
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Veri�cation of C11 Programs with Relaxed Accesses

Parosh Aziz Abdulla

Uppsala University, Sweden

parosh@it.uu.se

Mohamed Faouzi Atig

Uppsala University, Sweden

mohamed_faouzi.atig@it.uu.se

Adwait Godbole

IIT Bombay, India

adwait@cse.iitb.ac.in

S. Krishna

IIT Bombay, India

krishnas@cse.iitb.ac.in

Viktor Vafeiadis

MPI-SWS

viktor@mpi-sws.org

Abstract

In POPL’17, Kang et al. introduced the promising semantics

for relaxed-memory concurrency (PS-RLX), the �rst mem-

ory model supporting many features of the relaxed fragment

of the C++ concurrency model while satisfying the DRF

guarantee. PS-RLX uses a consistency check that prevents

semantical deadlocks. However, this check comes at the price

of making the veri�cation of even simple programs practi-

cally infeasible. This is due to the unbounded number of runs

that need to be checked in order to validate the promises. In

this paper, we propose a new consistency de�nition called

strong consistency semantics which (1) captures most of the

common program transformations performed by the relaxed

fragment of C++, (2) is deadlock free (i.e., all promises will

eventually be ful�lled), and (3) does not require the analysis

of an unbounded number of runs. Then, we show that the

reachability problem under the promising semantics with

the (strong) consistency de�nition is highly complex. Given

this high complexity, we consider a bounded version of the

reachability problem. To this end, we bound both the number

of promises and the “view-switches”, i.e, the number of times

the processes may switch their local views of the global mem-

ory. We provide a code-to-code translation from an input

program under PS-RLX to a program under SC. This leads

to a reduction of the bounded reachability problem under

PS-RLX to the bounded context-switching problem under SC.

We have implemented a prototype tool and tested it on a set

of benchmarks, demonstrating that many bugs in programs

can be found using a small bound.

Keywords Model-Checking, weak memory models, Re-

laxed Semantics

1 Introduction

An important long-standing open problem in PL research

was to de�ne a ‘good’ weak memory model for capturing

the semantics of concurrent ‘relaxed’ memory accesses in

languages like Java and C/C++. A model is considered ‘good’

if it can be implemented e�ciently (i.e., if it supports all

usual compiler optimizations and its accesses are compiled

to plain x86/ARM/Power/RISCV accesses), and is “easy” to

, ,
2019.

reason about. The latter is not formally de�ned. Instead,

the literature uses various proxies such as supporting basic

invariant reasoning or the DRF guarantee [21], which states

that programs without races exhibit only SC-behavior.

After many attempts at solving this problem (e.g., [6, 8,

12, 19, 21, 25, 30]), a breakthrough was achieved by Kang et

al. [13], who introduced the promising semantics (PS). PSwas
the �rst model that supported basic invariant reasoning, the

DRF guarantee, and even a non-trivial program logic [28]. In

PS, the memory is modeled as a set of timestamped messages,

each corresponding to a write made by the program. Each

process/thread records its own view of the memory—i.e., the

latest timestamp for each memory location that it is aware of.

When reading from memory, it can either return the value

stored at the timestamp in its view or advance its view to

some larger timestamp and read from that message. When

a process t writes to memory location x , PS creates a new

message with a timestamp larger than t ’s view of x , and t ’s
view is advanced to include the new message. In addition, in

order to allow load-store reorderings, PS allows a process to

promise to produce a certain write in the future. PS uses a

consistency check to ensure that every promised message can

be certi�ed (i.e., made ful�llable) by executing that process

on its own. Furthermore, this should hold from any future

memory (i.e., from any extension of the memory with addi-

tional messages). The quanti�cation prevents deadlocks (i.e.,

processes from making promises they are not able to ful�l).

PS generally allows program executions to contain unbound-

edly many concurrent promised messages, provided that all

of them can be certi�ed. As one can immediately see, PS
is a fairly complex model, and beyond its support for some

basic reasoning patterns, it is not at all obvious whether it

is easy to reason about concurrent programs running under

PS. Furthermore, the unbounded number of future memo-

ries, that need to be checked, makes the veri�cation of even

simple programs practically infeasible. However, as men-

tioned above, the quanti�cation over all future memories is

necessary to ensure the absence of deadlocks. A challeng-

ing problem is then to �nd a consistency de�nition that (1)

captures most of the common program transformations per-

formed by the relaxed fragment of C++, (2) is deadlock-free

(i.e., all promises will eventually be ful�lled) and (3) does not

quantify over all future memories.

1

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Towards this goal, we propose a new consistency de�ni-

tion, called strong consistency semantics, for the relaxed frag-

ment of the promising semantics (PS-RLX), which satis�es

all the three requirements listed above. Roughly speaking,

the new (strong) consistency check requires that promises

can be ful�lled only from the current memory (i.e., no need

for quanti�cation over all possible future memories) by a

run that does not (1) add new messages with non-maximal

timestamp and (2) execute atomic Compare-And-Swap in-

structions. We show that strong consistency implies the

standard consistency (as de�ned in [13]). Furthermore, in

the case where the program Prog does not contain any atomic

Compare-And-Swap instructions, we show that the two se-

mantics coincide. As an immediate consequence, we have

that any behavior under PS-RLX with the strong consistency

de�nition is also a behavior under PS-RLX with the (stan-

dard) consistency de�nition. This implies that PS-RLX with

the strong consistency de�nition is deadlock-free.

Then, we consider the reachability problem for programs

running under PS-RLX. This is a challenging problem since

even if each process is a �nite state system, the program’s

state space is unbounded because the memory can contain

unboundedly many messages and each message has a times-

tampwhose size is also not bounded. Furthermore, a program

under PS-RLX can make an unbounded number of promise

steps, whose certi�cation can further take an unbounded

number of steps. All these aspects make the reachability prob-

lem very di�cult. In fact, we show the reachability problem

under PS-RLX using anyone of the two consistency de�ni-

tions is highly complex: it is non-primitive recursive.

Given this high complexity, we next consider a bounded

version of the reachability problem for PS-RLX. We bound

both the number of promises and, following [1], the number

of “view switches” (i.e., the number of times that a process

reads from a message it has not previously seen). We develop

a practical veri�cation algorithm for this bounded reachabil-

ity problem via a reduction to SC reachability under bounded

context-switching [27].

This reduction is implemented in a tool, called SwInG.
Our experimental results in §6 demonstrate the e�ectiveness

of our approach. We exhibit cases where hard-to-�nd bugs

are detectable using a small view-bound K . Our tool displays
resilience to trivial changes in the position of bugs and

the order of processes. Moreover, our experimental results

con�rm our hypothesis that the standard de�nition of

consistency (as de�ned in [13]) would not scale while strong

consistency performs much better.

Related Work As stated in the introduction, the promising

semantics is the �rst model to support DRF guarantees and

invariant reasoning. Given this, the veri�cation of programs

running under the promising semantics is a fundamental

question, which has not been considered before. To the best

of our knowledge, SwInG is the �rst tool for automated

veri�cation of programs under the promising semantics [13]

and the strong semantics. Most of the existing work concerns

the development of stateless model checking (SMC), coupled

with (dynamic) partial order reduction techniques (e.g., [3,

14, 15, 23, 24]) and do not handle promises as de�ned in [13].

Context-bounding has been proposed in [27] for programs

running under SC. This work has been extended in di�erent

directions and has led to e�cient and scalable techniques

for the analysis of concurrent programs (see e.g., [9, 16–

18, 20, 22]). In the context of weak memory models, context-

bounded analysis has been only proposed to programs run-

ning under TSO/PSO in [5, 29] and under POWER in [2].

In our bounded reachability veri�cation procedure, we

adapt the view-bounding approach proposed in [1] for pro-

grams under release-acquire semantics to the promising se-

mantics. Our code to code translation to bounded context

SC is much more complex than the one in [1] because in

addition to executing instructions, a process can perform

various other roles like making and certifying promises as

well as checking consistency. The main challenge in the code-

to-code translation of [1] was to keep track of the causality

between di�erent variables. In our case, the challenge is fun-

damentally di�erent and is to provide a procedure that (i)

guesses the promises non-deterministically in a manner that

guarantees consistency after each step, and (ii) verify that

each promise so guessed is ful�lled.

As future work, a practical veri�cation in RC11 in the

presence of both relaxed and release-acquire semantics is

de�nitely possible, albeit technically challenging because

of the di�erences in the two view-switch notions we have

versus [1]. We hope to address this in future by �nding a

uniform view switch concept that is compatible with the two

semantics as well as with the semantics of SC accesses.

2 Preliminaries

In this section, we introduce the simple programming lan-

guage and the notation that will be used throughout.

Notations. Given two natural numbers i, j ∈ N s.t. i ≤ j,
we use [i, j] to denote the set {k | i ≤ k ≤ j}. Let A and B be

two sets. We use f : A → B to denote that f is a function

from A to B. We de�ne f [a 7→ b] to be the function f ′

such that f ′(a) = b and f ′(a′) = f (a′) for all a′ , a. Given
a set A′ ⊆ A, we use f |A′ to denote the function from A′

to B such that f |A′(a) = f (a) for all a ∈ A′. For a binary

relation R, we use [R]∗ to denote its re�exive and transitive

closure. Given an alphabet Σ, we use Σ∗ (resp. Σ+) to denote

the set of possibly empty (resp. non-empty) �nite words

over Σ. Let w = a1a2 · · ·an be a word over Σ, we use |w |
to denote the length of w . Given an index i in [1, |w |], we
use w[i] to denote the ith letter of w . Given two indices i
and j s.t. 1 ≤ i ≤ j ≤ |w |, we usew[i, j] to denote the word

aiai+1 · · ·aj . Sometimes, we consider a word as a function

from [1, |w |] to Σ.

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

, ,

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

Prog ::= var x∗ (proc p reg $r∗ i∗)∗

i ::= λ : s;

s ::= x = $r | $r = x | bcas(x , $r1, $r2)
$r = exp | SC-fence | assume(exp)
if exp then i∗ else i∗ end if
while exp do i∗ done

Figure 1. Syntax of concurrent programs.

Program Syntax. A program Prog (see Fig. 1) consists of

a set X of (global) variables, followed by the de�nition of

a set P of processes. Each process p declares a set R (p) of
(local) registers followed by a sequence of labeled instructions.
We assume that these sets of registers are disjoint and we

use R := ∪pR (p) to denote their union. We assume also

a (potentially unbounded) data domain D from which the

registers and global variables take values. All global variables

and registers are assumed to be initialized with the special

value 0 ∈ D (if not mentioned otherwise).

An instruction i is of the form λ : s where λ is a unique

label and s is a statement. We use Lp to denote the set of all

labels of the process p, and L =
⋃

p∈P Lp the set of all labels.

We assume that the execution of the process p starts always

with a unique initial instruction labeled by λ
p
init

. A write

instruction is of the form x = $r , and assigns the value of

register $r to the global variable x . A read instruction $r = x
conversely reads the value of the global variable x into the

local register $r . A blocking compare-and-swap (bcas) in-
struction takes the form bcas(x , $r1, $r2) and waits until the

value of the global variable x matches that of register $r1 and
when it is the case, it atomically assigns the value of register

$r2 to x . A local assignment instruction $r = exp assigns to

the register $r the value of exp, where exp is an expression

over a set of operators, constants as well as the contents of

the registers of the current process, but not referring to the

set of global variables. The fence instruction SC-fence is used
to enforce sequential consistency if it is placed between two

memory access operations. Finally, the conditional, assume
and iterative instructions (collectively called cai instructions)
have the standard semantics. We de�ne LWp (resp. LW), LRp
(resp. LR), Lbcasp (resp. Lbcas) and LSC-fencep (resp. LSC-fence) as
the subsets of Lp (resp. L) corresponding to write, read, bcas
and SC fence instructions, receptively.

Given a label λ of a process p, let next(λ) denote the labels
of the next instructions that can be executed by p. With the

exception of cai instructions, next(λ) contains at most one

element: it contains no elements for the last instruction(s)

of the process, in which case we write next(λ) = ⊥. In
the case of cai instructions, next(λ) contains at most two

elements (assume can be thought of as a while loop). We

de�ne Tnext(λ) (resp. Fnext(λ)) to be the (unique) label of
the instruction to which the process execution moves in case

the expression appearing in the statement of the instruction

labeled by λ evaluates to true (resp. false). We also use

Tnext(λ) = ⊥ and Fnext(λ) = ⊥ to denote the termination

of the process execution. For simplicity, we sometimes write

assume(x = exp) instead of $r = x ; assume($r = exp) (for

a register $r that is not otherwise used in the program).

This notation is extended in the straightforward manner to

conditional statements.

3 Promising Semantics(PS-RLX)
In the following, we present the PS-RLX memory model,

which de�nes the semantics of global variable accesses.

PS-RLX is obtained from the promising semantics [13], by

restricting attention to relaxed accesses and SC fences.

In order to correctly model relaxed accesses, PS-RLX dis-

penses with the standard SC understanding of memory as

a function from global variables to values. Instead, it repre-

sents memory as a set of messages, each denoting the e�ect

of a single write or compare-and-swap instruction. Although

the memory is shared, each process has its own view of the

memory, since it is aware only of a subset of the messages it

contains. In the absence of SC fences, these views can be rad-

ically di�erent: the only constraint enforced is that messages

to the same variable are totally ordered, so that processes

cannot disagree on the order in which they perceive them.

Finally, messages can be added to the memory either by ex-

ecuting the next instruction of a process or by promising a

future write—that is, immediately adding to memory a mes-

sage that could otherwise only be added after executing a

bunch of instructions. As we will shortly see, promises hold

the key to PS-RLX because they allow load-store reordering,

and pose signi�cant challenges to veri�cation.

Timestamps. PS-RLX uses timestamps to maintain a total

order over all the writes to the same variable. We assume an

in�nite set of timestamps Time, densely totally ordered by

≤, with 0 being the minimum element. A view is a function

V : X → Time that maps each variable to a timestamp.

We use T to denote the set of all view functions. Let Vinit
represent the initial view where all variables are mapped to

0. Let I denote the set of intervals over Time. The intervals
in I have the form (f , t] where either f = t = 0 or f < t ,
with f , t ∈ Time. Given an interval I = (f , t] ∈ I, I .frm and

I .to denote f , t respectively.

Memory. In PS-RLX, the memory is modelled as a set of

messages, where each message represents the e�ect of one

write or compare-and-swap instruction. In more detail, a

message m is a tuple (x ,v, (f , t]) where x ∈ X, v ∈ D
and (f , t] ∈ I. We use m.var , m.val , m.to and m.frm
to denote respectively x , v , t and f . Two messages are

said to be disjoint (m1⊥m2) if they concern di�erent vari-

ables (m1.var , m2.var) or their intervals do not overlap

(m1.to ≤ m2.frm or m2.to ≤ m1.frm). Two sets of mes-

sagesM,M ′ are disjoint, denotedM⊥M ′, ifm⊥m′ for every

3

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

m ∈ M,m′ ∈ M ′. Two messagesm1,m2 are adjacent denoted
Adj(m1,m2) ifm1.var =m2.var andm1.to =m2.frm.

A memory M is a set of pairwise disjoint messages. A

memoryM can be extended with a messagem = (x ,v, (f , t])
in a number of ways:

Additive insertion M
A
←↩ m is de�ned if M⊥{m} and re-

turnsM ∪ {m}.

Maximal additive insertion M
Am
←↩ m is de�ned if

M⊥{m} and m.to > m′.to for all m′ ∈ M , and re-

turns M ∪ {m}. The maximal additive insertion is a

special case of the additive insertion that we will need

to check the consistency of the promises.

Splitting insertion M
S
←↩ m is de�ned if there exists

m′ = (x ,v ′, (f , t ′]) with t < t ′ in M , in which case

it results inM being updated toM
S
←↩m = (M\{m′}∪

{m, (x ,v ′, (t , t ′])}).

Ful�lment insertion M
F
←↩ m is de�ned if m ∈ M , in

which case it returnsM unchanged.

Machine States. A machine state MS is a tuple

(J ,R,View, PS,M,G), where J : P 7→ Lmaps each process p
to the label of the next instruction to be executed, R : R → D
maps each register to its current value, View : P 7→ T maps

each process to its view of the memory, M is a memory,

PS : P 7→ 2
M

maps each process to a set of messages (called

promise set), andG ∈ T is the global view (that will be used

by SC fences). Let C denote the set of all machine states.

