agency exploded just after 36.7 seconds of its launch due to a bug in the software. It had taken

10 years and $7 billion to build the rocket.

Many of these failures happen because some bugs escape the testing cycle of the software

development, particularly the ones that are hard to reproduce. For example, the Arian failure

was due to the truncation of a large computed value which could not fit in the storage allocated

for the variable storing the computed value. In the case of Therac25, the mishap was due to an

8 bit counter wrapping around to value zero when incremented after it had value 255, whereas

1

the expected count after the increment was 256. Therefore, verifying or proving the programs

correct before deployment becomes crucial, particularly for safety and mission critical systems.

This is done through the use of techniques that are collectively termed as static analysis. How-

ever, proving a program correct is very hard, if not impossible, particularly for large systems.

Therefore, the correctness or safety of the system is described as a collection of properties which

a program must satisfy for it to be acceptable with respect to a set of critical and safety require-

ments. For example, a critical property for a banking system could be that a savings account

balance will never be negative. Or for a rail road crossing system, it could be that when the gate

is open no train is allowed to pass. Given such a set of properties, programs are anlaysed to

check if these properties indeed hold. Such properties are called safety properties.

Property checking has been a well studied area and there has been lot of development

in tools and techniques ranging from abstract interpretation [26, 25, 65] to predicate abstrac-

tion [23, 5, 4, 43], symbolic model checking [21, 59, 64], and bounded model checking [22].

However, when it comes to proving properties on real life large programs, most of these tools

and techniques are found wanting in scalability. This happens mainly due to two reasons: (1)

the sheer size of the programs, and (2) the presence of loops, recursion, and arrays. In this

thesis, we describe two approaches: the first helps in tackling challenges posed by large size of

the program to be property checked, and the other handles the complexity arising out of the use

of large arrays that get processed by loops having bounds of the same order as the size of these

arrays.

1.1 Scalability and precision in property checking

There is almost always a trade-off between scalability and precision. As most of the techniques

for property checking have some kind of abstraction or approximation at their core, a very

coarse abstraction will enable a very high scalability but percentage of false positive results will

be too high to be of any use. For example, techniques based on abstract interpretation (e.g. AS-

TREE [27], POLYSPACE [58]) are highly scalable with coarser abstract domains like interval

domain. But with coarse abstraction, one loses information and this results in imprecision. This

results in a large number of false positives, i.e., although the property to be checked holds, the

technique is not able to verify it. On the other hand, more precise techniques like those based on

2

predicate abstraction or model checking (e.g. CBMC [22], SATABS [23], SLAM [5]) are able

to verify more properties but do not scale to large or complex programs containing, for example,

loops and arrays. Therefore, when we shall refer to scalability, we shall also have an acceptable

level of precision in mind i.e. scalability with precision. Furthermore, the size, as a measure of

scalability, can refer to the physical size of a program as well as the number and size of loops

and arrays used in it. While several methods exist that achieve scalability with precision, these

do not cover the entire space of programs, and the problem still remains challenging for newer

techniques to fill the space.

1.2 Some motivating examples

We now present a couple of examples that illustrate the challenges of scalability faced even

by state-of-art verifiers. However, in doing so, we also give a hint to the reader that it might

be possible to address the challenges in certain situations. Consider the C program given in

Figure 1.1 (a). For brevity, we have not shown the body of functions fn1, fn2 and fn3.

Assume that none of these functions have any side effects. In addition, assume that the functions

fn1 and fn2 are large and complex. The program has an assert involving the variables u

and k at line 15. It is obvious that, depending upon the value of st assigned at line 4, if

line 11 is executed in some iterations of the while loop then line 13 is never executed; and

similarly, if line 13 is executed in some iterations of the while loop then line 11 never gets

executed. Therefore, the value of j and k will either be same (when line 11 is executed), or

value of j will be twice of value of k (when line 13 is executed). Therefore the assert at line

15 is always satisfied. However, SATABS (version 3.0) [23], a robust and scalable predicate

abstraction based property checking tool, times out on this program even when a limit of 20

minutes is given. We observed that it gets entangled in its refinement cycle due to the large and

complex code present in functions fn1 and fn2. This was further established when we made

the functions fn1 and fn2 very simple and the tool was able to verify the property within a

few seconds. Observe, however, that the value of u does not depend on the values of i or t

which are only used in the while condition at line 5 and the if conditions at line 8 and 9. Since

condition at line 8 influences only modification of variable l, this condition is not relevant to

the assert at line 15. The other two conditions, at lines 5 and 9, only control whether the

3

1 int main() {

2 int i,j,k,st,t,l,u;

3 t=i=j=k=l=0;

4 st = fn3();

5 while (i<1000) {

6 i= i+ fn2();

7 t = fn1(i,j);

8 if (t>10) l++;

9 if (t>100) {

10 if (st ==1)

11 { j++; k++; }

12 else

13 {j+=2; k+=1;}

14 u = j-k;

15 assert(u==0||u==k);

16 }

17 }

18 return 0;

19 }

20 int fn1(),fn2(),fn3();

(a) Large and complex program

1 #define N 7

2 main()

3 {

4 int i, m;

5 int a[N]={8,4,6,2,11,2,2};

6 m = a[0];

7 i=0;

8 while(i < N)

9 {

10 if(m >= a[i]-1)

11 m = a[i];

12 i++;

13 }

14 assert ∀j ∈ [0..N − 1].(m ≤ a[j]);

15 }

(b) Program with use of arrays

Figure 1.1: Motivating examples to illustrate scalability issues

assert is reachable or not. As a result, the variables i and t merely decide the reachability

of line 15 during an execution. Therefore, the statements computing these two variables do not

affect the value of u or k, and may be considered irrelevant. As a result, the call to the functions

fn1 and fn2 can be sliced out to achieve scalability and the verifier would still be able to verify

the property.

We now illustrate the problems that arise due to use of arrays. Consider the program in Fig-

ure 1.1(b). The loop in the program purportedly computes a variable m, the minimum element,

denoted min, of an array a. However, due to a programmer error at line 10 (a[i]-1 instead

of a[i]), the program actually computes the last value in the longest subsequence1 a[i1],

a[i2],. . . , a[ip] of the array, such that a[i1]= min, and for any two consecutive elements

1Note that a subsequence of a given array is obtained by deleting zero or more elements of the array. So a

subsequence is not necessarily a sub-array.

4

a[ik] and a[ik+1] of the subsequence, a[ik+1] ≤ a[ik]+1. 2 Although, for simplicity of

exposition, we have shown a small size array, the issues explained here will be amplified when

the array size is large. Notice that for ease of exposition, we have used universal quantification

in the assert expression to express the property; in reality, a loop will be used instead. The

property holds for the example because the longest subsequence of the array with the stated

properties is {2,2,2}, and the last element (2) happens to be the same as min. However the

assertion will fail if, for example, the last two elements of the array are changed to 3 and 5, so

that the longest subsequence is now {2,3}. The last element of this subsequence is no longer

the minimum of the array.

Abstraction based verifiers as well as bounded model checkers fail to verify this program

when the array size is increased to 1000. For example, CBMC 5.8 [22] reports “out of memory”

when it is run with an unwinding count of 20. Abstraction based verifiers like SATABS 3.0 [23]

and CPAchecker 1.6 [10] keep on iterating in their abstraction refinement cycle in search of an

appropriate loop invariant, until they run out of memory. Therefore, it is worthwhile to look for

an abstraction of the property checking problem for array processing loops that can be verified

by a bounded model checker (BMC).

1.3 Our thesis

In this thesis, we present ideas which address the problems of scalable property checking arising

out of two distinct issues. The first issue arises in programs in which some complex fragments

of code may not be relevant to the property being checked, but their presence is hindrance to the

verifiers in verifying the property. The second issue arises in programs that process arrays, and

thus the property being checked is often quantified. In this class of programs we are interested

in programs where array sizes are very large, and as a result, the loops processing them also

have very large bounds.

Given a program P , and a property ψ, our approach in both the problems considered is

to get a program P ′ and property ψ′, such that if ψ′ holds in P ′ then it guarantees that ψ will

hold in P . The first problem, arising due to the presence of complex code fragments that are

irrelevant to the property being checked, is demonstrated earlier by the example in Figure 1.1(a).

2There is a unique such subsequence for a given array.

5

In this case ψ is the same as ψ′, and the program P ′ is obtained from P after identifying and

eliminating the code fragments that are irrelevant (with respect to reachability) to the property

ψ. We call the program P ′ a value slice.

The issues arising due to the presence of large arrays and consequently the presence of

large loops is shown by the example in Figure 1.1(b). An array processing loop is a common

occurrence in a program, and a guarantee of reliability often requires the program developer to

prove properties that are quantified over the elements of the array being processed. This is, in

general, difficult because such programs have a very large, at times infinite3, state space. So,

while static analysis techniques like smashing and partitioning [13, 14, 41, 42, 28, 33] fail due

to abstractions that are too coarse, attempts with bounded model checkers or theorem provers

armed with array theories [22, 10, 23, 60, 61, 49, 37] tend to fail for lack of scalability or their

inability to synthesize the right quantified invariant.

In certain situations, the decidability of property-checking of finite state programs can be

used to prove properties of infinite state space programs. As part of this thesis, we present two

such transformations for programs that process arrays using loops. The property ψ is usually a ∀

or an ∃ property over the elements of the array, but it can also be a property over scalar variables

modified in the loop. In the first transformation, called loop shrinking, P ′ is a program in which

we replace loops that manipulate an array of possibly large or even unknown size with smaller

loops that operate only on a few non-deterministically chosen elements of the array. In the

second transformation, called loop pruning, we replace array manipulating loops with smaller

loops that operate only on the first few elements of the array. The property ψ′ is also changed

accordingly for expressing the property over the smaller array.

In subsequent three sections, we give a brief of our ideas about value slice, loop shrinking,

and loop pruning.

1.3.1 Scalable property checking using value slice

Given a program and a set of variables at a program point of interest, program slicing [71] pares

the program to contain only those statements that are likely to influence the values of the vari-

3 The infinite state space can happen when a loop is unbounded because of a non-deterministic loop exit

criterion.

6

ables at that program point. The set of variables and the program point, taken together, is called

the slicing criterion. Several variants of the original slicing technique, called backward slicing,

have since been proposed [67]. These have been used for program understanding, debugging,

testing, maintenance, software quality assurance and reverse engineering. A survey of applica-

tions of program slicing appears in a survey paper by Binkley et al. [12]. However, our interest

is in use of some form of slicing for scaling up property checking.

Among slicing techniques, backward slicing is the natural choice to reduce the program

size to enable scale up of the property checking techniques. While computation of backward

slice is efficient and scalable, the size of the slice is a matter of concern. Empirical studies [38]

have shown that the size of the backward slice, on an average, is about 30% of the program

size. This size is still too large for analysis of large programs. In addition, the statements sliced

out are irrelevant to the asserted property and their elimination does not reduce the load on the

verifier significantly. To remedy this, we propose an alternate notion of slicing (called value

slice), which eliminates additional parts of the program without affecting verifiability. Our idea

is based on the observation that a backward slice consists of two categories of statements: (i)

statements that decide whether the slicing criterion will be reached during execution, and (ii)

statements that decide the values of variables in the slicing criterion. Our experience shows

that, in significant number of cases, the first category of statements have no bearing on property

in question, and that the second category of statements, called value-impacting statements, are

often enough for property checking.

Earlier, a similar slicing technique called thin slicing [68] was proposed in the context

of program debugging and understanding. The authors claimed that, to find the cause of a

defect, it is often sufficient to look at only those statements on which the variables in the slicing

criterion, derived from the defect observation, are data-dependent. In particular, all conditional

statements are eliminated. It is possible to argue that, since defects are manifestation of some

property violation, one can use thin slices to scale up the property checking techniques. While

this idea does bring down the size of the resulting slice, unlike our method it also eliminates

some conditional statements that are value-impacting and thus crucial for property checking.

To illustrate this point, consider the program in Figure 1.1(a). As we mentioned earlier,

the functions fn1 and fn2 are large and complex but without side effects. The backward slice

of the program, with the slicing criterion 〈15, {u,k}〉, is shown in Figure 1.2(a). Clearly, the

7

1 int main() {

2 int i,j,k,st,t,u;

3 t=i=j=k=0;

4 st = fn3();

5 while (i<1000) {

6 i= i+ fn2();

7 t = fn1(i,j);

8

9 if (t>100) {

10 if (st ==1)

11 { j++; k++; }

12 else

13 {j+=2; k+=1;}

14 u = j-k;

15 assert(u==0||u==k);

16 }

17 }

18 return 0;

19 }

20 int fn1(),fn2(),fn3();

(a) Backward slice

1 int main() {

2 int j,k,st,u;

3 j=k=0;

4 st = fn3();

5 while (*) {

6

7

8

9 if (*) {

10 if (st ==1)

11 { j++; k++; }

12 else

13 {j+=2; k+=1;}

14 u = j-k;

15 assert(u==0||u==k);

16 }

17 }

18 return 0;

19 }

20 int fn3();

21 // fn1 and fn2 removed

(b) Value slice

1 int main() {

2 int j,k,u;

3 j=k=0;

4

5 while (*) {

6

7

8

9 if (*) {

10 if (*)

11 { j++; k++; }

12 else

13 {j+=2; k+=1;}

14 u = j-k;

15 assert(u==0||u==k);

16 }

17 }

18 return 0;

19 }

20 // fn3 removed

21 // fn1 and fn2 removed

(c) Thin slice

Figure 1.2: Usual backward slice, value slice and thin slice

backward slicing will eliminate only line 8, as computation of variable l has no influence on

values of u and k at line 15. In particular, in the backward slice, calls to function fn1 and

fn2, at lines 7 and 6 respectively, will be retained. This is because line 9 and line 5 both have

to be part of backward slice. Line 15 is control dependent on if condition at line 9, which

subsequently is control dependent on the condition of while loop at line 5. Since condition at

line 9 has variable t, which gets its value from assignment at line 7, line 7 also will be part of

the slice. Similarly, variable i in condition at line 5 gets its value from assignment at line 6

and so line 6 also will be part of the backward slice. As a result, just backward slicing is not

going to be of any use in helping tools like SATABS (version 3.0) [23] to succeed in verifying

property of this program. However, observe that the value of u does not depend on the values

of i or t. Since these variables merely decide the reachability of line 15 (through conditions

8

at lines 9 and 5) during an execution, the statements (at lines 6 and 7) computing them are

non-value-impacting and thus may be considered irrelevant.

Figure 1.2(b) shows a slice of the program that captures the computation of every value of

u in the original program. Conditional statements that do not affect the value of u are replaced

by a symbol *, standing for a randomly chosen boolean value. The resulting slice is much

smaller in comparison to the backward slice. SATABS succeeds in showing that the property is

indeed satisfied on the sliced program, and, by implication, on the original program.

On the other hand, the thin slice for the same program with respect to same slicing criterion

will have no conditions from the program as it retains only those statements that directly or

transitively provide values of variables of slicing criterion. It is easy to see that the program

shown in Figure 1.2(c) will be the resulting thin slice. The thin slice, although, is smaller in

size, it is not useful since the property does not hold on the sliced program. This is because

now in some iterations line 11 can be executed while in others line 13 may get executed. Thus,

any verifier will produce counterexamples on this slice and that will be spurious on the original

program.

Results from our experiments show that both value and thin slice help in scaling up prop-

erty checking, with thin slice having a small advantage (14%) over value slice. However, com-

pared to the backward slice, the precision drops considerably (29%) in the case of thin slice,

while there is only a marginal drop (2%) for value slice. This implies that refinement will be

required in many more cases with thin slice as compared to value slice. Therefore, as a slicing

technique for increasing the scalability of property checking, value slice represents a sweet spot

between backward and thin slice.

1.3.2 Checking quantified properties using loop shrinking

In this section, we present a brief summary of loop shrinking which abstracts a large array

processing loop to a loop with a smaller bound that replays a number of non-deterministically

chosen sequence of iterations of the original loop. As an example, consider the program of

Figure 1.1(b) which we have reproduced in Figure 1.3(a). As illustrated earlier, the loop in the

program computes the last value of the longest subsequence a[i1], a[i2],. . . , a[ip] of the

array, such that a[i1]= min, and for any two consecutive elements a[ik] and a[ik+1] of the

9

1 #define N 7

2 main()

3 {

4 int i, m;

5 int a[N]={8,4,6,2,11,2,2};

6 m = a[0];

7 i=0;

8 while(i < N)

9 {

10 if(m >= a[i]-1)

11 m = a[i];

12 i++;

13 }

14 assert ∀j ∈ [0..N − 1].(m ≤ a[j]);

15 }

(a) Concrete program

1 #define N 7

2 main() {

3 int i, m, a[N]={2,4,6,8,11,2,2};

4 unsigned li, it[2];

5 m = a[0]; i=0;

6 it[0]=nondet(); it[1]=nondet();

7 assume(1 <= it[0] && it[0]<it[1]);

8 for (li=0; li < 2 ; li++) {

9 i = it[li] - 1;

10 if (!(i < N)) break;

11 if(m >= a[i]-1) m = a[i];

12 i++;

13 }

14 assume(li==2);

15 assert ∀t ∈ it.(m ≤ a[t− 1]);

16 }

(b) Abstract program

Figure 1.3: Loop shrinking abstraction illustration

subsequence, a[ik+1]≤ a[ik]+1. Notice that for ease of exposition, we have used a universal

quantification in the assert expression to express the property; in the actual program, a loop will

be used instead.

Observe that in this program, the assertion will hold if and only if, after the last index

containing the minimum value min, no other index in a contains the value min + 1. This

can be conservatively checked by examining for each pair of array indices, say k and k + j,

j > 0, whether a[k + j] = a[k] + 1. The computation is effected by selecting a pair of

indices non-deterministically and executing in sequence the loop body with the loop index i

first instantiated to k and then to k + j. The resulting value of m can then be checked for the

condition m ≤ a[k] ∧ m ≤ a[k + j]. As we shall see later, it is helpful to think in terms of

iteration numbers instead of array indices; the correspondence between the two for the present

example is that the value at index i of the array is accessed at iteration number i+ 1.

In other words, we compute m for every pair of iterations of the loop, and check if m

satisfies the property for the chosen iterations. For example, the value of m computed for the

iterations numbered 2 and 3 of the loop is 4, and the property restricted to these two iterations,

10

m ≤ a[1] ∧ m ≤ a[2], is satisfied. On the other hand, if we change the last two elements to

3 and 5 then the property fails for the original program. However, we can now find a pair

of iterations, namely 4 and 6, such that value of m calculated on the basis of just these two

iterations will be 3, and it will not satisfy the corresponding property m ≤ a[3] ∧ m ≤ a[5],

since a[3] is 2. In summary, if executing the loop for every sequence of two iterations [i1, i2],

i2 > i1, establishes the property restricted to these iterations, then the property will also hold

for the entire loop. Read contrapositively, if the given program does not satisfy the assertion,

then there must be a sequence of two iterations for which the property will not hold. This is

true irrespective of the size or the contents of the array in the program. Loops that exhibit this

feature for iteration sequences of length k (k is 2 in this example) will be called shrinkable

loops with a shrink-factor k.

We create a second program, shown in Figure 1.3(b), that over-approximates the behaviour

of the original with respect to the property being checked. The while loop is substituted

with a loop that executes the non-deterministically chosen iteration sequence stored in the

two-element array it. The while loop in the original program, schematically denoted as

while (C) B, is replaced by a for loop that is equivalent to the unrolled program fragment

i=it[0]-1;if(C){B;i=it[1]-1;if(C)B}. We call this for loop (or its unrolled

equivalent) the residual loop for the iteration sequence it. The break statement ensures that

the chosen iteration numbers do not result in an out-of-bounds access of the array, and the

assume statement ensures that exactly two iterations are chosen. Similarly, the given prop-

erty is also substituted by a residual property quantified over array indexes corresponding to

the same chosen iteration sequence. CBMC is able to verify the property on this transformed

program as the original loop, even with a changed bound of 1000, is now reduced to only two it-

erations. We call this method property checking by loop shrinking. Needless to say, the method

can only be applied to a program if its loops are shrinkable with a known shrink-factor. We

develop a method to determine both using a BMC (bounded model checker).

We have implemented the approach in a tool called VeriAbs [19]. Like other abstraction

based approaches, the loop shrinking approach is also sound but not complete. Therefore, for a

verification problem, the implementation produces one of the three verdicts: (a) program is safe,

(b) program is unsafe, and (c) unknown (can not say whether the program is safe or unsafe).

The tool VeriAbs competed in the SV-COMP 2017 verification competition [8], conducted by

11

1 #define N 100000

2 int main()

3 {

4 int a[N];

5 int i, min1, min2;

6 min1 =a[0];

7 for (i=1; i< N; i++)

8 if (min1 > a[i])

9 min1 = a[i];

10 min2 = a[0];

11 for (i=1; i< N; i++)

12 a[i-1] = a[i];

13 for (i=0; i< N-1; i++)

14 if (min2 > a[i])

15 min2 = a[i];

16 assert (min1==min2);

17 }

(a) Concrete program

1 #define N 100000

2 int main()

3 {

4 int a[N];

5 int i, min1, min2;

6 min1 =a[0];

7 for (i=1,j=0; i< N,j<1; i++,j++)

8 if (min1 > a[i])

9 min1 = a[i];

10 min2 = a[0];

11 for (i=1,j=0; i< N,j<1; i++,j++)

12 a[i-1] = a[i];

13 for (i=0,j=0; i< N-1,j<1; i++,j++)

14 if (min2 > a[i])

15 min2 = a[i];

16 assert (min1==min2);

17 }

(b) Abstract program

Figure 1.4: Loop pruning abstraction illustration

ETAPS, where it was ranked third amongst the 17 participating tools in the ArraysReach cate-

gory. Out of total 135 programs, 91 programs were found to have shrinkable loops and among

these 65 were safe programs. Our tool could verify 64 of these safe programs. Only for one safe

program it could not say that it is indeed safe, and gave an unknown verdict. In the SV-COMP

2018 verification competition [9], our tool ranked first in the same category. Out of total 167

programs, 117 programs were found having shrinkable loops and among these 86 were safe

programs. Our tool could verify 81 of these safe programs. Only for five programs it gave an

unknown verdict.

Thus, the central idea demonstrated through this approach is that over-approximation us-

ing shrinkability is an effective technique to verify properties of programs that iterate over arrays

of large or unknown size.

12

1.3.3 Checking quantified properties using loop pruning

In this section, we give an introduction to the idea of loop pruning which abstracts large ar-

ray processing loops with loops having smaller bounds. While the iterations in the smaller

loop were chosen non-deterministically in the previous method, in loop pruning we choose

iterations that replay the first few iterations of the original loop. As an example, consider Fig-

ure 1.4(a). This program is adapted from a benchmark program of SV-COMP 2018 verification

competition [9]. In this program, the minimum of an array is computed in the first loop, and

in second loop the elements are shifted to left by one position and again a new minimum is

computed for the modified array. Let the values of array elements after the shifting loop be

a’[0], a’[1], ..., a’[N-1]. Obviously, for 0 ≤ i < N − 1, a’[i] = a[i+1]. The com-

puted value of min1 is min(a[0],a[1],...a[N-1]) and that of min2 is min(a[0],

a’[0], a’[1], ...,a’[N-2]). It readily follows that min1 = min2 and therefore the

property checked at the end is correct. As observed in the previous section, for this program

also, the verifiers (e.g. CBMC) fail to verify the property when the array is of large size.

However, a closer examination of the program suggests a different insight. Suppose we

transform this program such that, the computation of minimum in the loops and shifting to

left is limited to only one iteration. We claim that for every run of the original program,

there will be a run in transformed program in which value of min1 and min2 will be same

as that in the given run of original program. This is because in the transformed program

min1 = min(a[0],a[1]), and min2 = min(a[0],a’[0]) = min(a[0],a[1]).

Since values of arrays are non deterministic, we can have a run of transformed program with

values of a[0] and a[1] such that min1 and min2 have values as that in the run of original

program. And therefore, if the property holds in transformed program, it will hold in original

program too.

A transformed version of the program is shown in Figure 1.4(b). In this program each

loop is iterated only once. As a result a[1] is accessed in the first loop, a[0] and a[1] are

accessed in the second loop. Element a[1] is accessed in third loop as a’[0] because value

of a[1] is transferred to a[0] in second loop which gets accessed in third loop as a’[0].

Now, min1 is min(a[0],a[1]) and min2 is also min(a[0],a[1]) because a’[0] =

a[1]. Hence, the property holds in transformed program.

13

CBMC is able to verify the property on this transformed program successfully as the

original loops, having bound of 100000, are now reduced to only one iteration. We call this

method property checking by loop pruning. In general, for the method to be applicable to

a program, it is important to determine under what circumstances would this transformation

be a safe approximation. In other words, we identify conditions under which the following

holds: if a run of the original program produces certain values of the variables in the property

checking assertion, we can produce the same values in some run of transformed program. We

will present a criterion for the same and define the transformation. We give a proof that for a

program satisfying the criterion, the transformed program is a safe approximation. We will also

present two methods: (1) to check if a given program satisfies the criterion, and (2) to transform

the program according to the transformation defined when the program satisfies the criterion.

We have implemented this approach also in the latest version of the tool VeriAbs that com-

peted in the SV-COMP 2018 verification competition [9] in the ArraysReach category, where

it was ranked first amongst the 13 participating tools. Out of total 167 programs, 48 programs

were such that the loop pruning approach could be applied, and the tool could verify all of them

correctly. Out of these 48 programs, 23 programs did not have shrinkable loops, and so only

loop pruning approach could verify them.

Thus, the central idea demonstrated through this approach is that, for certain kind of pro-

grams, over-approximation using loop pruning is an effective technique to verify properties of

programs that iterate over arrays of large size. Like the approach of shrinkable loops, this tech-

nique is also impervious to the size of loop bounds—increasing the loop bound does not cause

an otherwise verifiable program to timeout.

1.3.4 Choice of base verifiers

Based on the robustness of available verifiers, we zeroed on two of them: SATABS [23] and

CBMC [22]. While SATABS is based on predicate abstraction, CBMC uses bounded model

checking. Since CBMC uses bounded model checking, its applicability is limited in presence

of loops with large bounds, because then the soundness can not be guaranteed for property

verification. However, when loops have small bounds then we observed that CBMC is much

more effective in comparison to SATABS. This is because CBMC can afford to unroll the loops

14

up to their complete bound and guarantee soundness in verification for such programs.

In case of scalability using value slice, we are not abstracting the loops, and therefore

loops in the sliced program appear as they appear in the original program. Since these loops

may have large bounds, we use SATABS as base verifiers on value slices. On the other hand,

to address the issues arising due to loops with large bound, we abstract the loops with the ones

having a small bound. Since CBMC is very effective for programs having loops with small

bounds, we use CBMC as base verifier on the resulting abstract programs.

1.3.5 A summary of the contributions

The contributions of this thesis are as follows.

1. We define a new notion of slicing called value slice and propose a worklist based algo-

rithm for its computation. The algorithm is shown to be correct by construction.

2. We describe the results of experiments on property checking based on the three compa-

rable slicing methods—backward, value and thin slices. We show that on both criteria,

scalability and precision, value slice based property checking yields results that are close

to the best among the three slicing methods.

3. We introduce and formalize a concept called shrinkability for loops that process arrays.

We show formally that a shrinkable loop, with shrink-factor k, can be over-approximated

by a loop that executes only k non-deterministically chosen iterations.

4. We provide an algorithm that uses a BMC to find the shrink-factor k for which the loop

is shrinkable.

5. We describe an implementation of the proposed abstraction and report experimental re-

sults showing the effectiveness of the technique on SV-COMP 2017 [8] benchmarks in

the ArraysReach category.

6. We present a criterion and a transformation which executes only first few iterations of the

loops and formally show that programs satisfying the criterion can be safely approximated

using the defined transformation.

7. We present a method to find the prune factor to be used in the transformation.

15

8. We describe an implementation of the proposed abstraction and report experimental re-

sults showing the effectiveness of the technique on SV-COMP 2018 [9] benchmarks in

the ArraysReach category.

Our contributions are reported in proceedings of TACAS-2015 [56] for scalability through

value slicing and in proceedings of TACAS-2018 [57] for handling quantified property checking

in programs manipulating large arrays. The two techniques: loop shrinking and loop pruning,

have been implemented in the tool VeriAbs that participated in the two editions of the SV-

COMP competition: SV-COMP 2017 [8] and SV-COMP 2018 [9]. The details of tool VeriAbs

are reported as competition contribution for SV-COMP 2017 [19] and SV-COMP 2018 [30].

1.4 Related work

Backward slicing was first introduced for imperative programs by Mark Weiser [71] in 1981.

Later, Ferrante et al. introduced a representation of the program called Program Dependence

Graph (PDG) [36], and backward slicing was modeled as a reachability problem over the PDG.

To address the issues of feasible paths arising due to procedure calls, Reps et al. introduced a

representation of programs called a system dependence graph (SDG) [46] that spans over more

than one functions. A survey of the significant variants of backward slicing proposed since

its introduction by Weiser can be found in the survey work of Silva et al. [67]. Notable among

these variants are forward slicing [7], chopping [48], and assertion based slicing [16, 24, 6]. The

backward slice and its variants have been used for program understanding, debugging, testing,

maintenance, software quality assurance and reverse engineering. A survey of the applications

of program slicing appears in the survey work of Binkley et al. [12].

Comuzzi and Hart [24] introduce a shift from syntax based slicing to program semantics

based slicing by defining a form of program slicing, called p-slices. Given a predicate which

they consider as a slicing criterion, they use Dijkstra’s weakest precondition (wp) to compute

the slice. More specifically, for a given program P and a predicate ψ, a subprogram S of P

is a p-slice if wp(P, ψ) ≡ wp(S, ψ). The extension by Barros et al. to specification based

slicing [6] generalises the earlier method by taking both the precondition and the post condition

together as the slicing criteria. However, computing such slices can turn out to be as hard as

16

the verification problem itself. Therefore, their usefulness in easing the program verification

problem is limited.

All these techniques produce slices with behaviour equivalent to the original program with

respect to the slicing criterion. However, to the best of our knowledge, the idea of producing

slices which are not exactly equivalent to original program for the selected slicing criterion has

not been explored at depth. Our interest in the slicing is more to reduce the program size so

that property checking can scale up, as irrelevant portion of the code can be eliminated. At the

same time, we want to retain the code which affects the property. Thin slicing [68], proposed by

Sridharan, Fink and Bodik, with the aim to help debugging, is the first approach that produces a

slice whose behaviour may differ from the original program with respect to the slicing criterion.

A thin slice retains only those statements that the variables in the slicing criterion are data

dependent on and abstracts out all the predicates. This approach comes closest to our method

as it is based on static analysis and produces an aggressive slice. While a thin slice is indeed

much smaller in size compared to the backward slice, our experiments show that the thin slice

is too imprecise to be useful for property checking. In contrast, although a value slice is a little

larger than the thin slice, it is still much smaller than the backward slice and, more importantly,

comes with only a slight loss in precision when compared to the backward slice. We present

value slice as a good compromise between precision and scalability. To substantiate the claim,

we compared value slice with backward slice and thin slice. This comparison is in no way

intended to undermine the usefulness of thin slice in debugging and program understanding, for

which it was designed in first place.

The various approaches to handle arrays have their roots in the types of static analyses

used for property verification, namely: abstract interpretation, predicate abstraction, bounded

model checking and theorem proving. In abstract interpretation, arrays are handled using array

smashing, array expansion and array slicing. In array smashing, all the elements of an array

are clubbed as a single anonymous element, with writes to the array elements treated as weak

updates. As a result, the abstraction becomes too coarse and imprecise. It cannot be used,

for example, to verify the motivating example in Figure 1.1(b). In array expansion, the array

elements are explicated as a collection of scalar variables, and the resulting programs have fewer

number of weak updates than array smashing. However, it works well only for small-sized

arrays. In array slicing [41, 42, 28], the idea is to track partitions of arrays based upon some

17

criteria inferred from programs. Each partition is treated as an independent smashed element.

Dillig et al. [33] further refined the approach by introducing the notion of fluid updates, where

a write operation may result in a strong update of one partition of the array and weak update

of other partitions. In contrast to these approaches, our abstraction is based not only on the

program elements but also on the associated property. By declaring an array-processing loop

as k-shrinkable, we guarantee that an erroneous behaviour of the program with respect to the

property can indeed be replayed on some k elements of the array.

There has been considerable work in over-approximation or under-approximation of the

loops for verification or bug finding. Daniel et al. [55] under approximate loops using accelera-

tion to find deep bugs in the programs. Darke et al. [29], abstract loops and apply acceleration to

verify the property. However, these efforts have been restricted to loops computing only scalar

variables. For example, Darke et al. in their work on loop abstraction [29], consider only those

loops which do not contain operations on arrays.

Methods based on predicate abstraction go through several rounds of refinement where,

in each round, a suitable invariant is searched based on the counterexample using Craig in-

terpolants [59]. Tools like SATABS [23] and CPAchecker [10] are based on this technique.

To handle arrays, the approach relies on finding appropriate quantified loop invariants. How-

ever generating interpolants for scalar programs is by itself a hard problem. With the inclu-

sion of arrays, which require universally quantified interpolants, the problem becomes even

harder [51, 60]. Our method, in contrast, does not rely on the ability to find invariant. Instead,

we find a bound on the number of loop iterations and, in turn, the number of array elements that

have to be accessed in a run of the abstract program.

Theorem proving based methods (e.g. Vampire [45]) generate a set of constraints, typi-

cally as Horn clauses. The clauses relate invariant at various program points and the invariants

are predicates over arrays. The constraints are then fed to a solver in order to find a model.

However, these methods also face the same difficulty of synthesizing quantified invariants over

arrays. A technique called k-distinguished cell abstraction [61] addresses this problem by ab-

stracting the array to only k elements. A 1-distinguished cell abstraction, for example, abstracts

a predicate P (a) involving an array a by P ′(i, ai), where i and ai are scalars. The relation be-

tween the two predicates is that P ′(i, ai) holds whenever P (a) holds and the value of a[i] is ai.

The resulting constraints are easier to solve using a back end solver such as Z3 [32]. However,

18

there are cases when our method of loop shrinking is able to verify the property but a tool,

VAPHOR, based on k-distinguished cell abstraction either times out or wrongly says that program

is incorrect.

As far as we know, there is no work on just pruning the loop bound without abstracting

the loop body, like we do in loop pruning. As mentioned earlier, all of the work dealing with

loops and arrays abstract the loop body in one form or the other.

1.5 Organization

In this thesis, we present two pieces of work to tackle the scalability issue of property checking.

The rest of the thesis is in three parts. Part I describes value slicing, and Part II describes the

two approaches to handle programs processing large arrays. The two parts are independent of

each other and can be read in any order. In order to keep them independent, some background

concepts are included in both parts. The concluding remarks are presented in Part III, and they

are applicable to both the parts appearing earlier in the thesis.

Part I which deals with the scaling up property checking using value slice is organised as

follows. In Chapter 2, we describe the program model that falls within the scope of our approach

and basic concepts related to program slicing like data and control dependence. We discuss the

new concept of value slice and the algorithm to compute it in Chapter 3. Its implementation

and experimental results are presented in Chapter 4. In Chapter 5, we discuss related work and

compare them with our solution.

In part II, we present two approaches to tackle issues arising due to processing of large

arrays and checking quantified properties over these arrays. This part is organised as follows.