Given a machine state MS = (J ,R,View, PS,M,G)
and a process p, we use MS↓p to denote

(J (p),R |R(p),View(p), PS(p),M,G), the projection ofMS to

the process p. The �rst four entries inMS↓p constitute the

process state. We callMS↓p the process con�guration. Let

Cp denote the set of all process con�gurations.

The initial machine stateMSinit is one where: (1) each

process p is in its initial instruction; (2) all registers have

value 0; (3) each process has the initial process view (that

maps each variable to 0); (4) the set of promises is empty; (5)

the initial memoryMinit contains exactly one initial message

(x , 0, (0, 0]) for each variable x ; and (6) the initial global view
maps each variable to 0.

Transition Relation. We next explain the transition rela-

tion between process con�gurations, from which we will

induce the transition relation between machine states.

Process Relation. We de�ne the transition relation induced

by the process p as a relation −→
p
⊆ Cp × (Lp ∪ (Lp ×

{A,Am, S, F }) ∪ {prm}) × Cp between the con�gurations of

a given process p. For an instruction λ : s of a process p
and two process con�gurations c = (λ,R,V , P ,M,G) and

c′ = (λ′,R′,V ′, P ′,M ′,G ′), we write c
λ:s
−−→
p
c′ to denote that

(c, λ, c′) ∈−→
p
. For a write or bcas instruction λ : s of a pro-

cess p and a ∈ {A,Am, S, F }, we write c
(λ:s,a)
−−−−−→

p
c′ to denote

that (c, (λ,a), c′) ∈−→
p
. The letter a ∈ {A,Am, S, F } is used to

distinguish the di�erent ways a write/bcas instruction is

executed where A, Am, S , and F stand for Additive, Maxi-
mal Additive, Splitting and Ful�lment. Similarly, we write

c
prm
−−→
p
c′ to denote that (c, prm, c′) ∈−→

p
. The relation −→

p
is

de�ned through a set of inference rules given in Figure 2.

Below, we explain these inference rules.

• The Read rule handles the case when process p executes

a read instruction λ : $r = x . For the read to be successful,

there must be some message of the form (x ,v, (f , t]) in the

global memory such that V (x) ≤ t (i.e., process p must not

be aware of a later message for x). In this case, the value v
is assigned to $r and the timestamp of the read message is

incorporated intop’s view. The current instruction of process
p gets updated to next(λ). The global memoryM , the set of

promises P , and the global view G remain the same.

• The Write rule handles the case when a write instruc-

tion λ : x = $r is executed. Let v be the value of $r (i.e.,

v = R($r)). To perform this instruction, there must exist an

unused interval (f , t] s.t. V (x) ≤ f . Then, there are three
cases, depending on the set of promises P of p.

• (Maximal) Additive Insertion: If the new message

(x ,v, (f , t]) is disjoint from the memory M (i.e.,

{(x ,v, (f , t])}⊥M), then we addm = (x ,v, (f , t]) toM

to obtain the new global memoryM
A
←↩m (orM

Am
←↩m

if we are using the maximal additive insertion oper-

ation). The view of p is updated to V [x 7→ t]. Notice

that (P
a
←↩m)\{m} leaves P unchanged.

• Splitting Insertion: Letm = (x ,v, (f , t]). To use split-

ting insertion, there should exist a message m′ =

(x ,v ′, (f , t ′′]) in P ⊆ M with t < t ′′. Then M
S
←↩ m

results in M\{m′} ∪ {m, (x ,v ′, (t , t ′′])} while (P
S
←↩

m)\{m} results in P ′ = (P\{m′})∪ {(x ,v ′, (t , t ′′])}. To
addm to the memory, we modifym′ in the promise

set and the memory, and extend the memory withm.

• Ful�lment Insertion: Letm = (x ,v, (f , t]). To use ful�l-
ment insertion ofm, themessagem should be in P ⊆ M .

Then M
F
←↩ m results in M while (P

F
←↩ m)\{m} re-

sults in P ′ = (P\{m}). Essentially, we keep thememory

the same and we removem from the set of promises.

The current instruction and view of p are respectively up-

dated to next(λ), and V [x 7→ t].
• The CAS rule executes a compare-and-swap instruction

of the form λ : bcas(x , $r1, $r2). To perform the bcas instruc-
tion, there must be a message m = (x ,R($r1), (f , t]) ∈ M
such thatV (x) ≤ t . Letm′ = (x ,R($r2), (t , t

′]). Then we have

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

, ,

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

(x ,v, (f , t]) ∈ M, V (x) ≤ t

(λ,R,V , P ,M,G)
λ:$r=x
−−−−−→

p
(next(λ),R[$r 7→ v],V [x 7→ t], P ,M,G)

Read

m = (x ,R($r), (f , t]), V (x) ≤ f , P ′ = (P
a
←↩m)\{m}, M ′ = M

a
←↩m

(λ,R,V , P ,M,G)
(λ:x=$r,a)
−−−−−−−−→

p
(next(λ),R,V [x → t], P ′,M ′,G)

Write
a ∈ {A,Am, S, F }

(x ,R($r1), (f , t]) ∈ M, V (x) ≤ t ,

m = (x ,R($r2), (t , t
′]), P ′ = (P

a
←↩m)\{m}, M ′ = M

a
←↩m

(λ,R,V , P ,M,G)
(λ:bcas(x,$r1,$r2),a)
−−−−−−−−−−−−−−−→

p
(next(λ),R,V [x → t ′], P ′,M ′,G)

CAS
a ∈ {A,Am, S, F }

P ′ = P
a
←↩m, M ′ = M

a
←↩m

(λ,R,V , P ,M,G)
prm
−−→
p
(λ,R,V , P ′,M ′,G)

Promise
a ∈ {A, S}

(λ,R,V , P ,M,G)
λ:SC-fence
−−−−−−−−→

p
(next(λ),R,V tG, P ,M,V tG)

SC fence

Figure 2. PS-RLX inference rules at the process level, de�ning the

transition (λ, R, V , P, M, G)
α
−→
p
(λ′, R′, V ′, P ′, M ′, G′) where p ∈ P and

α is one of the labels used above. The merge operation t returns the

pointwise maximum of the two views, i.e., (V tV ′)(y) is the maximum of

V (y) and V ′(y).

three cases obtained by usingm′ in place of (x ,v, (f , t]) in
the explanation of the write operation for a ∈ {A,Am, S, F }.
• The SC-fence rule concerns the execution of an SC

fence. In such cases, the process view V (p) is compared to

global viewG and they both get updated to the maximum of

the two using the merge operationt. Formally, the merge op-

eration t between two views V and V ′ is de�ned as follows:

for any variable y ∈ X, (V tV ′)(y) = V ′(y) if V ′(y) ≥ V (y),
and V (y) otherwise.
• The Promise rule enables process p to promise any mes-

sagem that can be added to both P andM by an additive or

a splitting insertion.

Besides these rules shown in Figure 2, there are inference

rules for the other instructions (assignments, assumes, con-

ditionals, and iterations). These are de�ned in the usual way

and a�ect only the label of the instruction to get executed

and the values of its registers.

Machine Relation. Now we are ready to de�ne the induced

transition relation between machine states using the process

transition relations de�ned in the previous paragraph. For

that, let INFR = (Lp ∪ (Lp × {A,Am, S, F }) ∪ {prm}) and

p
⇒

def
=

⋃
α ∈INFR

α
−→
p
, and ⇒

def
=

⋃
p∈P

p
⇒

This induces a relation between machine states as follows.

For machine statesMS = (J ,R,View, PS,M,G) andMS′ =

(J ′,R′,View′, PS ′,M ′,G ′), we write MS
p
⇒ MS′ i� (1)

MS↓p
p
⇒ MS↓p and (J (p ′),R |R(p′),View(p ′), PS(p ′)) =

(J ′(p ′),R′ |R(p′),View′(p ′), PS ′(p ′)) for all p ′ , p.

Consistency. There is one �nal requirement on machine

states called consistency, which roughly states that in ev-

ery machine state encountered in a program execution, all

the messages promised by a process p can be certi�ed (i.e.,

made ful�llable) by executing p on its own from any future

memory, i.e., any extension of the memory with additional

messages. The quanti�cation over all the future memory en-

sures that the current execution will not deadlock due to the

impossibility of the ful�lment of a promise. In other words, a

process cannot make any promises that it is not able to ful�l.

According to Kang et al. [13, §4], during the certi�cation

of promises, a process cannot make any further promises,

execute any SC fences. We call such steps consistent steps,

→cons
p

def
=

⋃
α ∈INFR\{prm,LSC-fencep }

α
−→
p
.

A machine stateMS = (J ,R,View, PS,M,G) is consistent
if, from any future memory M ′ such that M ⊆ M ′, every
processp ∈ P can certify/ful�l all its promises by performing

consistent steps, i.e., (J (p),R,View(p), PS(p),M ′,G) [→cons
p]∗

(λ,R′,V ′, ∅,M ′′,G ′).

3.1 Quanti�cation over all Future Memories

The purpose of the introduction of the quanti�cation over

futurememories in Kang et al. [13, §4] is to prevent deadlocks

(i.e., all promises will eventually be ful�lled). However, this

comes at the price of making the veri�cation of even simple

programs practically infeasible. This is due to the unbounded

number of future memories that need to be checked.

As mentioned in the introduction, the challenge that we

consider in this paper is to �nd a consistency de�nition that

(1) captures common program transformations performed

by C++, (2) is deadlock free, and (3) does not quantify over

future memories.

We can achieve (3) by simply dropping the quanti�cation

over future memories and instead only requiring that the

set of promises can be certi�ed from the current memory.

However, this will introduce deadlocks. To see why, consider

the following example:

bcas(x,0,1); assume(y = 1)

(Deadlock-c)

y:=1; bcas(x,0,1);

In the above example, the �rst process can promise to set

y to 1 (if we do not consider all possible future memories

during the certi�cation phase). Now the second process can

atomically update the value of the variable x from 0 to 1

which results in forbidding the �rst process to execute its

bcas instruction and so the promise can be never ful�lled.

The deadlock that we face in this example is caused by the

use of bcas during the certi�cation phase. Thus, a potential

�x is to disallow bcas. Unfortunately, this is not su�cient to

prevent deadlocks; as illustrated by the following example:

x=2; x:=1 x:=3

(Deadlock-w)assume(x=1); assume(y = 1)

y:=1;

In the above example, let us assume that the second pro-

cess executes its write instruction which results in a new

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

message in the memory of the form (x , 1, (1, 2]). Then, the
�rst process can promise (y, 1, (1, 3]). This is possible since
this promise can be certi�ed when we allow additive inser-

tion of the write operation x := 2 in the certi�cation phase.

Next, the assume instruction assume(y = 1) of the second

process can be executed. After that, the third process per-

forms its write instruction which results in a new message in

the memory of the form (x , 3, (0, 1]). Now, the �rst process
cannot ful�l its promise anymore, since the timestamp asso-

ciated to its write instruction x = 2 should be smaller than

the one of the write instruction x = 1. However, there is no

such available timestamp due to the message (x , 3, (0, 1]) of
the third process. The previous example suggests that we

also need to disallow the additive insertion of write opera-

tions with non-maximal timestamp. Interestingly, this is all

what we need to achieve (2), i.e., preventing deadlocks. In

Section 3.2, we show (1) is also achieved.

In the following, we formally de�ne this new se-

mantics (called here strong consistency). In this model,

during the certi�cation of promises, we allow only to

add writes with maximal timestamps; while bcas op-

erations, promises and SC-fences are disallowed. We

call these steps strong consistent steps, →scons
p

def
=⋃

α ∈INFR\{prm,(LWp ,A),(Lbcasp ,Am),(Lbcasp ,A),LSC-fencep }

α
−→
p
. Then, a ma-

chine stateMS = (J ,R,View, PS,M,G) is strongly consistent
ifMS↓p [→scons

p]∗ (λ,R′,V ′, ∅,M ′,G ′).

Theorem 3.1. If a machine state is strongly consistent then
it is also consistent. Furthermore, in the case where the program
Prog does not contain any bcas instruction, we have that if a
machine state is consistent then it is also strongly consistent.

A proof of Theorem 3.1 is in the supplement. As an imme-

diate consequence of Theorem 3.1, the strong consistency

de�nition is deadlock-free since the (standard) consistency

is deadlock-free.

3.2 Comparison of the two notions of consistency

In the following, we describe how strong consistency cap-

tures the common program transformations performed by

C++ (as in Kang et al. [13, §4]).

Consider the following two variants of the “load bu�er”

litmus test:

a:=x; b:=y

(LB)

a:=x; b:=y

(LBd)

y:=1; x:=b y:=a; x:=b

In the LB litmus test, C++ allows to assign 1 to the register

a. Such behavior can also be observed in our semantics with

the strong consistency de�nition. To see why, consider a

run where the �rst process (whose code on the left side)

promises to write 1 to y. Such a promise can be certi�ed by

that process. Then, the second process can read from the

promise that the value of y is 1 and set the variable x to 1.

Finally, the �rst process can ful�l its promise by setting y to

1. In the LBd litmus test, it is desirable to not observe that

the value of the register a is 1. It is indeed the case in our

semantics (with the strong consistency de�nition) since the

�rst process cannot promise that the value of y is 1.

Let us now consider the following variant of LBd :

a:=x; b:=y

(LBfd)

y:=a+1-a; x:=b

In the LBfd litmus test, C++ allows to assign 1 to the

register a. Such behavior is also allowed by our semantics

with the strong consistency de�nition by exactly proceeding

in the same way as in the case of the LB litmus test.

As an immediate consequence of Theorem 3.1, any ob-

served behavior under PS-RLX with the strong consistency

de�nition is also a behavior under PS-RLXwith the (standard)

consistency de�nition. Furthermore, any forbidden behav-

ior under PS-RLX with the (standard) consistency de�nition

is also a forbidden behavior under PS-RLX with the strong

consistency de�nition. However, PS-RLX with the (standard)

consistency de�nition allows strictly more behaviors than

PS-RLX with the strong consistency de�nition as we will

see in the next paragraph. This can be observed when we

use bcas operations during the certi�cation phase where the

values read by these operations are somehow irrelevant.

To see the di�erence between the two consistency def-

initions, let us consider another variant of the LB litmus

test where we add a bcas operation in the code of the �rst

process between its read and write operations.

a:=x; b:=y

(LBcu)bcas(x,a,a); x:=b

y:=1;

The bcas operation can succeed for any value of x . This
allows the �rst process to promise that the value of y is 1 un-

der PS-RLX with the (standard) consistency de�nition since

for any future memory, the �rst process sets the variabley to

1. Then, the execution continues exactly in the same way as

in the case of the LB litmus test to observe that the value of

a is 1. Such behavior is not possible under PS-RLX with the

strong consistency de�nition since the �rst process cannot

promise that the value of y is 1 (because we disallow the use

of bcas operations during certi�cation).

Now, let us consider a variant of LBcu where the bcas
operation can only succeed for some particular values.

a:=x; b:=y

(LBcd)bcas(x,0,1); x:=b

y:=1;

In LBcd litmus test the bcas needs to read a particular

value of the variable x and therefore the �rst process cannot

promise to set the value of y to 1 under PS-RLX with the

(strong) consistency de�nition for any future memory (i.e.,

any value of the variable x).

6

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

, ,

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

4 The (Strong) Reachability Problem

In this section, we discuss the question of reachability in

the (strong) consistency semantics. First, we give the formal

de�nition of the reachability problem under both seman-

tics. Then, we show that the reachability problem under

the strong consistency semantics is non-primitive recursive.

Given this high complexity, we propose a bounded version

of the (strong) reachability problem where we bound both

the number of promises and the number of “view switches”

(i.e., the number of times that a process reads from a message

it has not previously seen).

Formal de�nition. A strongly consistent run of Prog is a

sequence of the form: MS0 [
pi

1

⇒]∗ MS1 [
pi

2

⇒]∗ MS2 [
pi

3

⇒]∗

. . . [
pin
⇒]∗MSn whereMS0 =MSinit is the initial machine

state andMS1, . . . ,MSn are (strongly) consistent machine

states. In this case, the machine statesMS0, . . . ,MSn are

said to be (strongly) reachable fromMSinit.

Given an instruction label function J : P ⇀ L that maps

each process p ∈ P to a label in Lp , the (strong) reachability
problem asks whether there exists a machine state of the

form (J ,R,View, PS,M,G) that is (strongly) reachable from
MSinit. In the case of a positive answer to this problem, we

say that J is (strongly) reachable in Prog.

Lower-bound time complexity. As mentioned in Section

3.1, checking reachability is not tractable in practice due

to the unbounded number of future memories that need to

be considered. In the following, we show that the (strong)

reachability problem for concurrent programs under PS-RLX
is highly non-trivial (i.e., non-primitive recursive). The proof

is done by reduction from the reachability problem for lossy

channel systems, in a similar to the case of TSO [4] where

we insert SC-fence instructions everywhere in the process

that simulates the lossy channel process (in order to ensure

that no promises can be made by that process). A detailed

proof can be found in the supplement.

Theorem 4.1. The (strong) reachability problem for concur-
rent programs under PS-RLX over a �nite data domain is non-
primitive recursive.

Bounded (strong) reachability problem. Given the high-

complexity of the (strong) reachability problem, we re-

strict our attention to runs which have bounded number

of promises and view-switches. The latter notion was intro-

duced in Abdulla et al. [1] for the release-acquire model. Let

us formally de�ne such runs for PS-RLX with the strong con-

sistency de�nition. The problem can be de�ned in a similar

manner for PS-RLX with the standard consistency de�nition.

Consider a strongly consistent run ρ of the formMS0

α1

−−→
p1

MS1

α2

−−→
p2
c2 . . .

αn
−−→
pn
MSn . A step labeled by α j is view-

altering in ρ if it involves reading a message from the mem-

ory which changes the view of pj w.r.t. some variable. Let

nProдoB (〈global vars〉; 〈Main〉; (nproc p reg $r∗i∗o)∗
nproc p reg $r∗ i∗oB proc p reg $r∗〈local vars〉〈InitProc〉〈CSO〉p,λ0 (niop)∗

nλ : iop B λ : 〈CSI〉; nsop ; 〈CSO〉p,λ
nif exp then i∗ else i∗op B if exp then (niop)∗ else(niop)∗

nwhile exp do i∗op B while exp do (niop)∗
nassume(exp)op B assume(exp)

n$r = expop B $r = exp

nx = $rop B see Algorithm 3

n$r = xop B see Algorithm 4

Figure 3. Translation map n.o.
Sw be the set {i | pi , pi+1} recording the points of context

switches in ρ. Also, let Cons be the set of strong consistency

check runs for ρ, i.e., runs of the form ci↓pi [→
scons
pi]

∗ c′i for

i ∈ Sw where the promise set of pi is empty in c′i .

LetK ′ be the number of view-switches and promises along

ρ, and let K ′′ by the total number of view-switches in Cons .
The run ρ is called K-bounded under the relaxed semantics

(denoted K-Bd(PS,Vw)−RLX) if K ′′ + K ′ ≤ K . Observe that
the messages read during strong consistency checks are not

considered as view-switches in the traditional sense (they do

not change the view permanently, but are only used locally

within that strong consistency check phase).

Finally, given K ∈ N, the K-(promise, view) bounded

strong reachability under PS-RLX can be de�ned in simi-

lar manner to the strong reachability problem by replacing

strong runs with the K-bounded ones.

K-Bounded-Context Reachability in SC. Given a program, a

run τ under SC is a sequence γ0
p1
⇒ γ1

p2
⇒ γ2 · · ·

pn
⇒ γn . A

context switch in τ is a machine state γj , s.t. pj−1 , pj . A
run τ is K-context-bounded if it contains at most K context

switches. The K-bounded reachability under SC is de�ned

by requiring that τ is K-context bounded.

5 Solving the Strong Reachability Under

Bounded Promises and View-Switches

Let K ∈ N be a bound on the promises and view-switches.

In this section, we propose an algorithm that reduces the

K-(promise, view) bounded strong consistent reachability

under PS-RLX to a K + n bounded context reachability prob-

lem under SC, where n is the number of processes in the

concurrent program. The bounded-context reachability prob-

lem under SC for �nite-state programs is decidable [27]. In

concrete terms, given a concurrent program Prog as input,

our algorithm constructs a program Prog′ having the same

variable domain as Prog and size polynomial in Prog and K
s.t. for every K-(promise, view) bounded strongly consistent

run of Prog under PS-RLX, there is a K + n bounded context

run of Prog′ under SC reaching the same set of instruction

labels, and vice-versa.

For the rest of the section, we use ρrel (resp. τsc) to denote

a run under PS-RLX (resp. SC).

7

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Translation Overview. Let Prog be a program under

PS-RLX and let P and X be its sets of processes and shared

variables respectively. Our reduction relies on the transla-

tion of Prog under the bounded strong consistency semantics

to a context-bounded SC program nProgo, as shown in Fig-

ure 3. The translation keeps the same data domain for local

variables, but adds a �nite amount of additional global and

local states, which we will describe shortly. Besides the new

global variables, nProgo also adds a new process (Main) that

initializes these variables, and then translates each process

in turn. The translation of a process p ∈ P adds some lo-

cal variables, such as the view array that records the most

recent value and timestamp seen by p for each shared vari-

able x ∈ X. The function 〈InitProc〉 initializes these local
variables. Each instruction i in process p is translated to a

sequence of instructions: 〈CSI 〉 that checks if the process
is active in the current context; the translation nsop of the

statement s in i; and 〈CSO〉p,λ that checks switching out

of context. 〈CSO〉p,λ facilitates two things: (i) it allows p to

make promises after each λ (possibly in di�erent contexts),

s.t. the control is back at λ after the promises; (ii) it helps

in certi�cation of promises when p switches out of context

from λ. The translation of bcas and SC-fence is discussed
in the supplement, to keep the presentation simple. We will

elaborate on read, write later.

One of the key ingredients in the translation is to bound

the size of thememory. This is done via the notion of essential

messages (these messages are either promises or alter the

view of processes which read them) detailed below. A bound

on the number of time stamps (details below) is achieved

from the number of essential messages. Then we describe

our data structures, local and global variables, subroutines,

and then eventually the translation of each statement.

Essential Messages.Messages in the memory can be classi-

�ed into three categories: (i) view-switching messages (that al-
ter the view of some process when they are read), (ii) promise
messages (that are generated as a promise by some process

and may or may not alter the view of another process), and

(iii) redundant messages (that are never read by any process).

When a new message is created, we can guess the type of

the message as one of the above. We need not allocate fresh

timestamps for redundant messages. Only essential messages

(either view-switching or promise) require fresh timestamps.

The bound K on the number of promises and view switches

gives the bound K on the number of essential messages and

their timestamps. For the translation wemaintain 2K distinct

timestamps. The reason is as follows: for each view-switch

of a process, its existing timestamp is compared with that

of an essential message. Hence we need 2 timestamps for a

view-switch (a promise requires only one timestamp). Since

we have at most K view-switches and promises, 2K times-

tamps su�ce. We choose Time = {0, 1, 2, . . . , 2K} as the set

of timestamps. This bound on the number of timestamps is

crucial in the translation.

Data Structures.We use auxilary data structures to repre-

sent messages and process views.

TheMessage data structure represents a message gener-

ated by a write or a promise. It is a record with four �elds: (i)

var , the address of the shared variable that was written to; (ii)
t , the timestamp in Time associated with the message; (iii) v ,
the value written; and (iv) �ag, a number in {−1, 0, 1, . . . ,n},
where n is the number of processes. Flag 0 represents a non-

promised message or a promise that has been ful�lled; �ag

−1 represents a certi�ed promise; while a positive number

�ag > 0 denotes a (not yet certi�ed) promise by thread �ag.
The View data structure stores for each shared variable

x , (i) a timestamp t ∈ Time, (ii) a value v written to x , (iii)
a boolean l ∈ {true, false} representing whether t is a
legitimate timestamp which can be used for comparisons

(since we have messages which are not essential, t could
represent a timestamp which is not used for comparisons),

(iv) a boolean f ∈ {true, false} which represents whether

the value v may be used by the same process for a local read,

and (v) a boolean u ∈ {true, false} which is true if the

process has most recently executed a continuous sequence

of bcas instructions. The entries in View for a variable x are

referred to as view[x].t, view[x].v, etc.

Global Variables.We introduce the following global vari-

ables: (1) messageStore, an array of messages of size K that

will be populated with the essential messages generated

by the program; (2) messagesUsed, the current number of

messages in messageStore; (3) numContexts, the number of

context switches that have occurred; (4) numEE, the number

of promises and view switches that have occurred; and (5)

avail, a boolean array of size 2K|X|, that, for each variable

x ∈ X, records the available timestamps in Time. The Main

process initializes the global counters to 0 and all entries in

the avail array to contain true.

Local Variables. In addition to its local registers, each pro-

cess has the following local variables: (i) view: a local instance
of View, (ii) active: a boolean variable which is set when the

process is running in the current context, (iii) checkMode: a
boolean checking if the process is in the certi�cation mode,

(iv) liveChain: a boolean array indexed by global variables

x ∈ X, used to ensure no additive insertions of x are allowed

during strong consistency checking (however maximal ad-

ditive insertions are allowed), and (v) retAddr: a variable

storing the instruction label corresponding to the most re-

cent instruction before entering the certi�cation phase.

Since strong consistency disallows additive insertions, we

check that only splitting insertions are used during the certi-

�cation phase. liveChain[x] is true only in certi�cation mode

(i.e., when checkMode is true) when the most recent write to

x during the current certi�cation phase was not promised.

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

, ,

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

Algorithm 1:Main, CSI, Publish

Algorithm Main
atomic_begin

messagesUsed, numContexts, numEE← 0

for x ∈ X, ts ∈ {1, 2, ..., 2K } do
avail[x][ts] ← true

end

atomic_end

Algorithm CSI
if ¬active then

atomic_begin

active← true

numContexts← numContexts + 1
assume(numContexts ≤ K + n)

end

Algorithm Publish(message)
assume(messagesUsed < K)

messageStore[messagesUsed] ← message
messagesUsed ← messagesUsed + 1

When liveChain[x] is true, the process must make the suc-

ceeding writes with consecutive timestamps ending with

a promise (which will set liveChain[x] to false) before it

makes a global read. This precisely forbids additive insertion.

liveChain[x] may only be true when checkMode is true.

Subroutines.

• genMessage(·, ·, ·, ·) is a subroutine which generates a mes-

sage with the four �elds as speci�ed above in the data struc-

tureMessage. In case some �elds are not speci�ed, these are

chosen non-deterministically from the relevant domain.

• saveState(p) is a subroutine which saves the state of global

variables (de�ned above) and the local state of only the pro-

cess p passed as argument. We however do not store numEE
and the contents ofmessageStore. (details in the supplement)

• loadState(p) is a subroutine which loads the global state

and process p’s local state saved using saveState(p).
We use the gotoLabel(retAddr) statement which switches

to the instruction label indexed by retAddr . We note that

there are only �nitely many instruction labels.

The Code-to-Code Translation. In what follows we

illustrate how the translation simulates a run under

Bd(PS,Vw)−RLX. At the outset we note that each process

interleaves in its execution between two phases: a normal
phase that runs at the beginning of each context and the cer-
ti�cation phase at the end of the context, where it may make

new promises and certify all the promises before switching

out of context. In this way we incorporate the witness for

the consistency check in the run of the program itself.

By certi�cation of a promise, we mean an event that shows

that the promise can be ful�lled as part of the witness run

proving the machine state to be consistent. By ful�lment

of a promise we mean making a write that permanently re-

moves the promise message from the promise set. Ful�lment

Algorithm 2: CSO
p,λ

σsw :

if ∗ then

if ¬checkMode then
if ¬active then

atomic_begin

active← true
numContexts← numContexts + 1
assume(numContexts ≤ K + n)

end

checkMode← true
retAddr ← λ, saveState(p)

else

form ∈ messageStore do
assume(m .�ag , p)
if m.�ag == −1 then m.�ag ← p

end

for x ∈ X do assume(¬liveChain[x])
loadState(p), gotoLabel(retAddr)
checkMode← false
active← false
atomic_end

end

goto σsw
end

(resp. Certi�cation) is only done during the normal (resp.
certi�cation) phase of the run.

Context Switch Out (CSOp,λ
). CSOp,λ

is placed after each

instruction in the original program and serves an entry and

exit point for the consistency check phase of the process.

If the process is currently in normal mode, CSO non-

deterministically switches to certi�cation mode, and vice

versa. When switching from normal to certi�cation mode,

if the process is not active, �rst a new context is created

and the process is made active. Then, the mode is recorded,

the current instruction λ and the local state of the process

are recorded so that they can be reinstated at the end of the

certi�cation run.

To switch from certi�cation mode back to normal mode,

we �rst check that there are no outstanding promises of p
(i.e., all messages in the memory have a �ag di�erent from p).
For messages with a �ag of −1 (denoting a certi�ed promise

by p), we set their �ag back to p so that they get certi�ed

again in subsequent certi�cation rounds.

Then, to preserve the liveChain invariant, we enforce that

all its entries are false which ensures that there were no

additive insertions during the certi�cation phase. Now using

the loadState routine, we load back the state that was stored

on entering the certi�cation phase. The process then returns

to the instruction label fromwhere it entered the certi�cation

phase, and checkMode is set to false, and it exits the context.

Write Statements. The translation of a write instruction

x = $r of process p is shown in Algorithm 3. Let us �rst

consider execution in the normal phase (i.e., when checkMode
is false). First, the value of val($r) is recorded in the local

view, and view[x].f is set meaning that later instructions in

p can read from the write. Then, we non-deterministically

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

Algorithm 3: nx = $rop write

view[x].v ← val($r), view[x].f ← true

if ∗ then /* (i) no fresh timestamp */
view[x].l ← false

if checkMode then liveChain[x] ← true

else if ∗ then /* (ii) and (iii) */
view[x].l ← true

if liveChain[x] then
newStamp← view[x].t + 1

else

newStamp← nondetInt(view[x].t + 1, 2K)
end

view[x].t ← newStamp
assume(avail[x][newStamp])
avail[x][newStamp] ← false

if ∗ then /* (ii) essential message */
if checkMode then

message← genMessage(x, newStamp, val($r), −1)
liveChain[x] ← false, numEE← numEE + 1

else

message← genMessage(x, newStamp, val($r), 0)
end

Publish(message)
else /* (iii) */

if checkMode then liveChain[x] ← true

end

else /* (iv) fulfilling a promise */
view[x].l ← true

messageNum← nondetInt(0, messagesUsed − 1)
message← messageStore[messageNum]
assume(message.var == &x ∧message.t > view[x].t)
assume(message.v == val($r) ∧message.�ag == p)
view[x].t ← message.t
if checkMode then

message.�ag ← −1, liveChain[x] ← false

else

message.�ag ← 0

end

messageStore[messageNum] ← message

choose one of four possibilities for the write: it either (i)

is not assigned a fresh timestamp, (ii) is assigned a fresh

timestamp and published, (iii) is assigned a fresh timestamp

but not published (that is, the message is not added to the

memory), or (iv) ful�ls some outstanding promise.

In case (i), no message is created, and view[x].l is set to
false, signifying that the timestamp recorded in the view

does not correspond to the most recent write to x and should

therefore not be used in the comparisons.

In cases (ii) and (iii), we allocate a new timestamp and

store it into view[x].t. We use the avail array to ensure that

allocated timestamps are unique: we check that the selected

timestamp is available (i.e., not allocated), and remove it

from the array of available stamps. If the message is to be

published (case ii), the appropriate message is constructed

and published; otherwise (case iii), this step is skipped.

Finally, if the process decides to ful�ll a promise (case

(iv)), a message is fetched from messageStore and checked to

be an unful�lled promise by the current process (checking

�ag = p), and the �ag is set to 0.

Let us now consider a write executing in the certi�cation

phase (i.e., when checkMode is true).
Wewill only highlight di�erences between the normal and

certi�cation phase writes. Most importantly, we maintain

and use the liveChain invariant whenever a fresh timestamp

is assigned. Indeed, if liveChain is true, the process must

assign consecutive timestamps (line 8). Also, when it does

not publish the current write as a promise message, or ful�ll

an older promise (cases (iii) and (iv)), it sets liveChain to true

(lines 4, 24). In cases (iii) and (iv), the message �ag is set to −1

rather than 0, indicating that the promise has been certi�ed,

but not yet ful�lled.