Chapters 6 to 8 cover the first approach, loop shrinking, and Chapter 9 covers the second ap-

proach, loop pruning. Within this part, Chapter 6 describes the kinds of programs and properties

that are in the scope of the method, as well as background concepts such as loop acceleration and

the use of Hoare triples as a means of representing the property checking problem. We present

the idea of loop shrinking in Chapter 7. In the same chapter, we describe how to determine if

a loop is shrinkable, and how to make use of a shrinkable loop to scale up property checking

of array processing programs. In Chapter 8, we present our implementation and experimental

results. Chapter 9 covers the entire topic of loop pruning, its implementation, and reports ex-

19

perimental results. In Chapter 10, we describe existing approaches to solve this problem and

how our approach compares with them.

Part III has a single chapter with concluding remarks and suggested directions for further

research.

20

Part I

Scaling up Property Checking Using Value

Slice

21

Chapter 2

Background

In this chapter, we describe the basic concepts and terminology required to present our idea

on scaling up property checking using value slice. We shall present our ideas in the context

of imperative programs consisting of assignments, conditional statements, and while loops.

Further, we assume that the expressions in these programs are side-effect free. We allow break

and continue statements in the loops. However, we restrict ourselves to single procedure and

goto-less programs with single-entry loops and two-way branching conditional statements; it

makes for an easier formal treatment of our method without losing expressibility. For the same

purpose, we assume that there are no dynamic allocations in the program. Please note that these

restrictions are only to keep the presentation of our ideas simple. In actual implementation, as

explained later in chapter 4, we allow the full fledged C language programs.

2.1 Control flow graph

Our analysis will be based on a model of the program called the control flow graph (CFG) [1]. A

CFG is a pair 〈N,E〉, where N is a set of nodes representing atomic statements, i.e. assignment

statements and conditions (also called predicates) of the program1, and, E is set of edges such

that, (n1, n2) ∈ E if and only if there is a possible flow of control from n1 to n2 without any

intervening node. We use n1 → n2 and n1
b→ n2 to denote unconditional and conditional edges,

respectively, where b ∈ {true, false} indicates the branch outcome. Each statement (or node)

is associated with a unique label l that represents the program point just before the statement.

1For the rest of current part (part I), a statement will mean an atomic statement .

23

Figure 2.1: Example illustrating CFG and control dependence

Often, we shall refer to a node by its label. In addition, each CFG is assumed to have two

distinguished nodes with labels ENTRY and EXIT . Except for ENTRY and EXIT , there is

a one-to-one correspondence between the nodes of the CFG and the statements of the program.

Thus we shall use the terms statement and node interchangeably. In the Figure 2.1, we have

shown a program and its corresponding CFG. In the CFG, we have labeled the nodes with line

number of the corresponding statements.

2.2 Program states and traces

Let Var be the set of variables in a program P and Val be the set of possible values which the

variables in Var can take. A program state is a map σ : Var → Val such that σ(v) denotes the

value of v in the program state σ. Since we restrict ourselves to single procedure programs, we

do not consider stack variables as part of the program state. Given X ⊆ Var , an X-restriction

of σ, denoted as ⌊σ⌋X , is a map X → Val such that ∀x ∈ X.⌊σ⌋X(x) = σ(x). Finally, an

execution state is a pair (l , σ), where σ is a program state and l is the label of a CFG node. The

execution of a program is a sequence of execution states starting with (ENTRY, σ0), where σ0

is the initial program state. We assume that the next state is given by a function T , i.e. for each

execution state (l , σ), the next state is T ((l , σ)).

24

A trace is a (possibly infinite) sequence of execution states (li , σi), i ≥ 0, resulting from

an execution of a program. Here, l0 = ENTRY, and σ0 is the initial program state. Execution

state (li+1 , σi+1) = T ((li , σi)) for all i ≥ 0. When a finite trace sequence ends with an

execution state (EXIT, σ), it is called a terminating trace. We will represent a sequence of

execution states (of a terminating trace), [(l0 , σ0), (l1 , σ1), ..., (lk , σk)], as [(li , σi)], 0 ≤ i ≤ k.

We shall only consider terminating traces in the rest of the narrative in the current part (part I)

of the thesis.

2.3 Subprograms

A subprogram of P is a program formed by deleting some statements from P while retain-

ing its structure. This means if a statement enclosed by a predicate c in P is included in the

subprogram, then the predicate c is also part of the subprogram. The deletion of statements is

governed by some criterion which depends on the purpose of creating the subprogram. Given

a program P and a program location l, an augmented program is obtained by inserting a SKIP

(do nothing) statement at l. Clearly, an augmented program has the same behavior as the orig-

inal program. In the sequel, we shall assume that our programs are augmented for a program

location l, known from the context. Finally, we shall assume that the program point of the same

statement in the original program and the subprogram are represented by the same label.

2.4 Backward slice

Backward slice [72] is a subprogram, created on the basis of a slicing criterion defined as a

pair Υ = 〈l, V 〉, where l is a statement label and V ⊆ Var is a set of variables. The slicing

criterion represents our interest in the values of the variables in V just before the execution

of the statement at l. Let REF (s) denote the set of variables referred in a node s. Given a

statement s with label l′, we shall use LV (s) to denote the slicing criterion 〈l′, REF (s)〉.

Assume for the rest of this section that the slicing criterion is Υ = 〈l, V 〉. Given a program

P , we define execution states corresponding to slicing criterion, denoted as SC-execution states,

to be the execution states of P with label l. For a subprogram to be called a backward slice,

there should be a relation between the traces of the program and the subprogram on the same

25

input when we restrict the traces to their SC-execution states. We call a trace thus restricted as

a sub-trace. So a sub-trace is a sequence of SC-execution states. We say that the two sub-traces

[(l , σi)], 1 ≤ i ≤ k, and [(l , σ′
i)], 1 ≤ i ≤ k′, are SC-equivalent with respect to Υ, if k = k′,

and, for each i between 1 and k, ⌊σi⌋V = ⌊σ′
i⌋V .

Let Tr(P, I,Υ) denote the sub-trace of a program P on input I for the slicing criterion Υ.

We now define a subprogram P ′ to be a backward slice of P with respect to Υ, if for all inputs

I , Tr(P, I,Υ) and Tr(P ′, I,Υ) are SC-equivalent. As we shall see later, for the same input

the sub-traces of a program and its subprogram may not be of the same length. We therefore

need a weaker notion of SC-equivalence. We say that a pair of sub-traces [(l , σi)], 1 ≤ i ≤ k

and [(l , σ′
i)], 1 ≤ i ≤ k′ are weak-SC-equivalent with respect to Υ, if for each i between 1 and

min(k, k′), ⌊σi⌋V = ⌊σ′
i⌋V . The value min(k, k′) is called the trace observation window for

the pair of sub-traces.

2.5 Data and control dependence

A definition d of a variable v in a node n is said to be a reaching definition [1] for a label l, if

there is a control flow path from n to l devoid of any other definition of v. A variable x at label

l is said to be data dependent on a definition d of x, if d is a reaching definition for l. Given a

set of variables X and a label l, the set of definitions that the variables in X are dependent on is

denoted by

Backward slicing algorithms are implemented efficiently using post-dominance and con-

trol dependence [36, 46]. A node n2 post-dominates a node n1 if every path from n1 to EXIT

contains n2. If, in addition, n1 6= n2, then n2 is said to strictly post-dominate n1. A node n is

control dependent on a conditional edge c b→ n′, denoted c
b
֌ n, if n post-dominates n′, and n

does not strictly post-dominate c. If the label b is not important in a context, it is elided. In the

Figure 2.1, we have shown the control dependence graph for the program listed there2.

When there is a chain of control dependence starting with an edge b of a predicate c and

ending with a node n, then we say that the node n is transitively control dependent on the edge

b of the predicate c and denote it as c
b
 n. Obviously, if a node n is control dependent on

an edge b of a predicate c (c
b
֌ n) then n is transitively control dependent also on the edge

2By convention, we treat every node that post-dominates ENTRY to be control dependent on ENTRY

26

b of the predicate c (c
b
 n). Note that, although it is not possible to have c

b
֌ n as well as

c
b′
֌ n, where b 6= b′, but because of return and break statements, it is possible to have both

c
b
 n and c

b′
 n, where b 6= b′. For example, in the Figure 2.1, the node 8 is directly control

dependent on the true edge of the predicate node 6. But the node 6 itself is control dependent

on the true edge of the predicate node 4, which in turn is control dependent on the false edge of

the predicate node 6. Therefore, 6
true
 8 as well as 6

false
 8.

27

28

Chapter 3

Value slice : A new slicing concept

3.1 Concept of value slice

Given a slicing criterion 〈l, V 〉, a value slice is the answer to the question: “Which statements

can possibly influence the values of the variables in V observed at l”?

The answer to this question for the program P1 in Figure 3.1 for the slicing criterion

〈14, {y}〉 is arrived as follows. The variable y at line 14 gets its value from x through the

assignment at line 12. Variable x, in turn, gets its value from the definitions at lines 11 and 5,

as both of these can reach at line 12. Thus statements at lines 5, 11 and 12 are in the value slice.

The predicate c2 at line 10 is also in the value slice, since, out of the two values generated for

x at lines 11 and 5, the value that actually reaches at line 12 is decided by c2. Finally, line 7,

where c2 itself is computed, is also in the value slice. The resulting value slice is shown in the

figure, as the program P2.

Although the program P2 contains all the statements required to answer the question posed

earlier for the slicing criterion 〈14, {y}〉, it is not suitable for property checking. For example,

taking the program P2 as is, the statement at line 10 will be treated unconditional while in the

original program P1, the same is conditional. The reason for the same is that apart from the

statements that decide the values of variables at the slicing criterion, we also need to explicate

the CFG paths along which the computations of these values take place. Therefore, if a state-

ment in the slice is control dependent on a predicate that, by itself, does not influence values

of the variables in the slicing criterion, the predicate is retained in the slice in an abstract form.

29

1 proc(int z)

2 {

3 int w, x, y, c2;

4 int c1;

5 x = z;

6 c1=fn1();

7 c2=fn2();

8 if (c1)

9 {

10 if (c2)

11 x=z+5;

12 y = x;

13 if(x<10)

14 w = y;

15 }

16 }

(a) P1

1 proc(int z)

2 {

3 int w, x, y, c2;

4

5 x = z;

6

7 c2=fn2();

8

9

10 if (c2)

11 x = z+5;

12 y = x;

13

14 w = y;

15

16 }

(b) P2

1 proc(int z)

2 {

3 int w, x, y, c2;

4

5 x = z;

6

7 c2=fn2();

8 if (*)

9 {

10 if (c2)

11 x = z+5;

12 y = x;

13 if (*)

14 w = y;

15 }

16 }

(c) P2′

Figure 3.1: Illustration of value slice

This brings the predicates at lines 13 and 8 into the value slice but replaced by ‘*’ indicating a

non-deterministic branch. We call such predicates abstract predicates. An abstract predicate

can evaluate to true or false, non-deterministically in an execution of the program. However,

note that if none of the statements that are transitively control dependent on a predicate are

included in the slice, the predicate itself can be eliminated. The resulting program, which ex-

plicates the CFG paths along which the computations of the values of interest take place, is

shown as the program P2′ in the same figure, where we include the predicates at lines 8 and

13 as abstract predicates. Note that since an abstract predicate can evaluate to true or false,

non-deterministically in an execution of a program, there can be multiple traces of a program

having abstract predicates, for a given input.

In the context of property checking, the inclusion of the predicate c2 in a concrete form at

line 10 is a crucial difference between value slice and thin-slice1. As an example, assume that

when P1 is executed with v as the initial value of z, the predicate c2 evaluates to false. As a

1For comparison in the context of property checking, predicate c2, which would have been eliminated in the

thin-slice, is retained in an abstract form.

30

1 proc1(int x)

2 {

3 int i,c1;

4 c1=fn1(x);

5 while (c1)

6 {

7 i=0;

8 x=0;

9 while(i<4)

10 {

11 if (i%2==0)

12 x = x+3;

13 else

14 y = x;

15 i++;

16 }

17 c1=fn1(x);

18 }

19 }

(a) P3

1 proc1(int x)

2 {

3 int i;

4

5 while (*)

6 {

7 i=0;

8 x=0;

9 while(i<4)

10 {

11 if (i%2==0)

12 x = x+3;

13 else

14 y = x;

15 i++;

16 }

17

18 }

19 }

(b) P4

Figure 3.2: Generalisation of value slice

result, value assigned to y at line 12 will be v. For the same initial value v of z, the value slice

P2′ will also assign the same value v to y at line 12. However, if we abstract c2 also as ‘*’,

as in the case of thin slice, the resulting program may produce a trace which assigns the value

v+5 to y at line 12. To avoid such spurious counterexamples, we retain the predicate c2 at line

10 in a concrete form.

To generalize this point, consider the program P3 in Figure 3.2. Suppose in an execution

of the program for a given input, the outer loop executes twice. Obviously, for this execution, the

sub-trace generated for 〈14, {x}〉 is [(14 , 3), (14 , 6), (14 , 3), (14 , 6)]2. Suppose we abstract

the program P3 by abstracting the predicates of both the while loops. Consider an execution

of the abstracted program for the same input, in which outer loop executes twice, and for every

execution of the outer loop, the inner loop executes twice. The sub-trace generated for this

execution is [(14 , 3), (14 , 3)]. The two sub-traces do not match in that they are not even weak-

2We show only value of x in the program state for brevity.

31

SC-equivalent, because in the second execution state of the first sub-trace, value of x is 6, while

in the second sub-trace, it is 3. On the other hand, the program P4 in the figure, in which

only the outer loop predicate is abstracted, produces sub-traces having zero or more repetitions

of the sequence [(14 , 3), (14 , 6)], because now in every iteration of the outer loop, inner loop

will have exactly four iterations. These sub-traces are of course weak-SC-equivalent to the

sub-traces produced by P3 for the same input. We therefore include the predicate i<4 in the

value slice for the slicing criterion 〈14, {x}〉. The predicate i%2==0 is also in the value slice

by a similar argument. In summary, for the same input, the sub-traces of a value-slice and the

original program are required to be weak-SC-equivalent. Based on these considerations, we

now specify the conditions to be satisfied by a value slice.

Definition 3.1 (Value-slice) A value slice P V of a program P for a slicing criterion 〈l, V 〉

satisfies the following conditions:

1. P V is a subprogram of P with zero or more predicates in abstract form.

2. If P terminates with trace τ on an input, then there should exist a trace τ ′ of P V on the

same input such that sub-traces of τ and τ ′ are SC-equivalent.

3. If P terminates with trace τ on an input, then for every trace τ ′ of P V on the same input,

the sub-traces of τ and τ ′ should be weak-SC-equivalent.

Note that, if we do not keep condition (3) then all sub programs, which differ from the original

program only in terms of some predicates being abstract, will satisfy the conditions (1) and (2).

Which can lead to highly abstracted slices. By including condition (3), we eliminate such gross

over-approximation.

3.2 Value-impacting statements

While the trace-based definition is good from a semantic point of view, we present a definition

that will enable us to statically identify the set of statements that should necessarily be in the

value slice in concrete form. We call such statements value-impacting and define the term

shortly. As mentioned in the background section, we shall use the term “node” to also mean

atomic statements.

32

Figure 3.3: Example illustrating value impacting condition

Definition 3.2 (Value-impacting node) A node s value-impacts Υ = 〈l, V 〉, if any of the fol-

lowing conditions hold:

1. s is an assignment statement in DU(Υ).

2. s is an assignment statement, and there exists a node t such that t value-impacts Υ and s

is in DU(LV (t)).

3. s is a predicate from which there exist paths π1 and π2, in the CFG, starting with the

different out-edges of s and ending at the first occurrence of l. Further, there exists a

node t 6= s such that t value-impacts Υ, and:

(a) t is the first value-impacting node along π1

(b) t is not the first value-impacting node along π2.

A triplet 〈π1, π2, t〉 due to which a predicate c satisfies rule (3) will be called a witness

for c being value-impacting. As an illustration, consider the program and its CFG given in

Figure 3.3. It is the same program as P3 of Figure 3.2. Let the slicing criterion be 〈14, {x}〉.

Statements 12 and 8 are value-impacting because of rules 1 and 2. From the CFG it is easy to

see that from the predicate (i%2==0) at line 11, there are two paths to the statement y=x at

33

line 14. First is the obvious one namely 11
f→ 14, but the second one is more subtle, namely

11 t→ 12 → 15 → 9 t→ 11 f→ 14. While the first path has no value impacting statement,

the second one has statement 12. Therefore, because of rule 3, the witness 〈π1 : 11
t→ 12 →

15 → 9
t→ 11

f→ 14, π2 : 11
f→ 14, 12〉 makes the predicate at line 11, value impacting.

Similarly, from the predicate (i<4) at line 9, there are two paths to the statement y=x at line

14, namely:(1) 9
t→ 11

f→ 14 and (2) 9
f→ 17 → 5

t→ 7 → 8 → 9
t→ 11

f→ 14. While the

first path has the predicate at line 11 as the first value impacting node, the second one has the

statement at line 8 as the first value impacting node. Therefore, because of rule 3, the witness

〈π1: 9
t→ 11 f→ 14, π2: 9

f→ 17 → 5 t→ 7 → 8 → 9 t→ 11 f→ 14, 11〉, makes the predicate

at line 9, value impacting. Note that from the predicate c1 at line 5, there is no path to the

statement y=x at line 14, starting from the false out-edge of the predicate. In fact the path from

false-out-edge goes directly to EXIT . Therefore, rule 3 is not applicable for this predicate and

as a result, the predicate c1 at line 5 will not be included as a value impacting predicate for the

slicing criterion 〈14, {x}〉.

Clearly, if a node s value-impacts Υ then there is a path from s to l.

3.3 Value slice from value impacting statements

Let V I(Υ) be the set of nodes value-impacting Υ. Let the set of abstract predicates AP (Υ)

consist of predicates that are not by themselves value-impacting, but on which other value-

impacting nodes are transitively control dependent. We construct a subprogram PVS of P by

choosing the statements in V I(Υ) ∪ AP (Υ) along with SKIP and ENTRY. The predicates in

AP (Υ) appear in PVS in abstract form.

We claim that PVS is a value slice. Clearly condition 1 of Definition 3.1 is satisfied. To

show that PVS satisfies conditions 2 and 3, we shall first prove a lemma which shows that if

the traces of the original program and the subprogram PVS on the same input are restricted to

execution states involving value-impacting statements, then restricted trace of original program

is prefix of the restricted trace of the subprogram or vice versa. In the lemmas below, AVI de-

notes the set of concrete statements in PVS . Further, for s ∈ AVI , AREF (s) denotes REF (s)

when s ∈ VI (Υ), V when s is SKIP and ∅ when s is ENTRY.

34

Lemma 3.3 Let τ and τ ′ be traces of the programs P and PVS for an input I . Assume that

τs = [(li , σi)], i ≥ 1 and τ ′s = [(l ′j , σ
′
j)], j ≥ 1 are restrictions of τ and τ ′ to the statements in

AVI . Let k be the minimum of the number of elements in τs and τ ′s. Then for all i ≤ k, li = l′i

and ⌊σi⌋Zi
= ⌊σ′

i⌋Zi
, where Zi = AREF (li).

Proof We shall prove the lemma by induction on the common label index i of the two traces.

Obviously i ≤ k, else the lemma is vacuously true.

Base step : i = 1. The lemma holds trivially as l1 = l′1 = ENTRY and σ1 = σ′
1 = I .

Induction step: Let the hypothesis be true for i. Since ⌊σi⌋Zi
= ⌊σ′

i⌋Zi
, the edges followed from

li and l′i in τ and τ ′ are the same. Assume li+1 6= l′i+1. This is only possible if (a) there is a

predicate c in the original program which has been abstracted in the value slice, (b) the path

from li to li+1 goes through one of the out-edges b1 of c, and (c) the path from l′i to l′i+1 goes

through the other out-edge b2 of c. Obviously, there are paths π1 and π2 from c to l through

b1 and c to l through b2, and li+1 and l′i+1 are the first value-impacting statements on π1 and

π2 respectively. Therefore, the predicate c is value-impacting and cannot be abstracted in the

value-slice, a contradiction. Therefore, li+1 = l′i+1.

Now suppose that for some variable x ∈ Zi+1, σi+1(x) 6= σ′
i+1(x). Then there must be a

statement d which provides the value of x at li+1; x does not get its value from the input I . This

implies d is a value-impacting statement. Clearly, d occurs before li+1 and thus it either also

occurs before li or is li itself. By induction hypothesis, d must also be there in τ ′ and therefore

σi+1(x) = σ′
i+1(x).

The following lemma helps to prove that the condition 2 of Definition 3.1 holds for PVS .

Lemma 3.4 Let τ be a finite trace for program P for an input I . Let τ ′ = [(li , σi)], 1 ≤ i ≤ k,

be the sub-sequence of τ restricted to the nodes in PVS . Then for every prefix of τ ′ of length

k′, 1 ≤ k′ ≤ k, there is a prefix τ ′′ = [(l ′i , σ
′
i)], of length k′, of some trace of PVS for the same

input I , such that for all i, 1 ≤ i ≤ k′, (a) li = l′i, (b) if li is in AVI (Υ), then ⌊σi⌋Zi
= ⌊σ′

i⌋Zi
,

where Zi = AREF (li).

Proof Consider a sub-sequence τ ′ of the given trace τ , restricted to the nodes in PVS . Let

the length of the sub-sequence be k. Let τ ′i be the prefix of τ ′ with length i. The proof is by

induction on the length i of the prefix τ ′i .

35

Base step: i = 1 The lemma holds trivially as [(ENTRY , I)] is the only prefix of length 1 for

any trace of P as well as PVS .

Induction step: Assume that the statement of the lemma holds for prefixes of τ ′ of length up to

i. Consider a prefix τ ′i+1 of length i + 1 ≤ k. By induction hypothesis, there exists a trace of

PVS , which has a prefix τ ′′i of length i and for which statement of the lemma holds with respect

to the prefix τ ′i of τ ′i+1. If the node li in τ ′i+1 (and in τ ′i) is an abstract predicate in AP (Υ), then

program control reaching the predicate can take either branch. Otherwise li ∈ AVI (Υ), and

⌊σi⌋Zi
= ⌊σ′

i⌋Zi
by the induction hypothesis. Thus for any edge taken out of li in τ ′, l′i in τ ′′i can

be made to take the same edge out. Assume this edge extends τ ′′i to τ ′′i+1 by taking l′i to l′i+1.

We claim that there exists a trace of PVS having τ ′′i+1 as its prefix, such that li+1 = l′i+1. If

not, the divergence must be because of some condition c after li and before li+1 in τ ′. But then

c li+1 and therefore c ∈ PVS . This means that there is a trace of PVS such that li+1 = l′i+1.

Further, by Lemma 3.3, if li+1 ∈ AVI (Υ), ⌊σi+1⌋Zi+1
= ⌊σ′

i+1⌋Zi+1
.

Using Lemma 3.3 and 3.4, it is easy to show that PVS satisfies the second and third con-

ditions of Definition 3.1. Following theorem just does that.

Theorem 3.5 The abstract subprogram PVS is a value slice.

Proof Let τ and τ ′ be traces of the programs P and PVS for an input I . Assume that τc =

[(li , σi)], i ≥ 1 and τ ′c = [(l ′j , σ
′
j)], j ≥ 1 are restrictions of τ and τ ′ to the statements in AVI .

Let k be the minimum of the number of elements in τc and τ ′c. Then as per Lemma 3.3, for all

i ≤ k, li = l′i and ⌊σi⌋Zi
= ⌊σ′

i⌋Zi
, where Zi = AREF (li). Let τ1 and τ ′1, be the sub-traces

of τ and τ ′, respectively, with respect to Υ = 〈l, V 〉. Since, SKIP at l is in AVI , τ1 and τ ′1

must be embedded in τc and τ ′c, respectively. And since, AREF (l) = V , τ1 and τ ′1 must be

weak-SC-equivalent. Therefore, the subprogram PVS satisfies condition (3) of Definition 3.1.

Let τ be a trace of the program P for an input I . To satisfy the condition (2) of Defini-

tion 3.1, we will have to show that there exists a trace τ ′ of PVS for same input I , such that the

sub-traces of τ and τ ′ are SC-equivalent.

Let τs = [(li , σi)], i ≥ 1 be a sub-sequence of τ restricted to the nodes of PVS . Let k be

the length of τs. If we take τs itself as a prefix of τs, then as per Lemma 3.4, there will be a trace

τv of PVS for same input I , having a prefix τ ′v = [(l ′j , σ
′
j)], j ≥ 1 of size k such that for all i,

1 ≤ i ≤ k, the following holds:

36

(a) li = l′i, (b) if li is in AVI (Υ), then ⌊σi⌋Zi
= ⌊σ′

i⌋Zi
, where Zi = AREF (li).

If τv = τs, then we are done as sub-traces of τ and τv must be SC-equivalent.

So assume that τv 6= τs. Obviously, the trace τ has no execution state corresponding to

some node in PVS , after the occurrence of last element of τs. Therefore, the last execution state

of τs, say (l ′, σ′), must correspond to an abstract predicate c in AP (Υ) and the trace τv diverged

from τ by making a different choice for c than what it evaluated to in the state σ′ in τ . Now we

can have another trace τm of PVS for same input I , which imitates τv up to its prefix τ ′v but after

that (when it should be at abstract predicate c) it makes the same choice for c which c evaluated

to in the state σ′ in τ . And so τm must hit EXIT immediately thereafter. So τm must be same as

τs and therefore, the sub-traces of τ and τm will be SC-equivalent.

Therefore, the subprogram PVS satisfies condition (2) of Definition 3.1.

3.4 Identifying VI statements using data and control depen-

dence

Value impacting assignment statements can be directly related with data dependence as per the

definition 3.2. Computation of data dependence is straight forward using reaching definition

analysis. Therefore, the most challenging part of value slice computation is the computation

of value-impacting predicates. Given a predicate c, we now identify a necessary and sufficient

condition for c to value-impact Υ = 〈l, V 〉. We will relate whether c is value impacting for Υ,

with the transitive control dependence relationship between c and l. We observe that, as per the

definition of transitive control dependence, only the following three scenarios are possible, for

the transitive control dependence relationship between c and l.

1. l is not transitively control dependent on c.

2. l is transitively control dependent on c through exactly one out-edge of c.

3. l is transitively control dependent on c through both out-edges of c.

Obviously, all these three scenarios are mutually exclusive.

Figure 3.4 shows certain situations that we shall refer to in subsequent discussions. In the

figure, node c denotes a predicate having two outgoing edges labeled b1 and b2, that start the

37

b1 b2

d

c

n1
n2

π1 π2
×

(a)

b1
u,w

b2

d

c

t π1 π2

l

(b)

b1 b2

d

c

t,w
uπ1 π2

l

(c)

b1 b2

d

c

t π1 π2

l

(d)

Figure 3.4: (a) A property of CFG paths. (b)-(d) Situations that make a predicate value-

impacting. In Fig (c), path π1 is c→ t→ d → c→ u→ l

Figure 3.5: Example illustrating value impacting condition of type cond1

paths π1 (solid line) and π2 (thick dashed line), respectively. l denotes the node of the slicing

criterion. We begin by mentioning a property of the programs under consideration. In figure

(a), d is the first node common to π1 and π2. As stated earlier, our program model does not

allow arbitrary jumps. Therefore, for the programs under consideration, the following property,

illustrated in Figure 3.4 (a), holds:

Prop: Let π1 and π2 be disjoint paths from a predicate c to a node d, and let n1 and n2 be nodes

on these paths distinct from d. Then there cannot exist a path from n1 to n2 bypassing c.

Consider the program of Figure 3.5 and its CFG and control dependence graph shown in

the same figure. It is obvious that the predicate c2 is value-impacting for the slicing criterion

38

Figure 3.6: Example illustrating value impacting condition of type cond2

〈11, {x}〉. Observe in this case that the assignment at line 11 (the criterion) is not control

dependent on c2while a value-impacting statement (assignment at line 10) is control dependent

on c2. We generalize this observation, illustrated in Figure 3.4 (b), to claim that the following is

a necessary condition for a predicate c to be value-impacting for the slicing criterion Υ = 〈l, V 〉.

We will give a proof of this claim later as part of lemma 3.7.

cond1: If l is not transitively control dependent on c, then there exists a value-impacting

node t 6= c such that t is control dependent on c.

Notice that cond1 is also corroborated for the slicing criterion 〈13, {y}〉, with predicate c2 as c

and the assignment at line 10 as t.

Consider the program and its CFG and control dependence graph given in Figure 3.6. It

is same as that in Figure 3.3 and reproduced here for ready reference. For this program, as ex-

plained in Section 3.2, we had argued that the predicates i<4 and i%2==0 are value-impacting

for the criterion 〈14, {x}〉, as per the definition of value-impacting statements. It is clear that

the assignments at lines 8 and 12 are value-impacting for the given criterion. We make some

observations about the relationship of these two predicates with the criterion node and with the

other value-impacting nodes in terms of control dependence. Note that the criterion node at

line 14 is transitively control dependent on the predicate i<4 through the true out-edge but not

39

through false out-edge. The assignment at line 8 is value-impacting for the criterion 〈14, {x}〉.

The same assignment is reachable through the false-edge of predicate i<4, as both are in a

cycle 9
f→ 17 → 5

t→ 7 → 8 → 9. But this assignment is not transitively control dependent on

the predicate i<4 through the true out-edge (in fact the assignment is not transitively control

dependent at all on the predicate). So in summary, the criterion node is transitively control

dependent on the predicate (i<4) through true out-edge only, and a value-impacting statement

(assignment at line 8) is in cycle with the predicate but not transitively control dependent on the

predicate through true out-edge. Similarly, note that the criterion node is transitively control de-

pendent on the predicate i%2==0 through false out-edge only, and a value-impacting statement

(assignment at line 12) is in cycle with the predicate but not transitively control dependent on

the predicate through false out-edge (although it is control dependent on the predicate through

true out-edge). From these observations, generalized in Figure 3.4 (c), we claim that the follow-

ing also is a necessary condition for a predicate c to be value-impacting for the slicing criterion

Υ = 〈l, V 〉. We will give a proof of this claim also as part of lemma 3.7.

cond2: If l is transitively control dependent on c through only one out-edge, say b2, then

there exists a value-impacting node t 6= c such that t is not transitively control dependent

on c through b2, and c and t are in a cycle in the CFG.

There is a third condition cond3 which covers the case when l is transitively control depen-

dent on c through both out-edges, as shown through Figure 3.4 (d). Consider the program and

its CFG and control dependence graph of Figure 3.7. As mentioned earlier, transitive control

dependence through both out-edges happens when some of the paths starting from out-edges of

a predicate do not merge back due to return or break statements. For example, this is the

case with the condition (j>5) at line 5. Consider the slicing criterion 〈7, {x}〉. Statement at

line 10 is value impacting due to rule (1) of the definition 3.2. For the predicate node (j>5),

we have a witness: 〈π1: 5
t→ 10 → 11 → 3 t→ 5 t→ 7, π2: 5

f→ 7, 10〉, to make the predicate

value impacting. But the statement at 7 is transitively control dependent on predicate (j>5) at

line 7 through both out-edges, as evident from control dependence graph: 5
t→ 7 and 5

f→ 3
t→

5
t→ 7. And therefore, it is not covered by cond1 or cond2. However, in this case, we observe

that a value impacting statement (assignment at line 10) is transitively control dependent on the

predicate (j>5) only through one out-edge (false). We generalize this observation, illustrated

40

Figure 3.7: Example illustrating value impacting condition of type cond3

in Figure 3.4 (d), to claim that the following is another necessary condition for a predicate c to

be value-impacting for the slicing criterion Υ = 〈l, V 〉. We will give a proof of this claim too,

as part of lemma 3.7.

cond3: If l is transitively control dependent on c through both out-edges, then there exists

a value-impacting node t 6= c such that t is transitively control dependent on c through

exactly one out-edge.

Note that the antecedent of exactly one of the three conditions: cond1, cond2 and cond3, always

holds. Therefore, for the conjunction of these conditions to hold, only the consequent of the

condition, with true antecedent, needs to hold; the other two conditions will hold vacuously.

We will now show that the conjunction of these three conditions: cond1, cond2 and cond3, is

a necessary and sufficient condition for a predicate c to be value-impacting for a given slicing

criterion Υ = 〈l, V 〉. This result can thus be used for obtaining a sound and precise value slice.

But we first prove a property of the witness of a value-impacting predicate.

Lemma 3.6 Let c be a value-impacting node for the slicing criterion 〈l, V 〉 with a witness

〈π1, π2, u〉. Then, at least one of π1 or π2 must have a value-impacting node before any common

node appearing on both π1 and π2.

41

Proof Let π′
1 and π′

2 be the prefixes of π1 and π2 such that both end with a common node d

(possibly l itself), and other than the starting node (c the condition) and the ending node d, rest

of the nodes on π′
1 are disjoint from the rest of the nodes on π′

2. To prove the lemma, we have

to show that at least one of the π′
1 and π′

2 has a value impacting node before the end node d.

Assume that both π′
1 and π′

2 have no value-impacting statements before d. Obviously,

u 6= d otherwise, contrary to our assumption, c will not be value-impacting. Since u is not the

first value-impacting on π2, π2 must diverge from π1 after d but before u. The divergence point

will have to be a common predicate node, say c′. Consider the suffixes π′′
1 and π′′

2 of π1 and π2

respectively, starting at the node c′. Obviously, u will be the first value impacting node on π′′
1

but not on π′′
2 . Therefore, there will be a witness 〈π′′

1 , π
′′
2 , u〉 for c′ to be a value impacting node.

But then c′ will be a value impacting node on π1 before u, which is a contradiction.

We now show that the conjunction of cond1, cond2 and cond3 is a necessary criterion for

a predicate c to be value-impacting.

Lemma 3.7 Given a slicing criterion Υ = 〈l, V 〉 and a value-impacting predicate c, conditions

cond1, cond2 and cond3 hold.

Proof Since the antecedent of exactly one of cond1, cond2 and cond3 will be true, we need to

show that the consequent of the one with true antecedent is true.

1. The antecedent of cond1 is true i.e. l is not transitively control dependent on c.

We need to show that there is a value impacting node t(6= c) such that t is control depen-

dent on c. Let 〈π1, π2, u〉 be a witness for c to be a value-impacting statement for l. Let

π1 and π2 start with the out-edges b1 and b2 of c, respectively. Since l is not transitively

control dependent on c, l must post-dominate c and the situation must be as depicted in

Figure 3.4 (b), where d is the immediate post-dominator of c. By Lemma 3.6, at least one

of π1 or π2 must have the first value-impacting node w before d.

First assume that w lies on the segment of π1. Obviously, w = u and w must post-

dominate the out-edge b1. In addition, by Prop, w can not strictly post-dominate the

out-edge b2. Therefore w must be control dependent on c. Thus w is the required t.

42

Now assume that w lies on the segment of π2. Obviously, w must post dominate the out-

edge b2 and by Prop, w can not strictly post-dominate the out-edge b1. Therefore w must

be control dependent on c. Thus w is the required t.

2. The antecedent of cond2 is true i.e. l is transitively control dependent on c through only

one out-edge.

Without loss of generality, assume that l is transitively dependent on c through out-edge

b2 only. We need to show that there is a value impacting node t′(6= c) such that t′ and c

are in a cycle and t′ is not transitively control dependent on c through out-edge b2. Since

c is value-impacting, there must be a witness as 〈π1, π2, w〉 or 〈π2, π1, u〉 with π1 and π2

starting with out-edges b1 and b2, respectively. Since l is transitively control dependent

on only one out-edge, b2, by Prop, the path π1 must be such that π2 is a suffix of π1, that

is c must be in a loop having the out-edge b1. So the situation resembles Figure 3.4 (c).

Assume the witness is 〈π2, π1, u〉. There must exist a value-impacting node t 6= u in the

looping segment c to c of π1, otherwise, u will become the first value impacting node

on π1 also. Obviously, the node t is in a cycle with c and it is not transitively control

dependent on out-edge b2. So t is our desired t′.

Assume the witness is 〈π1, π2, w〉. Obviously, the value-impacting node w must be in the

c to c looping segment of π1, and therefore the node w is in a cycle with c and it is not

transitively control dependent on out-edge b2. So w is our desired t′.

3. The antecedent of cond3 is true i.e. l is transitively control dependent on c through both

out-edges b1 and b2.

We need to show that there is a value impacting node t(6= c) such that t is transitively

control dependent on c through exactly one out-edge. Since c is value-impacting, there

will be a witness with paths π1 and π2 as shown in Figure 3.4 (d). By Lemma 3.6, there is

a value-impacting statement t on π1 or π2 before d. Without loss of generality, we assume

that t is on π1 and it is the first value impacting statement on π1. By Prop, t has to be

transitively control dependent on c through b1 and only through b1.

43

We now show that the conjunction of cond1, cond2 and cond3 is a sufficient condition as

well for a predicate node c to be value-impacting.

Lemma 3.8 Given a slicing criterion Υ = 〈l, V 〉 and a predicate c such that the conditions

cond1, cond2 and cond3 hold, c is value-impacting for Υ.

Proof Although all three conditions hold, two of them will hold vacuously and only one of them

will hold along with its antecedent. We will consider the three cases of conditions for which its

antecedent holds, and in each case, we shall identify a witness for c to be value-impacting for

Υ.

1. The antecedent of cond1 is true i.e. l is not transitively control dependent on c. Since

cond1 is true, there exists a value impacting node t which is control dependent on c.

Without loss of generality, assume that t is control dependent on c through the out-edge

b1. Since there must be a path from t to l, there must be a path, say π1, from c to t to

l starting with out-edge b1. Clearly, t post-dominates edge b1. Therefore, since l is not

transitively control dependent on c, there must be a path, say π2 from c to l through out-

edge b2 as well such that π2 does not pass through t. Consider the first value-impacting

statement u between c and t on the path π1 (u may be the same as t). Then the required

witness is 〈π1, π2, u〉 as shown in Figure 3.4 (b).

2. The antecedent of cond2 is true i.e. l is transitively control dependent on c through only

one out-edge. Without loss of generality, assume l is transitively control dependent on c

only through one out-edge, say b2. Since cond2 is true, there exists a node t that is not

transitively control dependent on c through b2 and that c and t are in a cycle. Since t is not

transitively control dependent on c through out-edge b2 the cycle must contain the out-

edge b1 and must not contain out-edge b2. Consider the first value-impacting statement

w on path segment c to t (w may be the same as t). Then the witness is 〈π1, π2, w〉, as

shown in Figure 3.4 (c).

3. Antecedent of cond3 is true i.e. l is transitively control dependent on c through both the

out-edges. Since cond3 is true, there exists a value impacting node t which is transitively

control dependent on c through only one out-edge. Without loss of generality, assume

44

that this out-edge is b1. Then the witness is 〈π1, π2, t
′〉, as shown in Figure 3.4 (d), where

t′ is the first value impacting node on π1 and may be same as t.

3.5 Value slice computation

Given a program dependence graph (PDG) [36], representing data and control dependence in the

program, it is easy to compute value-impacting assignments using Definition 3.2. In addition,

Lemmas 3.7 and 3.8 can be used to identify value-impacting predicates. These value-impacting

assignments and predicates are augmented with abstract predicates to obtain the value-slice. A

minor implementation detail is that a predicate with the reaching definitions of all its variables

in VI , is retained in concrete form, even if the predicate itself is not in VI . Abstracting the

predicate in this case would not result in a decrease in the size of the slice. Note that the

precision of the slice depends on the precision of the PDG; given a precise PDG, the computed

value slice exactly matches PVS .

3.5.1 Value slice computing algorithm

Figure 3.8 gives an algorithm to compute VI (〈l ,V 〉) for the given slicing criterion Υ = 〈l, V 〉.

Meaning of the variables used in the algorithm are listed in Table 3.1. We use tcd(t, b) to denote

{c | c
b
 t} and cd(t) to denote {c | c ֌ t}. For a given t and b, we compute tcd(t, b) from

the PDG of the program. Similarly, we use PDG of the program to compute cd(t) for a given t.

Further, we use incycle(t) to denote the set of predicates which, along with t, appear in a cycle

in CFG. The worklist wl in the algorithm contains value-impacting statements which have not

been explored yet, i.e. they have not been used to find other value-impacting statements.

The set vi contains value-impacting statements which have been explored. Given a value-

impacting statement t, ic is the set of predicates and DU(LV (t)) is the set of assignments that

become value-impacting because of t. Any statement which is put in the worklistwl, eventually

does get into the set vi and no elements are removed ever from vi. Since we initialise wl with

DU(l, V) at line 6, it is obvious that the algorithm satisfies the condition (1) of the definition 3.2.

For every value impacting node t, which is put in vi, we add DU(LV (t)), (at lines 11-12), to

45

Symbol Meaning

cd(t) Set of predicates on which t is control dependent

tcd(t, b) Set of predicates on which t is transitively control dependent through out-edge b

lct Set of predicates on which the statement l, of the slicing criterion, is transitively control

dependent through out-edge true of the predicates

lcf Set of predicates on which the statement l, of the slicing criterion, is transitively control

dependent through out-edge false of the predicates

lc Union of lct and lcf

lcb Intersection of lct and lcf

lcot Set of predicates on which the statement l, of the slicing criterion, is transitively control

dependent through out-edge true , but not through out-edge false, of the predicates

lcof Set of predicates on which the statement l, of the slicing criterion, is transitively control

dependent through out-edge false , but not through out-edge true, of the predicates

incycle(t) Set of predicates, which along with the given node t, appear on a cycle in the CFG

vi Set of value impacting statements, which have been identified as well as explored for

identifying further value impacting statements due to them

wl A worklist of value impacting statements, which have not been explored yet for identify-

ing further value impacting statements due to them

ic Set of predicates that become value impcating due to a given value impacting statement t

(i.e. t participates in a witness triplet)

tct Set of predicates on which a given statement t is transitively control dependent through

out-edge true of the predicates

tcf Set of predicates on which a given statement t is transitively control dependent through

out-edge false of the predicates

tco Set of predicates on which a given statement t is transitively control dependent through

one and only one out-edge of the predicates

dc Set of predicates on which a given statement t is control dependent

cnd1 Set of predicates satisfying the condition cond1 for a given value impacting statement t

cndb2 Set of predicates satisfying the condition cond2 for a given value impacting statement t,

when l is transtively control dependent on these predicates through out-edge b only

cnd3 Set of predicates satisfying the condition cond3 for a given value impacting statement t

Table 3.1: Description of variables used in the value slice computing algorithm

46

wl, which satisfies the condition (2) of the definition 3.2.

We have already shown that a predicate node becomes value-impacting by satisfying con-

dition (3) of the definition 3.2 if and only if it satisfies the conjunction of the three criteria:

cond1, cond2 and cond3. In the main procedure compVI , at line 3, the lct represents set of

conditions on which l is transitively dependent through true edge. Similarly, lcf provides set

of conditions on which l is transitively control dependent through false edge. From these two,

we get lc as union of conditions on which l is transitively control dependent, lcot as set of con-

ditions on which l is transitively control dependent through true out-edge only, lcof as set of

conditions on which l is transitively control dependent through false out-edge only and lcb as

set of conditions on which l is transitively control dependent through both the out-edges.

The set ic is computed using the function iConds which encodes cond1, cond2 and cond3

in a straightforward manner. In line 6 of the function iConds, the set dc is set of conditions

on which t is control dependent. So, at line 7 in the function, computation of cnd1 rightly

encodes cond1 by removing lc from dc to provide the value impacting conditions on which l is

not transitively dependent and on which t is control dependent.

The set tct computed at line 3, consists of those conditions on which t is transitively

control dependent through true edge. Similarly, the set tcf computed at line 4, consists of

those conditions on which t is transitively control dependent through false edge. From these

two, at line 5, we compute set of conditions, tco, on which t is transitively control dependent

through exactly one out-edge. As per cond2, for condition c to be value impacting due to t, all

of the following criteria should hold:

(a) t and c should be in a cycle

(b) l should be transitively control dependent on c through only one out-edge so c must

belong to lcot or lcof .

(c) t is not transitively control dependent on c through the out-edge through which l is

transitively control dependent on c.

The criteria (b) and (c) imply that either c is in lcot but not in tct, or c is in lcof but not in

tcf . Accordingly, we compute the set of value impacting conditions as per cond2 in two parts,

in cndt2 and cndf2 , at lines 8-9.

For a condition c to be value impacting due to the value impacting node t as per criterion

cond3, following should be satisfied:

47

1: function compVI (l, V)

2: begin

3: lct = tcd(l, true); lcf = tcd(l, false)

4: lc = lct ∪ lcf ; lcb = lct ∩ lcf

5: lcot = lct \ lcf ; lcof = lcf \ lct

6: vi = ∅

7: wl = DU(l, V)

8: while wl is not empty do

9: choose an element t from wl

10: ic = iConds(t, lc, lcot, lcof, lcb)

11: vi = vi ∪ {t}

12: wl = (wl \ {t}) ∪

13: ((ic ∪DU(LV (t))) \ vi)

14: end while

15: return vi

16: end

1: function iConds(t, lc, lcot, lcof, lcb)

2: begin

3: tct = tcd(t, true)

4: tcf = tcd(t, false)

5: tco = (tct ∪ tcf) \ (tct ∩ tcf)

6: dc = cd(t)

7: cnd1 = dc \ lc

8: cndt2 = (lcot \ tct) ∩ incycle(t)

9: cnd
f
2 = (lcof \ tcf) ∩ incycle(t)

10: cnd3 = lcb ∩ tco

11: return cnd1 ∪ cnd
t
2 ∪ cnd

f
2 ∪ cnd3

12: end

Figure 3.8: Algorithm to compute VI

(a) l should be transitively control dependent on c through both out-edges, which means c

must belong to lcb

(b) t should be transitively control dependent on c through exactly one out edge, so c must

belong to tco.

Accordingly, we compute the set of value impacting conditions as per cond3 in cnd3 at

line 10.

3.5.2 Algorithm complexity

Assume there areE edges andN nodes in the CFG, and out ofN nodes, C are predicates. Since

a node goes into the worklist at most once, the while loop in compVI iterates at most N times.

Further, let there be Ed data dependence and Ec control dependence edges in the PDG, adding

to total Ep = Ed + Ec edges in the PDG. The sets lct and lcf can be pre-computed in O(C)

time and stored in O(C) space, so that membership of these sets can be checked in constant

time. Further, Tarjan’s algorithm [69] can be used to find all strongly connected components

(SCCs) in a CFG in O(E + N) time, from which we can pre-compute incycle(t). This takes

48

O(N × C) time and O(N × C) space. Thus c ∈ incycle(t) can also be checked in constant

time.

It is clear that each data dependent edge will be traversed at most once during the entire

run of compVI . Similarly, because of dc and cnd1, each control dependent edge will also be

visited at most once during execution of compVI . The computation of tct. tcf , cnd2 and cnd3

all require O(C) time. So the overall complexity of the algorithm is O(E +N) +O(N ×C) +

O(Ec+Ed) ≈ O(N ×C)+O(Ep). Note that backward slice computation has a complexity of

O(Ep). Since in the worst case O(Ep) = O(N ×N), the worst case complexity is the same for

backward slice and value slice.

49

50

Chapter 4

Implementation and measurements

In this chapter we discuss the implementation details of value slice computation and results on

experiments conducted using the implementation.

4.1 Implementation

We have built a scalable property checking tool based on value slicing, implemented on top of

PRISM, a static analyzer generator developed at TRDDC, June [53, 20]. Our implementation

supports full version of C including pointers, structures, arrays, heap allocation and function

calls. However, we assume that execution terminates from the main function only. For example,

we assume that there is no call to exit() from functions other than main.

Following the conventional approach, the heap is abstracted in terms of allocation points

and arrays are summarized to a single abstract element. However, structures are handled in field

sensitive manner: x.a and x.b are treated as separate entities. Although, a flow-insensitive

and context-sensitive points-to analysis is generally beneficial, we handle pointers using a flow

sensitive but context insensitive points-to analysis, as its implementation was already imple-

mented as part of PRISM.

4.1.1 Interprocedural PDGs

We first construct an intraprocedural PDG for each function. We treat the function entry and

exit (return) as the program ENTRY and EXIT points respectively. For data dependence,

51

we use reaching definition analysis available from PRISM. For control dependence, we have

implemented the algorithm of Billardi and Pingali [11] to construct the control dependence

graph.

To make the value slice precise, we augment the intraprocedural PDGs with interproce-

durally valid data and control dependence as defined by Horowitz et al. [46]. As a first step

towards this, we extend the intraprocedural PDGs as follows:

1. A function entry point is made control dependent on its call points.

2. If a definition in a caller passes its computed value to the callee through a formal param-

eter or as a global, then the entry of the callee is made data dependent on the definition.

3. Similarly, if a definition in a called function passes its computed value to the caller

through a global variable or return statement, the calling point is made data dependent

on the definition.

Due to these extensions, it is clear that the control dependence due to interprocedural control

flow is automatically taken care of.

Over the extended PDGs, we use a method adapted from the approach on interprocedural

slicing by Horowitz et al. [46] to compute interprocedurally valid data and control dependence.

In the following section, we describe how we take care of the imprecision issues in data depen-

dence, arising due to inter-procedural data flow.

4.1.2 Computing inter-procedural data dependence

A naive reaching definition analysis over an integrated inter-procedural CFG gives rise to impre-

cision in the data dependence. To illustrate this issue, let us consider the program in Figure 4.1,

where both the definitions of x (at lines 18 and 24) will reach to both uses of x (at lines 10

and 30) if an integrated interprocedural CFG is used for reaching definition analysis. How-

ever, this information is imprecise. For example, the definition at line 18 can never reach line

30. To address the issue, we compute reaching definitions of functions in an intra-procedural

manner. We use a summary based approach and do the computation for all the functions by

traversing the call graph in a bottom-up manner1. To incorporate the inter-procedural data flow

1For recursive functions, an iteration-till-saturation process is adopted

52

from called functions to their callers, we create a function summary for each function. The

summary consists of the set of definitions created in the function, called sum-gen-defs and the

set of variables which get defined unconditionally, called sum-kill-defs. While computing the

reaching definitions in a caller function the following is how we proceed at a call point:

1. We kill the in-flowing definitions of those variables that belong to sum-kill-defs of the

called function.

2. We consider that all the variables belonging to sum-kill-defs are getting defined at the call

point.

3. We generate the definitions of sum-gen-defs of the called functions in such a way that

they deem to emanate from the call point.

Although the set sum-gen-defs will subsume the set sum-kill-defs, for our approach to work

properly we need both information separately. While constructing the interprocedural PDG, for

creating data dependence edges due to inter-procedural data flow, we proceed as follows:

1. The definitions generated at a call point are made data dependent on the corresponding

definitions in sum-gen-defs of the called function.

2. In a function, when a variable x, used at a point is also live at the function entry, we add

a data dependence edge from the use point to an auxiliary definition2, x = x, created just

before the call point.

To illustrate this, let us consider the example program in Figure 4.1. The computed sum-

mary of each function is shown at the end of the function body as a pair of sets, one for sum-

gen-defs and another one for sum-kill-defs. Function C defines the variable z unconditionally.

Therefore, in the summary of C, shown just after the end of the function body at line 15, sum-

gen-defs will have the definition of z at line 14, and sum-kill-defs will only have the variable z.

To elaborate further, while computing the reaching definitions in the function A1, after the call

point C() at line 19, the definition of x at line 18, and the definition of z deemed to emanate at

the call point, will be reaching as per the summary of C. Similarly, the definition of w emanating

2The use of x in the RHS will be considered for data dependence edges subsequently

53

1 int x,z;

2 int w,y;

3 int main()

4 {

5 A1();//{(5, x),(5,w),{5,z}}

6 A2();

7 }

8 void B1()

9 {

10 w = x+z;

11 } // {(10, w)} , {w}

12 void C()

13 {

14 z = 10;

15 } // {(14, z)} {z}

16 void A1()

17 {

18 x = 10;

19 C(); // {(18, x),(19,z)}

20 B1();

21 } // {(18, x),(20,w),(19,z)}, {x,w,z}

22 void A2()

23 {

24 x = 20;

25 C(); // {(24, x),(25,z)}

26 B2();

27 } // {(24, x),(26,y),(25,z)}, {x,y,z}

28 void B2()

29 {

30 y = x+z;

31 } // {(30, y)}, {y}

Figure 4.1: Program to illustrate interprocedural data dependence computation

at the call point B1() at line 20 will reach the function exit. Accordingly, the summary of A1

will be what is shown at the end of its body (in line 21).

To illustrate how inter-procedural data dependence is computed precisely, consider the use

of x at line 10 and line 30 in functions B1 and B2, respectively. For the use of x in line 10,

while looking for data dependence, we will go to the calling point of B1 as there is no definition

of x reaching this point within the function. At the call point B1() in function A1, we find that

the definition of x at line 18 is reaching there. So, we will make the use of x at line 10 data

dependent on the definition at line 18 only. By a similar argument, the use of x at line 24 will

be data dependent on the definition of x at line 30 only.

4.1.3 Value slice computation

We have implemented the algorithm described in Section 3.5 using the interprocedural PDGs as

describe above. We augment the intraprocedural CFGs by connecting calls to procedure entry

points, and procedure return nodes to successor of call nodes to get an interprocedural CFG of

the program. To implement the check incycle(c,t), we have implemented Tarjan’s algorithm [69]

of finding strongly connected components to identify cycles in the interprocedural CFG.

54

4.2 Experiments

We carried out our experiments on 3.0 GHz Intel Core2Duo processor with 2 GB RAM and 32

bit WINDOWS operating system, and we used SATABS (version 3.0) [23] as the verifier for its

robustness and scalability.

4.2.1 Source code for experiment

We experimented on one open source application, icecast, and one proprietary code base. The

proprietary code base is from automotive domain, and it implements an entertainment and nav-

igation system for the automobiles. The entire proprietary system consists of a total of 123

modules (processes) spread over more than 4000 source files, having more than 5 MLOC and

35000 functions. Out of these 123 modules, we picked 60 modules of varying sizes for our

experiments. For ease of reporting, we grouped these 60 modules into nine groups: navi1 to

navi9. The average size of individual modules in these nine groups varied from 6 KLOC to

61 KLOC. We present the data indicating size and complexity of the source code chosen for

experiments in Table 4.1. This includes the number of functions, their sizes, and, the number

of conditional statements and loops within the functions, for icecast as well as the 9 groups of

proprietary code. We provide the total code size in KLOC for the group in column (b), the

number of functions (excluding uncalled functions) that belong to the group in column (c), the

size of the code present in body of these functions in column (d), the average LOC of a function

body in column (e), and the maximum LOC of a function body in column (f). Further, we show

the total number of conditional statements (if and switch) in these functions in column (g), the

average number of conditional statements per function in column (h), and the maximum num-

ber of conditional statements in a function in column (i). Similar data is shown for loops (for,

while and do-while) in columns (j), (k) and (l), respectively. Table 4.1(b) presents similar data

for pointer-dereferences in columns (c), (d) and (e), and for array references in columns (f), (g)

and (h).

We checked for the “array index out of bounds” property on these programs. For each

array reference chosen for the checking we generated an assert to check that the index value is

not negative and it is less than the size of the array. We checked the validity of generated asserts

using SATABS on three kinds of slices generated for the assert: backward slice, value slice and

55

thin slice. To construct these asserts, we needed the size of arrays used in array references.

Since our implementation can not infer the size of dynamic arrays, we had to exclude array

references of dynamic arrays from our checking. To be able to add assert statements with ease,

we considered only those array references that were part of an expression statement. Further,

we excluded the array references having only constant indexes. We report the number of such

array references in columns (i), (j) and (k) of Table 4.1(b), in the same manner as we show

number of pointer-dereferences.

4.2.2 Conducting the experiment

For icecast, there were a total of 65 instances of array references of the kind we considered

for our experiments. For the 60 modules of proprietary application, there were a total of 5950

array references of the type we considered, and their number varied from 3 to 548 in different

modules. Since running SATABS on all such instances would need a very long time (estimated

to be more than 25 days!!), we picked up a maximum of 10 such instances from each module to

check the desired property. For a module with 10 or less instances, we picked all the instances,

otherwise, we picked 10 instances from the module randomly. In the two tables of Table 4.2, we

show the combined size of each group, and number of array references selected for checking

“array index out of bound”. In all, we checked a total of 647 cases of array references.

For each chosen instance, we computed backward slice, value slice and thin slice. We ran

SATABS on each of the three slices with three different timeouts: 1 minute, 2 minutes and 3

minutes. The maximum number of CEGAR loop iterations was set to default (which is 50).

Five kinds of outcomes were recorded: property satisfied (Y), property failed (N), timeout, too

many CEGAR loop iterations, and tool failure. The possible reasons for the last outcome are

refinement failure (inability to find new predicates for further refinements), and SATABS failing

due to some bug or a limitation of the tool. The outcome of timeout, too many CEGAR loop

iterations, and tool failure were clubbed as no decision (?) for reporting purposes.

56

4.2.3 Experiment observation

The Y answers of all three slices will be correct by construction of the slice. Similarly, an N

answer for the backward slice will also be correct3. However, in case of a value or thin slice,

if an assert with an N answer was recorded as a Y during property checking with the other

two slices, it was recorded as being a spurious N (NS in the table) also. Scalability, given by

(Y + N)/(Y +N+?) is the ratio of definite outcomes over all outcomes. Loss of precision is

the ratio of outcomes that are known to be spurious over all definite outcomes (NS/(Y +N)).

The data from the experiments are presented in the two tables of Table 4.2. In the Ta-

ble 4.2(a), we have shown the size and the number of asserts for each program or group. We

report the outcomes based on a time out of 3 minutes. Outcome of verification using backward

slice is presented in the Table 4.2(a). In the Table 4.2(b), we present the outcome of verification

using value and thin slices.

To have a better view of comparison of scalability and loss in precision, we present just

this data for all three slices in Table 4.3. We show a graphical view of the results in Figure 4.2.

From the results, it is obvious that both value and thin slices help in scaling up property

checking, with thin slice having a small advantage (14%) over value slice. However, compared

to the backward slice, the precision drops considerably (30%) in the case of thin slice, while

there is only a marginal drop (3%) for value slice. This shows that value slice is a good com-

promise between backward and thin slices as it provides considerable scalability with only a

marginal loss in precision.

An N outcome in case of value and thin slices does not necessarily mean that property

does not hold on the original program. Therefore, for such cases an abstraction refinement

step will be needed to get an answer which holds for the original program too. From the results

observed, it is clear that such an abstraction refinement step will be required in many more cases

with thin slice as compared to value slice. We also expect such abstraction refinement cycles to

be shorter for value slice compared to thin slice, because of fewer abstractions introduced in the

value slice at first place.

It may be noted that this data is quite closely dependent on the verifier used. So in our

case, it is with respect to the verifier SATABS. From these results, we can not conclude if a

3Assuming the programs are terminating.

57

Figure 4.2: A graphical view of scalability and precision of value slice

similar result will be exhibited by use of some other verifier. However, we believe that a similar

trend is expected even with other verifiers.

As mentioned earlier, the results reported in the tables of Table 4.2 are with a timeout limit

of 3 minutes. Note that we had run the experiments with three different timeouts: 1 minute, 2

minutes and 3 minutes, to see the impact of increase in timeout on the number of cases of

different outcomes. We show this data in Table 4.4(a), where we show the number of cases

with outcomes of Timeout, Yes(Y), No(N) and any other. In columns (b), (c) and (d), we show

the number of cases using backward slice for timeouts of 1 minute, 2 minutes and 3 minutes,

respectively. We show similar data for value and thin slices in columns (e), (f) and (g), and

columns (h), (i) and (j), respectively. From this data, we observe that value slice benefits more

from timeout increase than backward slice.

We also recorded the number of CEGAR loop iterations, number of predicates generated,

58

and total time taken in running SATABS on individual cases. We show this data in Table 4.4(b).

In each row we show the data related to the instances for which outcome using backward and

value slice was as given in column (a) and column (b), respectively. In column (c), we show the

number of such instances with the given outcome combination. We show the average number of

CEGAR loop iterations and predicates, and the average time taken in seconds using backward

slice in columns (d), (e) and (f), respectively. Similarly, in columns (g), (h) and (i), we show the

corresponding data when value slice is used. Consider the cases where the outcome is “Yes”

or “No” using backward and value slices. It can be seen that the use of value slice takes lesser

number of CEGAR loop iterations, generates lesser number of predicates, and takes lesser time

than backward slice.

4.2.4 Imprecision in property checking with value slice

We observed that there are indeed cases where the verifier could prove the property on a back-

ward slice, but the property did not hold on the corresponding value slice. We analysed and

found that there can be a scenario where a condition controlling the property location can also

influence the outcome of the property checking. And, if such condition is not identified to be

value impacting for the property, as per our definition of value impacting conditions, the con-

dition will be abstracted in the value slice, resulting in a possible violation of the property. To

illustrate this, we show an example in Figure 4.3. Clearly, the assertion in the program at line

15 holds true, because (i < 4) =⇒ (j < 4) is an invariant after the loop, The backward

slice and the value slice for the program, with respect to the assert expression, are shown in

Figure 4.3(b) and 4.3(c), respectively.

Since the variable k is not at all relevant to the assert at line 15, its computation will not

be a part of the backward or value slice. The loop at line 5, computing the value of the variable

j, will have to be part of these two slices as j appears in the assert expression. In addition,

since the assert is control dependent on the condition (i < 4) at line 14, the condition will be

a part of the backward slice. Clearly, the assertion holds in the backward slice as expected, and

the same is verified by SATABS. However, as per our definition of value impacting conditions,

it is clear that the condition at line 14 is not value impacting for the assert at line 15. Therefore,

the condition gets abstracted in the value slice. As a result, the assertion no longer holds in

59

1 main()

2 {

3 int i=0,j=0,k=0;

4 int a[5];

5 while (j < 5)

6 {

7 if (a[j]==0)

8 break;

9 if (a[j] > 100)

10 k++;

11 j++;

12 i++;

13 }

14 if (i< 4)

15 assert(j < 4);

16 }

(a) Original program

1 main()

2 {

3 int i=0,j=0;

4 int a[5];

5 while (j < 5)

6 {

7 if (a[j]==0)

8 break;

9

10

11 j++;

12 i++;

13 }

14 if (i< 4)

15 assert(j < 4);

16 }

(b) Backward slice

1 main()

2 {

3 int j=0;

4 int a[5];

5 while (j < 5)

6 {

7 if (a[j]==0)

8 break;

9

10

11 j++;

12

13 }

14 if (*)

15 assert(j < 4);

16 }

(c) Value slice

Figure 4.3: Example showing limitation of value slice over backward slice

the value slice. For example, consider an execution of the value slice where the array a gets

initialised as {1, 2, 3, 4, 0}, and the abstract condition at line 14 is taken as true. The variable j

will have the value 4 at the assertion point and, as a result, the assertion will be false. Therefore,

on this value slice, SATABS will say that the assertion is violated, which is spurious because

the assertion holds on the original program.

60

Table 4.1: Program size and complexity

(a) Number of functions, their size, and conditions and loops within

Prg Total Funcs Size in LOC Conditionals Loops

size Tot. Avg. Max. Tot. Avg. Max. Tot. Avg. Max.

in KLOC

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

icecast 18 182 4019 22 271 570 3.1 45 67 0.4 6

navi1 41 456 11061 24 178 1196 2.6 20 112 0.2 6

navi2 52 385 12181 32 435 1446 3.8 42 120 0.3 9

navi3 50 347 9460 27 148 1229 3.5 16 101 0.3 6

navi4 166 1623 54018 33 445 4979 3.1 31 658 0.4 16

navi5 156 1472 52082 35 579 5418 3.7 45 459 0.3 18

navi6 162 2037 64832 32 579 7772 3.8 61 443 0.2 16

navi7 350 2978 113904 38 579 11966 4.0 66 858 0.3 16

navi8 366 970 41577 43 744 4769 4.9 94 320 0.3 10

navi9 159 1471 49034 33 487 5246 3.6 40 440 0.3 16

(b) Number of pointer dereferences and array references

Prg Funcs Ptr Derefs Array Refs Array Refs considereda

Tot. Avg. Max. Tot. Avg. Max. Tot. Avg. Max.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

icecast 182 1522 8.4 217 134 0.7 21 65 0.3 11

navi1 456 853 1.9 51 488 1.1 55 208 0.5 32

navi2 385 2046 5.3 276 737 1.9 253 192 0.5 10

navi3 347 846 2.4 52 358 1.0 52 235 0.7 52

navi4 1623 9042 5.6 283 2698 1.7 56 684 0.4 34

navi5 1472 8172 5.6 298 3520 2.4 264 729 0.5 22

navi6 2037 8251 4.1 298 2865 1.4 264 929 0.5 34

navi7 2978 16732 5.6 2745 6261 2.1 264 1503 0.5 32

navi8 970 6131 6.3 298 2539 2.6 264 707 0.7 37

navi9 1471 7618 5.2 298 2811 1.9 264 702 0.5 37

aNote that as explained in Section 4.2.2 we pick up maximum 10 array references from each module of propri-

etary code

61

Table 4.2: Scalability and precision of property checking based on different kinds of slices

(a) Verification with backward slice. Y and N stand for ’yes’ and

’no’ answers returned by the property checker. ? stands for ’no

decision’ and NS stands for a ’no’ that is known to be spurious.

Prg KLOC Asserts

Backward Slice

Y N ? S(%)

(a) (b) (c) (d) (e) (f) (g)

icecast 18 65 20 0 45 31

Navi1 41 58 39 0 19 67

Navi2 52 68 44 0 24 65

Navi3 50 80 59 7 14 83

Navi4 166 70 17 0 53 24

Navi5 156 70 16 2 52 26

Navi6 162 70 25 0 45 36

Navi7 350 60 11 0 49 18

Navi8 366 56 20 2 34 39

Navi9 159 50 13 0 37 26

(b) Verification with value slice and thin slice. Y and N stand for ’yes’ and ’no’ answers returned by the

property checker. ? stands for ’no decision’ and NS stands for a ’no’ that is known to be spurious.

Prg Asserts

Value slice Thin slice

Y N NS ? S L Y N NS ? S L

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n)

icecast 65 21 16 3 28 57 8 1 46 24 18 72 51

Navi1 58 38 5 3 15 74 7 25 14 10 19 67 26

Navi2 68 52 4 2 12 82 4 40 16 10 12 82 18

Navi3 80 55 16 6 9 89 8 31 43 32 6 93 43

Navi4 70 28 4 0 38 46 0 27 24 7 19 73 14

Navi5 70 24 5 0 41 41 0 25 24 10 21 70 20

Navi6 70 42 1 0 27 61 0 15 32 26 23 67 55

Navi7 60 18 0 0 42 30 0 11 25 3 24 60 8

Navi8 56 38 2 0 16 71 0 27 20 12 9 84 26

Navi9 50 22 1 0 27 46 0 13 22 13 15 70 37

62

Prg KLOC Asserts

Scale

up (%)

Precision

loss (%)

Backward Value Thin Value Thin

(a) (b) (c) (d) (e) (f) (g) (h)

icecast 18 65 31 57 72 8 51

Navi1 41 58 67 74 67 7 26

Navi2 52 68 65 82 82 4 18

Navi3 50 80 83 89 93 8 43

Navi4 166 70 24 46 73 0 14

Navi5 156 70 26 41 70 0 20

Navi6 162 70 36 61 67 0 55

Navi7 350 60 18 30 60 0 8

Navi8 366 56 39 71 84 0 26

Navi9 159 50 26 46 70 0 37

Average 41 60 74 3 30

Table 4.3: Comparison of scalability and (%) loss in precision

63

Table 4.4: Impact of increase in timeout, and change in CEGAR iterations and time taken

(a) Impact of increasing timeout on number of assertions with different outcome.

Timeout of 1 minute(1m), 2 minutes(2m) and 3 minutes(3m) is given.

Outcome Backward slice Value slice Thin slice

1m 2m 3m 1m 2m 3m 1m 2m 3m

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Yes 237 253 264 300 332 338 202 213 215

No 10 11 11 35 52 54 216 252 266

Timeout 319 202 136 234 118 89 181 117 79

Other 81 181 236 78 145 166 48 65 87

(b) Change in CEGAR iterations and time taken (in seconds) from backward to value slice, with a time out of 3 minutes

Outcome Number Average per assert

of Backward slice Value slice

Backward Value asserts Iterations Predicates Time Iterations Predicates Time

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Yes Yes 221 2.0 4.4 12.5 1.9 3.5 4.9

No No 11 3.6 14.4 23.8 2.5 5.6 4.9

Yes No 17 6.4 36.3 31.8 8.7 28.1 30.6

Timeout Yes 47 1.8 - - 2.8 11.6 19.7

Timeout No 21 16.2 - - 19.4 36.2 43.8

64

Chapter 5

Related work

Backward slicing was first introduced for imperative programs by Mark Weiser [71] in 1981. A

backward slice of a program with respect to a program point l and a set of variables V , consists

of all statements and predicates of the program, which may impact value of the variables in V

at the program point l, in some execution of the program. The pair 〈l, V 〉 is called a slicing

criterion. Later, Ferrante et al. introduced a representation of the program called Program

Dependence Graph (PDG) [36], and backward slicing was modeled as a reachability problem

over the PDG. To address the issues of feasible paths arising due to procedure calls, Reps et

al. introduced a representation of programs called a system dependence graph (SDG) [46],

that spans over more than one functions. They presented an algorithm over SDG to compute

an inter-procedural backward slice. Silva et al. [67] provide a survey of several variants of

backward slicing proposed since its introduction by Weiser. Notable among these variants are

forward slicing [7], chopping [48], and assertion based slicing [16, 24, 6]. A forward slice of a

program with respect to a slicing criterion 〈l, V 〉, consists of all the statements and predicates

of the program which may get impacted by value of the variables in V at the program point l, in

some execution of the program. Chopping [48], is a generalisation of slicing and encompasses

both backward and forward slicing. It has a pair of slicing criteria, 〈lf , Vf〉 called source, and

〈lb, Vb〉 called sink, corresponding to the slicing criteria for the forward and the backward slicing,

respectively. Chopping produces a set of the statements that may impact value of the variables

in Vb at the program point lb due to value of the variables in Vf at the program point lf . The

backward slice and its variants have been used for program understanding, debugging, testing,

65

maintenance, software quality assurance and reverse engineering. Binkley et al. [12] provide a

survey of the applications of program slicing.