Algorithm 4: n$r = xop read

if ∗ then /* View-switching read */
assume(numEE < K)
msgNum← nondetInt(0, messagesUsed − 1)
msg ← messageStore[msgNum]
assume(msg.var == &x)
assume(view[x].l ∧ view[x].t ≤ msg.t)
view[x].t ← msg.t, view[x].v ← msg.v
view[x].f ← true, numEE← numEE + 1
assume(¬liveChain[x])

else /* Non-view-switching read */
assume(view[x].f)

end

val($r) = view[x].v

Read Statements. Algorithm 4 is used to translate read

statements of the form $r = x . At line 1, the process guesses
and takes the then branch if the read is view-switching.

In the case of a view-switching load, we check that we

have not reached the context-/view-switching bound, we

fetch a new message from messageStore with a larger times-

tamp that the one in the current view, update the process

view to include that new message, and increment the num-

ber of context and view switches. We �nally ensure that

liveChain[x] is false before the read in order to forbid ad-

ditive insertions when checking consistency of promises.

Recall from the liveChain invariant that liveChain[x] is true
only when the process is in certi�cation mode and the last

write on x was not published as a promise message.

x:=1; // t2
a:=x; // t3
x:=2; // t3 + 1

Reading a message from the mem-

ory when liveChain[x] is true im-

plies additive insertion during certi�-

cation, as illustrated by the adjacent

code fragment. Assume the process

is in the promise certi�cation mode, with view[x].t set to
t1, and let the �rst write use a timestamp t2 > t1 with the

message not published as promise, with liveChain[x] as true.
Now the instruction a:=x uses a message in the memory

with a timestamp t3 ≥ t2. If the next write certi�es a promise

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

, ,

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

message, the interval in the message will be t3 + 1, since

liveChain[x] is true. This results in two writes during the

certi�cation, with non-adjacent timestamps t2, t3 + 1, with
only the latter being promised. The choice of the timestamps

clearly shows additive insertion. Notice that if the earlier

write also resulted in a promise message then we do not

have additive insertion (since both are promised) and the

read with timestamp t2 is allowed since liveChain[x] is false.
If the read is not view-switching, the process checks that

the local value is usable (line 13) and loads its local value

view[x].v into $r . The local value may become unusable if

the process crosses an SC-fence which updates its view[x].t.

6 Implementation and Evaluation

To evaluate the e�ciency of the technique presented in the

previous section, we have implemented it as a tool called

SwInG. SwInG takes as input a C program and a bound, K ,
and translates it to an SC program. We use CBMC version

5.10 as the backend tool, which takes as input L, the loop
unrolling parameter, specifying the number of iterations for

which loops are unrolled. SwInG then considers the subset

of executions respecting the bounds K and L provided. If it

returns unsafe, then the program has an unsafe execution in

this subset. Conversely, if it returns safe, then none of these

executions violate any assertion.

In the promise free mode, we compare SwInG with

three state-of-the-art stateless model checking (SMC) tools,

CDSChecker [23], GenMC [15] and Rcmc [14] that support

the relaxed semantics without promises (as de�ned in [13]).

We use a version of CDSChecker that halts on the �rst bug

discovered while GenMC and Rcmc do this by default. In

the tables that follow, we specify the used values of L (for all

tools) and K (only for SwInG).
The main takeaways of our experiments are: (1) SwInG

can uncover hard-to-�nd bugs faster than the others with

relatively small values ofK ; (2) our approach is more resilient

to trivial changes in the position of bugs as compared to the

SMC tools; (3) in many instances, our technique fares better

at capturing relevant behaviours instead of exploring all

possible traces as done by some SMC tools.

We note that the tools we are comparing with do not re-

quire as input the bound, K . Hence, the comparison may

not be fair for some safe examples, since SwInG only con-

siders the subset of executions which K enforces. However,

in certain instances we have set the parameter K such that

all executions are considered (modulo the loop unwinding

bound). In such cases, we note that SwInG is comparable to

the others. We highlight such cases (only for safe examples)

with a green checkmark (X) accompanying the value of K
used. Additionally, we have put forth cases where we can

iteratively increment K to prove correctness. This di�erence

in comparison has no bearing on the reliability of the results.

Considering the above observations, we realise that the

SMC tools and SwInG have orthogonal approaches to �nding

bugs, and can be used to complement each other. SMC tools

are limited by how they explore all executions, which might

be sub-optimal in cases where we have a shallow counterex-

ample but which is explored only after several executions,

while SwInG is limited by the bound K .
We do not consider compilation time for any tool while

reporting the results. For SwInG, the time reported is the time

taken by the CBMC backend for analysis. The timeout used

is 1 hour for all benchmarks. All experiments are conducted

on a machine equipped with a 2.80 GHz Intel Core i7-860

and 4GB RAM running a Debian 9 (stretch) 64-bit operating

system. We denote timeout by ‘TO’. We mark a hyphen ‘-’

in the table for when the process is killed with a maximum

resident set size (RAM used) of 3.7 GB or higher.

In the main paper we provide indicative examples of the

experiments conducted. The complete set of benchmarks are

in the supplement. We �rst compare strong and standard

consistency on some examples. For the remaining bench-

marks, to enable comparison with other tools which do not

support promises (as de�ned in [13]), we run the SwInG in

the promise-free mode. Then, we show the ability of SwInG:
(1) to detect hard-to-�nd bugs, (2) to adapt to concurrent

data-structure benchmarks and (2) resilience to location of

bugs and number of executions.

testcase K SwInG[strong] D SwInG[standard]

splitCAS 5 1.378s

20 12.284s

40 37.166s

60 2m15s

80 4m26s

LBcu 7 4.434s

100 1m13s

200 2m39s

LB2cu 7 5.331s

10 1m16s

20 15m40s

LBcd 7 1.003s

100 10.984s

200 25.010s

�bonacci_2_safe 5 17.244s 10 3m11s

�bonacci_3_safe 5 14m14s 10 TO

Table 1. Comparing the two notions of consistency

Comparing the notions of consistency. In order to em-

pirically con�rm our hypothesis that the standard de�nition

of consistency (as de�ned in [13]) would not scale, we run

SwInG, on similar small examples under the strong and stan-

dard consistency, while varying the size of the data domain,

speci�ed by D. Observe that we need to vary D for the stan-

dard consistency de�nition since it is required during the

quanti�cation over all future memories (which implicitly

includes all possible data values). We run SwInG on a variety

of safe and unsafe test cases from [7, 13]. The �rst three ex-

amples are unsafe while the other ones are safe. In all these

cases, we observe, the dependence of run-time on the size of

the data domain when the standard consistency de�nition is

used. Strong consistency, on the other hand performs much

better without any restriction on the size of the data domain.

Evaluation using parametrized benchmarks. We com-

pare SwInG with CDSChecker, GenMC and Rcmc in Ta-

ble 2 on three parametrized benchmarks: ExponentialBug
(from Fig. 2 of [11]), Fibonacci and safe and unsafe

11

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

versions of Triangular taken from SV-COMP 2018. In

ExponentialBug(N) and Triangular(N), the processes

compete to write to a shared variable and N repre-

sents the number of times a process may write. In

ExponentialBug(N), the number of executions grows as

O(N !), while the fraction of interleavings that expose the

bug reduce exponentially with N . In the unsafe version of

Triangular(N), there is exactly one interleaving that ex-

poses the bug, while the total number of interleavings in-

creases exponentially with N . In Fibonacci(N), two pro-

cesses compute the value of the nth Fibonacci number. In

the safe examples, we note that we use a conservative upper

bound on the value of K . Hence this table demonstrates the

ability of SwInG in exposing hard-to-�nd bugs as well as its

adaptability for safe cases.

benchmark L K SwInG CDSChecker GenMC RCMC

exponential_25_unsafe 25 10 3.433s 14.737s 4.697s TO

exponential_50_unsafe 50 10 9.021s 1m6s 1m2s TO

exponential_70_unsafe 70 10 14.136s 2m52s 4m3s TO

�bonacci_2_safe 2 X20 4.045s 8.811s 0.104s 0.133s

�bonacci_3_safe 3 X20 10.899s TO 0.984s 4.443s

�bonacci_4_safe 4 X20 30.475s TO 41.576s 3m2s

triangular_3_safe 3 X6 1m3s 18.737s 0.152s 0.290s

triangular_4_safe 4 X8 4m58s 20m20s. 1.602s 2.282s

triangular_5_safe 5 X10 8m16s TO 28.883s 34.819s

triangular_3_unsafe 3 10 9.422s 2.903s 0.126s 0.244s

triangular_4_unsafe 4 10 2m54s 3m25s 1.254s 1.531s

triangular_5_unsafe 5 10 12m23s TO 21.619s 26.730s

Table 2. Evaluation using parametrized benchmarks

Evaluation using concurrent data structures. We com-

pare the tools in Tables 3 on benchmarks based on concurrent

data structures. The �rst of these is a concurrent locking al-

gorithm from Hehner and Shyamasundar [10]. The second,

LinuxLocks(N) is a benchmark extracted from the Linux

kernel. If not completely fenced, this benchmark is unsafe

under the relaxed semantics and we fence all but one lock

accesses. The other two are safe benchmarks adapted from

SVCOMP-2018. The queue benchmark is parameterized by

the number of processes and the stack benchmark is param-

eterized by the size of the stack. The processes operate on

these data structures and we check whether certain invari-

ants are maintained. These benchmarks illustrate the ability

of our tool to handle concurrent data-structures similar to

those seen in real-world examples.

benchmark L K SwInG CDSChecker GenMC RCMC

hehner2_unsafe 4 5 6.130s 0.028s 0.042s 0.072s

hehner3_unsafe 4 5 26.729s 0.026s 4m4s 1m26s

linuxlocks2_unsafe 2 4 0.748s 0.010s 0.036s 0.081s

linuxlocks3_unsafe 2 4 1.113s 0.013s 0.037s 0.084s

queue_2_safe 4 4 2.141s 0.020s 0.039s 0.079s

queue_3_safe 4 4 9.417s 0.024s 0.053s 0.086s

stack_4_safe 4 4 2.127s 8.313s 0.819s 1.287s

stack_5_safe 5 4 6.467s 5m2s 14.132s 43.903s

stack_6_safe 6 4 24.185s TO 7m14s 25m44s

Table 3. Evaluation using concurrent data structures

Evaluation using two synthetic safe benchmarks. We

compare the tools in Table 4 on adaptations of two synthetic

safe benchmarks: ReaderWriter(N) (from Norris and Dem-

sky [24]) and RedundantCo(N) (fromAbdulla et al. [3]). Both

these examples involve N processes writing distinct values

to a shared variable and one process reading from it. The

number of traces in these examples grow as O(N !). The

number of possible values for the reads however is justO(N)
in the �rst example andO(1) in the second. The performance

of the SMC tools depends on how e�ciently they explore the

executions. SwInG on the other hand depends on the reads

observed, illustrating the point mentioned earlier. We again

note that K is chosen conservatively and our tool declares

the benchmarks to be safe considering all executions.

benchmark L K SwInG CDSChecker GenMC RCMC

readerwriter_9 0 X5 1.068s 0.007s 0.053s 1m17s

readerwriter_10 0 X5 1.393s 0.007s 0.056s 14m49s

redundant_co_50 50 X5 3.219s 8.965s 4.143s TO

redundant_co_70 70 X5 6.093s 13.843s 18.185s TO

Table 4. Evaluation using two synthetic safe benchmarks

Evaluation using mutual exclusion protocols. In this

section, we consider mutual exclusion protocols from the

SV-COMP 2018 benchmarks. The unfenced versions of the

protocols are unsafe. All the tools considered report a bug

for these examples within two seconds. We now consider

variations of these benchmarks.

benchmark L K SwInG CDSChecker GenMC RCMC

peterson1U(4) 1 4 1.868s 0.005s TO 0.113s

peterson1U(6) 1 4 9.408s 0.005s TO 0.179s

peterson1U(8) 1 4 43.680s TO TO 5.432s

peterson1U(10) 1 4 4m12s TO TO TO

Table 5. Evaluation using mutual exclusion protocols with a

single unfenced process

In Table 5, we evaluate the Peterson protocols for N pro-

cesses and keep all but one process fenced. This leads to a

lower fraction of buggy executions. The values of K taken

for these benchmarks assert that the bugs can be found (even

for non-trivial examples) with small K . We call this example

peterson1U and it is parameterized by N .

benchmark L K SwInG CDSChecker GenMC RCMC

peterson1C(3) 1 2 0.743s 0.012s 0.085s 0.786s

peterson1C(4) 1 2 1.827s 5.032s TO 4.157s

peterson1C(5) 1 2 4.185s 59m42s TO TO

peterson1C(6) 1 2 8.483s TO TO TO

peterson2C(3) 1 2 0.758s 0.005s 0.068s 0.061

peterson2C(4) 1 2 1.848s 0.015s TO 12.308s

peterson2C(5) 1 2 4.041s 1m36s TO TO

peterson2C(6) 1 2 7.562s TO TO TO

Table 6. Evaluation using mutual exclusion protocols with

a bug introduced in the critical section of a single process

Table 6 exhibits a pair of benchmarks that exhibit the

sensitivity of DPOR-based algorithms to the location of bugs.

We consider the completely fenced version of the Peterson

protocol. However, we introduce a bug (write a value to a

shared variable and read a di�erent value from it) in the

critical section of one of the processes. Between the two

12

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

, ,

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

examples, the only di�erence is the process in which this

bug has been introduced. We call these examples peterson1C

and peterson2C and they are parameterized by the number

of processes. We can see the di�erence in the performance

of the DPOR-based tools (especially CDSChecker) on the

two examples. On the other hand, our tool is resilient to such

super�cial changes. We note again that K is small.

7 Undecidability

In this section, we show that both the normal and the strong

reachability problem for concurrent programs under the

relaxed semantics are undecidable even for �nite-state pro-

grams. The proof is by a reduction from Post’s Correspon-

dence Problem (PCP) [26]. Our proof crucially uses promises

to ensure that a process cannot skip any writes made by

another process. Unlike the undecidability proof in [1] about

RA, our proof does not make use of any bcas operations,

and so it works even with just plain read and write instruc-

tions. It also works even when we restrict our analysis to

executions that can be split into a bounded number of con-

texts, where within each context, only one process is active.

Our undecidability result is also tight in the sense that the

reachability problem becomes decidable when we restrict

ourselves to machine states where the number of promises

is bounded.

Theorem 7.1. The (weakly) consistent reachability problem
for concurrent programs over a �nite data domain is unde-
cidable under the promising semantics with relaxed accesses.

Undecidability is obtained by a reduction from Post’s Cor-

respondence Problem (PCP) [26].

We construct a concurrent program with

two processes p1 and p2, six shared variables

X = {x ,y, validate, index, index ′, term}, and two regis-

ters {$r , $r ′}. The �nite data domain of Prog is de�ned

as D = Σ ∪ {0, 1, . . . ,n} ∪ {⊥, #}, where ⊥ and # are two

special symbols (not in Σ ∪ {0, 1, . . . ,n}). All the variables
and registers are initialized to zero.

The code of the two processes is given in Figure 4. De-

pending on the value of the validate �ag read, process p1 can
run in generation mode (top-level then branch) or validation
mode (top-level else branch). In generation mode, process

p1 writes in sequential manner the sequence of indices (al-

ternated with the special symbol #) to the variable index
and at the same time writes, letter by letter, the sequence

of letters of the word ui to the variable x each time p1 sets
the variable index to i (using the Modulep1ui procedure). In
validation mode, p1 reads from the variables index ′ and y
and writes back what it has read to the variables index and x ,
respectively. The second process proceeds in a similar man-

ner as the else branch of the �rst process: It reads from the

variables index and x and writes the values reads to index ′

and y, respectively.