Comuzzi and Hart made a shift from syntax based slicing to program semantics based

slicing by defining a program slicing, called p-slices [24], using Dijkstra’s weakest precondi-

tion (wp) for a given predicate as slicing criterion. Given a program P and a predicate ψ, a

subprogram S of P is a p-slice if wp(P, ψ) ≡ wp(S, ψ). Genardo Canfora et al. extended this

idea to define a conditioned program slicing [16] which is basically a backward slice but only

for a set of execution paths, where this set is specified by a first order logic formula on the input

variables. Barros et al. extended it further and unified the condition based slicing and p-slices,

by taking a precondition and post condition as a slicing criteria, and called it assertion based

slicing or specification based slicing [6]. Given a program P , a precondition ϕ and a postcon-

dition ψ, such that the Hoare triple {ϕ}P{ψ} is true then a subprogram S of P is a slice with

respect to ϕ and ψ, if the Hoare triple {ϕ}S{ψ} remains true.

While these slices are static, that is their stated objective is met by all executions of the

program, there has been considerable interest in dynamic slices also that are computed with

respect to a particular execution of the program. A dynamic slice [54] of a program is set of

statements and predicates that impact the value of a set of variables V at a program point l, in an

execution of the program for input i. Therefore, the triplet 〈i, l, V 〉 forms a slicing criterion for

a dynamic slice. Basically, a dynamic slice matches the behaviour of the original program with

respect to value of variables in V at the program point l for a single execution of the program.

A dynamic slice is very useful in debugging and understanding program behaviour for specific

kind of inputs.

Restricted to the slicing criterion, all these techniques produce slices with behaviour equiv-

alent to the original program. However, to the best of our knowledge, the idea of producing

slices which are not exactly equivalent to original program for the selected slicing criterion has

not been explored at depth. This is so mainly because the uses to which slicing has been put to,

demand that behaviour of slices remain equivalent to original program behaviour. Our interest

in slicing is more to reduce the program size and its complexity, so that property checking can

scale up by excluding irrelevant portion of the code, and at the same time retaining the code

which impacts the property. We want to differentiate between code which impacts more and

the code which impacts less. As a result, we want to be more aggressive in slicing to reduce

66

the program size as much as we can while retaining the vital part of the code impacting the

property.

The semantics based slices [16, 24, 6] have also been claimed to help program verification

of large programs. However, at some or the other point during computation of the slices in

these techniques, one has to compute weakest precondition for the predicate given as a slicing

criterion. Since computing weakest precondition in presence of loops requires loop invariant,

computation of such slices itself can become as hard as the original verification problem. So

while these slicing techniques may help program verification once such slices are generated,

computation of slices themselves becomes as hard a problem as the original verification prob-

lem. In contrast, our idea of value slice is entirely based on static analysis and does not require

any weakest precondition computation. In addition, once the weakest preconditions have been

computed, producing the semantic slices needs an order of complexity of O(N2) where N is

the number of nodes in CFG, as stated by Commuzi and Hart [24]. In contrast, the complexity

of the value slice computation is O(N + E) where E is number of edges in the CFG and is

typically of the same order as N .

To the best of our knowledge, thin slicing [68] proposed by Sridharan, Fink and Bodik,

with an aim to help debugging, is the first approach that produces a slice whose behaviour may

differ from the original program with respect to the slicing criterion. A thin slice retains only

those statements that the variables in the slicing criterion are data dependent on and abstracts

out all the predicates. This variant of slicing comes closest to our method as it is static analysis

based and produces an aggressive slice. Although, this slicing was designed to help in debug-

ging, we wanted to explore if the idea can be helpful in scaling up the property checking also.

While the slices produced by thin slicing are indeed of smaller size, our experiments show that

these slices are too imprecise for property checking. Interestingly, the authors do mention the

importance of identifying the predicates that we include in the value slice in a concrete form.

However, in their approach such predicates are added manually on demand during debugging.

Our central claim about value slice is that it is a good compromise between precision and scala-

bility. To substantiate the claim, on one side we compare value slice with backward slice and on

other side we compare it with thin slice. This comparison is in no way intended to undermine

the usefulness of thin slice in debugging and program understanding.

67

68

Part II

Scaling up Property Checking of Array

Programs

69

Chapter 6

Background

In this chapter, we describe some basic concepts and terminology which we shall be using in

discussing our idea on scaling up property checking for array processing programs using loop

shrinking.

6.1 Imperative programs and states

We shall present our ideas in the context of imperative programs modeled in terms of assignment

statements, conditional statements, while loops, and function calls. We assume that conditional

expressions have no side effects. We restrict ourselves to goto-less programs with single-entry

single-exit loops; it makes for an easier formal treatment of our method without losing express-

ibility.

Let Var be the set of all variables in a program P and Val be the set of possible values

which the variables in Var can take. A program state is a valuation of the variables in Var that

is consistent with their types. It is represented by a map σ : Var → Val . For a variable v, σ(v)

denotes the value of v in the program state σ.

Property-checking will be expressed using the well-known formalism called

Hoare logic [44], also known as Floyd-Hoare logic, which is a formal system to reason about

correctness of the programs. We use the concept of Hoare triple of this system to specify our

property checking problem. Property checking will be expressed as Hoare triple and denoted

as {Φ}P{ψ}. Here Φ and ψ are first order logic formulas representing sets of states, and P is a

program. Such a Hoare triple is said to be valid if starting from an initial state satisfying Φ, if

71

the execution of P terminates, the final state satisfies ψ. In the context of verifying quantified

properties using loop shrinking, we only consider programs that are deterministic and guaran-

teed to terminate, and thus the issue of termination will not arise in the rest of the discussion. In

general, the validity of a Hoare triple {Φ}P{ψ} is not equivalent to the invalidity of the Hoare

triple {Φ}P{¬ψ}. A fact that we shall make use of is that in the special case when Φ repre-

sents a single program state σ, the program being terminating and deterministic, its execution

starting from Φ, will result into a single unique final state, say σ′. Therefore, the validity of

{σ}P{ψ} is equivalent to the invalidity of {σ}P{¬ψ}. As a result, we can represent a Hoare

triple {σ}P{ψ} as a proposition p and the Hoare triple {σ}P{¬ψ} will be the proposition ¬p.

6.2 Bounded model checking

Our technique makes good use of bounded model checkers (BMCs). Given a program P and

a property ψ, a BMC searches for a counterexample to ψ in executions of P whose length is

bounded by some integer n. If it finds a counterexample to ψ within the bound n, then it reports

the property as unsafe. However, if it does not find a counterexample and P has executions that

are longer than n then the BMC cannot report the program as either safe or unsafe. Bounded

model checking of a program means unwinding the loops of the program up to a pre-defined

limit and then model checking the resulting program. BMCs are, therefore, very useful in

finding bugs (violation of the property) but not very effective in proving properties. However,

for a program whose loops can be completely unwound, if a BMC does not find a bug in the

program resulting after unwinding of the loops, it means that the original program is correct,

i.e. property is proved. In our technique under discussion, we will make use of this fact and

will attempt to present only such kind of abstract programs to a BMC for model checking.

Industrial strength BMCs exist [22, 62, 35] and are widely used to detect property violations in

safety critical software. CBMC [22] developed by Daniel Kroening et al. is the BMC that we

have used in our experiments.

72

6.3 Loop acceleration

Loop acceleration [50, 15, 2] is a technique commonly used for finding loop invariant. Loop

acceleration captures the effect of a loop through closed-form expressions that give the value

of variables at the beginning of an iteration in terms of the initial state and the iteration count.

Variables whose values can be expressed in this manner are called accelerable. To illustrate,

consider the code snippet of Figure 6.1(a). In this code snippet, the value of variable i at the be-

ginning of an iteration number n is expressible as n− 1. Similarly, the value of j and k can be

expressed as (n−1) ∗ 2 and 2n−1, respectively. Value of t is more complex but still expressible

as ⌊(3∗n−2)/2⌋. However, value of f is not expressible as a closed form expression in terms of

iteration count and initial state, hence f is not accelerable. There have been considerable work

involving loop acceleration and there are tools and techniques [39, 50, 29, 55] available to iden-

tify loop accelerable variables and corresponding accelerated expressions. However, detecting

variables like t as accelerable is hard and will depend upon sophistication of the underlying

technique. We assume that some such tool is available to identify accelerable variables and

their corresponding accelerated expressions. While our approach does not require us to identify

all accelerable variables, the precision of the result does depend on the identification of as many

accelerable variables as possible.

6.4 Programs and properties of interest

Our focus is on programs that process arrays in loops which we assume to always terminate.

The property to be checked is encoded by a fragment of code that follows the array processing

loop. If the property is expressed as a loop, we denote it in our discussions as a universally or

existentially quantified formula over the elements of the array. As an illustration, the second

loop of Figure 6.1(b) encodes the universal property:

∀j.0 ≤ j < N =⇒ m ≤ a[j].

Similarly, the second loop of Figure 6.1(c) encodes the existential property:

∃j.0 ≤ j < S ∧min = a[j].

In particular, we consider program fragments R ; Q ; ψ, in which R is a simple loop

possibly manipulating arrays, Q is a loop free (possibly empty) sequence of statements and

73

1 int i,j,t;

2 int f=1,k=1;

3 i=j=t=0;

4 while(i < S){

5 i++;

6 j = j+2;

7 k=k*2;

8 if (i%2==0)

9 t = t+2;

10 else

11 t = t+1;

12 f = f*i;

13 }

(a) Loop accelera-

tion

1 int a[S];

2 int i, m;

3 m = a[0];

4 i=0;

5 while(i < S){

6 if(m >= a[i]-1)

7 m = a[i];

8 i++;

9 }

10 //loop encoding property

11 //∀j ∈ [0..S − 1].(m ≤ a[j]);

12 for (j=0; j< S; j++)

13 assert(m <= a[j];

(b) Universal property

1 int a[S];

2 int i=1, j, f, min;

3 min = a[0];

4 while (i< S) {

5 if (a[i] < min)

6 min = a[i];

7 i++;

8 }

9 //loop encoding property

10 //∃j ∈ [0..S − 1].(a[j] == min);

11 for (f=0, j=0; j< S; j++)

12 if (a[j]==min) f=1;

13 assert(f==1);

(c) Existential property

Figure 6.1: Illustration of loop acceleration and property checking loops

ψ is the property to be checked. We call R ; Q as an array processing loop. In addition, we

assume that for the loopR, an upper bound on its number of iterations can be computed through

static analysis [31]. The property ψ is assumed to have at most one quantifier. We assume that

the array-processing loop and the loop which checks the property have the same number of

iterations. Finally, since the quantified variable ranges over a finite domain (iteration counts

of a finite loop), it is useful to think of ψ as a set of quantifier-free formulas, connected by

conjunction in the case of ∀ and disjunction in the case of ∃.

6.4.1 Iteration sequence

An iteration sequence is a strictly ascending sequence of numbers, representing iteration counts.

Iterations of a loop are counted from 1. We shall use U ⊏ T to mean that U is a strict subse-

quence of T. For example, [2, 5] ⊏ [1, 2, 4, 5, 6]. The notation i : T will represent a sequence

whose first element is i and the suffix of the sequence, excluding the first element, is same as

T. Further, we shall write Pk(T) to denote the set of all k-sized subsequences of a sequence T.

For example, if T = [1, 2, 4, 5] then P3(T) = {[1, 2, 4], [2, 4, 5], [1, 2, 5], [1, 4, 5]}.

74

1 m = a[0];

2 i=0;

3 while(i<N && m>100)

4 {

5 if(m >= a[i]-1)

6 m = a[i];

7 i++;

8 }

9 j=0;

10 while(j < N)

11 {

12 assert(m <= a[j]);

13 j++;

14 }

(a) Original loop

1 i=2;

2 if (i<N && m>100){

3 if (m >= a[i]-1)

4 m = a[i];

5 i++;

6 }else

7 goto loop_exit;

8 i=4;

9 if (i<N && m>100) {

10 if (m >= a[i]-1)

11 m = a[i];

12 i++;

13 }else

14 goto loop_exit;

15 loop_exit: ;

(b) Residual loop as an un-

rolled loop

1 int it[2]={2,4};

2 int li;

3 m = a[0];

4 i=0;

5 for (li=0; li <2; li++;)

6 {

7 i = it[li-1]-1;

8 if (!(i< N && m>100))

9 break;

10 if(m >= a[i]-1)

11 m = a[i];

12 i++;

13 }

(c) Residual loop as a for loop

Figure 6.2: Illustration of residual loop for iteration sequence [2,4]

6.4.2 Residual loop and residual property

Consider a program P consisting of an array processing loop L ≡ while(C){B}Q followed

by a code fragment that checks the property ψ. Let T = [j1, j2, ..., jn] be an arbitrary iteration

sequence of the loop. We define the residual loop for the iteration sequence T, denoted as LT ,

as the statements {Sj1; Sj2; . . .Sjn;loop exit:Q}, where each Sjr is

{Ajr ; if(C){B} ; else goto loop exit; }.

Here Ajr is the sequence of assignment statements, with one assignment per accelerable

variable, such that each statement assigns to an accelerable variable its corresponding acceler-

ated expression that defines its value at the beginning of iteration jr. Obviously, for T = j : T ′

with T ′ being nonempty, LT = Sj;LT ′ .

As an illustration, the code fragment in Figure 6.2(b) is the residual loop for the iteration

sequence [2, 4], for the first loop (lines 3-8) of the code snippet given in Figure 6.2(a). In the

code snippet of Figure 6.2(c), we show the same residual loop but it is encoded as a for loop.

Note that the residual loop, given in Figure 6.2(c), has two iterations. Its first iteration

(iteration 1) represents the iteration 2 of the original loop and the second iteration (iteration 2)

75

1 m = a[0];

2 i=0;

3 while(i<N && m>100)

4 {

5 if(m >= a[i]-1)

6 m = a[i];

7 i++;

8 }

9 j=0;

10 while(j < N)

11 {

12 assert(m <= a[j]);

13 j++;

14 }

(a) Original loop

1 j=2;

2 if (j<N){

3 assert(m <= a[j]);

4 j++;

5 }else

6 goto loop_exit;

7 j=4;

8 if (j<N){

9 assert(m <= a[j]);

10 j++;

11 }else

12 goto loop_exit;

13 loop_exit: ;

(b) Residual property as an

unrolled loop

1 int it[2]={2,4};

2 int li;

3 j=0;

4 for (li=0; li <2; li++;)

5 {

6 j = it[li-1]-1;

7 if (!(j< N))

8 break;

9 assert(m <= a[j]);

10 j++;

11 }

(c) Residual property as a for loop

Figure 6.3: Illustration of residual property for iteration sequence [2,4]

represents iteration 4 of the original loop. An iteration j of a residual loop which represents

iteration j′ of the original loop will also be called representative-of-iteration j′. So iteration 2

of the residual loop in the example is representative-of-iteration 4.

If the loop iterates for a maximum ofN times, then [1, 2, ..., N] will be called the complete

iteration sequence of the loop. It is obvious that, the residual loop L[1,2,...,N] represents an

unrolling of L and the two are semantically equivalent. For this residual loop, its every iteration

i is representative-of-iteration i. Similarly, for the iteration sequence T=[j1, j2, ..., jm] and the

property ψ, we define the residual property ψT as set of clauses {ψj1 , ψj2, . . . , ψjm}.

As an illustration, the code fragment in Figure 6.3(b) encodes the residual property for the

iteration sequence [2, 4] for the property encoded in the second loop (lines 10-14) of the code

snippet given in Figure 6.3(a). In the code snippet of Figure 6.3(c), we show the same residual

property though encoded as a for loop.

6.5 State approximation for residual loops

Let the set of initial states at the beginning of a loop L be ϕ. Obviously, the set of states at

the beginning of the iteration numbered 1 would be ϕ. The set of states at the beginning of

76

an iteration numbered i, where i > 1, would be given by sp((S1;S2; ...;Si−1), ϕ), the strongest

post-condition of S1;S2...Si−1 with respect to ϕ. We can define the set of states at the beginning

of the iteration j for a residual loop also in a similar manner. Obviously, the states at the

beginning of a residual loop also will be same as the states at the beginning of the original loop,

i.e. ϕ. However, for a residual loop, say for an iteration sequence [j1, j2, ..., jn], the states at the

beginning of some iteration numbered i > 1 will depend upon the iteration numbers j1, j2, ..., ji

of the iteration sequence. Obviously, the iteration i of the residual loop is representative-of-

iteration ji.

Consider an iteration sequence U = [1, 3, 5] and its residual loop LU . The second and

third iterations of the residual loop are representative-of-iterations 3 and 5, respectively. Note

that the states at the beginning of second iteration will be sp(S1, ϕ) and that at the beginning

of third iteration of the residual loop will be sp((S1;S3), ϕ). Consider another iteration se-

quence U ′ = [2, 4, 5, 7] and its residual loop LU ′ . For this residual loop, the states at the

beginning of the third iteration, which is representative-of-iteration 5, will be sp((S2;S4), ϕ).

This is different from sp((S1;S3), ϕ), the states at the beginning of third iteration (which is also

representative-of-iteration 5) of the residual loop LU . Therefore, for a given i, in the residual

loops of different iteration sequences containing i, the states at the beginning of the iteration

which is representative-of-iteration i may be different and will depend upon the composition

of the iteration sequence of the residual loop. However, we sometimes have to estimate these

set of states in the context of an arbitrary iteration sequence T which contains the iteration i,

and in which the sequence of iteration numbers preceding i is not exactly known. Therefore,

instead of the earlier exact calculation, we over-approximate the set of states at the beginning

of the iteration which is representative-of-iteration i, denoted ϕi, through the recurrences:

ϕ1 = ϕ, and ϕi = sp(Si−1, ϕi−1) ∪ ϕi−1.

The additional term ϕi−1 in the union accounts for the possibility that the iteration i− 1

may not precede i in T, and therefore the set of states at the beginning of representative-of-

iteration i should also include the states at the beginning of the representative-of-iteration i−1.

For a loop having N iterations, it is obvious that following holds:

∀j, j′ ∈ [1..N] . j ≤ j′ =⇒ ϕj ⊆ ϕj′ .

77

78

Chapter 7

Loop shrinkability

We now characterize the conditions under which the behavior of an array-processing loop L,

with respect to a property ψ, can be over-approximated by a residual loop LU in association

with the corresponding residual property ψU , where U is an iteration sequence. The iteration

sequence U consists of fewer iterations than the original program, i.e. U ⊏ [1, 2, . . . , N], and

the iteration numbers of U are chosen non-deterministically.

7.1 Definition of shrinkable loops

To be able to characterise the loops which can be over-approximated by a residual loop with

respect to a property, we first formally define this over-approximation as follows:

Definition 7.1 (Shrinkable loops) Consider a program consisting of a loop L and a property

ψ to be checked. Let T represent the complete sequence of iterations of the loop. The loop is

said to be shrinkable with respect to ψ and with a shrink-factor k, 0 < k < |T|, if and only if,

starting from any state σ ∈ ϕ, the loop L satisfies ψ whenever the residuals LU of each k-length

subsequence U of T satisfies the corresponding residual property ψU . Formally:

∀σ ∈ ϕ : ((∀U ∈ Pk(T) : {σ}LU{ψU}) =⇒ {σ}L{ψ}) (7.1)

It will often be useful to read the formal description above in a contrapositive manner.

The same is depicted in the Figure 7.1. It reads as: starting from a state σ in ϕ, if the loop

L fails to satisfy ψ, then the failure is also witnessed by a k-length iteration sequence U such

79

Figure 7.1: Illustration of contrapositive view of shrinkable loops definition

that, starting from the same state σ, the residual loop LU also fails to satisfy the corresponding

residual property ψU . Note that executions of both L and LU begin in the same state σ in ϕ.

A shrinkable loop with a shrink-factor k will be called k-shrinkable. If we know that a

loop is k-shrinkable, we can construct an abstract program that non-deterministically chooses an

iteration sequence of size k, runs the residual loop, and then checks the corresponding residual

property. Assuming k is a small number, we can check the property on this abstract program

using a BMC. If the property holds, then shrinkability guarantees the correctness of the original

program too. In contrast, the alternative is using a BMC directly on the original program. This

alternative will require the BMC to unroll the loop to its complete bound, i.e. enumerate all

the iterations, and the same will not be scalable when the loop has a large bound. However, a

counterexample in the abstract program does not necessarily imply a violation of the property

in the original program, except in situations described below.

Suppose the non-accelerable variables have no loop-carried dependence [3]. In that case

the value assigned to such variables in one iteration has no bearing on the value assigned to

same variables in another iteration. In addition, consider the case when for all i, all the array

elements appearing in the residual property ψi get modified (if at all) only in the ith iteration

of the array processing loop. In other words, the loop iterations are independent of each-other.

80

1 for (i=0; i< N; i++)

2 {

3 a[i] = 11;

4 }

5 for (i=0; i< N; i++)

6 {

7 assert (a[i]==11);

8 }

(a) Initialisation with same

value

1 for (i=0; i< N; i++)

2 {

3 a[i] = i;

4 }

5 for (i=0; i< N; i++)

6 {

7 assert (a[i]==i);

8 }

(b) Initialisation with loop ac-

celerated values

1 for (i=0; i< N; i++){

2 a[i] = b[i]+c[i];

3 d[i] = b[i]-c[i];

4 }

5 for (i=0; i< N; i++){

6 t = a[i] + d[i];

7 assert (t==2*b[i]);

8 }

(c) Array manipulation

Figure 7.2: Illustration of programs with no loop carried dependence

In this situation, if the property ψ gets violated in the original program P , due to violation of

a clause ψi′ , say, then in the program consisting of the residual loop L[i′], constructed on the

basis of the only iteration i′, the residual clause ψ[i′] will get violated. Thus, a loop without

loop-carried dependence is 1-shrinkable. More significantly, if the property being tested for

such programs is universal, the converse is also true. I.e. if in the residual loop corresponding

to an iteration sequence consisting of a single iteration, the corresponding residual property gets

violated, then the original program will also not satisfy its specified property. The code snippet

of Figure 7.2(a), that initialises an array with a single value and then checks that all the elements

of the array are indeed initialised with that value, is an example of such programs. In the same

figure, we illustrate some other programs of this category.

Note that according to Definition 7.1, if a program P satisfies its property ψ, then the loop

constituting the program is k-shrinkable for any shrink-factor k > 0. Similarly, a loop with a

bound of m iterations is trivially m-shrinkable. Obviously, if the shrink-factor is small, then

the abstract program with a smaller length iteration sequence loads the verifier to a lesser extent

and thus offers greater chances of verifier returning an answer. Therefore, we are interested in

finding shrink-factors that are much smaller than the loop bound.

However, finding out statically whether a loop is shrinkable is difficult as we illustrate

through an example. Consider the two code snippets min2 and lmin in Figure 7.3 which have

similar structure as well as similar nature of computation. Assume that, for both code snippets,

the elements of the array a get initialised with non-deterministic values in every execution. In

81

1 int i, min, a[S];

2 min = a[0]; i=1;

3 while (i< S) {

4 if (a[i] < min) min = a[i];

5 i++;

6 }

7 assert ∃j ∈ [0..S− 1].(a[j] == min);

(a) Code snippet min2 : k-shrinkable with

1 ≤ k ≤ S

1 int i, m, d, a[S];

2 m = a[0]; i=0;

3 while(i < S){

4 if(m >= a[i]-1) m = a[i];

5 i++;

6 }

7 assert ∀j ∈ [0..S− 1].(m ≤ a[j] + d);

(b) Code snippet lmin : (d+2)-

shrinkable

Figure 7.3: Examples illustrating similar loops having different shrinkability

addition, assume that for the code snippet of Figure 7.3(b), the variable d is given some non-

negative integer value. The code snippet min2 computes the minimum of the array, and the

property being checked at the end is that the computed minimum value in variable min is equal

to some element of the array. It is obvious that the code snippet min2 correctly computes the

minimum, and therefore, it is correct with respect to the asserted property. Thus the loop in the

code snippet is k-shrinkable for all k from 1 to S. The second code snippet lmin is similar to

our motivating example with a property that asserts that the final value of m does not exceed

any array element by more than a value d. Observe that, starting with the second element of

the array, if the value of each element exceeds the value of the previous element by 1, then m

will exceed the first element by S− 1. Therefore, the property does not hold for d < S − 1. It

turns out that the loop in lmin is shrinkable with a shrink-factor k, where k is lower of d + 2

and S. This illustrates the difficulty of analytically finding whether a given loop is shrinkable,

and based on the development in rest of this section, we shall suggest an empirical method in

Section 7.4.

7.2 Identifying shrinkable loops

While Definition 7.1 lays down the consequences of a loop being shrinkable, it does not provide

a convenient method to decide whether a loop is shrinkable and to find the shrink-factor. To

get around this problem, we first extend the notion of shrinkability from loops to arbitrary

iteration sequences. We then identify the conditions under which the shrinkability of smaller

82

iteration sequences (that are checked explicitly) would imply the shrinkability of larger iteration

sequences and eventually of the entire loop.

7.2.1 Sequence shrinkability

We adapt the definition of loop shrinkability to define sequence shrinkability as follows:

Definition 7.2 (Shrinkable iteration sequence) Consider a program consisting of a loop L and

a property ψ to be checked. Let T be an iteration sequence, and let j be the first iteration in

T. The sequence T is k-shrinkable with respect to ψ, 0 < k < |T|, if and only if, starting

from every state σ ∈ ϕj , the residual loop LT satisfies the residual property ψT whenever the

residual loops LU of each k-length subsequences U of T satisfies the corresponding residual

property ψU . Formally:

∀σ ∈ ϕj .((∀U ∈ Pk(T).{σ}LU{ψU}) =⇒ {σ}LT{ψT}) (7.2)

The only difference between the notion of shrinkability of a loop and an iteration sequence

is the starting state σ, which, in this case, is from the set ϕj . Recall that ϕj is an approximation

of the set of states at the beginning of an iteration, which is the representative-of-iteration j,

in the residual loop of any iteration sequence that contains j. As in the case of loops, by k-

shrinkable sequence we shall mean a shrinkable sequence with shrink-factor k. It is obvious

that a loop is k-shrinkable if the sequence consisting of all iterations of the loop is k-shrinkable.

A contrapositive view of the definition is depicted in Figure 7.4. It reads as, starting from

a state σ in ϕj , if the residual loop LT fails to satisfy ψT , then the failure is also witnessed by

a k-length subsequence U ⊏ T whose residual loop LU also fails to satisfy the corresponding

residual property ψU . Note that, again, executions of both LT and LU begin in the same state σ

in ϕj .

As an illustration of an iteration sequence that is not shrinkable, consider the code snippet

lmin in Figure 7.3(b) with d = 0. Consider the array a with its initial two elements as {0,1}

and the iteration sequence T = [1, 2]. The residual loop of T computes m = 1 for which the

residual property ψT does not hold (m > a[0]). However, the residual loop for every 1-length

sequence satisfies its residual property, and thus T is not 1-shrinkable. Also notice that, when

d = 0, the code snippet is same as the motivating example of Figure 1.3(a), except for array

83

Figure 7.4: Illustration of contrapositive view of sequence shrinkability definition

initialisation. Thus, from the observations in Section 1.3.2, every iteration sequence of length 3

is 2-shrinkable.

7.2.2 Problem with sequence shrinkability definition

We are interested in a method that guarantees that a loop is shrinkable by examining iteration

sequences up to a given length. More specifically, we are interested in finding a pair of numbers

n and k, such that k-shrinkability of all sequences of length between k + 1 and n would imply

the k-shrinkability of every sequence longer than n—in particular, the complete set of iterations

comprising the loop. If we can identify the condition under which we can find such a pair, then

our strategy would be to establish the k-shrinkability of sequences up to n empirically, and the

k-shrinkability of all iteration sequences with lengths greater than n will follow.

Since empirical verification of k-shrinkability for all subsequences of length between k+1

and n would be costly, we shall consider the case where n = k+1, i.e. we shall empirically find

a k such that all k+1 length iteration sequences are k-shrinkable. The identified condition will

then ensure the k-shrinkability of sequences larger than k + 1. Notice that the generalization

from k + 1 to larger sequences does not happen unconditionally. As an example, consider the

84

Figure 7.5: Illustration of problem with adapted definition of sequence shrinkability

code snippet lmin in Figure 7.3. For d=2, all the iteration sequences of size 3 are 2-shrinkable

but not all sequences of size 4 are 2-shrinkable.

To derive the required condition, let us examine what it takes to ensure the k-shrinkability

of a sequence of length k + 2, given the k-shrinkability of all sequences of length k + 1. For

simplicity of exposition, first we examine the issues related to conjunctive properties. The

treatment for disjunctive properties is very similar, and we shall give final solution later to

address the similar issues related to such properties.

Consider an iteration sequence T of size k+2. Represent T as j : T ′. Taking a contrapos-

itive view of the condition for shrinkability, assume that starting from σ, the residual property

ψT is violated for the program LT i.e. {σ}LT{¬ψT} is true. Given that all sequences of length

k + 1 are k-shrinkable, it suffices to find a subsequence T ′′
⊏ T of length k + 1 such that

{σ}LT ′′{¬ψT ′′} is true. k-shrinkability will then ensure that there is a k-length subsequence

U of T ′′ (and thus also a subsequence of T) such that {σ}LU{¬ψU}. Let the state after the

iteration j in the sequence be σ′. Clearly {σ′}LT ′{¬ψ[j] ∨ ¬ψT ′} is true. We have shown three

possible scenarios in the Figure 7.5.

1. Consider the case when ψT ′ is violated, depicted as ’Case 1’ in the Figure 7.5. Since

85

T ′ is k-shrinkable, it is possible to find a k-length subsequence U within T ′ such that

starting from σ′, ψU would be violated after LU . Now consider the iteration sequence

T ′′ = j : U. Clearly, starting from σ, ψT ′′ would be violated after executing LT ′′ , and

thus the k + 1-length sequence that we want is T ′′.

2. Now suppose that ψT is violated only because the clause ψ[j] is violated. There are two

subcases to be considered. In the first, assume that the violation of ψ[j] also shows up in

the state after iteration k + 1. The scenario is depicted as ’Case 2’ in the Figure 7.5. In

this case the T ′′ that we want is the (k + 1)-length prefix of T.

3. The interesting case is when the violation of ψT is solely because of ψ[j], and this viola-

tion of ψ[j] does not show up in the state after iteration k + 1. The scenario is depicted

as ’Case 3’ in the Figure 7.5. In this case, the definition of shrinkability, in its current

form, does not enable us to produce the required sequence T ′′. To remedy this, notice

that for the subsequence T ′, there is an iteration in the past, namely j, whose clause ψ[j]

has been violated. If we revise the definition of k-shrinkability of iteration sequences

(Definition 7.2) to ensure that this violation also shows up at the end of some k-length

subsequence U ′ of T ′, then we are done. The required k + 1-length subsequence T ′′ in

this case would be j : U ′ for which {σ}LT ′′{¬ψT ′′} would be satisfied.

7.2.3 Revised definition of sequence shrinkability

We call this modification, introduced in the previous section, as past-preservation. The revised

definition of shrinkability that includes past-preservation is presented below.

Definition 7.3 (Shrinkable iteration sequence, revised for universal properties) Consider a pro-

gram consisting of a loop L and a universal property ψ to be checked. Let T be an iteration

sequence, and let j be the first iteration in T. In addition, let i stand for any iteration before

j. The sequence T is k-shrinkable with respect to a property ψ, 0 < k < |T|, if and only if,

starting from every state σ ∈ ϕj the residual loop LT satisfies ψT ∧ ψ[i] whenever the residual

loops LU of each k-length subsequences U of T satisfy the corresponding property ψU ∧ ψ[i].

In other words:

∀σ ∈ ϕj .∀0 ≤ i < j.((∀U ∈ Pk(T).{σ}LU{ψU ∧ ψ[i]}) =⇒ {σ}LT{ψT ∧ ψ[i]}) (7.3)

86

Figure 7.6: Illustration of contrapositive view of revised definition of sequence shrinkability

A contrapositive view of the revised definition is depicted in the Figure 7.6. It reads as:

if the execution of LT with initial state σ results in a violation of its residual property ψT or

the clause ψ[i] corresponding to a past iteration i, then there exists a subsequence U of T

such that the execution of LU with the same initial state also results in violation of the residual

property ψU or the clause ψ[i]. Henceforth, we will consider this definition as the definition of

shrinkability of iteration sequences.

As a technical matter, notice that we have included 0 as a value of the past iteration i.

Otherwise, any sequence that starts with iteration 1 would have an empty set of past iterations

and the condition of k-shrinkability would be vacuously true for the sequence. We, therefore,

include 0 as a past-iteration and define ψ[0] to be true. A pleasing consequence of this is when

the iteration sequence consists of all the iterations of a loop, the revised definition that includes

past-preservation also coincides with the definition of shrinkability of loops (Definition 7.1).

Consider the example lmin in Figure 7.3 with the S = 5 and d = 1. Not all sequences of

length two are 1-shrinkable by the revised definition. To see this, consider the case of an array

a as {2, 1, 2, 3, 4}. Let T be [4,5] and take past iteration i as 1. Let m be 2 in a state σ. Then

ψ[1]=m ≤ a[0] + 1 ≡ m ≤ 3. Clearly, starting from state σ, for the residual loops of size-1

subsequences U, i.e. [4] and [5], the resulting m will be 3 and 2 (respectively), and ψ[1] ∧ ψU

87

is satisfied. But starting from the same state σ, the residual loop LT will produce m = 4, and

therefore ψ[1] ∧ ψT is not satisfied. On the other hand, it is easy to see that for the same d, all

the sequences of size 4 are 3-shrinkable.

To address the issues related to disjunctive properties, the revised definition for sequence

shrinkability with respect to existential properties will be as follows:

Definition 7.4 (Shrinkable iteration sequence, revised for existential properties) Consider a

program consisting of a loop L and an existential property ψ to be checked. Let T be an

iteration sequence, and let j be the first iteration in T. In addition, let i stand for any iteration

before j. The sequence T is k-shrinkable with respect to a property ψ, 0 < k < |T|, if and

only if, starting from every state σ ∈ ϕj , the residual loop LT satisfies ψT ∨ ψ[i] whenever

some residual loop LU of a k-length subsequence U of T satisfies the corresponding property

ψU ∨ ψ[i]. In other words:

∀σ ∈ ϕj .∀0 ≤ i < j.((∃U ∈ Pk(T).{σ}LU{ψU ∨ ψ[i]}) =⇒ {σ}LT{ψT ∨ ψ[i]}) (7.4)

The revised definition for the case of existential property differs from the one for the

case of universal properties, in that now the antecedent needs to hold for only some k-sized

subsequence U of T, and not all. On similar lines as in the case of definition with respect to

universal property, here also we include 0 as a value of the past iteration i for the same reason.

However, for this case, ψ[0] is defined to be false. Consequently, when the iteration sequence

consists of all the iterations of a loop, this revised definition for existential property implies that

the loop is shrinkable as per the Definition 7.1.

7.2.4 From sequence shrinkability to loop shrinkability

We now formally prove the result that we have been working towards: for a loop to be k-

shrinkable, it is enough if every iteration-sequence of size k + 1 is k-shrinkable. Our method

of determining the shrink-factor for which a loop is shrinkable will make use of this important

result.

Theorem 7.5 An array processing loop is k-shrinkable with respect to a property ψ, if every

iteration-sequence of size k + 1 is k-shrinkable with respect to ψ.

88

Proof To show that the loop is k-shrinkable, it is enough to show that the complete iteration

sequence of the loop is k-shrinkable according to Definition 7.3 and 7.4 for universal and exis-

tential properties, respectively . However, we shall show a stronger condition that all sequences

of size greater than k are k-shrinkable. The proof is by induction on the length n of an iteration

sequence T of the loop. For the base case n = k + 1, the k-shrinkability of T is a given in the

statement of the theorem.

Now, let n be greater than k + 1 and assume, as the induction hypothesis, that every

sequence of length less than n is k-shrinkable. Let T = j : T ′. We address the cases of

conjunctive and disjunctive properties separately:

Case 1:ψ is conjunctive

As usual, we take a contrapositive view of the shrinkability condition and assume that for some

past iteration i of T, starting from a state σ ∈ ϕj , the property ψ[i] ∧ ψT fails after executing

LT i.e. {σ}LT{¬ψ[i] ∨ ¬ψT} is true. We show that there exists a k-sized subsequence U ⊏ T

such that {σ}LU{¬ψ[i] ∨ ¬ψU} is true.

Since LT = Sj;LT ′ and ψT = ψ[j] ∧ ψT ′ , we have {σ}Sj ;LT ′{¬ψ[i] ∨ ¬ψ[j] ∨ ¬ψT ′}.

Assume that starting with σ, the state reached after executing Sj , the loop body for the iteration

j, is σ1, i.e. {σ}Sj{σ1}. We then have {σ1}LT ′{¬ψ[i] ∨ ¬ψT ′}
∨
{σ1}LT ′{¬ψ[j] ∨ ¬ψT ′}.

We show the existence of the desired U by assuming that the first disjunct is true. Since i and

j are both past iterations for T ′, a similar proof works for the case in which only the second

disjunct is true. Assume that the first iteration of T ′ is j′. Since j + 1 ≤ j′ and σ1 ∈ ϕj+1,

as per the observation made in Section 6.5, σ1 ∈ ϕj′. Since T ′ is k-shrinkable, we must have

a k-sized subsequence U ′
⊏ T ′ such that {σ1}LU ′{¬ψ[i] ∨ ¬ψU ′} is true. It follows that

{σ}Sj;LU ′{¬ψ[i] ∨¬ψU ′}, and, therefore, {σ}Sj;LU ′{¬ψ[i] ∨¬ψ[j] ∨¬ψU ′} are also true. Let

T ′′ be j : U ′. Obviously, T ′′
⊏ T. Since the size of T ′′ is k + 1, T ′′ is k-shrinkable by

the induction hypothesis and thus there exists a k-sized subsequence U ⊏ T ′′
⊏ T such that

{σ}LU{¬ψ[i] ∨ ¬ψU} holds.

Case 2:ψ is disjunctive

We will use direct definition of the shrinkability condition and assume that for some past iter-

ation i of T, starting from a state σ ∈ ϕj , for some k-sized subsequence U ⊏ T, the property

ψ[i] ∨ ψU holds after executing LU i.e. {σ}LU{ψ[i] ∨ ψU} is true. Under this assumption,

we show that {σ}LT{ψ[i] ∨ ψT} is true. Assume that starting with σ, the state reached after

89

executing Sj , the loop body for the iteration j, is σ1, i.e. {σ}Sj{σ1}. There are only two cases:

either j is first iteration of U, in that case U can be written as j : U ′, or U is a subsequence of

T ′.

Assume U = j : U ′. Obviously, U ′
⊏ T ′ and U ′ is of size k − 1, and there exists

a sequence U ′′ of size k such that U ′
⊏ U ′′

⊏ T ′. Since j : U ′
⊏ j : U ′′, by induction

hypothesis, {σ}Lj:U ′′{ψ[i] ∨ψj:U ′′} is true. Since Lj:U ′′ = Sj;LU ′′ and ψj:U ′′ = ψ[j] ∨ψU ′′ , we

can say that {σ}Sj ;LU ′′{ψ[i]∨ψ[j]∨ψU ′′} is true. Or, {σ1}LU ′′{ψ[i]∨ψU ′′}
∨
{σ1}LU ′′{ψ[j]∨

ψU ′′} is true. We show the desired proof by assuming that the first disjunct is true. Since i and j

are both past iterations for U ′′, the proof would be similar for the case in which only the second

disjunct is true. Assume that the first iteration of T ′ is j′. As argued in previous case of ψ being

conjunctive, it is obvious that σ1 ∈ ϕj′ . Since T ′ is k-shrinkable, {σ1}LT ′{ψ[i] ∨ψT ′} must be

true. This can be extended to {σ1}LT ′{ψ[i] ∨ ψ[j] ∨ ψT ′}. From this, we say {σ}Lj:T ′{ψ[i] ∨

ψj:T ′} or {σ}LT{ψ[i] ∨ ψT} is true.

AssumeU ⊏ T ′. Obviously,U ⊏ j : T ′ as well. By induction hypothesis, {σ}Lj:U{ψ[i]∨

ψj:U}is true. The rest of the proof is exactly similar to the previous case, with U playing role of

U”.

7.3 Checking shrinkability of iteration sequences of a size

Recall that according to Theorem 7.5, a loop is k-shrinkable if every iteration sequence of

length k + 1 is k shrinkable. In addition, with our assumption that the loop has a statically

computable upper bound of number of iterations, the number of such iteration sequences will

be finite. Given a candidate k, the procedure check loop in Figure 7.7 non-deterministically

chooses an iteration sequence T of length k+1, and attempts to verify that T is k-shrinkable.

This is done in the procedures check seq univ and check seq exist for universal and

existential properties, respectively, These two procedures encode the criterion for sequence

shrinkability, as given by definitions 7.3 and 7.4.

Assume that the given program consists of an array processing loop L of the form

while(C){B};Q followed by the assertion assert(ψ). Let X denote the vector of variables

which may be modified (by resolving dereferences, if any, using a safe points-to-analysis) in the

loop body B. Recall that the implication in the criterion for shrinkability is required to hold for

90

1 check_loop(k)

2 {

3 choose an arbitrary

4 iteration-sequence

5 T of size k+1

6 if (ψ is universal)

7 check_seq_univ(T);

8 else

9 check_seq_exist(T);

10 }

(a) Checking loop shrinkability

1 check_seq_univ(T)

2 {

3 j = head(T);

4 i = nondet();

5 assume(0 <= i < j);

6 X_initial= nondet();

7 c = true;

8 for each k sized

9 U ⊏ T {

10 X = X_initial;

11 LU;

12 c=ψ(i) ∧ ψU

13 if (!c) break;

14 }

15 X = X_initial ;

16 LT;

17 r=ψ(i) ∧ ψT

18 assert(c =⇒ r);

19 }

(b) Checking sequence shrinka-

bility for universal property

1 check_seq_exist(T)

2 {

3 j = head(T);

4 i = nondet();

5 assume(0 <= i < j);

6 X_initial= nondet();

7 c = true;

8 for each k sized

9 U ⊏ T {

10 X = X_initial;

11 LU;

12 c=ψ(i) ∨ ψU

13 if (c) break;

14 }

15 X = X_initial ;

16 LT;

17 r=ψ(i) ∨ ψT

18 assert(c =⇒ r);

19 }

(c) Checking sequence shrinka-

bility for existential property

Figure 7.7: Program construction for determining shrinkability. Note that X and X initial

are vectors of variables, and nondet(), accordingly, generates a vector of values.

all states in ϕj , where j is the head of sequence T. The states in ϕj are over-approximated by

assigning non-deterministic values to X (through X initial). Thus, our process of determin-

ing shrinkability is conservative, and a future extension to this work would be a static analysis

to obtain a better approximation of ϕj .

We discuss the procedure check seq univ, given in Figure 7.7(b), which checks the

sequence shrinkability for a universal property. The procedure check seq exist works on

similar lines for existential properties. The loop in lines 8-14 checks the antecedent (∀U ∈

Pk(T).{σ}LU{ψU ∧ ψ[i]}) in the implication in the shrinkability condition (Definition 7.3),

and stores the result in c. This loop executes a maximum of k + 1 times, which is the number

of subsequences of T of size k. In lines 15-17, the consequent {σ}LT{ψT ∧ ψ[i]} of the same

implication is computed, and stored in r. Finally, line 18 checks the condition for shrinkability,

91

given by the implication c⇒ r. Observe that the residual loop for each subsequence U, and the

residual loop for the sequence T, are all evaluated in the same state denoted by the values of the

variables in X initial. It is clear that the program shown in Figure 7.7 can be automatically

constructed for any given k, L, and ψ.

The fact that shrinkable loops usually have a low shrink-factor has two consequences

for the procedure to determine shrinkability: (i) it allows us to keep the number l till which a

program is tested for shrinkability at a low value without the fear of missing out many shrinkable

programs, and (ii) since the for loops in lines 8-14 of figures 7.7(b) and 7.7(c) have a bound

of k + 1, and k is smaller than l, the shrinkability testing procedure is fairly efficient.

7.4 Determining loop shrinkability empirically

We now show how Theorem 7.5 can be used to empirically determine whether a given loop is

shrinkable, and to also find the corresponding shrink-factor. To do so, basically we search for a

k for which the loop is shrinkable. Since it is an empirical process, we need to limit the search

to a predefined limit LIM.

For the given loop L and the property ψ to be checked, we construct a parameterised pro-

gram check loop(k) with k as a parameter. Depending on the computing resource avail-

ability, we fix the limit LIM to limit our search space. We carry out one of the two processes

given in Figure 7.8. While the process search sf carries out a sequential search starting from

k = 1 and going up to LIM, the process bsearch sf does a binary search within 1 to LIM.

Each process feeds the parameterised program check loop(k) for different values of k (the

candidate shrink-factor) to a bounded model checker for verification. If the program is verified

to be correct for some value of k, then Theorem 7.5 guarantees that the loop in the given pro-

gram is k-shrinkable. The process stops when it either finds a k for which the loop is shrinkable

(success), or when the search space is exhausted (failure).

For both of these processes, it is guaranteed that if they find a k for which loop is shrink-

able, then that will be smallest k for which the loop can be found shrinkable as per the Theo-

rem 7.5. When LIM is small, say less than 5, the sequential search search sf can be used,

otherwise the more efficient binary search bsearch sf is used. We assume that the BMC

which we use in the process provides one of the three outcomes: (1) Program is correct, (2)

92

1 search_sf()

2 {

3 for (k=1; k< LIM; k++)

4 {

5 Use BMC to check property on

6 the program check_prop(k);

7 if program is correct then

8 Exit with declaration that

9 loop is shrinkable

10 with shrink factor k;

11 }

12 Exit with declaration that

13 shrikability is unknown;

14 }

(a) Sequential search

1 bsearch_sf()

2 {

3 low = 1; high = LIM;

4 checked = {}

5 while (high >= low)

6 {

7 k = (high+low)/2

8 if k in checked

9 Exit with declaration that

10 loop is shrinkable

11 with shrink factor k;

12 use BMC to check property on

13 the program check_prop(k)

14 if BMC failed to give a judgement

15 high = k-1;

16 else if program is correct

17 add k to checked

18 if (low+1>=high)

19 Exit with declaration that

20 loop is shrinkable

21 with shrink factor k;

22 else high = k;

23 else low =k+1;

24 }

25 Exit with declaration that

26 loop shrikability is unknown

27 }

(b) Binary search

Figure 7.8: Process to determine loop shrinkability and finding shrink-factor.

Program is incorrect, or (3) Failed due to limit on resources or other reasons. The binary search

assumes that if BMC did not fail for some value of k in checking correctness of check loop,

then it will not fail for any lower value of k as well. As we shall see in Section 8.1, the shrink-

factor for shrinkable loops are usually small. This is a favourable situation, since programs with

a smaller shrink-factors are relatively easier to verify than programs with larger shrink-factors.

However, since our shrinkability finding process is based upon searching for a k within

the range [1,LIM] for which a given program is shrinkable the cases where shrinkability

93

depends upon some parameter appearing in the program can not be addressed by this process.

The example of Figure 7.3(b), where the loop is shrinkable for k = d+2, is a case in point. For

such cases, the process will terminate by saying that shrinkability of the program is unknown.

7.5 Property checking for shrinkable loops

Once we discover that the loop of a program is k-shrinkable, we construct an abstract program

that consists of a program fragment to non-deterministically choose a k-sized iteration sequence

T, a residual loop LT , and a residual property ψT . The abstract program is submitted to a BMC

for verification. The motivating example of Figure 1.3 illustrates the nature of the abstract pro-

gram, and it is easy to generalize and automate the process of abstraction to arbitrary programs

that are within the scope of our method.

Since the quantified property is also encoded as a loop, the residual property can also be

constructed as a residual of this loop. Consider a program with a loop L for which the residual

has to be constructed with respect to a k-length iteration sequence. Assume that the maximum

iteration count of the loop is m. Let a[e] be an arbitrary expression involving an array a of

size n. Also assume that the index expression e is accelerable and is of the form f(i), where

i ∈ [1..m] represents a particular loop iteration, and f is the acceleration function. The abstract

program non-deterministically chooses a k-length iteration sequence, whose elements are in the

range [1..m]. The iteration sequence is concretely represented as an array. A loop iterates over

all the values of the iteration sequence. The expression a[e] in the loop body is replaced by the

corresponding accelerable expression a[f(i)].

To make this clearer, consider the example in Figure 7.9(a). Assume that the size p of the

array is more than (n + 1)/2. The loop initializes the array element a[t] with the value 2*t.

Assume that the loop is k-shrinkable for some property. The maximum iteration countm for the

loop is (n+1)/2. The code in Figure 7.9(b), written in a C-like notation, is an abstract descrip-

tion of the residual loop. The call to init initializes the array T with a non-deterministically

chosen k-length iteration sequence. The C-style comment indicates the constraints on the cho-

sen iteration sequence T. The conditions 1 ≤ T[l-1] < T[l] and 0 ≤ 2 ∗ (T[l]-1) < n

together ensure that the iteration sequence consists of increasing values in the range [1 . . .m],

and the condition T[l]-1 < p ensures that the chosen values do not cause an out-of-bounds

94

1 int a[p];

2 int i=0,t=0;

3 while(i < n)

4 {

5 a[t] = i;

6 i+=2; t++;

7 }

(a) Given program

1 int a[p],i=0,t=0,T[k];

2 init(T) ;

3 //∀l ∈ 1..k-1.

4 // 1 ≤ T[l-1] < T[l]

5 // 0 ≤ 2 ⋆ (T[l]-1) < n

6 // T[l]-1 < p

7 for j in T {

8 i = (j-1)*2;

9 t = j-1; a[t]=i;

10 i+=2; t++;

11 }

(b) Abstract description of resid-

ual

1 int a[p], T[k], l, i=0, t=0;

2 init(T) ;

3 //∀l ∈ 1..k-1. 1 ≤ T[l-1] < T[l]

4 for (l=0;l<k;l++) {

5 j = T[l]; i = (j-1)*2;

6 t = j-1;

7 if (!(i < n)) break;

8 a[assume(0<=t<p),t] = i;

9 i+=2; t++;

10 }

11 assume(l==k);

(c) Residual as generated by the tool

Figure 7.9: Example illustrating the residual of a shrinkable loop. Program in (b) is an abstract

description of the residual, presented for ease of explanation.

access of the array. The for loop covering lines 7 to 11 iterates over the elements in T. Inside

the loop body, i and j are computed through acceleration functions applied to the iteration

numbers picked from T.

In practice, the constraints on the values in T would be enforced programmatically, and

this is shown in Figure 7.9(c). Here an increasing sequence of values are chosen, and the con-

straint that the chosen values are in the range [1..m] is enforced through the conditional break.

Similarly, the constraint that the index of a does not exceed its bound is enforced through the

assume at line 8. Finally, assume(l==k) ensures that the residual indeed iterates k times

and does not break out of the loop earlier.

7.6 Multiple loops and nested loops

Although the Theorem 7.5 is applicable to a single non-nested array processing loop followed

by a property checking code fragment encoded as a non-nested loop, the approach can be used

to verify programs having multiple loops or nested loops of certain category.

95

1 sum1=0;

2 for (i=0; i<N; i++)

3 sum1 = sum1+a[i];

4 sum2=0;

5 for (i=0; i<N; i++)

6 sum2 = sum2+a[i];

7 assert(sum1==sum2);

(a) Multiple loops

1 sum1=0;

2 sum2=0;

3 for (i=0; i<N; i++)

4 {

5 sum1 = sum1+a[i];

6 sum2 = sum2+a[i];

7 }

8 assert(sum1==sum2);

(b) Coalesced loop

Figure 7.10: Illustration of multiple loops that can be coalesced

7.6.1 Multiple loops

Our method can be used when the program consists of a cascaded series of simple loops that can

be coalesced into one simple loop. To elaborate, let the program be {Q1;R1;Q2;R2;Q3;R3},

where the Qis are loop-free statements and the Ris are simple loops of the form while (Ci)

{Bi}. Our method can handle such a program if it can be transformed to a semantically equiv-

alent program Q; while (C) {B1;B2;B3} for some loop-free statements, Q, and a loop

condition C.

To illustrate, consider the code snippet in Figure 7.10. The original code processes array

a by a cascading of two simple loops. We transform the code snippet by coalescing these

two loops into one loop as illustrated. Now the method can be used to verify the property

on transformed code. The basic criterion to enable coalescing of multiple such loops is that

processing in a latter loop should not depend upon values computed by a former loop. Even

this simple strategy enabled us to verify 50 of the 81 programs with non-nested multiple loops

in the SV-COMP 2017 benchmark suite.

7.6.2 Nested loops

It is theoretically possible to flatten a nested loop to a single non-nested loop. Therefore, any

program with a nested loop can be transformed to a flattened loop and then our method can be

applied. However, as mentioned earlier, the precision of our method depends upon identify-

ing accelerable variables and their corresponding accelerated expression. Finding accelerable

96

1 for (i=0; i< N; i++)

2 for (j=0;j<N; j++)

3 {

4 t1=a[i][j]+b[i][j];

5 t2=a[i][j]-b[i][j];

6 c[i][j] = t1;

7 d[i][j] = t2;

8 }

9 for (i=0; i< N; i++)

10 for (j=0; j< N; j++)

11 {

12 t1=c[i][j]+d[i][j];

13 assert

14 (t1==2*a[i][j]);

15 }

(a) Nested loop

1 for (i=0,j=0; i< N;)

2 {

3 t1=a[i][j]+b[i][j];

4 t2=a[i][j]-b[i][j];

5 c[i][j] = t1;

6 d[i][j] = t2;

7 j++;

8 if (j==N)

9 { j=0; i++;}

10 }

11 for (i=0,j=0; i< N;)

12 {

13 t1=c[i][j]+d[i][j];

14 assert

15 (t1==2*a[i][j]);

16 j++;

17 if (j==N)

18 { j=0; i++;}

19 }

(b) Flattened loop

1 int T[k],ij;

2 init(T);

3 for (l=0; l< k; l++)

4 {

5 ij = T[l];

6 i = ij/N; j = ij%N;

7 if (!(ij < N*N)) break;

8 t1 = a[i][j]+b[i][j];

9 t2 = a[i][j]-b[i][j];

10 c[i][j] = t1;

11 d[i][j] = t2;

12 }

13 for (l=0; l< k; l++)

14 {

15 ij = T[l];

16 i = ij/N; j = ij%N;

17 if (!(ij < N*N)) break;

18 t1 = c[i][j]+d[i][j];

19 assert (t1==2*a[i][j]);

20 }

(c) Residual loop with acceleration

Figure 7.11: Illustration of handling nested loops

variables in a loop obtained after flattening a nested loop is much more challenging. In cer-

tain kind of nested loops, the accelerable variables can be identified using some template based

methods. We illustrate one such example in Figure 7.11. The code snippet of Figure 7.11(a)

computes the sum and difference of two matrices a and b, as matrices c and d, respectively.

Finally, it checks that c+d=2a. The code snippet given in Figure 7.11(b) results after flattening

of the nested loops in the original code snippet. If we can identify that i and j are accelerable

in the resulting code snippet, as shown in Figure 7.11(c), then we can generate residual loop

and residual property which are good enough to verify the property in the given original code

snippet.

97

98

Chapter 8

Implementation and measurements

The proposed abstraction has been implemented in a tool called VeriAbs [19]. Within the scope

of our method, i.e. programs with a single loop followed by the property to be checked, the

tool supports most C constructs including pointers, structure, arrays, heaps, and non-recursive

function calls. However, our implementation does not support nested loops, array accesses

through pointer arithmetic, and recursive functions.

8.1 Implementation

We have re-used implementation of LABMC [29] to discover accelerable variables, and we use

CBMC 5.8 as the bounded model checker to determine shrinkability of the loop and to check

the residual property on the abstracted program. For the static analysis required to produce

the abstract program for shrinkability checking and property checking, we use a static analyzer

generator PRISM developed at TRDDC, Pune [53, 20]. In case the subject program has multiple

loops, we check whether they can be coalesced into one loop. For this, we make use of use-def

chains constructed using reaching definition [1] analysis to find if processing inside a loop body

is dependent on the values computed in some earlier loop. We observe that if a non-accelerable

variable’s use inside the loop body is dependent on definitions from within the loop body only

then that variable can not have loop carried dependency. Using this fact, we make use of the use-

def analysis to check if there can not be variables (other than the accelerable variables) having

loop-carried dependence in the program. We use the use-def chains implementation available

in PRISM, the static analyzer generator mentioned above.

99

As stated earlier, we have reused the implementation from LABMC [29] to discover

accelerable variables and identify their corresponding acceleration expression. However, im-

plementation in LABMC has limited capability for the purpose: it is difficult for LABMC to

discover accelerable variables and corresponding acceleration expression from a flattened loop

of a nested loop. Therefore, our current implementation does not support nested loops. But

if a more sophisticated tool to discover accelerable variables is available, then it can be easily

plugged into our implementation to address the nested loops.

Our observation is that majority of shrinkable loops have a very low shrink-factor, typi-

cally 1 or 2. Therefore, we use a LIM value of 5 while checking if a loop in a given program

is shrinkable. If a loop is not found to be shrinkable within a candidate shrink-factor of 5, we

report the shrinkability of the loop to be unknown. We used the sequential search algorithm to

find shrinkability of the loop. Given a program with a shrinkable loop, if the verification of the

corresponding abstract program succeeds on the residual property, the tool declares the original

program to be correct with respect to the given property. On the other hand, if the verification

of the abstract program, for a universal property, fails, and the array processing loop in the

program has no loop-carried dependence for non-accelerable variables, the original program is

declared to be incorrect. Otherwise, the tool indicates its inability to decide on the correctness

of the program.

8.2 Experiments

An early version of the tool VeriAbs competed in the SV-COMP 2017 verification competi-

tion [8], where it was ranked third amongst the 17 participating tools in the ArraysReach cat-

egory. In the competition, a time limit of 900 seconds was provided for each program veri-

fication task. In the version that participated in the competition, our implementation was not

efficient. In particular, in generated abstract programs, the encoding of selecting k iterations

non-deterministically was inefficient. As a result the tool timed out on some of the programs.

Subsequently, we modified the implementation to generate the abstract program with ef-

ficient encoding of selecting k iterations non-deterministically. We re-run the resulting version

on the same benchmark (SV-COMP 2017). We ran the experiment on a machine with two i7-

4600U cores @2.70 GHz and 8 GB RAM. We kept the same time limit of 900 seconds per

100

program verification task. The category ArraysReach consisted of 135 programs, of which 95

were correct and the remaining 40 were incorrect with respect to their properties. We have

categorized these programs in the Table 8.1(a). Out of a total of 135 programs, 42 were beyond

the scope of VeriAbs because they either contained nested loops (12 programs), or contained

multiple loops which were not collapsible (30 programs). In Table 8.1(a), the first column la-

beled ’Programs’ shows the category of programs, the second column labeled ’True’ contains

the number of correct programs in the category, and the third column labeled ’False’ shows the

number of incorrect programs in that category. The last column labeled ’Total’ provides the

total number of programs in the category. Out of the remaining 93 programs, VeriAbs found

89 programs to be 1-shrinkable, and 2 to be 2-shrinkable. While VeriAbs could not decide the

shrinkability of the remaining 2 programs, we found those to be non-shrinkable on manual in-

spection. Note that, for these two programs, VeriAbs could successfully try out all values of k

from 1 to LIM, which was 5, in checking of shrinkability of the programs within the time limit

of 900 seconds allotted for the verification task.

Table 8.1(b) shows the verification results for the 91 shrinkable programs. All correct

programs except one were verified successfully. Moreover, none of the 26 incorrect programs

were declared to be correct, demonstrating the soundness of our tool. For all these 26 programs,

the underlying BMC found the abstract programs to be incorrect. However, out of the 26 in-

correct programs, 23 programs had no loop carried dependency and thus the tool could rightly

declare these as being incorrect, as discussed in Section 7.1. Since remaining 3 programs had

loop carried dependency, as per the same discussion, VeriAbs could not say if the program is

correct or incorrect, so it remained undecided. The timing data shows the average time taken

in verifying each program. As expected, bulk of the time is taken in determining shrinkabil-

ity as the BMC has to verify O(k2) residual programs to determine that the shrink-factor is k,

whereas property checking of the abstract program involves a loop with just k iterations. Given

the limits of the configuration in terms of processing power and available RAM of the machine

used for the experiments, the timings are reasonable. The tool CBMC, which we use as base

verifier in VeriAbs, also had participated in the SV-COMP 2017 competition. However, from

the ArraysReach category, CBMC could verify only 18 programs. It shows that our technique

does have a very significant value add over the base tool CBMC.

An interesting property of Veriabs is that while it is limited by its ability to deal only with

101

Table 8.1: Experimental results for SV-COMP 2017 ArraysReach benchmarks

(a) Programs categories

Programs True False Total

With nested loops 5 7 12

With non-collapsible
24 6 30

multiple loops

Shrinkable 65 26 91

Shrinkability
1 1 2

unknown

Total 95 40 135

(b) Property verification results

Results on #Cases Average time per program

shrinkable programs (in seconds)

Checking Total

shrinkability

Property declared correct 64 30.60 39.68

Property declared incorrect 23 10.72 19.73

Unable to decide 4 227.26 236.06

Total 91 34.22 43.27

shrinkable loops, once a loop is discovered to be shrinkable, the method is impervious to either

the existence or the size of loop bounds—increasing the loop bound does not cause an otherwise

verifiable program to timeout. Comparison with the two tools that fared better than VeriAbs in

the competition, namely Ceagle [70] and Smack [17], reveals some interesting information. We

selected four correct programs, one from each of the following categories of the test suite: array

copy, array initialisation, two index copying and finding minimum. We increased the array size

considerably (from 100000 to 10000000). While both the tools had succeeded on the programs

with the original array sizes, after this increase in array sizes Smack timed out, and Ceagle either

crashed or declared the programs to be incorrect. We surmise that the two tools are based on

bounded model checking without any abstraction. In this respect, our tool performs better than

these two tools that were placed ahead of ours in the competition.

102

The tool participated in the 2018 edition of SV-COMP verification competition [9] as well.

In this edition of the competition, the time limit per program verification task was again kept at

900 seconds. There were 13 tools competing in the ArraysReach category of the competition.

Out of a total of 167 programs in the category, 117 programs were found having shrinkable loops

and among these 86 were correct programs. Our tool could verify 81 of these correct programs.

For the remaining five programs for which the BMC found the corresponding abstract programs

to be incorrect, the tool VeriAbs remained undecided. The tool was ranked first among the

competing tools in this category. It further reinforces that the shrinkability approach is indeed

effective on verifying property on programs processing large arrays through loops. Note that

the data presented in the table is for SV-COMP 2017 and version of VeriAbs used in that had

the implementation of shrinkability method only.

103

104

Chapter 9

Loop pruning

Consider the program of Figure 9.1, a reproduction of the motivating example of Figure 1.4. In

Section 1.3.3, we illustrated how it was enough to check the asserted property on a modified pro-

gram consisting of only one iteration. The modified program, in turn, accessed and processed

only the first two elements of the array. This illustrates that there are array processing programs

in which a loop can be pruned so that array computations in the pruned loop are restricted to

only an initial segment of it. Such programs satisfy the condition that if the asserted property

holds for the modified program, it will hold for the original program too. In this chapter, we

shall investigate into the kinds of loops that exhibit such behaviour, and also identify the length

of the initial array segment that will have to be considered for this purpose.

9.1 Basic idea

Assume that in an execution of the program of Figure 9.1, min1 is assigned for the last time

when the loop counter i has value i1. Observe that the value assigned to min1 is the initial

value of a[i1], and the assignment is under the condition that min1 > a[i1]. Suppose that prior

to this assignment min1 was assigned only once when the loop counter i had value i2, and

min1 had its initial value a[0]. Obviously, the conditions a[0] > a[i2] and a[i2] > a[i1] would

both be true, implying the condition a[0] > a[i1]. In other words, the condition min1 > a[i1]

will be true even when we replace min1 with its initial value a[0]. Therefore, if we prune the

loop to only one iteration, then in an execution of the pruned loop, where value of a[1] is same

as that of a[i1] in the execution of original loop, we would get the same value of min1 at the

105

1 #define N 100000

2 int main() {

3 int a[N], i, min1, min2;

4 min1 =a[0];

5 for (i=1; i< N; i++)

6 if (min1 > a[i]) min1 = a[i];

7 min2 = a[0];

8 for (i=1; i< N; i++) a[i-1] = a[i];

9 for (i=0; i< N-1; i++)

10 if (min2 > a[i]) min2 = a[i];

11 assert (min1==min2);

12 }

(a) Concrete program

1 #define N 100000

2 int main() {

3 int a[N], i, min1, min2;

4 min1 =a[0];

5 for (i=1; i< 2; i++)

6 if (min1 > a[i]) min1 = a[i];

7 min2 = a[0];

8 for (i=1; i< 2; i++) a[i-1] = a[i];

9 for (i=0; i< 1; i++)

10 if (min2 > a[i]) min2 = a[i];

11 assert (min1==min2);

12 }

(b) Pruned program

Figure 9.1: Loop pruning abstraction illustration

Figure 9.2: Illustration of loop pruning approach

end. This observation will hold no matter how many times min1 was assigned prior to its last

assignment. Observe that while the value of min1 is not the same as in the original loop, the

condition min1 > a[i] evaluates to the same value.

As a generalization of this idea, consider two variables of interest (say x and y) are being

computed in a loop. Assume that the initial values of the array elements are assigned non-

deterministically. This essentially represents a situation in which no assumption can be made

106

about the initial values of the array elements. For instance, the array could be a parameter

to a function being analysed. Also assume that the indices in the array references increase

monotonically over successive iterations. In a particular execution, let x and y be assigned for

the last time in iterations i and j respectively. Consider the assignments happening in iteration

i for variables x and y. The RHS of assignments, and conditions controlling these assignments,

if any, will depend upon the initial values of certain scalars and, more importantly, on certain

array elements, say those whose indices are in a range [i1, i2]. For the purpose of illustration,

assume that there is a single array being accessed in the loop. We have shown the scenario for a

run of original program in Figure 9.2(a). In the diagram, the strip with cells represents the array

accessed in the loop. Let us assume that the assignment to x in the iteration i requires references

to a[8] and a[10]. Further, assume that while a[8] was unchanged from the initial state,

a[10] was computed in an earlier iteration in terms of the initial value of, say, a[5]. Then

the range of indices for the computation of x in the iteration i is [5, 8], and is shown in the

figure as [ix1
, ix2

]. Similarly, assume y may also have been computed in i (though not for the

last time), and the range of indices for this is [6, 9], shown as [iy1 , iy2]. Then the range of array

indices [i1, i2], whose initial values were used to compute the two variables of interest x and y

in iteration i, is [5, 9]. Likewise, assume that the range of array indices used in iteration j is

[j1, j2].

Suppose we have a pruned loop that has an execution as shown in Figure 9.2(b). The

computations in the original program’s execution in the iterations i and j take place in the

iterations i′ and j′, respectively, in this execution. In addition, though the distance between

i′ and j′ has been reduced1, the corresponding new ranges [i′1, i
′
2] and [j′1, j

′
2] are still disjoint.

A non-deterministic choice of the initial values of the array in these ranges can ensure that

the computations at i and j are replayed at i′ and j′. We have to additionally ensure that the

value of x assigned in the i′th iteration remains the last value assigned. For that, the conditions

controlling the assignment to x must remain false after the loop counter value i′, as it was the

case after the loop counter value i in the execution of the original loop. It may be noted that

while the above description of the method is based on a dynamic scenario, i.e. a trace, the actual

method is based on static analysis of the program.

1Reducing the distance results in a pruned loop with fewer iterations and increases the possibility of successful

verification.

107

PB ::= St

St ::= St ; St | AtomSt | if (BoolE) then St |

for (ℓ := c; ℓ < c; ℓ := ℓ+z) {LSt} |

for (ℓ := c; ℓ > c; ℓ := ℓ-z) {LSt}

LSt ::= LSt ; LSt | LAtomSt | if(LBoolE) then LSt

AtomSt ::= v := E | a[u] := E | assert(BoolE)

LAtomSt ::= v := LE | a[ℓ+c] := LE | assert(LBoolE)

LE ::= LE op LE | a[ℓ+c] | v | c

E ::= E op E | a[u] | v | c

BoolE ::= BoolE logop BoolE | E relop E | NOT BoolE

LBoolE ::= LBoolE logop LBoolE | LE relop LE | NOT LBoolE

Figure 9.3: Grammar to describe the programs of interest

The method works for only a limited class of programs. The syntactic and extra-syntactic

restrictions to specify this class of programs, are specified in Sections 9.2 and 9.3, respectively.

The bounds on the number of iterations in the pruned loop depends on two factors: (1) the

range of array indices required to compute the last assignment of variables of interest, and (2)

the number of iterations required to compute these variables. These are described in Sections 9.4

and 9.5. Finally, the construction of the pruned program is described in Section 9.5.7.

9.2 Programs of interest

Our focus is on programs that process large arrays, through loops that iterate for a comparable

number of iterations, and check universally quantified properties over such arrays. Our idea is

to reproduce the values of the variables computed in a loop by a smaller loop, called pruned

loop, having only a few iterations (let us denote it by K), which may be determined statically.

The reproducibility of value of variables through smaller loops will ensure that if the property

is violated in the original program then it will also get violated in a transformed program having

pruned loops. The basic difference in this approach and loop shrinking is that instead of picking

a small set of iterations chosen non-deterministically, here we pick the first K iterations of the

108

loop. Moreover, the value of K is determined analytically rather than empirically. We observe

the following characteristics of the program in our motivating example that made this approach

applicable.

1. Inside a loop body, arrays are indexed using a constant offset from the loop iterating

variable e.g. a[i-1], and outside a loop body, arrays are indexed with only constants.

2. The loop counter variable is used only for indexing the array elements.

3. There are no nested loops in the program.

9.2.1 Syntactic constraints

We restrict ourselves to programs that are generated by the grammar given in Figure 9.3. In

the grammar, c refers to integer constants, u refers to non-negative integer constants, z refers

to positive integer constants, v denotes scalar variables, ℓ denotes loop counter variables and a

denotes array variables. Note that, the set of scalar variables v is disjoint from the set of loop

counter variables ℓ. The grammar captures all the restrictions observed earlier for the motivating

example. Following is a summary of restrictions on programs of interest, imposed through the

given grammar.

1. Every loop in a program is a for loop which initialises a loop counter variable ℓ, with a

value, cinit, checks it against an upper bound, cub, and increments or decrements it by a

constant t (called step), in every iteration.