Let λ (resp. λ′) be the label of the assume(true) instruction
of p1 (resp. p2). We will show that a solution of the PCP

problem exists i� we can reach the pair of labels (λ, λ′) in
the program Prog.
Assume that we can (weakly) reach the pair of labels

(λ, λ′). The idea behind the reduction is as follows. In or-

der for p1 to reach label λ, it must execute the else branch
of its conditional statement. Let us assume it does so. Then,

p1 will read the sequence of indices i1, i2, . . . , ik written by

the process p2 on the variable index ′. Let us assume that

the process p2 writes the sequence of indices j1, j2, . . . , jm
on the variable index ′. Each time that the process p1 reads
an index from the variable index ′, it writes it back on the

variable index. The process p1 (resp. p2) alternates between
writing/reading an index in {1, . . . ,n} and the special sym-

bol # in order to make sure that each written index is at

most read once. In similar manner, the process p2 reads the
sequence of indices j1, j2, . . . , jm written by the process p1
on the variable index and it writes it back on the variables

index ′. This implies that the sequence j1, j2, . . . , jm is a subse-

quence of i1, i2, . . . , ik (since the process p2 can miss reading

some written indices by the process p1) and also that the

sequence i1, i2, . . . , ik is also a subsequence of j1, j2, . . . , jm
(since p1 can miss reading some written index by the pro-

cess p2). Thus, we have that the sequences i1, i2, . . . , ik and

j1, j2, . . . , jm are the same. Every time the process p1 (resp.
p2) reads an index i from the variable index ′ (resp. index), it
(1) tries to read in sequential manner the sequence of letters

appearing in vi (resp. ui) (alternated with the special sym-

bol #) from the variable y (resp. x), and (2) writes the same

sequence of letters to the variable x (resp. y). Using a similar

argument as in the case of indices, we can deduce that if p1
(resp. p2) writes the words vi1vi2 · · ·vik (resp. uj1uj2 · · ·ujm),
letter by letter (with an alternation with the symbol#), to the

variable x (resp. y), then vi1vi2 · · ·vik (resp. uj1uj2 · · ·ujm) is
a subsequence of uj1uj2 · · ·ujm (resp. vi1vi2 · · ·vik). Thus, if
the pair of labels (λ, λ′) is reachable then there exist two se-

quences i1, i2, . . . , ik and j1, j2, . . . , jm , written, respectively,
by p1 and p2 such that i1, i2, . . . , ik is equal to j1, j2, . . . , jm ,
and vi1vi2 · · ·vik is equal to uj1uj2 · · ·ujm . Observe that se-
quence of indices i1, i2, . . . , ik is non-empty due to the as-

sume statement assume($r ′ ∈ [1,n]).
Let us now show the other direction. Let us assume

that a solution of the PCP problem exists. This means

that there is a sequence of indices i1, i2, . . . , ik such that

vi1vi2 · · ·vik = ui1ui2 · · ·uik . Let w = ui1ui2 · · ·uik . Let
us show that the pair of labels (λ, λ′) can be (weakly)

reachable in Prog. For that aim, consider the follow-

ing (weakly consistent) run of the program Prog: p2
starts �rst by setting the variable term to 1. Then, p1
will use the then branch of its conditional statement

to promise the two following sequence of promises

(index, i1, (1, 2]), (index, i2, (2, 3]), . . . , (index, ik , (k,k + 1])

and (x ,w[1], (1, 2]), (x ,w[2], (2, 3]), . . . , (x ,w[|w |], (|w |, |w |+
13

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

Process p1 Process p2 Module
p1
vi

Module
p2
ui

if validate = 0 then
while term = 0 do

index = 1

Module
p1
u1

index = #

. . .

index = n
Module

p1
un

index = #

done
index = ⊥

else
$r ′ = index′

assume($r ′ ∈ [1, n])
while $r ′ , ⊥ do

if $r ′ = 1 then
Module

p1
v1

else if $r ′ = 2 then
Module

p1
v2

. . .

else if $r ′ = n then
Module

p1
vn

end if
assume(index′ = #)

$r ′ = index′

assume(index′ , #)

done
index = ⊥
assume(true)

end if

term = 1;

$r = index;
assume($r ∈ [1, n])
while $r , ⊥ do
if $r = 1 then

Module
p2
u1

else if $r = 2 then
Module

p2
u2

. . .

else if $r = n then
Module

p2
un

end if
assume(index = #)

$r = index
assume(index , #)

done
validate = 1

index′ = ⊥
assume(true);

assume(y = vi [1])
assume(y = #)

assume(y = vi [2])
. . .

assume(y = vi [|vi |])
assume(y = #)

x = vi [1]
x = #

x = vi [2]
. . .

x = vi [|vi |]
index = i
index = #

Module
p1
ui

x = ui [1]
x = #

x = ui [2]
. . .

x = ui [|ui |]
x = #

assume(x = ui [1])
assume(x = #)

assume(x = ui [2])
. . .

assume(x = ui [|ui |])
assume(x = #)

y = ui [1]
y = #

y = ui [2]
. . .

y = ui [|ui |]
index′ = i
index′ = #

Figure 4. The code of processes p1 and p2.

1]). Observe that p1 can certify such sequences of promises

under the two semantics for relaxed accesses by iterating

its iterative statement in the then branch of its alternative

statements. Once these promises are performed, p2 reads
these two sequences and writes them back to the variables

index ′ and y, respectively. p2 then sets the variable z to 2.

Now p1 can resume its execution by reading the variable

z written by the second process and enter its else branch

of its alternative statement. Then, p1 will iteratively read

the values written by p2 on the variable index ′ and y and

write them back to the variables index and x , respectively.
By doing this p1 ful�ls also the sequence of promises that

has been issued.

Notice that the number of promises made by p1 is un-

bounded. Also, the proof uses only 3-context executions,

where, following Qadeer and Rehof [27], a context is a con-

tiguous sequence of operations performed by only one pro-

cess and a k-context run, for a given k ∈ N, is a run that can

be partitioned into k contexts.

References

[1] Parosh Aziz Abdulla, Jatin Arora, Mohamed Faouzi Atig, and

Shankara Narayanan Krishna. 2019. Veri�cation of programs under

the release-acquire semantics. In PLDI 2019. ACM, 1117–1132.

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and

Tuan Phong Ngo. 2017. Context-Bounded Analysis for POWER. In

Tools and Algorithms for the Construction and Analysis of Systems - 23rd
International Conference, TACAS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, Part II (Lecture Notes in Computer
Science), Axel Legay and Tiziana Margaria (Eds.), Vol. 10206. Springer,

56–74.

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and

Tuan Phong Ngo. 2018. Optimal stateless model checking under the

release-acquire semantics. Proc. ACM Program. Lang. 2, OOPSLA
(2018), 135:1–135:29.

[4] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and

Madanlal Musuvathi. 2010. On the veri�cation problem for weak mem-

ory models. In Proceedings of the 37th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2010, Madrid,
Spain, January 17-23, 2010. ACM, 7–18.

[5] Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato. 2011.

Getting Rid of Store-Bu�ers in TSO Analysis. In Computer Aided
Veri�cation - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings (Lecture Notes in Computer Science),
Ganesh Gopalakrishnan and Shaz Qadeer (Eds.), Vol. 6806. Springer,

99–115.

[6] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and TjarkWeber.

2011. Mathematizing C++ concurrency. In POPL 2011, Thomas Ball

and Mooly Sagiv (Eds.). ACM, 55–66. h�ps://doi.org/10.1145/1926385.
1926394

14

https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

, ,

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

[7] Soham Sundar Chakraborty and Viktor Vafeiadis. 2019. Grounding

thin-air reads with event structures. PACMPL 3 (2019), 70:1–70:28.

[8] Karl Crary and Michael J. Sullivan. 2015. A Calculus for Relaxed

Memory. In POPL 2015, Sriram K. Rajamani and David Walker (Eds.).

ACM, 623–636. h�ps://doi.org/10.1145/2676726.2676984
[9] Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. 2011. Delay-

bounded scheduling. In Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.).

ACM, 411–422.

[10] Eric C.R. Hehner and R.K. Shyamasundar. 1981. An implementation

of P and V. Inform. Process. Lett. 12, 4 (1981), 196 – 198. h�ps://doi.
org/10.1016/0020-0190(81)90100-9

[11] Je� Huang. 2015. Stateless model checking concurrent programs with

maximal causality reduction. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Port-
land, OR, USA, June 15-17, 2015, David Grove and Steve Blackburn

(Eds.). ACM, 165–174.

[12] Alan Je�rey and James Riely. 2019. On Thin Air Reads: Towards

an Event Structures Model of Relaxed Memory. Logical Methods in
Computer Science 15, 1 (2019). h�ps://doi.org/10.23638/LMCS-15(1:
33)2019

[13] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek

Dreyer. 2017. A promising semantics for relaxed-memory concurrency.

In POPL 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM,

175–189.

[14] Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Vik-

tor Vafeiadis. 2017. E�ective Stateless Model Checking for C/C++

Concurrency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec.

2017), 32 pages. h�ps://doi.org/10.1145/3158105
[15] Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019.

Model checking for weakly consistent libraries. In PLDI. h�ps://doi.
org/10.1145/3314221.3314649

[16] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. 2008.

Context-Bounded Analysis of Concurrent Queue Systems. In Tools
and Algorithms for the Construction and Analysis of Systems, 14th In-
ternational Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings (Lecture Notes in Com-
puter Science), C. R. Ramakrishnan and Jakob Rehof (Eds.), Vol. 4963.

Springer, 299–314.

[17] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. 2009. Reduc-

ing Context-Bounded Concurrent Reachability to Sequential Reach-

ability. In Computer Aided Veri�cation, 21st International Conference,
CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings (Lecture
Notes in Computer Science), Ahmed Bouajjani and Oded Maler (Eds.),

Vol. 5643. Springer, 477–492.

[18] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. 2010. Model-

Checking Parameterized Concurrent Programs Using Linear Interfaces.

In Computer Aided Veri�cation, 22nd International Conference, CAV
2010, Edinburgh, UK, July 15-19, 2010. Proceedings (Lecture Notes in
Computer Science), Tayssir Touili, Byron Cook, and Paul B. Jackson

(Eds.), Vol. 6174. Springer, 629–644.

[19] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek

Dreyer. 2017. Repairing sequential consistency in C/C++11. In PLDI
2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 618–632. h�ps:
//doi.org/10.1145/3062341.3062352

[20] Akash Lal and Thomas W. Reps. 2009. Reducing concurrent analysis

under a context bound to sequential analysis. Formal Methods in
System Design 35, 1 (2009), 73–97.

[21] Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java

memory model. In POPL 2015, Jens Palsberg and Martín Abadi (Eds.).

ACM, 378–391. h�ps://doi.org/10.1145/1040305.1040336

[22] MadanlalMusuvathi and Shaz Qadeer. 2007. Iterative context bounding

for systematic testing of multithreaded programs. In Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10-13, 2007, Jeanne
Ferrante and Kathryn S. McKinley (Eds.). ACM, 446–455.

[23] Brian Norris and Brian Demsky. 2013. CDSchecker: Checking Concur-

rent Data Structures Written with C/C++ Atomics. In OOPSLA 2013.
ACM, New York, NY, USA, 131–150. h�ps://doi.org/10.1145/2509136.
2509514

[24] Brian Norris and Brian Demsky. 2016. A Practical Approach for Model

Checking C/C++11 Code. ACMTrans. Program. Lang. Syst. 38, 3, Article
10 (May 2016), 51 pages. h�ps://doi.org/10.1145/2806886

[25] Jean Pichon-Pharabod and Peter Sewell. 2016. A concurrency seman-

tics for relaxed atomics that permits optimisation and avoids thin-air

executions. In POPL 2016, Rastislav Bodík and Rupak Majumdar (Eds.).

ACM, 622–633. h�ps://doi.org/10.1145/2837614.2837616
[26] Emil L. Post. 1946. A variant of a recursively unsolvable problem. Bull.

Amer. Math. Soc. 52 (1946), 264–268.
[27] Shaz Qadeer and Jakob Rehof. 2005. Context-BoundedModel Checking

of Concurrent Software. In TACAS 2005 (LNCS), Vol. 3440. Springer,
93–107.

[28] Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and

Viktor Vafeiadis. 2018. A Separation Logic for a Promising Semantics.

In 27th European Symposium on Programming, ESOP 2018 (LNCS), Amal

Ahmed (Ed.), Vol. 10801. Springer, 357–384. h�ps://doi.org/10.1007/
978-3-319-89884-1_13

[29] Ermenegildo Tomasco, Truc Lam Nguyen, Bernd Fischer, Salvatore La

Torre, and Gennaro Parlato. 2017. Using Shared Memory Abstractions

to Design Eager Sequentializations for Weak Memory Models. In Soft-
ware Engineering and Formal Methods - 15th International Conference,
SEFM 2017, Trento, Italy, September 4-8, 2017, Proceedings (Lecture Notes
in Computer Science), Alessandro Cimatti and Marjan Sirjani (Eds.),

Vol. 10469. Springer, 185–202.

[30] Yang Zhang and Xinyu Feng. 2013. An Operational Approach to

Happens-Before Memory Model. In Seventh International Symposium
on Theoretical Aspects of Software Engineering, TASE 2013, 1-3 July 2013,
Birmingham, UK. IEEE Computer Society, 121–128. h�ps://doi.org/10.
1109/TASE.2013.24

15

https://doi.org/10.1145/2676726.2676984
https://doi.org/10.1016/0020-0190(81)90100-9
https://doi.org/10.1016/0020-0190(81)90100-9
https://doi.org/10.23638/LMCS-15(1:33)2019
https://doi.org/10.23638/LMCS-15(1:33)2019
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/2806886
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1109/TASE.2013.24
https://doi.org/10.1109/TASE.2013.24

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

A Proof of Theorem 3.1

Let us prove that strong consistency implies consistency. Assume that a machine state MS = (J ,R,View, PS,M,G) is
strongly consistent. Then, we have (λ0,R0,V0, P0,M0,G0)→

scons
p (λ1,R1,V1, P1,M1,G1)→

scons
p · · · →scons

p (λn ,Rn ,Vn , Pn ,Mn ,Gn)

withMS↓p→scons
p = (λ0,R0,V0, P0,M0,G0) and Pn = ∅. Since→

scons
p ⊆ →cons

p , we can show that, for any future memory

M ′ such thatM ⊆ M ′, we have (λ0,R0,V0, P0,M
′
0
,G0)→

cons
p (λ1,R1,V1, P1,M

′
1
),G1)→

cons
p · · · →cons

p (λn ,Rn ,Vn , Pn ,Mn ,Gn) with

M ′
0
= M ′. Intuitively, the second consistency run will proceed in the same way as the strong consistency run by reading from

the same sequence of messages, performing the same write instructions with splitting, ful�lment or maximal insertions. and

bcas instructions with splitting or ful�llement insertions.

Now let us assume that the program Prog does not contain any bcas and that the machine state MS =

(J ,R,View, PS,M,G) is consistent. This means that, for any future memory M ′ such that M ⊆ M ′, we have

(λ0,R0,V0, P0,M
′
0
,G0)→

cons
p (λ1,R1,V1, P1,M

′
1
),G1)→

cons
p · · · →cons

p (λn ,Rn ,Vn , Pn ,Mn ,Gn) with M ′
0
= M ′ and Pn = ∅. This

is in particular true for the future memory M ′ where all the the intermediate holes in M are �lled up. This means that

in the following consistent run (λ0,R0,V0, P0,M
′
0
,G0)→

cons
p (λ1,R1,V1, P1,M

′
1
),G1)→

cons
p · · · →cons

p (λn ,Rn ,Vn , Pn ,Mn ,Gn) no

insertion of write operations with non-maximal timestamp has been performed. Thus, we have (λ0,R0,V0, P0,M
′
0
\ (M ′

0
\

M),G0)→
scons
p (λ1,R1,V1, P1,M

′
1
\ (M ′

0
\M),G1)→

scons
p · · · →scons

p (λn ,Rn ,Vn , Pn ,M
′
n \ (M

′
0
\M),Gn) andMS is strongly con-

sistent.

B Proof of Theorem 4.1

In this section, we show the Fωω -hardness of reachability of PFS-RLX over a �nite domain with only read, write and SC-fence
instructions. Fωω is a level in the fast-growing hierarchy of recursive functions. The fast growing hierarchy is a class (Fα)α) of
number-theoretic functions indexed by ordinals. Chambart and Schnoebelen (LICS 2008) established the Fωω lower bound for

the reachability and termination of lossy channel systems.

B.1 The non-primitive recursive lower bound of PFS-RLX without bcas

Our proof follows by a reduction from the reachability problem of lossy channel systems.

Lossy Channel Systems. A lossy channel system (LCS) is a tuple S = (Q,M,C,∆) where Q is a �nite set of states, M is a

�nite message alphabet, C is a �nite set of lossy channels, and ∆ ⊆ Q ×C × {!, ?} ×M ×Q is a �nite set of transition rules. A

rule of the form (q, c, !,a,q′) (respectively (q, c, ?,a,q′)) is a write (respectively read) transition.