2. The if statements have no else part.

3. Within a loop body, arrays are indexed using a constant offset from the loop counter

variable e.g. ℓ, ℓ + 2, ℓ − 1, and outside a loop body, arrays are indexed with constants

only.

4. The loop counter variable is used only for indexing the array elements, and it is not

modified within a loop body.

5. There are no nested loops in the program.

Observe that all loops are terminating, and therefore, the programs under consideration

will always terminate. In addition, the execution of such programs is deterministic for a given

initial state. We assume that there is no out of bound access of arrays. Following are some

additional syntactic constraints, which are not expressed through the grammar.

109

1. Each loop has its distinct loop counter—the same loop counter variable is not used in

more than one loop.

2. There will be only one kind of for loop in the program. Either all of them increment their

loop counter variable or all of them decrement it. However, the increment/decrement step

can be different for different loops.

We assume that, in our programs, all for loops increment their loop counter variable. The sub-

sequent discussion can easily be adapted to address programs having for loops that decrement

their loop counter variable (or, lcv, in short). The lcv in the first and last iterations of a loop

will be represented as cinit and cfinal (at most equal to cub-1) respectively, and it is obvious that

these can be computed statically. Since the iterations of a loop and its lcvs will have a one to

one relationship2, henceforth, we will refer to an iteration by its lcv. Every array a within a

loop body, is accessed as a[ℓ + c], where c is a constant offset (either positive or negative). For

example, an array reference a[ℓ + 2] refers to the element a[5] in an iteration where ℓ is 3. For

notational convenience, we shall often elide the loop counter ℓ from an array reference a[ℓ+ c],

and denote it as ac. We shall call this a relative array reference.

9.2.2 Variables, program state and traces

We consider individual elements of the arrays as separate variables. Let V be set of all variables

in the program. For example, in the program of Figure 9.1, the set V will comprise of 100000

variables for the elements of the array a, the loop counter variable i and the scalar variables

min1 and min2.

Let the map σ : V → V al, where V al is an appropriately defined set of values, represent

a program state. A trace is a sequence of execution states ω1 , ω2 , ..., ωm , where each ωj is a

pair ((l , i), σ), where l is a program location, i is lcv if l belongs to a loop otherwise it is taken

as ⊥, and σ is the program state at the program location l when lcv is i. We call the pair (l, i)

a trace-point. In the context of a particular trace τ, we denote a trace-point as (l, i)τ and an

execution state as ((l , i), σ)τ . Given an execution state ω having corresponding program state

as σ, and a variable x, we will use both ω(x) and σ(x) to denote the value of x in the execution

state. In the subsequent discussion, in the context of a trace, an array reference a[ℓ+c] at a trace

2ith iteration (i > 0) will have the lcv cinit + (i − 1) ∗ t, where t is the loop step

110

point (l, i) will be seen as the variable reference a[n] where n = i+ c.

9.2.3 Objective

Consider a program P of interest that has a loop having an assert statement in its body (called

a property checking loop). For simplicity, we assume that there is only one such property

checking loop in the program. Let la be the location of the assert statement. Our goal is

to construct a pruned program P ′ in which the counter of each loop reaches only up to a pre-

computed loop-specific bound during execution. This bound, in general, is less than the original

bound of the loop. Let V be the set of scalar variables used in the program. We would eventually

prove the following claim for the pruned program P ′.

Claim 9.1 Let τ be a trace of the original program having a trace-point (la, ia), and let X

be the variables used in the assert expression at the trace-point (la, ia). Then there exists a

trace τp of the pruned program P ′, having a trace-point (la, ia
′), such that the execution states

ω = ((la, ia), σ)τ and ω′ = ((la, ia
′), σp)τp satisfy the following:.

1. ∀x ∈ X ∩ V.σ(x) = σp(x) i.e. scalars used in assert expression have the same value at

the assert location during corresponding iterations, and

2. ∀a[n] ∈ X.σ(a[n]) = σp(a[n− ia+ ia
′]) i.e. same array references (but possibly mapping

to different array variables a[n] and a[n− ia + ia
′]) have the same value.

The claim has a direct bearing on the property checking of the program. Suppose the property

is violated in the original program, exhibited by failure of assertion at a trace-point (la, ia) in

a trace τ. Let ω = ((la, ia), σ)τ and ω′ = ((la, ia
′), σp)τp , where, τp is a trace of the pruned

program, and ia
′ is the lcv that is a witness to the claim. Without loss of generality, the assert

expression can be expressed as a function f(σ(x), σ(a[ia + c])) and f(σp(x), σp(a[ia
′ + c])) at

the trace-points (la, ia)τ and (la, ia
′)τ respectively, and if the claim holds, both functions would

evaluate to the same value. Therefore, the failure of assertion at the trace point (la, ia) in τ will

imply failure of the assertion at the trace point (la, ia
′) in τp . Alternately, taking a contrapositive

view, we can say that the verification of the pruned program as safe implies that the original

program is safe too.

111

9.3 Loop dependence graph and semantic constraints

We introduce a variant of the Program Dependence Graph (PDG) [36] that will help us: (1)

justify and formalise the semantic constraints needed for Claim 9.1 to hold, (2) compute the

bound of a pruned loop, and (3) prove Claim 9.1. However to avoid introducing new notation,

we shall continue to call this variant also as a PDG .

9.3.1 Loop dependence graph

To formalise the semantic constraints, and to develop the solution of our approach, we shall

consider every loop as a program in its own right. Variables of this program are the scalar

variables used in the loop body, and a variable ac for each distinct c and array a, for every

access a[ℓ+ c] appearing in the loop body. In particular, the loop counter variable ℓ is not taken

as a variable of this program. We assume that live variable and reaching definition [1] analyses,

and use-def chains [52] computation is available for each loop, as well as for the given program.

Further, we assume that the reaching definition analysis and use-def chains computation for the

loop is performed with the following additional semantics. (1) For every variable that is live at

ENTRY of the loop, there is a definition assumed to be originating at the ENTRY of the loop.

(2) At a use point of a variable ac , the value assigned by a definition of ac′ appearing in the loop

body is considered to be used only if: (a) the definition reaches the loop head as well as the use

point, and (b) c′ > c and c′ − c is a multiple of the loop step. This is so because the value to

some a[n] can be given in some past iteration through assignment to ac′ and a[n] gets accessed

as ac in some latter iteration. For example, in the code snippet of Figure 9.4, the use of d−2 at

line 11 depends upon the definition of d0 at line 12.

We construct the PDG , for each loop, with a node set consisting of: (1) definition nodes

for each assignment statement and each definition originating at the ENTRY of the loop, and

(2) condition nodes for every condition expression. In addition, we explicate the dependences

of the condition expressions and RHS value of the assignments on the variables used in it and

call the nodes representing these variables as use nodes. We label the definition node and the

use node of a variable v, for a definition and use of v respectively, at a location l by (l, v).

We label the condition node for a condition expression by its location l. In Figure 9.4, we

illustrate PDG of the loops for the given code snippet. We use line number as program location

112

1 for(i=0;i< N;i++)

2 b[i]=a[i];

3 for(i=2;i< N;i++)

4 {

5 if (a[i] > 0)

6 sum=sum+a[i];

7 if (y==a[i]-1)

8 x = a[i];

9 if (x==a[i]-1)

10 y = a[i];

11 if (d[i-2]<0)

12 d[i] = b[i]+2;

13 }

Figure 9.4: Illustration of loop dependence graph and cyclic dependence

to label the nodes3. For the nodes representing definitions originating at the ENTRY of the

loop, we use letter E as location to label the nodes. The edges in the graph represent usual data

and control dependence. An edge from node n1 to n2 means n1 is dependent (data or control)

on n2. The definition node for an assignment statement is dependent on the condition nodes

for the conditions that control the assignment directly or transitively, and the definition node

also depends upon the variables used in RHS of the assignment statement. The conditions of

condition nodes on which a definition node is dependent are called controlling conditions of the

assignment of the definition node. The condition node for a condition expression depends on

the variables used in the condition expression. Use of a variable at a use point depends on the

definitions of the variable occurring in the use-def chain of the use of the variable at the use

point.

The use of a variable ac in a loop may get its value from the definition of a variable ac′

reaching from another loop (identified using use-def chains computed for the entire program).

For example, in Figure 9.4, the use node n1 ≡ (12,b0) in the PDG of second loop depends

upon the definition node n2 ≡ (2,b0) in the PDG of first loop. To represent this dependence,

we put an edge from n1 to n2 (dotted edge shown in the diagram) and call it inter-loop depen-

3We assume that at each line there is at most one statement (assignment, condition or assert)

113

1 m1 = 0;

2 m2 = 0;

3 for(i=0;i<N;i++)

4 {

5 t = a[i]+b[i];

6 if (m1>t)

7 m1 = t;

8 if (m2<b[i])

9 m2 = a[i];

10 }

Figure 9.5: Illustration of self control dependence

dence edge.

9.3.2 Constraints on conditions and chain of dependence

When the definition node of a variable, say (l1, x), has transitive dependence4 on the definition

nodes (l2, y) and (E, y) of a variable y, then x is said to have loop-carried dependence. For the

code snippet of Figure 9.4, there is a cycle in the PDG of the second loop, involving definition

node and use node of sum, implying that the value of sum in one iteration data-depends on

the value of sum computed in some earlier iteration. Similarly, there is a cycle with nodes

corresponding to the variables x and y. The unfolding of these cycles will exhibit a chain of

dependence, bounded by only the size of the loop. Therefore, the values of variables sum, x and

y can not be reproduced with any reduced bound of the loop. A similar cycle is there involving

definition node (11,d0) that is controlled by the condition (10), which makes use of (10,d−2).

Therefore, the value of a given element of array d can not be reproduced with a reduced bound

of the loop. So, we put the constraint that there should be no such cycles in the PDG of the

loops.

However, in some specific scenarios, in spite of cycles appearing in the PDG of a loop,

we can get a reduced bound for the loop. For example, in the code snippet of Figure 9.5, there is

a cycle in the PDG involving the definition node (7, m1) and the condition node (6) which uses

4There is a path from (l1, x) to (l2, y) and (E, y).

114

1 for(i=0;i<N-2;i++)

2 {

3 if (a[i]<b[i])

4 x= a[i];

5 if (a[i]>b[i+1])

6 y = b[i]+a[i+1];

7 if (a[i] < d[i])

8 z= a[i];

9 d[i+1] = b[i+2];

10 }

Figure 9.6: Illustration of constraints on conditions

m1 itself. But, as explained in the discussion of the motivating example, we can reproduce the

value of variable m1 with a bound of 1. We call such cases as self-control dependence. Variable

m1 is called self-controlled variable and the condition (6), controlling the assignment to m1, is

called self-controlling condition. However, for the variable m2 involved in a similar cycle, we

can not reproduce its value with a reduced bound of the loop. The difference is that the value

a[i] being assigned to m2 is not same as the value b[i] getting compared with m2. Based

upon these observations, we define the constraints under which we can obtain a reduced bound

of the loops exhibiting cyclic dependence.

Constraint 1: Every cycle in the PDG should have exactly one condition node and one defini-

tion node, and the definition node should be for a scalar variable, say x, satisfying the following:

1. There should be no additional definition node for x, except (E, x), in the PDG .

2. The expression of the condition node should be in the form of x rop expr, where the

operator rop ∈ {<,≤, >,≥}, and expr should be semantically equivalent to the RHS of

assignment to x.

Consider the PDG of the code snippet of the Figure 9.6. Let y and x be assigned last

in the lcvs 40 and 50, respectively. It means that the condition a[i] > b[i+1], controlling the

assignment to y, must be false for all the lcvs more than 40. To reproduce the same values of y

and x, we need some two lcvs, say 2 and 4 respectively, in an execution of the pruned loop, and

ensure that y is not reassigned after lcv 2. Let array a in the pruned loop be a’, To reproduce the

last value of y and x, we must insure that values of a’[2], a’[3], a’[4], b’[2], b’[3]

115

and b’[4] are same as a[40], a[41], a[50], b[40], b[41] and b[50], respectively.

Consider the iteration corresponding to lcv 3. The controlling condition for the assignment

to y will be a’[3] > b’[4], which is equivalent to a[41] > b[50], and, contrary to our

objective, the same can be true resulting in reassignment of y in this iteration. Similar situations

will arise no matter what bound or iterations we choose to reproduce the values. Although the

array elements required to produce value of y and xwere kept disjoint, the controlling condition

in between the two iterations ended up comparing one element needed for y and another needed

for x. Occurrence of two array elements with different offsets (a[i] with 0 and b[i+1] with

1) in the controlling condition is the reason for this problem. Such difference in offsets may not

be caused by only immediate operands of the condition. Consider the controlling condition of

the assignment to z. Although a[i] is compared with d[i], both having offset 0, since d[i+1]

gets assigned by b[i+2], effectively a[i] is compared with b[i+1] having different offsets (0

and 1). To be able to detect such cases, we define span of an operand as follows:

Definition 9.2 (Span) The span of a variable operand x of a loop is an interval [cl, ch] such

that, given an lcv i of the loop, the initial values of only those array elements that have indices

in the range [i + cl, i + ch] may affect the value of the operand x in the lcv i of the loop.

If the interval of a span has a single value in it, we call it a degenerate span. Note that, if the

variable x is a scalar having loop carried dependence, the span for the same could cover the

entire array and such spans will be denoted by ∞. The span of the array reference d[i] at

line 7 will be [0,1], because it is dependent on the initial value of b[i+1], and possibly on the

initial value of d[i] itself. The dependence on b[i+1] arises from assignment of b[i+2]

to d[i+1] in the previous iteration. Later in this section, we shall describe an algorithm to

compute the span for every variable operand. We define the constraint for controlling conditions

as follows:

Constraint 2: For every definition node, all use nodes (except the ones of a self-controlled vari-

able being assigned in the definition node) belonging to the conditions controlling the definition

node must have a degenerate span with same value.

Effectively, the constraint means that a self-controlling condition can only control the

assignment to corresponding self-controlled variable, and the span of all the operands (other

than the self-controlled variables) of all the conditions controlling the same assignment must

116

annotSpan(Node n) {

if (n is annotated)

return span(n);

e =comp(n);

annotate n with e ;

return e ;

}

compUseCond(Node n) {

e = ∞;

for all n′ such that n→ n′ {

e′ =annotSpan(n′) ;

if(e′ == ∞) return ∞;

if(e == ∞) e = e′;

else e = (low(el, e
′

l
),high(eh, e

′

h
));

}

return e;

}

comp(Node n) {

annotate n with ∞;

if (n is defnode(E, x)) return ∞;

if (n is defnode(E, ac)) return (c, c);

if (n is usenode(l, ac)) e =compArr(n, c);

else e =compDefCond(n);

return e;

}

compArr(Node n, c) {

e = (c, c);

for all n′ : defnode(l, ac′) such that n→ n′ {

e′ =annotSpan(n′) ; if (e′ == ∞) return ∞;

e′ = (e′
l
+ (c− c′), e′

h
+ (c− c′));

e = (low(el, e
′

l
),high(eh, e

′

h
));

}

return e;

}

Figure 9.7: Algorithm for span computation

have the same single-value span.

9.3.3 Span computation

In Figure 9.7, we give an algorithm that computes the span for every use node as the smallest

interval satisfying the following rules.

1. For an array reference a[ℓ + c], its span must contain c.

2. Span of an expression is the join of spans of its variable operands.

3. Span of a scalar use is the join of spans of the definitions on which it depends.

4. Span of an assignment is the join of span of the RHS of the assignment, and, spans of all

the condition expressions controlling the assignment.

5. Span of a definition of a scalar variable, originating at the ENTRY of a loop is ∞.

6. If array reference a[ℓ+ c] depends on an assignment to a[ℓ+ c′] having span [el, eh], then

span of a[ℓ+ c] should include the range [el + c− c′, eh + c− c′].

As an illustrative example, we have annotated the span for all the use nodes in the PDG of

Figure 9.6. The use nodes that have a well defined span, i.e. if it is not ∞, are called array

117

operand.

9.4 Replaying last value computations in the pruned loop

We assume that a given program adheres to the syntactic and semantic constraints given in

Section 9.2.1 and 9.3, and is already sliced with respect to the variables used in the assert

statement. We now discuss two important issues regarding the pruned loop: (i) number of

iterations required to replay the last value computation of the variables of interest in the original

loop, and (ii) the desired distance between successive last value computing lcvs. As we shall

see later, the second issue has a bearing on the first one, therefore, first we shall take up the

discussion of the second issue.

9.4.1 Distance for non-interference

Consider the PDG of a loop in the program. Let the minimum of low values of the spans over

all array operands in the PDG be δlow. Similarly, let the maximum of high values of the spans

of all array operands in the PDG be δhigh. Consider two sets of array elements, say X1 and X2,

whose initial values are likely to affect the value of the array operands in two different lcvs of

the loop, say i1 and i2 , respectively. Assume that i1 < i2 . It is easy to see that X1 and X2 are

guaranteed to be disjoint if i2 − i1 > δhigh − δlow. We define δ as δhigh − δlow. For example,

consider the second loop of the program of the Figure 9.1. The array operands in the loop are

a[i-1] and a[i]. Therefore, δlow = −1, δhigh = 0, and δ = 1.

As explained earlier, to replicate the values assigned to the variables of interest in the orig-

inal program, we select certain iterations that collectively assign values to these variables, and,

in the pruned loop, replay the computations carried out in these iterations. For this, we need to

assign appropriate initial values to the array elements that decide the values of the variables of

interest in the corresponding iterations of the pruned loop. It is important to remember that the

objective of pruning is to reduce the size of the loop. Therefore, the distance between value pro-

ducing lcvs should be made as small as possible in the pruned loop without affecting soundness.

However, if this distance is too close, there may be conflicting demands of assignment of initial

values to the same array element with respect to different lcvs. But if the lcvs are separated by

118

Figure 9.8: Illustration of value reproducibility of variables

more than δ then it is guaranteed that no such conflict will arise. We refer to δ as the distance

for non-interference. Thus, for the example of Figure 9.1 in the pruned loop, the lcvs of interest

should be separated by at least two.

9.4.2 Required number of iterations in the pruned loop

Consider the example given in Figure 9.8. Suppose sp, the only variable of interest, is last

assigned at lcv i3, and the values of the variables np and pp used in the assignment are last

assigned at lcvs i1 and i2, respectively. Obviously, i3 would be greater than both i1 and i2.

Assume, in addition, that np is assigned before pp, and therefore i1 < i2 < i3.

The value of np depends on the values of a[i1] and a[i1 + 2]. The pruned loop can be

organized so that the computation of np takes places at 0, and the initial values that it depends

on can be made available in a[0] and a[2] through a non-deterministic choice. To produce the

value of pp, we have to choose an lcv at a distance of more than δ from 0. Further, this lcv has

to be a multiple of two5. Thus, a possible lcv to produce the value of pp is 4, and the required

initial values are made available in array elements a[4] and a[6]. Following a similar argument,

sp can be produced at lcv 8 using a[8]. So, a pruned loop with a loop counter bound of 8 (i.e.

five iterations) can reproduce the value of sp. This example illustrates the role of inter-variable

5Because, the loop step is 2 and cinit is 0.

119

dependence in obtaining a bound on the lcv of the pruned loop. Observe that this bound does

not change if pp happens to be computed before np. However, the bound increases if np and

pp are also considered variables of interest, as we have to account for the possibility of np and

pp being computed after sp. We will generalise this idea in subsequent sections.

9.4.3 Variable dependence

We define a dependence relationship among variables of a loop using the PDG of the loop. For

a given loop, a variable v1 depends on v2 (v2 6= v1) if the PDG of the loop contains a path

from a definition node of v1 to a node of the form (E, v2) devoid of any intervening definition

node (l, v3) of a variable v3 for which the node (E, v3) exists. For example, consider the loop

in Figure 9.8. Variable sp depends on pp, np and a0 , but not on a2 because of the intervening

node (5, pp). Effectively, v1 depends on v2 means that the value of v1 in an iteration may depend

on the value of v2 computed in some previous iteration.

For each loop, we construct a variable dependence graph (VDG), where the nodes are

variables, and there is a directed edge from v1 to v2 if v1 depends on v2. Due to the semantic

constraints discussed earlier in Section 9.3, there will be no cycles in the VDG . In Figure 9.8,

we have shown the VDG of the loop constructed using its PDG . When there is an inter-PDG

edge from a use node of ac in one PDG to a definition node of ac′ in another, we connect the

corresponding variable nodes with a directed edge from ac to ac′. Such an edge will be called

inter-VDG edge. The same is illustrated in Figure 9.10. The length of the longest path from

a variable node to a leaf node will be called dependence depth of the variable. For a variable

having a dependence depth of d, we will say that it is a d-depth variable. In our example, the

dependence depth of sp is 2, and pp and np are 1-depth variables.

9.5 Last value assignments and bound on their numbers

Let P be a program in the scope of our interest. Let L be the set of the loops in the program,

and La ∈ L be the property loop. Consider a trace τ of P that has a trace-point (la, ia)τ corre-

sponding to an occurrence of the assert statement. Let Lτ ⊆ L, be the set of loops that occur

in the trace τ. Obviously, La ∈ Lτ . Assume that we are given a variable x and a trace-point

120

in the trace τ. With respect to x and the trace-point, an assignment in the trace is called a dead

assignment if the value assigned is never used in computing a value of x that reaches the trace-

point. The assignments that are not dead are last value assigning for x at the trace-point. Based

upon this observation, we define the notion of last value assignments belonging to loops Lτ . In

the rest of this section, our discussion will be in the context of the trace τ and the trace-point

(la, ia)τ .

9.5.1 Last value assignments

Let Pτ be a program produced from the sequence of statements corresponding to the trace τ.

Note that in the program Pτ, every array reference a[ℓ + c] at location (l, i) is replaced with

a[n], where n = i + c. From the program Pτ, we create another program Pτs by replacing all

self-controlling condition checks and all occurrences of the assert statement, except the one at

the trace-point (la, ia)τ , by a SKIP statement. Assume that a use-def chain analysis, reaching

definition analysis and strongly live variable analysis [63] is available for the program Pτs .

Given a loop L ∈ Lτ , let l̄L and l̂L denote the locations of the first and last statement in the loop

body, respectively. Further, let the trace-point (̂lL , îL) denote the last trace-point in the trace τ

that belongs to the loop L. We will use live at(l , i) to denote the set of strongly live variables at

a trace-point (l, i) in Pτs . A condition at a location (l1, i) belonging to a loop, is said to control

an assignment to a variable v at location (l2, i), if the definition (l2, v) depends on the condition

(l1) in the PDG of the loop.

Consider the set of variables that are strongly live in Pτs at a trace-point (l, i) belonging to

the property loop La. We are interested in the assignments that belong to loops, and which are

not dead in the program Pτs with respect to the value of these variables at the trace-point (l, i).

Let this set be denoted as all lvas(l , i). To define this set, we introduce a notion of last value

assignments appearing in a loop for the variables that are strongly live at a given trace-point

belonging to the loop. Let L be a loop in Lτ and let a trace-point (lL, iL) belong to the loop.

Definition 9.3 (Last value assignments in a loop) Given a loop L ∈ Lτ and a trace-point

(lL, iL), the set S of last value assignments in the loop L for a variable x ∈ live at(lL , iL), with

respect to the trace-point (lL , iL), is defined as follows:

1. All the definitions (assignments) to x in the program Pτs , belonging to the loop L, that

121

reach at the trace-point (lL , iL) are in S.

2. The assignments belonging to the loop L, that are in the use-def chain of variables used

in RHS of an assignment in S, are in S.

3. The assignments of the loop L, that are in the use-def chain of variables used in a condi-

tion that controls an assignment in S, are in S.

4. No other statement is in S.

We will use loop lvas(x , lL , iL) to denote the set of last value assignments of a variable

x at the trace-point (lL , iL), as per the definition above. We lift this notation for a set U of

variables in a natural manner, and denote it as loop lvas(U , lL , iL). We will use notation

loop lvas live(lL , iL) to represent the set of last value assignments belonging to the loop L,

for the set of strongly live variables at (lL , iL) with respect to the trace-point (lL , iL). In other

words, loop lvas live(lL , iL) = loop lvas(live at(lL, iL), lL , iL). Let the trace-point (̄lLa
, ia)

denote the beginning of the loop iteration corresponding to (la, ia). The following lemma estab-

lishes a relationship between all last value assignments and loop wise last value assignments. It

can be easily shown that this holds.

Lemma 9.4 all lvas (̄lLa
, ia) = loop lvas live (̄lLa

, ia) ∪ (
⋃

L∈Lτ\{La}

loop lvas live (̂lL , îL))

9.5.2 Last value assigning lcv

The lcv appearing in the trace-point of a last value assignment is called the last value assigning

lcv, and we will denote it by LVA. For example, in the code snippet of Figure 9.8 with N = 6,

and the array a initialised as {−1, 10, 0,−5, 20, 0}, the last assignment to sp (assuming it

is used in the assert of interest) happens in lcv 5. This assignment uses the values of pp

and np assigned in lcvs 4 and 3, respectively. Therefore, there are three LVA for sp, namely

3, 4 and 5. Given a set of last value assignments, say S, let ‖S‖ represent the number of

unique LVA corresponding to S. Since, multiple last value assignments may share the same

lcv, it is obvious that ‖S‖ ≤ |S|. Let #LVA represent ‖all lvas(la, ia)‖. We observe that

#LVA = ‖all lvas(la, ia)‖ ≤ 1 + ‖all lvas (̄lLa
, ia)‖. We shall estimate a bound for #LVA,

which will be independent of any trace.

122

9.5.3 Last value assignments and variable dependence graph

Consider a loop L ∈ L. Let GL be the VDG of the loop. For a node v of GL , we introduce

a number lvas-count, and denote it as lvas count(v ,GL). For a subset U of nodes in GL , let

lvas count(U ,GL) be the sum of lvas-count of all the elements of U . For a node v of GL , we

define lvas count(v ,GL) as follows. If v is a leaf node then lvas count(v ,GL) is zero, and if v

is a non-leaf node with set of children as D, then lvas count(v ,GL) = 1 + lvas count(D ,GL).

Consider a loop L ∈ Lτ , a trace-point (l, i) such that l ∈ {̄lL , l̂L}, and a variable x ∈

live at(l , i). Assuming ‖loop lvas(x , l , i)‖ > 0, there must be a definition (assignment) of

x at a trace-point (l′, i′) belonging to the loop, and reaching (l, i)6. Let x′ be the variable

(node) in GL corresponding to x7. Let x′ be a k-depth variable. Obviously, for k = 1,

‖loop lvas(x , l , i)‖ = 1 = lvas count(x ′,GL). For k > 1, let D be the set of variables that

are strongly live at (̄lL , i
′) due to variables used in RHS of the assignment to x at the trace-

point (l′, i′). Obviously, ‖loop lvas(x , l , i)‖ ≤ 1 + ‖loop lvas(D , l̄L , i
′)‖. Let DL ⊆ D be

the set of variables having corresponding nodes in GL . Since, ‖loop lvas(D \ DL, l̄L , i
′)‖ = 0,

‖loop lvas(D , l̄L , i
′)‖ = ‖loop lvas(DL , l̄L, i

′)‖. Let D′
L be the set of nodes that correspond

to variables in DL . Obviously, D′
L will have to be a subset of descendants of x′ in GL . Based

upon this observation, the following lemma establishes a relationship between the number of

last value assignments and the lvas-count of nodes.

Lemma 9.5 Given a loop L ∈ Lτ , a trace-point (l, i) such that l ∈ {̄lL, l̂L}, and a variable

x ∈ live at(l , i), the following is true:

‖loop lvas(x , l , i)‖ ≤ lvas count(x ′,GL) (where x′ is node corresponding to variable x).

9.5.4 A theoretical bound on #LVA

Let G be the integrated view of VDGs of the loops considering inter-loop dependence edges.

We observe that in presence of array elements that get accessed outside loops, but which may be

modified inside the loops, the graph G may not accurately represent the dependence relations,

particularly the ones involving array elements. Therefore, for now, we assume that such array

accesses are not there in the program. We will derive a theoretical bound on #LVA for such pro-

6There will be only one such assignment.
7If x is scalar, x′ is same as x, else if x is an array element a[n] then x′ is ac such that i′ + c = n.

123

Figure 9.9: Illustration of computing a theoretical bound on #LVA

grams in terms of the number of non-leaf variables, M , and the maximum depth of dependence,

k, in G. Obviously, M ≥ k. Let U be the set of M non-leaf variables. From the discussion

of Section 9.5.3, Lemma 9.4, and the observation made in Section 9.5.2, it can be shown that

#LVA ≤ 1 + lvas count(U ,G). Let us consider these two cases:

Case 1 M = k: The sum lvas count(U ,G) will be maximal when every variable of depth i is

dependent on all i− 1 variables of lesser depth, as illustrated in Figure 9.9(a) for k = 4. For a

4-depth variable, the maximum possible value of lvas-count would be 8. It can be easily shown

that for this kind of graph, lvas count(U ,G) is 2k − 1. So #LVA ≤ 2k.

Case 2 M > k: It can be shown that lvas count(U ,G) can be maximal when M − k + 1

variables have depth k, and all of them have dependence graph as per the Figure 9.9(a) with

remaining k − 1 variables of lesser depth. The arrangement is illustrated in Figure 9.9(b) for

k = 4 and M = 5, where nodes with k-depth are shown in dark shade. It is obvious that

for this kind of graph lvas count(U ,G) will be (M − k)2k−1 + 2k − 1, and therefore, upon

simplification, #LVA ≤ (M − k + 2)2k−1.

Therefore, in both the cases, we get #LVA ≤ (M − k + 2)2k−1. To illustrate with an

example, consider the code snippet given in Figure 9.10. There are a total of 5 non-leaf nodes,

i.e. U = {m1,m2,m3,a0,a−1}, in the integrated graph G, with the maximum dependence depth

of 3. So, with M = 5 and k = 3, we get 16 as theoretical upper bound for #LVA.

124

9.5.5 Computing a tighter upper bound on #LVA

The bound explained in previous section is a theoretical bound. For the program of Figure 9.10,

in a trace there can be at most 3 LVAs for the second loop (one each for assignment to m1, m2

and m3) and 3 LVAs for the first loop (one each for assignment to the array elements assigned

to m1, m2 and m3 in the second loop). It is obvious that there will be some traces in which total

number of LVAs will indeed be 6. So, a bound of 6 on #LVA of the program is necessary and

sufficient. However, the worst case bound was computed as 16. Even by using the Lemma 9.5

over the connected VDGs as a single VDG , we get a higher bound of 10. Can we compute a

lower bound which is closer to the actual bound of 6, based upon the VDGs of the individual

loops? By simply computing the bound on #LVA of individual VDGs, ignoring any inter-VDG

edges, we get a bound of 3 from VDG of the second loop and 1 from VDG of the first loop,

and from this we get an unsound bound of 5 as it is less than 6. We observe that in this process

we treated the node a−1 like a normal variable and accounted it for just one value, while, in

reality, we need three values from the first loop as required for computation of m1, m2 and m3

in the second loop. Therefore, we need to identify the number of array elements (instances) that

a relative array element node represents in a VDG (a−1 in this case).

We still assume that there are no array accesses outside the loops in the given program. We

will address the issues involved due to presence of such array accesses later in Section 9.5.6.

Before computing the bound using individual VDGs, we identify the number of instances,

instance-count, of every node in all the VDGs. Initially, we annotate every node with an

instance-count of 0. In the VDG of every loop, we annotate the nodes for scalar variables

that are live at the end of the loop (as per the usual live variable analysis of the program) with

an instance-count of 1. For the property checking loop, we mark the nodes of all variables that

are live at the start of the loop with an instance-count of 1. To illustrate this with an example,

consider the code snippet of Figure 9.10. Assuming that m1, m2 and m3 are live at the end of

the second loop, the corresponding nodes are annotated with an instance-count of 1, as shown

in small rectangles in the VDG .

We take a topological ordering of the loops of the program, such that if a loop L2 can get

executed before another loop L1, then L1 is placed before L2 in the ordering. Obviously, the

property checking loop will be the first one in this ordering. For each loop in this order, we com-

125

Figure 9.10: Algorithm and illustration for computing instance-count

pute and annotate each node with its instance-count, using the algorithm given in Figure 9.10.

The computed instance-count of 3, for the nodes corresponding to a0 and a−1 , is annotated in

the VDG of each loop.

For every node in the VDG of every loop, we compute the lvas-count of the node. Let

CL be the sum of product of lvas-count and instance-count of each node in GL . For a given

integrated graph, let us define C to be 1 +
∑

L∈L

CL . For example, C would be 7 for the program

of Figure 9.10. We claim that #LVA ≤ C.

Theorem 9.6 Assuming no array accesses outside the loops, for the trace τ and the trace-point

(la, ia), the total number of distinct LVAs for the variables used in the assert statement at the

trace-point is at most C, i.e. #LVA ≤ C.

Proof Let L′
τ = Lτ \ {La}. Note that, for a loop L ∈ L′

τ , the number of elements of an array

a that occur in live at (̂lL, îL), and are modified as ac in the loop, will not be more than the

instance-count of the node ac in GL . Similarly, the instance-count of the scalar variables that

occur in live at (̂lL , îL), and are modified in the loop, will be 1 in GL . Using Lemma 9.5, we can

show that for a loop L ∈ L′
τ , ‖loop lvas live (̂lL , îL)‖ ≤ CL , and ‖loop lvas live (̄lLa

, ia)‖ ≤

CLa
. By Lemma 9.4,

‖all lvas(la, ia)‖ ≤ 1 + ‖loop lvas live (̄lLa
, ia)‖+

∑

L∈L′

τ

‖loop lvas live (̂lL , îL)‖.

126

Since L′
τ ⊆ L and La ∈ L, the following is obvious:

#LVA ≤ (1 + CLa
+

∑

L∈L′

τ

CL) ≤ (1 +
∑

L∈L

CL) = C.

9.5.6 Issues due to array accesses outside loops

When arrays are accessed outside the loops, as per our constraints on the scope of programs of

interest, such accesses will only have constant indices. Due to presence of such accesses, the

instance-count, computed in Section 9.5.5 for array elements, may be smaller than necessary.

As a result, Theorem 9.6 will not be applicable for such programs. To address this issue, we first

find out the largest lcv of iterations in which array elements accessed outside the loops can be

modified inside some loop. For illustration, we refer to the program in Figure 9.11. Let β be the

largest constant index used in the program, e.g. β = 10 for this program. For a given loop, let

Kconst be the largest lcv with which some array element, that is accessed with a constant index

outside a loop, can be accessed at an array reference inside the loop. Obviously, Kconst will be

the smallest lcv of the loop such that Kconst−δlow ≥ β. Note that, Kconst ≥ cinit for the loop. For

this example, Kconst is 14, 13 and 16 for the first, second and third loop, respectively. Let Kc be

the maximum of Kconst of all the loops, which is 16 for this example. Let cinit be the minimum

cinit across all the loops. It is guaranteed that the number of distinct lcvs, corresponding to last

value assignments arising due to modification of the array elements accessed outside the loops,

can not be more than Kc − cinit. Therefore, for such cases, #LVA ≤ C +Kc − cinit.