Assume S = (Q,M,C,∆) is a LCS with ` channels. A con�guration of S is a pair (q, (u1, . . . ,u`)) where q ∈ Q and

ui ∈ M∗ for all 1 ≤ i ≤ `. ui is the sequence of messages contained in channel ci (reading a message happens at the head

of the channel, and writing from the tail of the channel). Two con�gurations are compared using the subword ordering :

((q,u1, . . . ,u`) v (q
′,u ′

1
, . . . ,u ′

`
)) ⇔ (q = q′) ∧

∧`
i=1(ui v u

′
i)

LetConf represent the set of all con�gurations. The operational semantics of S is given as a transition systemTS = (Conf ,→).
Let σ = (q, (u1, . . . ,u`) and σ

′ = (q′, (u ′
1
, . . . ,u ′

`
) be two con�gurations. Then a perfect step is one of the following.

1. Let δ = (q, ci ,a, ?,q
′). Then σ

δ
→ σ ′, with ui = au ′i , and uj = u

′
j for j , i , or

2. Let δ = (q, ci ,a, !,q
′). Then σ

δ
→ σ ′, with u ′i = uia, and uj = u

′
j for j , i .

Since the channels are lossy, we can have lossy steps too. A lossy step can happen after a perfect read step, and we lose

messages arbitrarily from any of the channels. A run is a perfect run if there are no losses in between two perfect steps.

Otherwise, the run is lossy. Notice that we have chosen to lose messages after a read and also after a write. The choice of losing

a message after a read or after a write or after either (like in our case) are all equivalent and does not impact the complexity

result of Chambart and Schnoebelen.

Reachability in LCS. Given states q1,q2 in the LCS, the reachability problem asks whether, starting from state q1 with all

channels empty, one can reach state q2 with arbitrary contents in the channels.

Reduction from LCS to PFS-RLXwith only reads andwrites. We now present our reduction from an LCS S = (Q,M,C,∆)
to a concurrent program using only read and write operations, over PFS-RLX semantics. Assume there are ` lossy channels in

S , and let Q = {q1, . . . ,qn}. Assume that all transitions going out of each state qi are numbered. Thus, if qi has k outgoing

transitions, then we refer to them as trani,1, . . . , trani,k .
We construct a concurrent program with ` + 2 processes. Each channel ci is modeled using shared variables xi ,yi . A shared

variable tran holds the values of the possible transitions tran11, . . . , trannj . Finally, a shared variable reach (initialized to false)

keeps track of whether we have reached the desired state in LCS. The number of shared variables needed in the construction

of the RA program is hence 2|C | + 2. The domain of the constructed program is the set of states and transitions of the LCS,

along with the set of messagesM . The processes are as follows.

16

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

, ,

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

Figure 5. Processes pmaster and pch simulating writes and reads in channel ch . pmaster writes to variable xh simulating a

write to channel ch ; pch reads xh and copies it to yh . pmaster reads yh simulating a read from channel ch .

The Processes

Process ptran : There is a process ptran which repeatedly writes to a shared variable tran (as long as reach is false), the names

tran11, . . . , trann, j of the transitions in ∆.
Processes pmaster and pch :

Given the reachability problem from state qi to state qj , the process pmaster starts by initializing a local register to qi . It keeps
track of the states in the LCS, and the control �ow while simulating a run in the LCS starting from qi . This process simulates

the transitions of the LCS depending on the current state. In doing so, pmaster simulates the read and write transitions and

ensures that control moves to the correct next state depending on the choice of the transition. pmaster does the following

repeatedly.

• To begin, pmaster initializes a local register $r with the value qi , if we are interested in reaching a state qj in the LCS

starting from state qi . At any point of time, $r holds the name of the state in the LCS where the control �ow resides

currently. Assume $r stores the state q1, and let there be k outgoing transitions from q1. pmaster has blocks of code

corresponding to each state in the LCS. Each such block has the form while($r == q) do . . .done and simulates an

outgoing transition from the current state, and either remains in the same block if the state remains the same, or goes to

another block depending on the transition chosen.

– pmaster reads the shared variable tran. The value which is read must be one of the transitions tran11, . . . , tran1k since

the control resides in the block corresponding to state q1. Let the value of tran be tran1, j ,
– Assume the 1, jth transition is (q1, ch ,a, !,qi). Then, pmaster writes the value a to the shared variable xh , and writes

the state name qi into $r . It then exits the block corresponding to q1 and enters the one corresponding to qi .
– Assume the 1, jth transition is (q1, ch ,a, ?,qi). Notice that if pmaster reads from the variable xh , it can only read its

latest write following the relaxed semantics, since it is the only process which writes to variables x1, . . . ,xn . This does
not simulate the (lossy) channel discipline. To facilitate the proper simulation of the lossy channel ch , pmaster must be

able to jump to any message in the channel ch and read it as if that was the head of the channel. To enable pmaster
in doing so, we have a process pch which repeatedly reads values of xh and writes the into yh . Indeed, pch may omit

certain values of xh , copying a proper subset of the values into yh . pch is the only process which reads from xh , and is

the only process which writes to yh . Likewise, pmaster is the only process which writes to xh and reads from yh . See
�gure 5.

To simulate (q, ch ,a, ?,q
′), pmaster reads the variable yh and checks if its value is a. If so, it writes the state name qi

into $r , and then exits the block corresponding to q1 and enters the one corresponding to qi . Notice that if pch copies

xh to yh every time pmaster has written to yh , then pmaster has the possibility to read the �rst value it wrote to xh
(simulating a lossless read). However, pmaster can choose to read any yh from the memory pool, and being the sole

reader of yh , ensures the channel discipline, along with the lossiness.

• Once the state qj is reached in pmaster , (this is true when pmaster sets the register $r to qj from the current state (say

qk)). Once this is done, pmaster sets a boolean shared variable reach to true, and reaches term. The other processes

(ptran ,pch) check if reach is true, and if so, also reach term.

Inserting SC-fence instructions. To ensure no promises can be made, each of the above read, write in pmaster and each pch
are followed by SC-fence instructions.

17

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

Theorem B.1. The constructed program under PFS-RLX semantics faithfully simulates the LCS : starting from state qi , we reach
state qj in the LCS i� the instruction term is reached in all processes.

Example B.2. We illustrate the reduction on an example. Consider the LCS in Figure 6. The constructed program can be seen

in Table 7.

ptran pmaster pc1 pc2
while (r each , >) do $r = q1 while (r each , >) do while (r each , >) do
tran = tran11 while (r each , >) do $r1 = x1 $r2 = x2
tran = tran12 while($r == q1) do y1 = $r1 y2 = $r2
tran = tran13 assume(tran =

∨
3

i=1 trans13) if(r each == >) if(r each == >)
tran = tran21 if(tran == tran11) break break
tran = tran22 x1 = a end if end if
tran = tran31 else if(tran == tran12)
if(r each == >) $r ′ = y2
break assume($r ′ = b)
end if $r = q2 break

else if(tran = tran13)
$r ′ = y1
assume($r ′ = a)
$r = q3; r each = >; break
end if
done
while($r == q2) do
. . .

done
while($r == q3) do
assume(tran = tran31)
x1 = b ; $r = q2; break
done

done done done done
term term term term

Table 7. Instruction labels have been omitted. To avoid clutter, we have also not written the SC-fence instruction that follows

each instruction in pmaster , pc1 and pc2 . The PFS-RLX program simulating the LCS.

q1 q2 q3
c2?b

c1?a

c1?a

c1!b
c1!a c2?b

Figure 6. A LCS with 2 lossy channels c1, c2 and states q1,q2,q3. The message alphabet is {a,b}.

As mentioned above, we number the transitions in the LCS depending on their source state. In the LCS given, we have

tran11 representing the self-loop at q1, tran12 representing the transition from q1 to q2 and tran13 representing the transition

from q1 to q3. Likewise, tran31 represents the transition from q3 to q2, and so on. The domain of the constructed program

Prog is D={a,b,q1,q2,q3, tran11, tran12, tran13, tran21, tran22, tran31}. The shared variables are {x1,y1,x2,y2, tran, reach}, of
which reach is a boolean variable which is initialized to false. We reduce the reachability of LCS to the control reachability

problem in Prog, and show that starting from q1, q3 is reachable in the LCS i� we reach the instruction term in all processes.

18

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

, ,

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

C Details for Section 5

We �rst give a glossary of all the variables used in the code. The list contains variables global to all processes or local to a

process. A small description of their role is also mentioned, which serve as invariants.

1. numEE : global variable, initialized to 0, keeps track of the number pf promises and view switches so far. Each time a

promise or a view altering read happens, numEE is incremented.

2. numContexts : global variable, initialized to 0, keeps track of the number of context switches so far. This is used in the

translation to SC.

3. view[x].v : local variable, stores the value of x ∈ X in the local view of the process

4. view[x].t : local variable, stores the time stamp ∈ Time of x ∈ X in the local view of the process.

5. view[x].l : local variable, boolean, which is set to true when view[x].t is a valid timestamp, used in comparisons with

timestamps of other messages.

6. view[x]. f : local variable, boolean. A true value indicates that view[x].v is recent, and can be used for reading locally.

7. view[x].u : local variable, boolean. A true value indicates that the sequence of events starting from the one that resulted

in the timestamp view[x].t till the most recent, form a chain of bcas operations on x . Whenever a write is published,

view[x].u is set to true. view[x].u is set to false on an unpublished write. On a sequence of bcas operations, view[x].u is

left unchanged.

8. checkMode : local variable, boolean. Set to true when the process is in certi�cation phase, which means the process is

making and certifying promises.

9. liveChain[x] : local variable, for each x ∈ X, boolean. Can be true only when checkMode is true. A true value represents

that the last write done while the process is in certi�cation phase is not a published promise message.

10. extView[x] : local variable, for each x ∈ X, boolean. A true value represents that the local value view[x].v of the process

comes from a message generated external to the certi�cation phase.

11. avail[x][] : for each x ∈ X, a global boolean array of length 2K + 1 corresponding to the 2K + 1 time stamps, checks

availability of a time stamp on a fresh write.

12. upd[x][] : for each x ∈ X, a global boolean array of length 2K + 1 corresponding to the 2K + 1 time stamps, checks

whether a certain timestamp has been used to read in a bcas.
13. globalTimeMap[x] : global variable, for each x ∈ X, stores a time stamp ∈ Time. Maintains the globally maximal time

stamp of each variable.

14. messageStore : This is an array of messages, where each message is of type Message as described in the main paper. The

length of the array is K , the bound on the number of promises + view switches.

15. messagesUsed : a number from 0 to K which keeps track of the number of populated messages in messageStore.
16. messageNum : a number from 0 to K which chooses a number from the available free cells in messageStore.

We will denote the K-(promise, view) bounded strong consistency as Bd(PS,Vw)−RLX.

Translating Bd(PS,Vw)−RLX to bounded-context SC

Now we describe all the missing algorithms, and provide details of the codes. To start, we note that we are representing interval

timestamps by integers in the translation. For each interval we only maintain its rightmost endpoint in our translation. Note

that we can make discrete the dense points used in the intervals due to boundedness of the number of essential messages.

C.1 Main

Main. Algorithm 5 is the process that initializes all the global variables. This process executes atomically before all the other

processes. avail[x] for each shared variable x in Prog is an array of size 2K + 1 which keeps track of time stamps which have

not yet been assigned. Since all variables have a time stamp 0 initially, the �rst entry of this array is false for all variables. All

entries of upd[x][view[x].t] are initialized to true.

C.2 InitProc

Initialize Process. Before the simulation of each process, we initialize its variables of type View. The values and time stamps

of all variables are 0, hence the initial view coincides with the view in the initial machine state of all runs. The variables

liveChain[x] is set to false for all shared variables x . Not that this sets up the invariant mentioned on the previous page.

extView[x] is initialized to true, since to begin, we are not in the certi�cation phase and the initial value 0 comes from the

initial message (which is generated outside any certi�cation phase). Algorithm 6 details the function which is called at the

beginning of each process.

19

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

Algorithm 5:Main

atomic_begin

messagesUsed ← 0

numContexts ← 0

numEE← 0

for x ∈ X do

upd[x][0] ← true

globalTimeMap[x] ← 0

for ts ∈ {1, 2, ..., 2K} do
avail[x][ts] ← true

upd[x][ts] ← true

end

end

atomic_end

Algorithm 6: InitProc

atomic_begin

for x ∈ X do

view[x].t ← 0

view[x].v ← 0

view[x].l ← true

view[x].u ← true

liveChain[x] ← false

extView[x] ← true

end

C.3 ContextSwitchIn (CSI)

Algorithm 7: ContextSwitchIn

if ¬active then
atomic_begin

active ← true

numContexts ← numContexts + 1

assume(numContexts ≤ K + n)

end

Switch Into Context. This is called before each instruction λ : i in a process p, to check if the process is active in the current

context, which is kept track of by the boolean variable active . The counter numContexts is incremented signalling that one

more context has been consumed. Since we translate into SC under K + n-bounded contexts, we check whether the context

switching bound has already exceeded K + n. Algorithm 7 describes the context switching in.

C.4 Publish

Algorithm 8: Publish(message)

assume(messagesUsed < K)

messageStore[messagesUsed] ← message
messagesUsed ← messagesUsed + 1

Publish Subroutine. This is used to add messages to the messageStore. Each time a write or a bcas happens, depending

on whether it results in an essential message or not, Publish(message) is called. Promise messages are also added using

20

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

, ,

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

Publish(message). Each time a new message is published, the size of the messageStore is increased. Since we have the bound on
the number of essential messages, we check if the bound K on the number of view switches and promises has been exceeded.

C.5 loadState and saveState

Load and Save State while changing modes. The saveState subroutine copies the local state of the calling process and

the global state into a what we refer to as ‘copy’ variables. We note that it does not however copy numEE and contents of

messageStore. The reason for this being, the promises the process makes with checkMode true are retained even after checkMode
is made false. Hence the increments made to numEE and the messages added to messageStore should be maintained even

beyond after checkMode is false. Analogously in loadState, we load the contents of the (saved) ‘copy variables’ into their

original counterparts.

Another subtle point to be noted is that when the process publishes a message (as a promise) when checkMode is true, we
also update the ‘copy’ variables corresponding to avail[x]. This is done so that when the process returns to normal mode, the

changes are re�ected in their original counterparts (which is essential since promise messages are maintained beyond the time

checkMode is false and hence their timestamps must be unavailable).

C.6 ScFence

Algorithm 9: ScFence

assume(¬checkMode)
for x ∈ X do

if globalTimeMap[x] > view[x].t then
view[x].t ← globalTimeMap[x]
view[x]. f ← false

view[x].l ← true

else

if (view[x].l) then
globalTimeMap[x] ← view[x].t

else

globalTimeMap[x] ← view[x].t + 1
end

end

end

SC fences. An SC-fence, in Algorithm 9, essentially takes the join of the globalTimeMap[x] and the local timemap (view[x].t
for all x ∈ X) of the process. First we ensure we are not in checkMode phase of the run, otherwise the run will not be consistent

[13]. For each variable x the following is done.

• Lines 2-5 handle the case, where the former is greater. Then view[x].t updated to match it; view[x].l is set to true since

the timestamp is now valid (can be used in comparisons). Also, view[x]. f is set to false, since the timestamp of the

message corresponding to the current local value, view[x].v , is lower than view[x].t , and hence view[x].v is no longer

usable.

• Lines 7-11 handle the other case where the process timestamp is greater. If view[x].l is valid (line 7-8) then, we can

set view[x].t to globalTimeMap[x]. If it is not valid (line 9-10), the process timestamp has actually proceeded beyond

view[x].t . Note crucially that view[x].t was the latest timestamp from Time that the process had. In this case, we set

globalTimeMap[x] to view[x].t + 1, the next ‘useful’ timestamp following view[x].t .

C.7 ContextSwitchOut (CSO)

Context Switch Out. We have described the full algorithm in the main paper. CSO
p,λ

allows the process allows the process

to enter and exit context and it also serves to check the consistency of the process. When the process enters the certi�cation

phase, its local state (and program counter) are saved. When it returns back from the certi�cation phase, liveChain being false

is assumed which enforces that the process did not perform additive insertion. Then, the state is loaded and the program

counter is reset to the same value it had before entering the certi�cation phase.