9.5.7 Pruned program construction

Consider the program of Figure 9.10. Suppose the LVAs for the first loop are 101, 201 and 301,

for a[100], a[200] and a[300], respectively. We can not produce the value of a[100]

and a[200] in the first pruned loop in lcv 6 and 16, in a[5] and a[15] respectively. This

is because the same can not be accessed by the second pruned loop, which accesses only even-

indexed array elements. So, the lcvs in the first pruned loop producing the value of desired array

elements must be odd. That is, the difference between corresponding LVAs in the pruned and

the original first loop must be a multiple of 2, which is the step count of the second loop. This

illustrates that for a loop producing value of some array element, the LVAs in the pruned loop

must be such that their distance from the corresponding LVAs in the original loop is divisible by

127

1 #define N 10000

2 main(){

3 int a[N], i, m1, m2;

4 m1 =a[8];

5 for (i=0; i< N-4; i+=2)

6 if (m1 > a[i+4]) m1 = a[i+4];

7 m2 = a[10];

8 for (i=10; i< N-10 i+=3)

9 if (m2 > a[i-3]) m2 = a[i-3];

10 for (i=10; i< N-35; i+=6)

11 assert (m1<=a[i] && m2 <= a[i]);

12 }

Figure 9.11: Illustration of bound computation

the step counts of all the loops which use the value of the array element.

Suppose for a given trace τ of the program P , we get a trace τp of the pruned program

P ′ where the same value of all the desired variables is produced. Let i1 and i2, i1 < i2, be

two consecutive LVA in the trace τ, and i′1 and i′2 be the corresponding LVA in the trace τp . If

i2−i1 > δ, then i′2−i
′
1 also must be more than δ to ensure non-interference, as discussed earlier.

To be conservative, we compute δlow, δhigh and δ from the spans of all array operands of all the

loops in the program. For example, for the program of Figure 9.10, δlow = −1, δhigh = 0 and

δ = 1. In addition, as illustrated above, the difference i1 − i′1 must be divisible by the steps of

all the loops that use the value produced by the LVA i1. Since statically we do not know which

all loops may use the value produced, to be conservative, we say that i1 − i′1 should be divisible

by the lcm of all the steps. We call this lcm as the synchronising distance, and denote it by

Θ. Therefore, i′1 = i1 − m1Θ for some m1 ≥ 0, and by similar argument, i′2 = i2 − m2Θ

for some m2 ≥ 0. To have the least possible bound of pruned loops, m1 and m2 should be as

large as possible. In order to satisfy these constraints, the worst case gap in i′2 and i′1 will be

δ + Θ. Therefore, our pruned loop bound should have a provision for a gap of δ + Θ between

neighboring LVAs.

We illustrate bound computation for the pruned loops through the program in Figure 9.11.

The values of δ,Θ and #LVA are shown there. The array elements accessed with constant

128

indices outside the loops, e.g. a[8] and a[10], can be processed inside the loops also. For

example, a[8] in the first loop in lcv 4, and a[10] in lcv 13 in the second loop. Since we need

to keep these accesses with same index, the lcvs in which these may get accessed inside loops

must remain same in the pruned program also. As discussed in Section 9.5.6, we will need to

keep lcvs up to Kc as is in the pruned program. The cfinal for the loops are 9994, 9970 and 9964

for the first, second and third loop, respectively. We consider maximum and minimum cfinal ,

denoted as N̂ and N, as special LVAs. In this example, N̂ = 9994 and N = 9964. We keep

the distance between maximum and minimum cfinal of the pruned program same as it is in the

given program. Therefore, to keep provisions for (a) keeping lcvs up to Kc as is, (b) keeping

a gap of δ + Θ in between two neighbouring LVAs, and (c) keeping same distance between

N̂ and N, we need a bound of at least Kc + (C + 1)(δ + Θ) + (N̂ − N). We add 1 to C to

keep the required gap before and after the first and last LVA. Let this number be Γ′, which is

16+4×13+(9994−9964) = 98 for this example. Since we want to map the maximum cfinal to

corresponding maximum cfinal of the pruned program, the difference between final bound and

N̂ should be divisible by Θ. So, we pick the smallest number Γ ≥ Γ′ such that N̂ − Γ = mΘ,

for some m ≥ 0. In this example, Γ will be 100. The number Γ is the bound 8 for the loop with

maximum cfinal . The bound for individual loops is arrived at by relative shift, i.e. the bound

c
′
final , for a loop having its original bound as cfinal , will be Γ − (N̂ − cfinal). The bounds in our

example come out to be 70,76 and 100 for the third, second and first loop, respectively.

From a given program P , we construct a pruned program P ′ by replacing every loop L ≡

for (ℓ=start; ℓ < end; ℓ+=t) with L′ ≡ for (ℓ=start; ℓ < end && ℓ ≤ c′final ; ℓ+=t). Barring

this change, the pruned program P ′ is exactly the same as P .

We will show that Claim 9.1 holds with Γ as the upper bound of loop counter values for

the pruned loops.

9.6 Proof of soundness

For a given trace τ of the program P , and a trace-point (la, ia)τ for the assert statement, we

will construct a trace τp of the pruned program P ′, and identify a trace-point (la, ia
′)τp to prove

Claim 9.1. Note that in constructing P’, Γ ≤ N̂. If Γ = N̂ then P’ will be equivalent to P, and

8If Γ′ is more than N, then we take N̂ as our Γ.

129

Claim 9.1 will hold trivially. So we assume that Γ < N̂. Obviously, with this assumption Kc

will have to be less than N. Let X be the set of variables used in the assert at the trace-point

(la, ia)τ . We construct the initial state σp
0 for τp , using the initial state σ0 of τ and an index

map χ, such that for an array element a[n], σp
0 (a[n]) = σ0 (a[χ(n)]), and for a scalar variable x,

σp
0 (x) = σ0 (x). We create the map χ by identifying a distinct LVA in τp for every LVA identified

for X in τ.

9.6.1 Index mapping function

Let the set of the lcvs corresponding to all the last value assignments of X belonging to a loop

be called the loop-LVAs of the loop. We add the cfinal of every loop to its loop-LVAs. We also

add ia to the loop-LVAs of the property checking loop. Let Q be the union of {Kc} and the

loop-LVAs of all the loops. Let η = |Q|, and Π = [K1,K2, ...,Kη] denote the elements of Q

arranged in ascending order of their value. Obviously, Kη = N̂, and Kc and N are in Π. Let

w and u be such that Kw = N and Ku = Kc. Since Kc < N, u < w. And by Theorem 9.6,

w − u ≤ C + 1. The way Γ is computed, we claim that there exists a sequence of numbers

Π
′ = [K′

1,K
′
2, ...K

′
η], arranged in ascending order, satisfying the following constraints:

1. K′
η = Γ and ∀i ∈ [1, η] . (Ki ≤ Kc =⇒ Ki = K′

i) ∧ (∃m . m ≥ 0 ∧ K′
i = Ki −mΘ)

2. ∀i ∈ [1, η − 1] . K′
i+1 −K′

i ≤ δ =⇒ K′
i+1 −K′

i = Ki+1 −Ki

We create the index mapping function χ : Z ∪ {⊥} → Z ∪ {⊥} as follows:

χ(i) =





i if i = ⊥ ∨ i ∈ (−∞,K′
2 + δlow − 1]

Kj + (i−K′
j) if ∃j ∈ [2, η] such that i ∈ [K′

j + δlow,K
′
j+1 + δlow − 1]

Kη + (i−K′
η) if i ∈ [K′

η + δlow,∞)

Let im(χ) be the image of mapping function χ. Obviously, the inverse function χ−1 :

im(χ) → Z ∪ {⊥} is well defined, and the function χ satisfies the following property.

∀i, j ∈ Z . (i ≤ β =⇒ χ(i) = i) ∧ (∃m ≥ 0 . χ(i)− i = mΘ) ∧ (i < j =⇒ χ(i) < χ(j)).

9.6.2 Equivalence of the two traces

Let V′ be the set of variables in the pruned program P ′, excluding the loop counter variables. Let

λ : V′ → V be such that for every v ∈ V′, if v is a[n] then λ(v) = a[χ(n)], otherwise λ(v) = v.

130

For v ∈ im(λ), let v ′ denote λ−1 (v). Let the initial state σp
0 for the trace τp be constructed as

∀v ∈ V′.σp
0 (v) = σ0 (λ(v)). We will prove Claim 9.1 for τ, ia, τ

p and ia
′ = χ−1(ia).

Let a trace-point (l, i)τ be relevant if either i = ⊥, or i is an LVA of the loop to which l

belongs. Note that (la, ia)τ is a relevant trace-point. From the trace τ, we create a program Pr

which is the sequence of statements that correspond to the relevant trace-points of τ. In addition,

the statements corresponding to initialisation, test and increment of the loop counter variables

are replaced by a SKIP statement in Pr. Note that in the program Pr, every array reference

a[ℓ + c] at location (l, i) is replaced with a[n], where n = i + c. We create another program

Pr
s from Pr by replacing all condition checks with SKIP statement. The trace-points of τ will

represent the program locations in both Pr and Pr
s . In the discussion that follows, a trace-point

would always mean a relevant trace-point. Let LV (Pr, (l, i)) and LV (Pr
s , (l, i)) be the set of

live variables at the location (l, i) in the programs Pr and Pr
s respectively, assuming X is live

at the location (la, ia). For a location (l, i) belonging to a loop, i.e. i 6= ⊥, let Vsc(l) denote

the set of self-controlled variables of the loop. For a trace-point (l, i)τ , we define RLV (l, i) as

follows: RLV (l,⊥) = LV (Pr, (l,⊥)), and for i 6= ⊥, RLV (l, i) = (LV (Pr, (l, i)) \Vsc(l)) ∪

LV (Pr
s , (l, i)).

Let entry represent the location of the loop counter variable initialisation of a loop, which

is the entry point for the loop. Let exit be the location of the statement just after a loop9.

Note that the set RLV (l, i) contains no loop counter variables and it is a subset of Vim. Let

v be a self-controlled variable in a loop. Obviously, for the loop, if v ∈ RLV (exit ,⊥) then

v ∈ RLV (entry ,⊥) also. Moreover, v belongs to RLV (l, i), where l belongs to the loop and

i 6= ⊥, only if its value at location (l, i) is used later in some assignment within the loop.

We define a restricted notion of equivalence, called modulo-index equivalence, between the

program states of τp and τ, corresponding to a trace-point.

Definition 9.7 (Modulo-index equivalence) Given a trace-point (l, i)τ , and the execution states

ω ≡ ((l , i), σ)τ and ω′ ≡ ((l , χ−1(i)), σp)τp , the execution state ω′ is modulo-index equivalent

to the execution state ω (written as ω′ � ω) if ∀x ∈ RLV (l, i).σp(x ′) = σ(x).

Note that, since LV (Pr
s , (la, ia)) = X , RLV (la, ia) = X , and to prove Claim 9.1, it is enough

to show that ((la, ia
′), σp)τp � ((la, ia), σ)τ . Given an expression e in the trace τ, the corre-

9In a limiting case where there is no statement after the loop, exit is same as EXIT

131

sponding expression in the trace τp , denoted as e ′, is equivalent to the expression produced by

replacing every variable v of e by v ′. Note that, since constant indices used outside the loop

map to themselves, this observation holds for expressions within a loop, as well as outside it.

Evaluation of e in a state σ is denoted by JeKσ . Given an expression e at a trace-point (l, i)τ ,

if ((l , χ−1(i)), σp)τp � ((l , i), σ)τ , we observe that if the set of variables used in e, denoted as

vars(e), is a subset of RLV (l, i), then JeKσ = Je ′Kσp .

For ease of exposition, we assume that the relop in self-controlling conditions is the less-

than (<) operator. Due to the constraints (1) and (2) discussed in Section 9.3, without loss

of generality, a controlling condition or expression e of a self-controlling condition v < e is

expressible as a function f(ac), where the value of a[ℓ + c] is from the initial state. Given an

lcv i′ of a pruned loop, since σp
0 (a[i

′ + c]) = σ0 (a[χ(i
′) + c]), the value of every controlling

condition and expression e of a self-controlling condition in the lcv i′ in the pruned loop will

match those in the lcv χ(i′) of the corresponding original loop.

For a loop, let first and last represent the location of the loop exit condition check and the

loop counter increment of the loop, respectively. So, first and last are the first and last statement

in each iteration of the loop. Given a trace τ̂, and the lcv i of a loop, we use firstst(τ̂, i) and

lastst(τ̂, i) for the execution states ((first , i), σ)τ̂ and ((last , i), σ)τ̂ . We observe that the value

of a self-controlled variable of a loop will be monotonically increasing in subsequent iterations

of the loop. We show that value of a self-controlled variable get synchronised in τp and τ in

every LVA in which the self-controlled variable is assigned in τ.

Lemma 9.8 Given a self-controlled variable v of a loop, for all the lcvs i′ of the pruned loop,

if firstst(τp , i′)(v) ≤ firstst(τ, χ(i′))(v) then:

1. lastst(τp , i′)(v) ≤ lastst(τ, χ(i′))(v)

2. If v is assigned in the lcv χ(i′) of the loop in τ, then, lastst(τp , i′)(v) = lastst(τ, χ(i′))(v).

Proof Assume that the self-controlling condition is v < f(ac), and the assignment to v is

v = f(ac), where the value of ac comes from the initial state. Let m′
1 ≡ firstst(τp , i′)(v) ≤

m1 ≡ firstst(τ, χ(i′))(v). Let m′
2 ≡ lastst(τp , i′)(v) and m2 ≡ lastst(τ, χ(i′))(v). As we had

observed earlier, every controlling condition and f(ac) will have matching value in the lcv χ(i′)

and i′ of the loop in τ and τp , respectively. Let m = f(ac) in the lcv i′ of the loop in τp . If v

is not assigned in τp then it would not be assigned in τ also. Therefore, m′
2 = m′

1 ≤ m1 = m2

132

and from contrapositivity, m′
2 = m2. In the remaining case, when v is assigned in τp but not in

τ, m′
2 = m ≤ m1 = m2. From this, it is obvious that the lemma holds.

Lemma 9.9 Given a self-controlled variable v of a loop, if the value of v is same at the begin-

ning of the loop in τ and τp, then the following holds:

1. ∀i ∈ loop-LVAs .firstst(τp , χ−1(i))(v) ≤ firstst(τ, i)(v)

2. v ∈ RLV (entry ,⊥) =⇒ lastst(τp , c′final)(v) = lastst(τ, cfinal)(v)

Proof We are given that firstst(τp , c′init)(v) = firstst(τ, cinit)(v). Let the loop step be t. Let i′

be an lcv of the pruned loop which will be in the form c′init+h
′t, where h′ ≥ 0 and cinit+h

′t ≤

c′final . Using induction on h′ and Lemma 9.8, we can show following:

firstst(τp , i′)(v) ≤ firstst(τ, χ(i′))(v) and lastst(τp , i′)(v) ≤ lastst(τ, χ(i′))(v) (C1)

For i ∈ loop-LVAs, χ−1(i) is an lcv in the pruned loop, and using (C1), we get:

firstst(τp , χ−1(i))(v) ≤ firstst(τ, i)(v).

Assume that v ∈ RLV (entry ,⊥). If v is not assigned in the loop in τ, it would not be

assigned in the loop in τp also, and lastst(τp , c′final)(v) = lastst(τ, cfinal)(v), trivially. As-

sume that v is assigned in the loop in τ. Obviously, the last assignment to v in the loop

must be in some LVA, say i. So, lastst(τ, cfinal)(v) = lastst(τ, i)(v). As per Lemma 9.8,

lastst(τ, i)(v) = lastst(τp , χ−1(i))(v) ≤ lastst(τp , c′final)(v) ≤ lastst(τ, cfinal)(v). Therefore,

lastst(τp , c′final)(v) = lastst(τ, cfinal)(v).

For an LVA i of a loop, let the self-controlling condition for a self-controlled variable v be at a

trace-point (l, i)τ . Since the only assignment to v is controlled by the self-controlling condition,

the value of v will be same at (first , i)τ and (l, i)τ . Therefore, as per Lemma 9.9:

((l , χ−1(i)), σp)τp(v) ≤ ((l , i), σ)τ(v) (C2)

In the following lemma, we show that the state equivalence between τ and τp is preserved

from one LVA to the next LVA in every loop.

Lemma 9.10 If i1 and i2 , i1 < i2 , are the successive LVA of a loop, then the following holds:

lastst(τp , χ−1(i1)) � lastst(τ, i1) =⇒ firstst(τp , χ−1(i2)) � firstst(τ, i2)

Proof Let v ∈ RLV (first , i2). Since i1 and i2 are the successive LVA of the loop, v must not

be assigned in between (last , i1)τ and (first , i2)τ . And therefore, v ∈ RLV (last , i1). Assume

133

that lastst(τp , χ−1(i1)) � lastst(τ, i1). So, lastst(τp , χ−1(i1))(v
′) = lastst(τ, i1)(v). We

need to show that firstst(τp , χ−1(i2)) � firstst(τ, i2), and for that it is sufficient to show that

firstst(τp , χ−1(i2))(v
′) = firstst(τ, i2)(v).

If there are no assignments to v in the loop then following is obvious.

firstst(τp , χ−1(i2))(v
′) = lastst(τp , χ−1(i1))(v

′) = lastst(τ, i1)(v) = firstst(τ, i2)(v)

Let t be the loop step. If i2 = i1 + t, then it is obvious that χ−1(i2) = χ−1(i1) + t. And

therefore, for this case also the above argument holds trivially, because:

lastst(τp , χ−1(i1))(v
′) = firstst(τp , χ−1(i2))(v

′) and lastst(τ, i1)(v) = firstst(τ, i2)(v)

Assume that there exists some assignment to v in the loop and i2 − i1 > t. Obviously, all

the assignments to v in the loop must be conditional, and the path controlling condition for

every assignment to v must be false from (last , i1)τ to (first , i2)τ . For the loop, consider an

lcv i′ = χ−1(i1) + h′t, with h′ > 0, and i′ ∈ (χ−1(i1), χ
−1(i2)). Obviously, χ(i′) ∈ (i1 , i2).

Consider execution states ω′
f ≡ firstst(τp , i′), ωf ≡ firstst(τ, χ(i′)), ω′

l ≡ lastst(τp , i′), and

ωl ≡ lastst(τ, χ(i′)). Assume that ω′
f (v

′) = ωf (v). As observed earlier, since all the controlling

conditions to all the assignments to v are false in the lcv χ(i′) of the loop in τ, they must be

false in the lcv i′ of the loop in τp too. It means that ω′
l(v

′) = ω′
f (v

′) = ωf (v) = ωl(v). In other

words, the following holds:

firstst(τp , i′)(v ′) = firstst(τ, χ−1(i′))(v) =⇒ lastst(τp , i′)(v ′) = lastst(τ, χ−1(i′))(v) (C3)

Further, the equality firstst(τp , χ−1(i′) + t)(v) = lastst(τp , χ−1(i′))(v) is obvious.

Since lastst(τp , χ−1(i1))(v
′) = lastst(τ, i1)(v), using the equality mentioned above, and the

result (C3), it is easy to show (by using induction) that the following holds:

firstst(τp , χ−1(i2))(v
′) = firstst(τ, i2)(v)

The following theorem finally shows the modulo-index equivalence of the two traces for the

relevant trace-points.

Theorem 9.11 For all locations (l, i) of the program Pr, the execution state ((l , χ−1(i)), σp)τp

exists and is modulo-index equivalent to the execution state ((l , i), σ)τ .

Proof We will use induction on j for the sequence of locations (lj , ij) of the program Pr with

0 ≤ j ≤ |Pr|, where |Pr| denotes the number of statements in Pr.

Base step: j = 0. Since l0 = ENTRY , i0 = ⊥, and ((l0 , χ
−1(i0)), σ

p
0)τp � ((l0 , i0), σ0)τ , the

134

statement holds for (l0, i0).

Induction step: Let ∀j ∈ [0, k] . ((lj , χ
−1(ij)), σ

p
j)τp � ((lj , ij), σj)τ be true for k < |Pr|.

Consider the location (lk+1, ik+1). Let execution states for (lk, ik) be ωk ≡ ((lk , ik), σk)τ and

ω′
k ≡ ((lk , χ

−1(ik)), σ
p
k)τp . Let ωk+1 ≡ ((lk+1 , ik+1), σk+1)τ . We need to show that the execu-

tion state ω′
k+1 ≡ ((lk+1 , χ

−1(ik+1)), σ
p
k+1)τp exists, and ω′

k+1 � ωk+1 . We consider different

possible transitions to the location (lk+1, ik+1) from the location (lk, ik), depending on the state-

ment at lk, which are as follows:

1. Initialisation of a loop counter variable, assert statement, assignment to a variable which

is not a loop counter variable, and condition that uses variables only from RLV (lk, ik).

2. self-controlling condition v < e with v 6∈ RLV (lk, ik).

3. Loop exit condition check ℓ < cub , and increment of a loop counter variable ℓ = ℓ+ c.

As we had observed earlier, for an expression e, if vars(e) ∈ RLV (lk, ik) then Je ′Kω′

k
= JeKωk

.

Therefore, the conditions in category (1) will evaluate to same value in ω′
k and ωk . And, since

other statements in category (1) are unconditional, in all the cases of the category (1), ω′
k+1 will

exist and will be next to ω′
k . It is straightforward to show that ω′

k+1 � ωk+1 , for statements of

category (1). So, we illustrate only the case of assignment from this category, and consider the

remaining categories individually.

(1) An assignment of the form v = e — The corresponding assignment in τp would be

v ′ = e ′. If v 6∈ RLV (lk+1, ik+1), then ω′
k+1 � ωk+1 holds trivially. If v ∈ RLV (lk+1, ik+1),

then vars(e) ⊆ RLV (lk, ik) and Je ′Kω′

k
= JeKωk

. So, ω′
k+1 (v

′) = ωk+1 (v). Therefore,

ω′
k+1 � ωk+1 .

(2) A self-controlling condition, say v < e, with v 6∈ RLV (lk, ik) — Obviously,

vars(e) ⊆ RLV (lk, ik), and therefore JeKωk
= JeKω′

k
. The corresponding condition in τp would

be v < e ′. Obviously, v 6∈ RLV (lk+1, ik+1) and RLV (lk+1, ik+1) ⊆ RLV (lk, ik). As per (C2),

ω′
k(v) ≤ ωk(v). If Jv < eKωk

is true, so would be Jv < e ′Kω′

k
, and therefore ω′

k+1 exists and is

next to ω′
k in τp . Trivially, ω′

k+1 � ωk+1 . If Jv < eKωk
is false, lk+1 must be the immediate

post dominator of lk. So, again, ω′
k+1 exists, and there would be no assignments to any other

variable in between (lk, χ
−1(ik))τp and (lk+1, χ

−1(ik+1))τp . Therefore, ω′
k+1 � ωk+1 .

(3) A loop exit check in the form ℓ < cub — The condition is equivalent to ik ≤ cfinal

in ωk and χ−1(ik) ≤ c′final in ω′
k . Since Jχ−1(ik) ≤ c′finalKω′

k
= Jik ≤ cfinalKωk

, the execution

state ω′
k+1 exists and is next to ω′

k in τp . If the condition is true then ω′
k+1 � ωk+1 , trivially.

135

If the condition is false, it means that the control exits the loop with lk+1 as exit of the loop,

ik+1 = ⊥, σk = lastst(τ, cfinal) and σp
k = lastst(τp , c′final). As per the definition of RLV (l, i),

RLV (lk+1, ik+1) ⊇ RLV (lk, ik) and RLV (lk+1, ik+1) \ RLV (lk, ik) ⊆ Vsc(lk). Obviously, for

all v ∈ RLV (lk+1, ik+1) ∩ RLV (lk, ik), ω
′
k+1 (v

′) = ωk+1 (v). Let v ∈ RLV (lk+1, ik+1) ∩

Vsc(lk). Obviously, v is a self-controlled variable and therefore, for the trace-point (entry ,⊥)

of the loop v ∈ RLV (entry ,⊥). We observe that there must exist j, 0 ≤ j ≤ k, such that

the trace-point (entry ,⊥) is same as (lj, ij). Therefore, by induction hypothesis value of v will

be same in the beginning of the loop in τ and τp . So, as per Lemma 9.9 lastst(τ, cfinal)(v) =

lastst(τp , c′final)(v). Therefore, ω′
k+1 � ωk+1 .

(4) Increment of a loop counter variable ℓ = ℓ+c — So, ik+1 = ik+hc, for some h > 0,

with ik and ik+1 both being successive LVA of the loop. Therefore, ω′
k+1 exists, and ωk , ω′

k , ωk+1

and ω′
k+1 must be lastst(τ, ik), lastst(τ

p , χ−1(ik)), firstst(τ, ik+1) and firstst(τp , χ−1(ik+1)),

respectively. And as per Lemma 9.10, ω′
k+1 � ωk+1 .

Recall that showing ((la, ia
′), σp)τp � ((la, ia), σ)τ is sufficient to prove Claim 9.1. Since (la, ia)

is a location in Pr, using Theorem 9.11 the claim is proved.

9.7 Implementation and measurements

We have explained that for a program amenable to loop pruning approach, we can compute a

bound on number of iterations required to reproduce the values of modified variables and array

elements (modulo-index equivalence). Checking if a program is as per the grammar given in

Section 9.2.1 is straightforward. To check the semantic constraints, we make use of PDG of

the program from where the loop dependence graph for a loop can be inferred. To construct the

PDG , we identify data dependence using reaching definition analysis available from PRISM10,

and to identify control dependence, we reuse the implementation of the algorithm of Billardi

and Pingali [11], available from the work on value slice. While building the PDG for the

program, we compute the synchronising distance (Θ) as lcm of the loop steps. We compute

cfinal for each loop, from which the values of N̂ and N are computed. We find the loop counter

bound for constant indices, Kc, also in the process. We annotate the span for the use nodes of

10A static analyzer generator developed at TRDDC, Pune [53, 20].

136

the PDG using the algorithm given in Section 9.3.3. We check the semantic constraints (1) and

(2), given in Section 9.3, using the PDG annotated with computed spans. From the computed

span, we compute the value of safe distance for non-interference (δ) for the program.

We compute the variable dependence graphs (VDG) using the PDG , and annotate the

nodes of VDG with the instance-count of variables, as per the approach given in Section 9.5.5.

The bound C on #LVA of the program is computed as per the process given in Section 9.5.7.

Using C, we compute Γ′ = Kc+(C+1)×(δ+Θ)+(N̂−N). Finally, we compute Γ = Γ′+(Θ−

(N̂−Γ′)%Θ)%Θ. The bound c′final for individual loops is computed as c′final = Γ− (N̂− cfinal).

Using the bound for the individual loops of the program P , we produce a new program P ′,

by replacing all the loops with corresponding pruned loops in which every loop iterates only

up to the lcv bounded by c
′
final of the loop. Since no change to the loop body is needed, this

abstraction is straightforward. We use a bounded model checker to check the property on the

pruned program P ′.

9.7.1 Implementation

The proposed loop pruning approach has been implemented in the tool VeriAbs [19]. Within the

scope of the programs for which loop pruning approach is suitable, the tool supports all C con-

structs including pointers, structure, arrays, heaps and non-recursive function calls. Internally,

the tool uses the bounded model checker CBMC 5.4 [22], to check the property on the pruned

(abstracted) program. If the verification of the pruned program succeeds, the tool declares the

original program to be safe with respect to the given property.

If the programs have no conditions in the loop body then no variable, except the loop

counter variables, has a loop-carried dependence. In such cases, since the property checked is

universally quantified, if the verification of the abstract program fails then it is guaranteed that

original program is also incorrect, and the tool declares the program to be incorrect. Even when

there are conditions in the loop body, but only of self-controlling type, then also it is guaranteed

that the original program is incorrect when the verification of the abstract program fails. In

other situations, if the verification of the abstract program fails, the tool indicates its inability to

decide the verification status of the program.

Our implementation allows two additional code patterns where the loop pruning approach

137

1 min1 =a[0]; min2 =a[1];

2 if (min1 > a[1]) { min2 = min1; min1 = a[1]; }

3 for (i=2; i< N; i++) {

4 if (min1 > a[i]) { min2 = min1; min1 = a[i]; }

5 if (min2 > a[i]) if (min1 < a[i]) min2 = a[i];

6 }

7 assert (min1<=min2);

(a) Second minimum computation

1 sum1=0;

2 for (i=0; i < N; i++)

3 sum1=sum1+a[i];

4 sum2=a[0];

5 for (i=1; i < N; i++)

6 sum2=sum2+a[i];

7 assert(sum1==sum2);

(b) Sum computation

Figure 9.12: Additional code patterns where loop pruning works

is guaranteed to work, even though they do not satisfy the constraints given in Section 9.3.

These are given in Figure 9.12. In the code snippet of Figure 9.12(a), a self-controlled variable

min2 is dependent on another self-controlled variable min1. But the comparison operator and

expression being compared and assigned are the same for both the variables. The argument pre-

sented earlier for modulo-index equivalence can be extended to such patterns also. In the code

snippet of Figure 9.12(b), the variables sum1 and sum2 have a self cyclic data dependence.

But the array on which they depend is not getting modified and no other variable depends on

these array elements. In this case also, an initial state can be constructed so that we get same

values of the variables sum1 and sum2 in the pruned program. However, the construction will

not be similar to what we have used in our discussion on the proof of soundness. An extension

of our approach to formalise and generalise these cases can be an interesting future work.

9.7.2 Experiments

The tool VeriAbs, equipped with implementation of the loop pruning as well as loop shrinking

approaches, participated in the ArraysReach category of SV-COMP 2018 verification competi-

tion [9]. There were a total of 167 programs in the category, 123 of which are correct (safe)

and the remaining 44 are incorrect (unsafe) with respect to their properties. Out of the total 167

programs, there were 48 programs that satisfied the constraints defined in sections 9.3 and 9.2.1.

The loop pruning approach could verify all these 48 programs. In fact, out of these 48 programs

there were 23 programs for which only the loop pruning approach worked, because these pro-

grams were not amenable to the loop shrinking approach. This shows that the approach has its

138

own usefulness and applicability.

In Table 9.1(a), we show different parameters, and theoretical and computed bounds on

#LVA of the programs. In Table 9.1(b), we show the results delivered by the tool. To compare

the computed #LVA of the program with the theoretical bound, we found the total number of

non-leaf variables in the integrated VDG (denoted as M̂), and the maximum degree of depen-

dency of these variables (denoted as k̂), and computed the theoretical upper bound on #LVA,

which is (M̂− k̂+2)2k̂−1. In Table 9.1(a), we have shown the distribution of those 48 programs

on the basis of values of δ, k̂, (M̂ − k̂), number of loops that modify some variable relevant to

the property, synchronising distance (Θ), the theoretical bound on #LVA, the bound C on #LVA

as explained in Section 9.5.5, and the overall bound Γ. As expected, when values of k̂ and

M̂ − k̂ are small, there is no significant difference in the computed #LVA and the theoretical

bound on #LVA of the programs. However, when k̂ is higher than 2 then the difference is much

more, and after a point the theoretical bound becomes quite huge since it is exponential in k̂.

However, computed bound on #LVA continues to remain a small number. Since the loop step

count was 1 in each program, the maximum number of iterations can go only up to Γ in the

pruned program. While the original programs had loops of size more than 100000, the data

shows that pruned programs had lesser than 15 iterations in every case. In Table 9.1(c), we

show the number of programs that were verified to be safe or shown to be incorrect by the two

approaches: loop pruning (LP) and loop shrinking (LSH). The column “LP Only” shows the

number of programs that could be verified or falsified by only loop pruning and not by loop

shrinking. There were 23 such programs. Similarly, the column “LSH Only” shows the number

of programs that could be verified or falsified by only loop shrinking and not by loop pruning.

The column “LP & LSH Both” shows the number of programs that could be verified or falsified

by both loop pruning as well as loop shrinking.

Like the loop shrinking approach, loop pruning also has the interesting property that while

it is limited by its ability to deal only with programs which satisfy the constraints imposed,

once a program is found to be amenable to the approach, the method is impervious to the size

of arrays—increasing the size does not cause an otherwise verifiable program to timeout.

139

Table 9.1: Experimental results for SV-COMP 2018 ArraysReach benchmarks

(a) Parameter value wise program distribution

δ k̂ M̂ − k̂ #Computing Θ Theoretical Computed Γ Number of programs

loops #LVA #LVA Correct Incorrect Total

0 2 0 1 1 4 1 3 9 1 10

0 3 1 1 1 12 3 4 1 0 1

1 3 5 4 1 28 4 12 18 0 18

1 2 0 1 1 4 1 6 1 0 1

0 4-10 1 2-5 1 24-1536 3-6 5-8 4 4 8

0 12-20 1 6-10 1 6144 - * 7-11 9-13 5 5 10

Total 38 10 48

(b) Programs categories

Programs Correct Incorrect Total

Not-amenable to loop pruning 85 34 119

Amenable to loop pruning 38 10 48

Total 123 44 167

(c) Property verification results

Programs LP LSH LP & LSH

Only Only Both

Declared correct 22 65 16

Declared incorrect 1 17 9

Total 23 82 25

140

Chapter 10

Related work

The various approaches to handle arrays have their roots in the types of static analyses used

for property verification, for example: abstract interpretation, predicate abstraction, bounded

model checking and theorem proving.

In abstract interpretation, arrays are handled using array smashing, array expansion and

array slicing. In array smashing, all the elements of an array are clubbed as a single anonymous

element, with writes to the array elements treated as weak updates. As a result, the abstrac-

tion becomes too coarse leading to imprecision. It cannot be used, for example, to verify the

motivating example of Figure 1.3(a). In array expansion, array elements are explicated as a col-

lection of scalar variables, and the resulting programs have fewer number of weak updates than

array smashing. However, it works well only for small-sized arrays. A mix of smashing and

expansion has been used by Blanchet et al. [13, 14] to prove that a program does not perform

executions with undefined behaviour such as out-of-bound array accesses. In array slicing, the

idea is to track partitions of arrays based upon some criteria inferred from programs [41, 42, 28].

Each partition is treated as an independent smashed element. Dillig et al. [33] further refined

this approach to introduce the notion of fluid updates, where a write operation may result in a

strong update of one partition of the array, and a weak update of the other partitions. In con-

trast to these approaches, our abstraction is based not only on the program’s data elements, but

also on the property being verified. By declaring an array-processing loop as k-shrinkable, we

guarantee that an erroneous behaviour of the program with respect to the property can indeed

be replayed on some k elements of the array.

141

There has been considerable work in over-approximation and under-approximation of the

loops for verification and bug finding, respectively. Daniel et al. [55] under-approximate loops

using acceleration to find deep bugs in the programs. Halbwachs et al. [40] and Schrammel

et al. [66] also abstract loops using abstract acceleration. Darke et al. [29] abstract loops and

apply acceleration to verify property. Based on the number of input, output and I/O variables

of the loop, and the number of control paths in the loop body, they compute a bound for the

abstract loop which is sound to verify the property. However, these efforts have been restricted

to loops that compute only scalar variables. For example, Darke et al., in their work on loop

abstraction [29], consider only those loops that do not contain operations on array elements.

Methods based on predicate abstraction go through several rounds of counterexample

guided abstraction refinement (CEGAR). In each round a suitable loop invariant is searched

based on the counterexample using Craig interpolants [59]. Tools like SATABS [23] and

CPAchecker [10] are based on this technique. To handle arrays, the approach relies on finding

appropriate quantified loop invariants. However, generating interpolants for scalar programs is,

by itself, a hard problem. With the inclusion of arrays, which requires universally quantified

interpolants, the problem becomes even harder [51, 60]. Our method, in contrast, does not rely

on the ability to find loop invariant. Instead, we find a bound on the number of loop iterations

and, in turn, the number of array elements that have to be accessed in a run of abstract program.