21

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

Algorithm 10: CSO
p,λ

σsw :

if ∗ then

if ¬checkMode then
if ¬active then

atomic_begin

active← true
numContexts← numContexts + 1
assume(numContexts ≤ K + n)

end

checkMode← true
retAddr ← λ, saveState(p)

else

form ∈ messageStore do
assume(m .�ag , p)
if m.�ag == −1 then m.�ag ← p

end

for x ∈ X do assume(¬liveChain[x])
loadState(p), gotoLabel(retAddr)
checkMode← false
active← false
atomic_end

end

goto σsw
end

C.8 Read

Algorithm 11: Translating n$r = xop read

if ∗ then

assume(¬liveChain[x])
assume(numEE < K)

messageNum← nondetInt(0,messagesUsed − 1)
message← messageStore[messageNum]
assume(message.var == &x)

assume(view[x].l)
assume(view[x].t ≤ message.t)
view[x].t ← message.t
view[x].v ← message.v
extView[x] ← true

numEE← numEE + 1
end

val($r) = view[x].v

Read and Write. We have already described in good detail, the algorithms for read and write. However, we commented out a

few lines which deal with the variable extView[x] (‘external view’) from the code, which is used in bcas. Here, we produce the
complete codes (Algorithms 11, 12) for the read and write instructions. In Algorithm 11, line 11), during a global read, the

variable extView[x] is set to true, indicating that the value view[x].v read is generated by a message external to the current

certi�cation phase. Indeed, whenever a process makes a global read while checkMode is true, it obviously reads from a message

which has been created outside its current certi�cation phase. Hence, extView[x] will be set to true.

In the case of Algorithm 12, if the process has checkMode false, then after the write, the value of view[x].v comes from

the current write (whether or not it resulted in a published message), and hence extView[x] is set to true, since the value in

view[x].v is generated outside any certi�cation phase. Likewise, if the process has checkMode true, then after the write, the

value of view[x].v comes from the current write (whether or not it resulted in a published message), but since it does arise

from the current certi�cation phase, it is not external, and hence extView[x] is set to false (lines 44-48). Finally, view[x].u is set

22

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

, ,

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

to true (line 49) i� view[x].l is true. Indeed, if view[x].l is false after the write, then the time stamp view[x].t is not legitimate

for comparisons, and hence starting from view[x].t , there cannot be sequence of bcass.

C.9 Write

Algorithm 12: nx = $rop write

if ∗ then

view[x].v ← val ($r), view[x].l ← true
if ∗ then

if liveChain[x] then
newStamp← view[x].t + 1

else

newStamp← nondetInt(view[x].t + 1, 2K)
end

view[x].t ← newStamp
assume(avail[x][newStamp])
avail[x][newStamp]← false
if ∗ then

if checkMode then
message← genMessage(x, newStamp, val ($r), −1)
liveChain[x] ← false, numEE← numEE + 1

else

message← genMessage(x, newStamp, val ($r), 0)
end

Publish(message)
else

if checkMode then
liveChain[x] ← true

end

end

else

messageNum← nondetInt(0, messagesUsed − 1)
assume(message.var == &x , message.t > view[x].t)
assume(message.v == view[x].v , message.�ag == p)
view[x].t ← message.t
if ¬checkMode then

message.�ag ← 0

else

message.�ag ← −1, liveChain[x] ← false
end

messageStore[messageNum] ← message
end

else

view[x].v ← val ($r), view[x].l ← false
if checkMode then

liveChain[x] ← true
end

end

view[x].f ← true
if ¬checkMode then

extView[x] ← true
else

extView[x] ← false
end

view[x].u ← view[x].l

23

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

C.10 bcas(x , $r1, $r2)

Algorithm 13: Translating bcas(x , $r1, $r2)op update

if ∗ then

assume(¬liveChain[x] ∧ numEE < K)

messageNum← nondetInt(0, messagesUsed − 1)
message← messageStore[messageNum]
assume(message.var == &x ∧ view[x].l ∧ view[x].t ≤ message.t)
view[x].t ← message.t , view[x].v ← message.v
extView[x] ← true, numEE← numEE + 1

else

assume(view[x].f)
end

assume(view[x].v == val ($r1))
if view[x].l then

assume(upd[x][view[x].t]), upd[x][view[x].t] ← false
end

view[x].v ← val ($r2)
if ∗ then

if checkMode then
assume(¬extView[x]), liveChain[x] ← true

end

view[x].l ← false
else

if ∗ then

if view[x].u ∨ liveChain[x] then
newStamp← view[x].t + 1

else

newStamp← nondetInt(view[x].t + 1, 2K)
end

view[x].t ← newStamp, assume(avail[x][newStamp]), avail[x][newStamp]← false
if ∗ then

if ¬checkMode then
message← genMessage(x, newStamp, val ($r2), 0)

else

message← genMessage(x, newStamp, val ($r2), −1), liveChain[x] ← false, numEE← numEE + 1
end

Publish(message)
else

if checkMode then
assume(¬extView[x]),liveChain[x] ← true

end

end

else

messageNum← nondet Int (0, messagesUsed − 1), message← messageStore[messageNum]
assume(message.var == &x ∧message.t > view[x].t)
assume(message.v == val ($r2) ∧message.�ag == p)
view[x].t ← message.t
if ¬checkMode then

message.�ag ← 0

else

message.�ag ← −1, liveChain[x] ← false
end

messageStore[messageNum] ← message
end

view[x].l, view[x].u ← true
end

view[x].f ← true
if ¬checkMode then

extView[x] ← true
else

extView[x] ← false
end

Compare and swap bcas(x , $r1, $r2). This module (Algorithm 13) combines the read and write modules.

In lines 2-7, the process reads a message from the messageStore, and updates the local view setting extView[x] to true,

and incrementing numEE. extView[x] is set to true since the value of view[x].v is taken from a message in the messageStore:
irrespective of whether checkMode is true or not, the value comes from a message generated outside this phase. Notice that

liveChain[x]must be false, as explained in the case of the read instruction in the main paper, to ensure no additive insertions. If

the local view is already in sync with the global view, then line 9 is executed, and there is no need to read from themessageStore.
24

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

, ,

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

Lines 11-15 checks if the value in view[x].v is equal to R($r1), and in case the time stamp view[x].l is legitimate (allowing

for comparisons), then whether the message with this time stamp has not been read/used already for a bcas. Then the new

value view[x].v is set to R($r2). Now comes the part where this value has to be written to a new message.

There are two possibilities, depending on whether the write is assigned a timestamp or not. If not, the �rst part (lines 16-20)

sets view[x].l to false, and if the process in the certi�cation phase, sets liveChain[x] to true (this follows from the liveChain
invariant explained in the main paper), and sets extView[x] to false (the value view[x].v comes from this certi�cation phase).

Note that when view[x].l is set to false, we do not set view[x].u also to false, unlike the case of the write instruction (Algorithm

12, line 49). The reason is, if view[x].u is true (the process executes a consecutive chain of bcas instructions, each reading from

the previous) and does not assign a timestamp to all of them, for those that it does, the timestamps chosen must be immediate

successors of one another (re�ecting the fact that this indeed is a sequence of adjacent intervals). Thus, the invariant related to

view[x].u holds.

Otherwise, view[x].l is set to true (line 53). Assume view[x].l is set to true; (view[x].u is set to true as well). Then, there are

four possibilities.

1. Lines 22-40 deal with two possibilities (i) not publishing the message (lines 36-40), (ii) publishing a promise message

(immediate certi�cation if checkMode is true, lines 32-35) or publishing a message in normal phase (lines 30, 31, 35). In

both these cases, lines 23-27 deal with the choice of the fresh time stamp. If liveChain[x] is true, then the new timestamp

is an immediate successor of the existing one (this has been explained in the main paper, as part of the invariant for

liveChain[x]). If view[x].u is true, then starting from this timestamp view[x].t , there is a chain of bcas, to the most recent

message, and hence, we need to choose the next immediate time stamp. When both liveChain[x] and view[x].u are false,

then the new time stamp can be chosen as any available higher value (line 26). As usual, we check the availability of this

position in the array avail[x].
2. Lines 41-53 deal with the other two cases. (iii) Either checkMode is true and the process is certifying promises made

before (lines 42-45, line 49) or (iv) checkMode is false and the process is ful�lling a promise (lines 42-47).

Finally, view[x]. f is set to true in any case, since the value view[x].v is recent. The updates to extView[x] are exactly as in

Algorithm 12.

Once again, we recall that K-(promise, view) bounded strong consistency is denoted as Bd(PS,Vw)−RLX.

D Correctness of Translation

The proof is in two parts. In the �rst part, we show that that every K + n context bounded run of Prog′ in SC corresponds

to a K-bounded run of Prog under Bd(PS,Vw)−RLX, and in the second part, we show that for every K-bounded run in

Bd(PS,Vw)−RLX, there is a K + n context bounded run in SC.

At the outset we review a high level description of the translation. We denote by ‘normal’ (checkMode is false) and checkMode
(true), the two phases in which a process functions. Each process executes instructions in the normal phase by skipping over

theCSO blocks of code. When a process needs to switch out, it enters theCSO block following the most recent instruction and

sets checkMode to true. Now, it makes a ‘ghost’ run in checkMode, a terminology to indicate that this phase of the run does

not change the the global state and local state of the process permanently (this is facilitated by the saveState and loadState
functions). One exception to this is the writes that the process makes as published promises which are maintained permanently.

Hence, this part of the run is equivalent to the process making fresh promises after normal execution; providing a witness

for consistency and then switching out of context. The run then is a sequence of interleaved normal and checkMode phases.
Moreover the local states of the process is identical at the start and end of any given checkMode phase.
We request the reader to refer to the glossary [C] of the variables used which will aid in better understanding of the

translation.

D.1 SC to Bd(PS,Vw)−RLX

Intuition We note that non-essential messages (which are not view-switching or promises), need to be accommodated along

the time-line for each variable (while they were not in the SC-run). We account for these by separating the essential messages

by su�ciently large intervals, so that, the non-essential ones can be inserted in between, respecting their order.

Details We start from SC to Bd(PS,Vw)−RLX. We show that every K + n context bounded run of Prog′ corresponds to a

K-bounded run of Prog. Keeping in mind the description above, we split this proof into two parts. First we consider only

the normal run and prove that it has an analog in Bd(PS,Vw)−RLX. Then we prove that any checkMode phase is indeed an

analog of a process making fresh promises and certifying them along with previous unful�lled promises. Combining these

two, indeed, we will have a run under Bd(PS,Vw)−RLX.
25

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

We begin by de�ning some terminology. Consider a run τ of program Prog′. Each event of the run τ is an execution of either

a read, write, bcas or SC-fence. A read in this run is called global (and otherwise local) if the process decides to read from

the global array messageStore. Only global reads can be view-switching in the corresponding run under Bd(PS,Vw)−RLX. A
write can be of four types - pubSim, pubFul, stamped and local. These represent, ‘simple published’, ‘ful�lling published’,

‘timestamp assigned but unpublished’ and ‘timestamp not assigned writes’ respectively (published implies that timestamp is

assigned too). Note that each of these types can be performed in normal as well checkMode. A bcas can therefore be of 8 types

since it involves a read and write.

Letw1 be the number of write events in the normal part of the run,w2 be the maximum number of write events, maximum

being taken over all checkMode phases of the run, u − 1 be the number of bcas events in the run, and let l = w1+w2+u. LetMx,

for each shared variable x , be an increasing function from [2K] to N representing a mapping from the notion of time-stamps in

SC to time-stamps in Bd(PS,Vw)−RLX. For each variable x , and each process p, let ViewSC(x) = view[x].t (de�ned above) and

ViewBd(PS,Vw)−RLX(x) be the time stamp of x in the view of p in ρ. Given a run τ , we will construct a K bounded run ρ of Prog
which reaches the same set of labels after i events, for any i .

We will �rst treat the normal (non-checkMode) part of the run. While going through the steps, we will also construct the

increasing functions Mx. In addition to the invariants in C , we maintain the following timestamp-based invariants for all

processes p and variables x .

1. If view[x].l is true for a process in τ , then Mx(ViewSC(x)) = ViewBd(PS,Vw)−RLX(x).
2. If view[x].l is true and the time-stamp view[x].t corresponds to a write message instead of a message added due to an

bcas, thenMx(view[x].t) = view[x].t · l · u.
3. If view[x].l is false, then Mx(view[x].t) < ViewBd(PS,Vw)−RLX(x) < (view[x].t + 1) · l · u. Moreover, if the last event to

assign false to view[x].l was a write, then ViewBd(PS,Vw)−RLX(x) is a multiple of u.
4. If a message is of type bcas, then its time-stamp t in ρ satis�es t . 0 mod u.
5. The sum of view-switch points and promises is ≤ K in ρ.
6. The time-stamps of an essential messages in τ and the corresponding message in ρ are related by Mx. That is,

Mx(ViewSC(x)) = ViewBd(PS,Vw)−RLX(x).

The base case, that is, after 0 events (i = 0) is trivial since the con�gurations are semantically equivalent and we de-

�neMx(0) = 0 for all variables, which satis�es the invariants. Wemake the following three cases depending on the ith event of τ .

• Case 1. ei is an execution of a write for process p, variable x and value v .
– If the write is of pubSim, pubFul or stamped type, then view[x].t is updated from t to a new time-stamp t ′ (which
in the case of pubFul is the timestamp of the retrieved message) and view[x].l is assigned true. In ρ, if we can make

ViewBd(PS,Vw)−RLX(x) = t ′′ = t ′ · l · u then the invariants are satis�ed. It is not possible for t ′′ to have been assigned

already to some write message in ρ since t ′ was not assigned to some message in τ (checked using avail[x][t ′]). A
bcas message could not have been assigned t ′′ either, by the fourth invariant. Since t < t ′, ViewBd(PS,Vw)−RLX(x) < t ′′

(by invariants 2 and 3). Hence, ViewBd(PS,Vw)−RLX(x) can be updated to t ′′ since it is available and is greater than the

current view. If the write is published, then the message is added to messageStore. This is done to maintain invariant

(6). Note how, if the write is of pubFul type, the message �ag is set to 0, e�ectively removing it from the promise bag

and maintaining the f laд invariant [5].

– If the write is local, then we pick the smallest available multiple of u betweenMx(view[x].t) and (view[x].t + 1) · l ·u.
This can always be done since there are l − 1 multiples of u between view[x].t · l ·u and (view[x].t + 1) · l ·u and there

are ≤ (l − 1) messages (even considering those produced in checkMode) in total. Notice that multiples of u have been

reserved for writes by invariant 4.

• Case 2. ei is an execution of a read for process p, variable x .
– If the read is local in τ , then the process is either reading a local message written by itself or a useful message. In either

case, this read can be performed in ρ without any change in time-stamps. Note that this cannot be a view-switching

event. Moreover note that the local value in view[x].v has been ascertained to be usable.

– If the read is global, then numEE < k before the read and therefore numEE ≤ k afterwards. In this case, a message

is fetched from messageStore and the process view is updated according to this message. Since Mx is an increasing

function, the results of comparisons in SC will be the same as in Bd(PS,Vw)−RLX and the read operation has the

same e�ect on values and time-stamps of the variables. Moreover view[x]. f is set to true maintaining the view[x]. f
invariant [C].

• Case 3. ei is an execution of an bcas for process p, variable x and values v , v ′.

26

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

, ,

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

– If the read here is local, and view[x].u is true then we need to ensure that the timestamp chosen for the write

immediately followsMx(view[x].t). It is �rst checked if view[x].t has been used for an update earlier or not. If it has

not been, then the time-stampMx(view[x].t) + 1 is available in Bd(PS,Vw)−RLX since all messages that come from

writes have time-stamps in multiples of u andMx(view[x].t) is a multiple of u. Note, that we also ensure that view[x]. f
is true in this case, which implies that the local value is usable.

– If the read here is local and view[x].u is false (and hence so is view[x].l), then it de�nitely has not been used for

an update (bcas) in τ since the process reading the message is the only one that knows of its existence. Now, if this

message was a result of a local write, then its time-stamp t in Bd(PS,Vw)−RLX is a multiple of u and t + 1 is available
for the update message. Otherwise, this message was a result of a bcas whose write was local and has a time-stamp

of the form a · u + b where b < u. Note that this implies b − 1 consecutive bcass were made to get here since all the

messages that are a result of (non-bcas) write operations get time-stamps that are multiples of u. Since u − 1 is the
total number of bcass in τ , b < u − 1 (at most u − 2 bcass have taken place before this one). This implies a · u + b + 1
is available and can be used for the write.

– If the read is global, then it is done correctly as explained in Case 2. The write part of the bcas goes through as

explained above.

• Case 4: ei is an SC-fence
– We iterate over the variables, updating globalTimeMap[x] and view[x].t to the maximum of the two.