Qadeer et al. [37] infer higher-level loop invariants using predicate abstraction, for a given

set of predicates and some lower-level loop invariants. To address the need of quantified loop

invariant in presence of arrays, they allow some special variables, called skolem constants, to be

used in the given set of predicates and loop invariants. After inferring the loop invariant using

their method, authors produce quantified loop invariant by universally quantifying the skolem

constants used. Typically, these skolem constants would be used in array index expressions.

Although, authors have given some heuristics to automatically identify the required predicates

and skolem constants, but their examples show that the efficacy of their approach relies heavily

on the set of predicates and skolem constants provided as input.

Jhala et al. [51], in their work on “Array Abstraction from Proofs” infer range predicates,

rather than inferring the loop invariants. Range predicates describe a property over some un-

bounded array segments. In this technique, infeasible paths generated by some unrolling of

the loops, are used to automatically infer the range predicates. These range predicates are then

142

used to verify the target property. Using some informal axioms, and an interpolant discovered

from infeasible path constraints, the authors infer the range predicates. During this inference

process, authors apply rules to shrink/expand and join the inferred range predicates to arrive at

a smaller number of desired range predicates. There are two basic challenges: (1) identifying

the base property over array elements data values, for which range predicates are to be inferred,

and (2) inferring range predicates involving a large number of disjoint array segments, which

may require large number of unrolling of the loops, in different refinement cycles. In contrast,

our methods do not rely on discovering any predicate or property over the array elements.

In the work of Alberti et al. [60], a given program with arrays is transformed into a program

with only scalar variables. The array is abstracted by a few elements with as many index vari-

ables, and the loops remain as is in the transformed program. To verify the translated programs,

the authors rely on back-end verifiers which may be predicate abstraction based or acceleration

based. The basic challenge here is to know the number of elements with which the array should

be abstracted such that it is sufficient to prove the property. Authors have not given any clue on

this issue. Moreover, since post conversion the loops remain unchanged, the challenges posed

by loops carry over to the converted program also. In contrast, our method of loop shrinking

finds out the sufficient k automatically, and the loops produced in the abstract program have

very small bound.

Theorem proving based methods generate a set of constraints, typically Horn clauses that

relate invariants at various program points. The invariants are predicates over arrays. The

constraints are then fed to a solver in order to find a model. However, these methods also

face the same difficulty of synthesizing quantified loop invariant over arrays. The technique

of k-distinguished cell abstraction addresses this problem by abstracting the array to only k

elements. A 1-distinguished cell abstraction, for example, abstracts a predicate P (a) involving

an array a by P ′(i, ai), where i and ai are scalars. The relation between the two predicates is that

P ′(i, ai) holds whenever P (a) holds, and the value of a[i] is ai. The resulting constraints are

easier to solve using a back-end solver such as Z3 [32]. This technique, which is a refinement

of work by Alberti et al. [60], appears in the work by Gonnord et al. [61]. We experimented

with VAPHOR, a tool based on the work by Gonnord et al. By way of comparison, we present two

examples, one with a ∃ property and the other with a ∀ property. The first program computes the

minimum of an array and asserts that the minimum is the same as the value of some element in

143

the array. The second program copies all but 1 elements from one large array to another. It then

asserts that the copied elements are pairwise equal. While our tool could verify both examples,

VAPHOR declared the first program to be incorrect with 1-and 2-distinguished cell abstraction and

timed out on the second program.

A method that is properly subsumed by our method is by Anushri et al. [49]. This uses

only one distinguished element, called a witness element, and transforms a program with arrays

and loops to a loop free scalar program. This program is then model-checked using a BMC.

This approach works well on what authors call full array processing loops and such loops are a

proper subset of our 1-shrinkable loops.

Regarding our work on loop pruning, to the best of our knowledge, there is no work done

on just pruning the loop bound without abstracting the loop body. As mentioned earlier, all of

the work dealing with loops and arrays abstract the loop body in one or the other form.

Inductive reasoning also has been used to verify programs where property checked can be

sliced and each slice can be related to a generic iteration of the array processing loop. Work

by Chakraborty et al. [18] is one example of use of such inductive reasoning. A range of

index of array elements that are processed by a single iteration of the loop and which cover

the array elements accessed in the property slice corresponding to the iteration, is called a tile.

The tiles so identified should collectively cover the entire array index range. By an inductive

reasoning, authors check that a generic iteration of the loop satisfies the corresponding sliced

property and this behaviour remains intact when subsequent iterations of the loop are executed.

However, since inductive reasoning requires some loop invariant to work with, they also rely

on some loop invariant (may be weak). They obtain these in their implementation using a

dynamic analysis tool Daikon [34], which provides likely loop invariant. Identifying the tiles

themselves is based on certain heuristics. In contrast, our technique of loop pruning does not

require any loop invariant, and requires no relationship between the property checking loop and

the computing loop.

144

Part III

Concluding Remarks

145

Chapter 11

Conclusion and future directions

There are two common reasons why property checking tools fail on real life programs. Both

relate to the complexity of the program being property checked. The first is that the size of

the program may be large, and the second is that it may have loops with large bounds. In this

thesis, we have presented two approaches for scaling up property checking: (1) by reducing the

size of program through a slicing technique called value slicing, which is more aggressive than

traditional backward slicing without losing much in way of precision, and, (2) by reducing the

loop bounds of large array processing programs using two different techniques—loop shrinking

and loop pruning. Experimental results have shown that, wherever applicable, the approaches

do enable property checking to scale up to a large extent.

11.1 Scaling up property checking through value slice

Slicing is an obvious pre-processing step before submitting a program to a verifier for property

checking. Backward slice has been a natural choice for this so far, since the behaviour of

the sliced program exactly matches the behaviour of the original program with respect to the

property being checked1. In our approach, we have suggested a more aggressive form of slicing

called value slice. This technique slices out statements that only affect the reachability of the

assertion point and retains just those statements which influence the values of the property

variables. As a result, the value-sliced program is smaller in size compared to backward slicing.

Therefore, property checking with value slice is more scalable than backward slice. On the other

1Assuming the program is terminating.

147

hand, since our method carefully identifies and retains certain predicates, property checking

with value slice is more precise than an even more aggressive form of slicing called thin slice.

Indeed, our experiments show that on both axes of comparison, scalability and precision, value

slice based property checking comes close to the best performer of the three comparable forms

of slicing.

In the sequel of this section, we shall take up each of the methods and point out the

limitations of our investigation. This will suggest natural directions in which the work in the

thesis could be extended.

11.1.1 Minimal value slice and other aggressive slices

Our development of value slicing starts with a trace based specification of the value slice that

uses the notion of SC-equivalence of sub-traces (Definition 3.1). Given a program to be sliced,

we compute a subprogram P V S based on data and control dependence (Definition 3.2) and

show thatP V S indeed satisfies the trace based specification of value slice. However, we have not

shown that the slice thus computed is always a minimal subprogram satisfying the specification.

Therefore, we still have the following open questions: Is the slice computed always minimal?

If not, is the minimal value slice computable? If not, is there a method to compute a value slice

that is smaller (in general, no larger) than the value slice computed by our method?

There are cases where the value slice is not very effective. Consider the program P1 and

its value slice V S1 in Figure 11.1. Program P1 is correct with respect to the property that is

being checked. However, since the variable j becomes unconstrained in the value slice V S1,

the property no longer holds and we will get a counterexample for the same. It will be better if

a slice V S1′ can be produced instead, where retaining the loop exit condition makes the sliced

program remain correct. Note that V S1′ is still an aggressive slice compared to the backward

slice. A different issue arises when the same property is encoded as an error state (bad state) that

should be unreachable, as illustrated in program P2 of Figure 11.2. Note that the value slice for

this program, shown as V S2 in the figure, is the same as its thin slice. This is because the assert

expression has no variables used and therefore, as per the formulation, there will be no value

impacting statements. We can of course transform the original program P2 so that it becomes

like P1 and do the value slicing on transformed program to get a slice like V S1. However, in

148

1 int a[N];

2 j=-2;

3 min=a[0];

4 i=0;

5 while (i< N/2)

6 {

7 if (a[i] > 0)

8 {

9 j = j+2;

10 assert(j >= 0

11 && j < N);

12 if (min< a[j])

13 min = a[j];

14 }

15 i++;

16 }

(a) P1

1 int a[N];

2 j=-2;

3

4

5 while (*)

6 {

7 if (*)

8 {

9 j = j+2;

10 assert(j >= 0

11 && j < N);

12

13

14 }

15

16 }

(b) V S1

1 int a[N];

2 j=-2;

3

4 i=0;

5 while (i<N/2)

6 {

7 if (*)

8 {

9 j = j+2;

10 assert(j >= 0

11 && j < N);

12

13

14 }

15 i++;

16 }

(c) V S1′

Figure 11.1: Illustration of limitation of value slice

this case a desired slice would be V S2′, where property is still encoded as an unreachable error

state and the property also holds in the slice. We believe that if we can get the slice V S1′ for P1,

it would be possible to get V S2′ also directly (without any transformation) from the program

P2. The examples demonstrate that a different kind of slice, where some conditions, but not

all, which impact only reachability of the property are also retained, can be more effective than

value slice for certain programs. Exploration and formalisation of such slices, and methods to

compute them, can be a useful extension of our work.

11.1.2 Effectiveness of the method for different verifiers

As we have discussed in the experimental results, our results are based on a particular verifier,

namely SATABS. We believe that similar trends will also show up when other verifiers are used.

However, it will be interesting to see the actual trends by experimenting with other verifiers,

especially those based on different techniques. One of the question to explore could be: What

kind of verification techniques can best exploit value slices.

149

1 int a[N];

2 j=-2;

3 min=a[0];

4 i=0;

5 while(i< N/2)

6 {

7 if (a[i] > 0)

8 {

9 j = j+2;

10 if (j < 0

11 || j >= N)

12 assert(0);

13 if (min< a[j])

14 min = a[j];

15 }

16 i++;

17 }

(a) P2

1

2

3

4

5 while (*)

6 {

7 if (*)

8 {

9

10 if (*)

11

12 assert(0);

13

14

15 }

16

17 }

(b) V S2

1 int a[N];

2 j=-2;

3

4 i=0;

5 while(i< N/2)

6 {

7 if (*)

8 {

9 j = j+2;

10 if (j < 0

11 || j >= N)

12 assert(0);

13

14

15 }

16 i++;

17 }

(c) V S2′

Figure 11.2: Illustration of limitation of value slice when property encoded as unreachable error

state

11.1.3 Refinement

Since value slice is a sound but not a precise abstraction of the input program with respect

to the property being checked, a verifier may declare that the property does not hold for a

correct program and produce a spurious counterexample. This happens because our method

abstracts certain conditional expressions of the program. Because of this, the verifier finds a

path that leads to the violation of the property, while such a path may not exist in any run of

the program in reality. We could use any of the existing counterexample guided techniques to

track the abstracted conditional expressions that cause the spurious counterexample, and refine

these expressions. In the process, we may face a situation where multiple abstracted conditions

are identified as a cause of a spurious counterexample. A prioritisation strategy to choose the

condition expressions to refine may be needed to retain the scalability of our technique; refining

all the conditions at once may compromise that.

150

11.1.4 Other uses of value slice

Slicing is very commonly used for program understanding and debugging, mainly due to the

reduction in size of the resulting sliced program. The reduced size helps programmers to focus

only on relevant part of the code for a given purpose. In fact, the primary use of thin slice is

debugging.

As our experiments show, SATABS timed out for 50% less programs when used to prop-

erty check a value slice than it did when used on a backward slice. On the other hand property

checking using value slice produced 10 times lesser number of incorrect results (declaring a

program incorrect when it is actually correct) than the number of incorrect results produced

using thin slice. It shows that value slice reduces the program size and complexity much more

than the backward slicing, and at the same time, retains much of the useful information with

respect to the slicing criterion than thin slice. Therefore, it is worthwhile to use value slice for

program understanding as well as debugging.

11.2 Reducing the size of the loops

We have proposed two techniques to abstract programs so that the abstracted program have

much smaller loop bounds compared to the large bounds of the original programs. The programs

use these loops to process large arrays. Whenever applicable, the techniques are fully automatic.

Our first technique, called loop shrinking, enables us to verify properties over loops that

have large or even unknown (but with a statically over-approximable) bound by converting them

to loops with a small bound. Towards this, we have defined a notion called shrinkability of a

loop, and showed that arrays processed by k-shrinkable loops can be abstracted using only

k elements. The abstracted program can then be checked using a bounded model checker as

back-end. An important contribution of our method is an automated technique to find out the

required bound k. Although there are approaches that are based on abstracting an array by fewer

elements, none of these provide a way to find out the number of elements that are sufficient to

reason about the array. Our experiments have shown that the approach is powerful enough to

handle a variety of array processing programs. Depending on the sophistication of identifying

loop accelerable variables, and the corresponding accelerated expressions, the technique can

151

handle nested loops after they are flattened as a single loop. The technique addresses only

certain classes of cascaded multiple loops.

Our second technique also enables scaling up property checking for a class of large array

processing programs. While loop shrinking uses an empirical way to find the bound on the

shrunk loop, in this technique we find this bound using a static analysis. In addition, once a

program satisfies the constraints under which the technique works, occurrence of multiple loops

in the program poses no further challenges. However, nested loops still remain a limitation. We

introduced a notion of last value assignment and variable dependence graph, using which we

compute a loop specific upper bound for all the loops. Using the loop specific bound, we abstract

the program in which we leave the loop body unchanged and only modify the loop bound. The

experiments have shown that there are enough programs that benefit from the technique, while

other techniques fail to verify such programs.

11.2.1 Nested loops and multiple loops

At present, these two techniques do not support nested loops. One possible future work is to

extend these to support nested loops. For loop shrinking, it may involve extending the notion of

shrinkability to nested loops. In the case of loop pruning, it may involve extending the notion

of last value assigning lcv to nested loops. lcv can be modeled as a tuple of lcv of the loops in

the nesting.

Although loop pruning has no limitation for multiple loops, the loop shrinking technique

in its present form relies on whether multiple loops of a program can be coalesced into one. A

future research direction can be to support multiple loops as they are (i.e., without transforming

them into a single loop). One way could be to identify auxiliary properties for every loop

separately, based on the original property and some loop invariant of the loop. In effect, multiple

problems can be spawned off, each of which is solvable by the current loop shrinking method.

11.2.2 Refinement

In both the approaches, the tool declares the property as verified if it is verified on the abstracted

program. But when the property is violated on the abstracted program, only in a few cases

does the tool declare the original program to be incorrect too. In other cases, the tool remains

152

1 sum1=0;

2 for (i=0; i < N; i++)

3 sum1=sum1+a[i];

4 sum2=0;

5 for (i=1; i < N; i++)

6 sum2=sum2+a[i];

7 assert(sum1==sum2);

(a) Needs one iteration to repro-

duce property violation

1 sum1=0;

2 for (i=0; i < N; i++)

3 sum1=sum1+2*a[i];

4 sum2=a[0];

5 for (i=0; i < N; i++)

6 sum2=sum2+a[i];

7 assert(sum1==sum2);

(b) Needs two iterations to re-

produce property violation

Figure 11.3: Illustration of property outcome reproduction based loop pruning

undecided. However, for the loop pruning approach, due to restrictions that it imposes on the

input programs, we believe that the method is complete as well. Although we have not shown

or proved it in this thesis, it would be an interesting future work to argue the completeness of

this method.

In case of loop shrinking approach, an end-to-end property checking process is desired

with the following two mechanisms: (a) to check if the failure of the property indicates incor-

rectness of the original program, and in the cases where it does not (b) to advance the property

checking process further. Adding these mechanisms to the technique can be a direction for fu-

ture work. In case of loop shrinking, we can play the input leading to failure of abstract program

on the original program, and check if the failure is replicated. If yes, then we are done; else,

we can try a possible refinement step by increasing the k for the abstraction. Recall that once

a loop is k-shrinkable it is k′-shrinkable also for all k′ > k. For the loop pruning approach,

the challenge would be to know if the failure of property on pruned program is spurious for the

original program.

11.2.3 Loop pruning based on property rather than operand values

The second technique addresses processing arrays in only one direction. It can be extended to

address programs which process arrays by traversing it in both the directions. Loop pruning

technique’s basic premise is that an abstracted program with much smaller loop bounds repro-

duces the values of the variables in the property checking assertion of the original program.

This is perhaps an unnecessarily strong requirement. Instead, we can extend our approach to

153

ensure that the pruned program reproduces value of the property rather than the value of its indi-

vidual operands. That is, if the property is violated in the original program, the pruned program

will also have an execution in which the property is guaranteed to be violated. This extension

to the approach should remove several of the restrictions imposed on programs on which our

technique is applicable in its current form. For example, consider two programs shown in Fig-

ure 11.3. Both the programs are not allowed as per our constraints because the variables sum1

and sum2 have cyclic data dependence. For both the programs, we observe that it would be

difficult to reproduce a violation of the property in a pruned program with the values of sum1

and sum2 being same as they were in the original program’s execution exhibiting the viola-

tion. However, we observe that a violation of the property in program (a) can be replicated in a

pruned program with the pruned loop having only one iteration. But in case of program (b) the

replication of violation of the property will be possible in a pruned program only if the pruned

loop has at least two iterations. So, although both programs are similar in terms of syntactic

structure and inter-variable dependence, their corresponding pruned programs require different

number of iterations in the pruned loop to replicate the violation of the property. Therefore,

for such programs one challenge would be to identify the number of iterations needed, i.e. the

bound on the individual loops, to guarantee the reproduction of violation of the property if there

is a violation in the original program. In spite of the challenges, we believe that problem is

solvable, and worth looking at.

154

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques, & Tools. Pearson Education, Inc., 2006.

[2] Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina. Definability of Accelerated

Relations in a Theory of Arrays and its Applications. In FroCos, volume 8152 of Lecture

Notes in Computer Science, pages 23–39. Springer, 2013.

[3] Randy Allen and Ken Kennedy. Automatic Translation of FORTRAN Programs to Vector

Form. ACM Trans. Program. Lang. Syst., 9(4):491–542, October 1987.

[4] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A Decade of Software Model

Checking with SLAM. Commun. ACM, 54:68–76, July 2011.

[5] Thomas Ball and Sriram K. Rajamani. The SLAM Project: Debugging System Software

via Static Analysis. POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT sympo-

sium on Principles of programming languages, pages 1–3, 2002.

[6] Jose Bernardo Barros, Daniela da Cruz, Pedro Rangel Henriques, and Jorge Sousa Pinto.

Assertion-based Slicing and Slice Graphs. In Proceedings of SEFM, 2010.

[7] Jean-Francois Bergeretti and Bernard A. Carré. Information-flow and Data-flow Analysis

of While-programs. ACM Trans. Program. Lang. Syst., 7(1):37–61, January 1985.

[8] Dirk Beyer. SV-COMP 2017 - 6th International Conference on Software Verification.

https://sv-comp.sosy-lab.org, 2017.

[9] Dirk Beyer. SV-COMP 2018 - 7th International Conference on Software Verification.

https://sv-comp.sosy-lab.org, 2018.

155

https://sv-comp.sosy-lab.org
https://sv-comp.sosy-lab.org

[10] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A Tool for Configurable Software

Verification. In Computer Aided Verification: 23rd International Conference, CAV 2011,

Snowbird, UT, USA, July 14-20, 2011. Proceedings, pages 184–190, Berlin, Heidelberg,

2011. Springer Berlin Heidelberg.

[11] Gianfranco Bilardi and Keshav Pingali. A Framework for Generalized Control Depen-

dence. In Proceedings of PLDI, 1996.

[12] David W Binkley and Keith Brian Gallagher. Program Slicing. Advances in Computers,

43:1–50, 1996.

[13] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, An-

toine Miné, David Monniaux, and Xavier Rival. Design and Implementation of a Special-

purpose Static Program Analyzer for Safety-critical Real-time Embedded Software. In

The Essence of Computation, pages 85–108. Springer-Verlag New York, Inc., New York,

NY, USA, 2002.

[14] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, An-

toine Miné, David Monniaux, and Xavier Rival. A Static Analyzer for Large Safety-

critical Software. In Proceedings of the PLDI, 2003, pages 196–207, New York, NY,

USA, 2003. ACM.

[15] Marius Bozga, Peter Habermehl, Radu Iosif, Filip Konečný, and Tomáš Vojnar. Auto-

matic Verification of Integer Array Programs. In Ahmed Bouajjani and Oded Maler, ed-

itors, Computer Aided Verification: 21st International Conference, CAV 2009, Grenoble,

France, June 26 - July 2, 2009. Proceedings, pages 157–172, Berlin, Heidelberg, 2009.

Springer Berlin Heidelberg.

[16] Gerardo Canfora, Aniello Cimitile, and Andrea De Lucia. Conditioned Program Slicing.

Information & Software Technology, 40(11-12):595–607, 1998.

[17] Montgomery Carter, Shaobo He, Jonathan Whitaker, Zvonimir Rakamarić, and Michael

Emmi. SMACK Software Verification Toolchain. In Proceedings of the 38th International

Conference on Software Engineering Companion, ICSE ’16, pages 589–592, New York,

NY, USA, 2016. ACM.

156

[18] Supratik Chakraborty, Ashutosh Gupta, and Divyesh Unadkat. Verifying Array Manipu-

lating Programs by Tiling. In International Static Analysis Symposium, pages 428–449.

Springer, 2017.

[19] Bharti Chimdyalwar, Priyanka Darke, Avriti Chauhan, Punit Shah, Shrawan Kumar, and

R. Venkatesh. VeriAbs: Verification by Abstraction Competition Contribution. In Pro-

ceedings, Part II, of the 23rd International Conference on Tools and Algorithms for the

Construction and Analysis of Systems - Volume 10206, pages 404–408, New York, NY,

USA, 2017. Springer-Verlag New York, Inc.

[20] Bharti Chimdyalwar and Shrawan Kumar. Effective False Positive Filtering for Evolving

Software. In Proceedings of ISEC, 2011.

[21] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided Abstraction Refinement for Symbolic Model Checking. J. ACM,

50(5):752–794, September 2003.

[22] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A Tool for Checking ANSI-C Pro-

grams . In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for the

Construction and Analysis of Systems (TACAS 2004), volume 2988 of Lecture Notes in

Computer Science, pages 168–176. Springer, 2004.

[23] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. SATABS: SAT-

based Predicate Abstraction for ANSI-C. In International Conference on Tools and Algo-

rithms for the Construction and Analysis of Systems, pages 570–574. Springer, 2005.

[24] Joseph J Comuzzi and Johnson M Hart. Program Slicing Using Weakest Preconditions.

In International Symposium of Formal Methods Europe, pages 557–575. Springer, 1996.

[25] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints among Variables

of a Program. In Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, pages 84–97, Tucson, Arizona, 1978.

ACM Press, New York, NY.

[26] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints. In POPL ’77:

157

Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of programming

languages, pages 238–252, New York, NY, USA, 1977. ACM.

[27] Patrick Cousot, Radhia Cousot, Jerme Feret, Laurent Mauborgne, Antoine Min, David

Monniaux, and Xavier Rival. The ASTREE Analyzer. In Programming Languages and

Systems, Proceedings of the 14th European Symposium on Programming, volume 3444 of

Lecture Notes in Computer Science, pages 21–30. Springer, 2005.

[28] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A Parametric Segmentation

Functor for Fully Automatic and Scalable Array Content Analysis. SIGPLAN Not.,

46(1):105–118, January 2011.

[29] Priyanka Darke, Bharti Chimdyalwar, R. Venkatesh, Ulka Shrotri, and Ravindra Metta.

Over-approximating Loops to Prove Properties Using Bounded Model Checking. In Pro-

ceedings of the DATE, 2015, pages 1407–1412, San Jose, CA, USA, 2015. EDA Consor-

tium.

[30] Priyanka Darke, Sumanth Prabhu, Bharti Chimdyalwar, Avriti Chauhan, Shrawan Ku-

mar, Animesh Basakchowdhury, R Venkatesh, Advaita Datar, and Raveendra Kumar

Medicherla. VeriAbs: Verification by Abstraction and Test Generation. In International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages

457–462. Springer, 2018.

[31] Marianne De Michiel, Armelle Bonenfant, Hugues Cassé, and Pascal Sainrat. Static Loop

Bound Analysis of C Programs Based on Flow Analysis and Abstract Interpretation. In

2008 14th IEEE International Conference on Embedded and Real-Time Computing Sys-

tems and Applications, pages 161–166. IEEE, 2008.

[32] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In C. R. Ramakr-

ishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis

of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[33] Isil Dillig, Thomas Dillig, and Alex Aiken. Fluid Updates: Beyond Strong vs. Weak Up-

dates. In Programming Languages and Systems: 19th European Symposium on Program-

158

ming, ESOP 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, pages 246–266,

Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[34] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco,

Matthew S. Tschantz, and Chen Xiao. The Daikon System for Dynamic Detection of

Likely Invariants, 2006.

[35] Stephan Falke, Florian Merz, and Carsten Sinz. LLBMC: Improved Bounded Model

Checking of C Programs Using LLVM. In International Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems, pages 623–626. Springer, 2013.

[36] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program Dependence Graph

and its Use in Optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, July 1987.

[37] Cormac Flanagan and Shaz Qadeer. Predicate Abstraction for Software Verification. In

Proceedings of the POPL, 2002, pages 191–202, New York, NY, USA, 2002. ACM.

[38] Nicolas Gold and Mark Harman. An Empirical Study of Static Program Slice Size. ACM

Trans. on Software Engineering and Methodology (TOSEM), 16:2007, 2007.

[39] Laure Gonnord and Nicolas Halbwachs. Combining Widening and Acceleration in Linear

Relation Analysis. In International Static Analysis Symposium, pages 144–160. Springer,

2006.

[40] Laure Gonnord and Nicolas Halbwachs. Combining Widening and Acceleration in Linear

Relation Analysis. In International Static Analysis Symposium, pages 144–160. Springer,

2006.

[41] Denis Gopan, Thomas Reps, and Mooly Sagiv. A Framework for Numeric Analysis of

Array Operations. SIGPLAN Not., 40(1):338–350, January 2005.

[42] Nicolas Halbwachs and Mathias Péron. Discovering Properties About Arrays in Simple

Programs. SIGPLAN Not., 43(6):339–348, June 2008.

[43] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy Ab-

straction. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 58–70, New York, NY, USA, 2002. ACM.

159

[44] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun. ACM,

12(10):576–580, October 1969.

[45] Kryštof Hoder, Laura Kovács, and Andrei Voronkov. Invariant Generation in Vampire. In

Proceedings of the 17th International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems: Part of the Joint European Conferences on Theory

and Practice of Software, TACAS’11/ETAPS’11, pages 60–64, Berlin, Heidelberg, 2011.

Springer-Verlag.

[46] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing Using Dependence Graphs.

SIGPLAN Not., 23:35–46, June 1988.

[47] T. Huckle. Collection of Software Bugs.

http://www5.in.tum.de/˜huckle/bugse.html.

[48] Daniel Jackson and Eugene J. Rollins. Chopping: A Generalization of Slicing. Technical

report, Pittsburgh, PA, USA, 1994.

[49] Anushri Jana, Uday P. Khedker, Advaita Datar, R. Venkatesh, and Niyas C. Scaling

Bounded Model Checking by Transforming Programs with Arrays. In Logic-Based Pro-

gram Synthesis and Transformation, 26th International Symposium, LOPSTR 2016, Edin-

burgh, UK, September 6-8, 2016. Revised Selected Papers, pages 275–292, Cham, 2017.

Springer International Publishing.

[50] Bertrand Jeannet, Peter Schrammel, and Sriram Sankaranarayanan. Abstract Acceleration

of General Linear Loops. In Proceedings of POPL, 2014, pages 529–540, New York, NY,

USA, 2014. ACM.

[51] Ranjit Jhala and Kenneth L. McMillan. Array Abstractions from Proofs. In Computer

Aided Verification: 19th International Conference, CAV 2007, Berlin, Germany, July 3-7,

2007. Proceedings, pages 193–206, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[52] Ken Kennedy. Use-definition Chains with Applications. Computer Languages, 3(3):163–

179, 1978.

160

http://www5.in.tum.de/~huckle/bugse.html

[53] Shubhangi Khare, Sandeep Saraswat, and Shrawan Kumar. Static Program Analysis of

Large Embedded Code Base: An Experience. In Proceedings of ISEC, 2011.

[54] B. Korel and J. Laski. Dynamic Program Slicing. Inf. Process. Lett., 29(3):155–163, 1988.

[55] Daniel Kroening, Matt Lewis, and Georg Weissenbacher. Under-approximating Loops

in C Programs for Fast Counterexample Detection. Formal methods in system design,

47(1):75–92, 2015.

[56] Shrawan Kumar, Amitabha Sanyal, and Uday P. Khedker. Value Slice: A New Slic-

ing Concept for Scalable Property Checking. In Christel Baier and Cesare Tinelli, edi-

tors, Tools and Algorithms for the Construction and Analysis of Systems, pages 101–115,

Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[57] Shrawan Kumar, Amitabha Sanyal, R. Venkatesh, and Punit Shah. Property Checking

Array Programs Using Loop Shrinking. In Dirk Beyer and Marieke Huisman, editors,

Tools and Algorithms for the Construction and Analysis of Systems, pages 213–231, Cham,

2018. Springer International Publishing.

[58] Mathworks. Polyspace.

http://www.mathworks.in/products/polyspace.html.

[59] K. L. McMillan. Applications of Craig Interpolants in Model Checking. In Tools and

Algorithms for the Construction and Analysis of Systems: 11th International Conference,

TACAS 2005, Edinburgh, UK, April 4-8, 2005. Proceedings, pages 1–12, Berlin, Heidel-

berg, 2005. Springer Berlin Heidelberg.

[60] David Monniaux and Francesco Alberti. A Simple Abstraction of Arrays and Maps by

Program Translation. In Static Analysis: 22nd International Symposium, SAS 2015, Saint-

Malo, France, September 9-11, 2015, Proceedings, pages 217–234, Berlin, Heidelberg,

2015. Springer Berlin Heidelberg.

[61] David Monniaux and Laure Gonnord. Cell Morphing: From Array Programs to Array-

Free Horn Clauses. In Static Analysis: 23rd International Symposium, SAS 2016, Edin-

burgh, UK, September 8-10, 2016, Proceedings, pages 361–382, Berlin, Heidelberg, 2016.

Springer Berlin Heidelberg.

161

http://www.mathworks.in/products/polyspace.html

[62] Jeremy Morse, Mikhail Ramalho, Lucas Cordeiro, Denis Nicole, and Bernd Fischer. ES-

BMC 1.22. In International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 405–407. Springer, 2014.

[63] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of Program Analysis.

Springer, 2015.

[64] Andreas Podelski and Andrey Rybalchenko. ARMC: The Logical Choice for Software

Model Checking with Abstraction Refinement. In In PADL. Springer, 2007.

[65] Sriram Sankaranarayanan, Michael A. Colón, Henny Sipma, and Zohar Manna. Efficient

Strongly Relational Polyhedral Analysis. In Proceedings of the 7th international con-

ference on Verification, Model Checking, and Abstract Interpretation, VMCAI’06, pages

111–125, Berlin, Heidelberg, 2006. Springer-Verlag.

[66] Peter Schrammel and Bertrand Jeannet. Applying Abstract Acceleration to (co-) Reach-

ability Analysis of Reactive Programs. Journal of Symbolic Computation, 47(12):1512–

1532, 2012.

[67] Josep Silva. A Vocabulary of Program Slicing-based Techniques. ACM Comput. Surv.,

44(3):1–41, June 2012.

[68] Manu Sridharan, Stephen J Fink, and Rastislav Bodik. Thin Slicing. In ACM SIGPLAN

Notices, volume 42, pages 112–122. ACM, 2007.

[69] Robert E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput.,

1(2):146–160, 1972.

[70] Dexi Wang. Tool Ceagle. http://sts.thss.tsinghua.edu.cn/ceagle, 2017.

[71] Mark Weiser. Program Slicing. In Proceedings of the 5th international conference on

Software engineering, pages 439–449. IEEE Press, 1981.

[72] Mark David Weiser. Program Slices: Formal, Psychological, and Practical Investigations

of an Automatic Program Abstraction Method. PhD thesis, Ann Arbor, MI, USA, 1979.

AAI8007856.

162

http://sts.thss.tsinghua.edu.cn/ceagle

[73] Wikipedia. List of Software Bugs.

http://en.wikipedia.org/wiki/List_of_software_bugs.

163

http://en.wikipedia.org/wiki/List_of_software_bugs

164

Acknowledgments

First of all, I thank my advisers Prof. Amitabha Sanyal and Prof. Uday Khedker, for their

constant guidance and encouragement that helped me stay the course and shape my work. At

personal level, they helped me immensely in solving non-academic problems, especially during

the year of my stay at IIT Bombay. I am grateful to Prof. Supratim Biswas and Prof. Supratik

Chakraborty, members of my Research Progress Committee, for their useful insights to improve

the overall quality of my work. I would like to thank the entire CSE staff for providing the as-

sistance and the required infrastructure. Special thanks to Mr. Vijay Ambre for taking care of

the administrative procedures, especially my off-line registration in every semester. I acknowl-

edge the help provided by Mohammad Afzal, who experimented the idea of loop pruning as

part of his M.Sc. thesis internship under my guidance. I am thankful to my work organisation

for allowing me to take up this journey, and facilitating to complete it. I sincerely thank my

colleagues cum friends at TRDDC who helped me in various ways in completing this research

work. To name a few, R. Venkatesh for helping shape up some of the ideas of this work, Ulka

Shrotri for always raising my spirits whenever chips were down, Kumar Madhukar for immense

help with reviewing and proof reading of the thesis manuscript. Finally, I am thankful to my

family for the emotional support that helped me overcome the tough times during this journey.

Shrawan Kumar

	Abstract
	List of Figures
	List of Tables
	Introduction
	Scalability and precision in property checking
	Some motivating examples
	Our thesis
	Related work
	Organization

	I Scaling up Property Checking Using Value Slice
	Background
	Control flow graph
	Program states and traces
	Subprograms
	Backward slice
	Data and control dependence

	Value slice : A new slicing concept
	Concept of value slice
	Value-impacting statements
	Value slice from value impacting statements
	Identifying VI statements using data and control dependence
	Value slice computation

	Implementation and measurements
	Implementation
	Experiments

	Related work

	II Scaling up Property Checking of Array Programs
	Background
	Imperative programs and states
	Bounded model checking
	Loop acceleration
	Programs and properties of interest
	State approximation for residual loops

	Loop shrinkability
	Definition of shrinkable loops
	Identifying shrinkable loops
	Checking shrinkability of iteration sequences of a size
	Determining loop shrinkability empirically
	Property checking for shrinkable loops
	Multiple loops and nested loops

	Implementation and measurements
	Implementation
	Experiments

	Loop pruning
	Basic idea
	Programs of interest
	Loop dependence graph and semantic constraints
	Replaying last value computations in the pruned loop
	Last value assignments and bound on their numbers
	Proof of soundness
	Implementation and measurements

	Related work

	III Concluding Remarks
	Conclusion and future directions
	Scaling up property checking through value slice
	Reducing the size of the loops