– In case, the former was greater, we set view[x].l to true, signifying that view[x].t is valid and maintaining invariant

(1) above. Moreover we set view[x]. f to false. This is necessary since, the timestamp of the message corresponding to

view[x].v is now less than view[x].t and hence the locally stored value is unusable.

– If the latter is greater, we check whether view[x].l is true (which signi�es that view[x].t is valid). If it is we can set

globalTimeMap[x] to it. If not, then theMx(view[x].t) < ViewBd(PS,Vw)−RLX(x) (by invariant (6)), and hence we set it to

view[x].t + 1. Finally we note that ViewBd(PS,Vw)−RLX(x) < (view[x].t + 1) · l ·u and henceMx(globalTimeMap[x]) now
matches the essential event immediately following the event with timestamp view[x].t .

We now brie�y justify the checkMode phase of the run. For any such phase, we need to ascertain that the run has analogous

run in Bd(PS,Vw)−RLX which respects the notion of consistency. The management of timestamps is identical to the normal

phase explained above so we only highlight the special aspects. First we recall some invariants:

1. liveChain[x] is true only when the most recent write made in the current checkMode phase was unpublished (was not a

promise).

2. extView[x] is true if view[x].v corresponds to a message from outside checkMode.
3. For the process p currently in checkMode,messaдe_f laд is -1 for temporarily (only within current checkMode phase)

certi�ed promises and p for as yet uncerti�ed promises. If it is p ′ , p, then the message is in the promise bag of some

other process. Additionally if it is 0, it is not in the promise bag of any process. Note how this is maintained in the write,

bcas sections above.

We’ll review how these invariants are maintained and used throughout the code. When entering checkMode, liveChain[x] is
false. For any write happening in normal phase we set extView[x] to true. Otherwise we set it to false. Once again we consider

cases for a particular event ei :

• Case 1. ei is a write event.
– In the case, the process performs a local or stamped write, liveChain[x] is set to true, maintaining the invariant.

– In the case the process decides to publish a write it must publish it as a promise, incrementing numEE (after checking

that the bound of K has not been crossed), setting the promise �ag to -1, maintaining invariant (3) above. Also, if it

decides to certify a previous promise, it does so, similar to the normal phase, though it now sets the timestamp to -1,

indicating that the certi�cation is local to the current phase and must be reset when normal phase resumes. Moreover

note that liveChain[x] is set to false maintaining invariant (1).

– Also, note that extView[x] is set to true maintaining invariant (2).

• Case 2. ei is a read event.

– The main highlight of read events in checkMode, is that we ascertain that liveChain[x] is false while making a global

read. This is to ensure that we forbid additive insertion. Indeed, following invariant (1) above, if liveChain[x] were
true during a global read, it would mean that the interval corresponding to the previous message (which caused

liveChain[x] to be true) is additively.

• Case 3. ei is a bcas event.

– Once again similar to normal phase we guess whether we make a local or a global read. Crucially however, we note

that we forbid making a local or stamped write for a bcas when extView[x] is true. Considering the invariant (2)

27

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

above, this is done precisely to forbid bcas where, the promised interval containing the write is non-adjacent to the

message being read from. The remainder bookkeeping of is identical to previous cases.

• Case 4. ei is an SC-fence event. This case does not arise since a process in checkMode may not execute an SC-fence
instruction else the run will not be consistent [13].

To conclude, note due to loadState and saveState functions, only promises are retained after the checkMode phase. Moreover

due to the check of message �ags after a checkMode phase terminates, it is ensured that the process is in a consistent state

while switching contexts. Noting that we keep track of promises as well as view-switches using numEE we may only generate

a run in which the sum of the two is bounded by K .

D.2 Bd(PS,Vw)−RLX to SC

We now prove the second part, from Bd(PS,Vw)−RLX to SC. We prove that for every K-bounded run ρ in Bd(PS,Vw)−RLX,
there is a K + n context bounded run τ in SC. We will show this in two steps.

• Given the K-bounded ρ, �rst we will construct a run ρ ′′ which is K-bounded and K + n context bounded that reaches

the same con�guration as ρ.
• We will then construct a run τ of SC using ρ ′′.

IntuitionWe ensure that each process only switches out of context when it is awaiting a message for a (global) read from

another process. Note that in each such case the process waiting will undergo a view-switch. Since the total number of

view-switches along a ‘normal’ phase + additional messages in all checkMode phases is bounded above by K , we need atmost

K + n context switches. We add n for the concluding contexts required to reach the term con�gurations.

Let r f (called reads-f rom) be a binary relation on events such that (ea , eb) ∈ r f i� eb reads from a message published by ea .
Note that every run under Bd(PS,Vw)−RLX semantics de�nes a r f relation as the reads are executed. For construction of

ρ ′′, the intuition is that a context switch is required only when the current process has reached term or it needs a message

that is yet to be published by some other process. At a con�guration ci of ρ, we say that an event of ρ is a requesting event

if it is a view-altering event in ρ and it reads a message that is not in the message pool at ci . Also, we call the events that

publish messages for these events as servicing events (write or bcas, either simple or promises). Note that the set of servicing

and requesting events is dependent on the con�guration ci . The two sets change along the run ρ. Speci�cally, an event is

removed from the requesting event set as soon as the servicing event corresponding to it is executed. Let the size of the set of

requesting events be r . At cinit , r = K . We will prove by induction that given a set of processes (n), the r f relation, and a run ρ
in Bd(PS,Vw)−RLX that maintains the r f relation, there is a run which uses at most r + n context switches and de�nes the

same r f relation.

The Base Case. For r + n = 1, there is only one process so the number of context switches is 0 and the ρ itself uses 0 context

switches.

The Inductive Step. Assume the hypothesis for r + n = l and we prove the claim for r + n = l + 1. Clearly at cinit , there

is at least one process which either has no requesting events, or has a servicing event before any requesting events in its

instruction sequence. Otherwise, the run ρ will not be able to execute all the events since no process will be able to move

past its requesting event. If we have a process that can reach termination directly, then in ρ ′′, we run that process and reduce

r + n. Otherwise, consider the instructions of the process (pj) that has a servicing event before any of its requesting events.

The instructions of pj , till the �rst requesting event, can be executed since all the messages they need are already in the pool

and hence we can create a new run ρt in which these instructions are executed �rst and the remaining ones follow the same

order as ρ. Note that ρt reduces r by at least 1 while executing the instructions of pj . By applying the hypothesis on the

remaining sequence of instructions, we have a run that uses r − 1 + n context switches and that maintains r f of the remaining

instructions. This can now be combined by the instructions of pj that have already been executed to give ρ ′′.
We now construct the run τ from ρ ′′. As explained in the text above, at most 2K time-stamps are needed to simulate the ρ ′′.
Let the set of such time-stamps beU _x for each variable x . Let Mx be an increasing (mapping) function for each variable from

U _x ∪ {0} to {0, . . . 2K} such that Mx(0) = 0.

We will construct the run τ in SC from ρ ′′, event by event, while maintaining the following invariants

1. All the time-stamps, in a particular message inmessageStore, are related to the time-stamps in the corresponding essential

message in Bd(PS,Vw)−RLX by Mx.

2. For a process p, ViewBd(PS,Vw)−RLX(x) ∈ U _x i� view[x].l is true at that point in SC and view[x].t =

Mx(ViewBd(PS,Vw)−RLX(x)))

The ith event of ρ ′′ can be one of the following:

• Case 1. ei is a write to variable x with value v .

28

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

, ,

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

– If the time-stamp t of this write belongs to U _x , then we �rst allocateMx(t) in SC to this write and make view[x].l
true. This maintains invariant (2).

– If the event is a servicing event since , we have that the time-stamp of this message satisfy the requirements of invariant

(1) and hence it can be added to messageStore. Otherwise, we do not update the ViewSC(x) of the process and make

view[x].l false.
• Case 2. ei is a read of variable x If this event is a view-altering event, then the current timestamp in the ViewBd(PS,Vw)−RLX
will be used for comparison. The e�ect of the read in SC will be same as in Bd(PS,Vw)−RLX since V _x is an increasing

function. All the invariants will still hold after this, since all the messages in messageStore satisfy the invariants.

• Case 3. ei is an bcas to variable x with values v,v ′. If this event is not view-altering, then the process either reads some

other process’s message again or reads its own. If it reads its own message, then no change to the ViewSC(x) has to be

done for the read part and the new message is added to messageStore if e ′is message is essential. If it reads some other

processes’ message again, then view[x].l is true, and since this message has not been used for an bcas yet, the check
of upd_x[view[x].t] will go through in Proд′. Now, it needs to be decided if the new message is essential. If the read is

view-altering, then it is similar to Case 2 followed by the decision of adding the new message to messageStore.
• Case 4. ei is an SC-fence If globalTimeMap[x] is greater than view[x].t , we maintain invariants (2) by setting view[x].l
to true and the view[x]. f invariant [C] by setting it to false. On the other hand if view[x].t is greater, we set

globalTimeMap[x] to the smallest member t ∈ Time, which satis�es t ≥ Mx(ViewBd(PS,Vw)−RLX(x)). In case view[x].l is
true, t is view[x].t itself by invariant (2). If not then we set it to view[x].t + 1, since we note, view[x].t is the largest
member of Time, that p has had as ViewBd(PS,Vw)−RLX(x), and currently the former is lower thanMx(ViewBd(PS,Vw)−RLX(x)).

E Details for Section 6 - Implementation and Experimental Results

In the promise free mode, we compare SwInG with three state-of-the-art stateless model checking (SMC) tools, CDSChecker

[23], GenMC [15] and Rcmc [14] that support the relaxed semantics without promises. We use a version of CDSChecker that

halts on the �rst bug discovered while GenMC and Rcmc do this by default. In the tables that follow, we specify the used

values of L (for all tools) and K (only for our tool).

Here we state the results of all our experiments in full. The main takeaways of our experiments are: (1) our tool can uncover

hard-to-�nd bugs faster than the others with relatively small values of K ; (2) our approach is more resilient to trivial changes

in the position of bugs as compared to the SMC tools; (3) in some instances, our technique fares better at capturing relevant

behaviours instead of exploring all possible traces as done by some SMC tools.

We note that the tools we are comparing with do not require as input the bound, K . Hence, the comparison may not be

fair for some safe examples, since SwInG only considers the subset of executions which K enforces. However, in particular

instances we have set the parameter K such that all executions are considered (modulo the loop unwinding bound). In such

cases, we note the tool is comparable to the others. We highlight such cases (only for safe examples) with a green checkmark

(X) accompanying the value of K used. Additionally, we have put forth cases where we can iteratively increment K to prove

correctness.

Considering the above observations, we realise that the SMC tools and our tool have orthogonal approaches to �nding bugs.

SMC tools are limited by how they explore the space of all executions, which might be sub-optimal in cases where we have a

shallow counterexample but which is explored only after several executions. Our tool is limited by the bound K .
We do not consider compilation time for any tool while reporting the results. For our tool, the time reported is the time

taken by the CBMC backend for analysis. The timeout used is 1 hour for all benchmarks. All experiments are conducted on a

machine equipped with a 2.80 GHz Intel Core i7-860 and 4GB RAM running a Debian 9 (stretch) 64-bit operating system. We

denote timeout by ‘TO’. In the tables that follow, we specify the values of L (for all tools) and K (only for our tool) used. We

mark a hyphen ‘-’ in the table for when the process is killed with a maximum resident set size (RAM used) of 3.7 GB or higher.

We �rst compare strong and standard consistency on some examples. For the remaining benchmarks, to enable comparison

with other tools (which do not support promises), we run the tool in promise-free mode. Then, we show the ability of our tool:

(1) to detect hard-to-�nd bugs, (2) to adapt to concurrent data-structure benchmarks and (2) resilience to location of bugs and

number of executions.

E.1 Comparing the notions of consistency

We run SwInG, in promise-mode on a variety of testcases from Kang et al. [13] and Chakraborty and Vafeiadis [7]. In the upper

part of Table 8 are the interesting ones amongst these. The split testcase exhibits the di�erence in the semantics presented

in sections 2 and 4 of Kang et al. [13]. The ARMweak example suggests how a process may read its own promise via a helper

29

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

testcase K SwInG[strong] D SwInG[standard]

split 3 43.717s × ×

ARMweak 2 1.560s × ×

LBfd 3 0.692s × ×

Coh-CYC 4 17.367s × ×

splitCAS 5 1.378s

20 12.284s

40 37.166s

60 2m15s

80 4m26s

LBcd 7 1.003s

100 10.984s

200 25.010s

LBcu 7 4.434s

100 1m13s

200 2m39s

LB2cu 7 5.331s

10 1m16s

20 15m40s

�bonacci_2_safe 5 17.244s 10 3m11s

�bonacci_3_safe 5 14m14s 10 TO

Table 8. Comparing the two notions of consistency

thread. LBfd is an example exhibiting load bu�ering with a false (syntactic) dependency. We note that small values of K are

su�cient to uncover the bug in these cases.

In order to empirically con�rm our hypothesis that the standard de�nition of consistency (as de�ned in [13]) would not

scale, we run SwInG, on similar small examples under the strong and standard consistency, while varying the size of the data

domain, speci�ed by D. Observe that we need to vary D for the standard consistency de�nition since it is required during the

quanti�cation over all future memories (which implicitly includes all possible data values). We run SwInG on a variety of safe

and unsafe test cases from [7, 13]. The �rst three examples are unsafe while the other ones are safe. In all these cases, we

observe, the dependence of run-time on the size of the data domain when the standard consistency de�nition is used. Strong

consistency, on the other hand performs much better without any restriction on the size of the data domain. This is presented

in the lower part of the table.

E.2 Evaluation using parametrized benchmarks

benchmark L K SwInG CDSChecker GenMC RCMC

exponential_5_unsafe 5 10 1.195s 1.795s 0.189s 8.282s

exponential_10_unsafe 10 10 1.786s 4.167s 0.736s 3m50s

exponential_25_unsafe 25 10 3.433s 14.737s 4.697s TO

exponential_50_unsafe 50 10 9.021s 1m6s 1m2s TO

exponential_70_unsafe 70 10 14.136s 2m52s 4m3s TO

�bonacci_2_safe 2 X20 4.045s 8.811s 0.104s 0.133s

�bonacci_3_safe 3 X20 10.899s TO 0.984s 4.443s

�bonacci_4_safe 4 X20 30.475s TO 41.576s 3m2s

triangular_2_safe 2 X4 5.683s 0.403s 0.069s 0.063s

triangular_3_safe 3 X6 1m3s 18.737s 0.152s 0.290s

triangular_4_safe 4 X8 4m58s 20m20s. 1.602s 2.282s

triangular_5_safe 5 X10 8m16s TO 28.883s 34.819s

triangular_2_unsafe 2 10 1.711s 0.070s 0.071s 0.102s

triangular_3_unsafe 3 10 9.422s 2.903s 0.126s 0.244s

triangular_4_unsafe 4 10 2m54s 3m25s 1.254s 1.531s

triangular_5_unsafe 5 10 12m23s TO 21.619s 26.730s

Table 9. Evaluation using parametrized benchmarks

We now compare SwInGwith CDSChecker, GenMC and Rcmc in Table 9 on three parametrized benchmarks: ExponentialBug
(from Fig. 2 of [11]), Fibonacci and safe and unsafe versions of Triangular taken from SV-COMP 2018. In ExponentialBug(N)
and Triangular(N), the processes compete to write to a shared variable and N represents the number of times a process may

write. In ExponentialBug(N), the number of executions grows as O(N !), while the fraction of buggy interleavings decrease

exponentially with N . In the unsafe version of Triangular(N), there is exactly one interleaving that exposes the bug, while

the total number of interleavings increases exponentially with N . In Fibonacci(N), two processes compute the value of the

nth Fibonacci number. In the safe version of Triangular(N) as well as Fibonacci(N), we note that we use a conservative
upper bound on the value of K . Hence this table demonstrates the ability of SwInG in exposing hard-to-�nd bugs as well as

adaptability for safe cases.

30

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

, ,

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

E.3 Evaluation using concurrent data structures based benchmarks

benchmark L K SwInG CDSChecker GenMC RCMC

hehner2_unsafe 4 5 6.130s 0.028s 0.042s 0.072s

hehner3_unsafe 4 5 26.729s 0.026s 4m4s 1m26s

linuxlocks2_unsafe 2 4 0.748s 0.010s 0.036s 0.081s

linuxlocks3_unsafe 2 4 1.113s 0.013s 0.037s 0.084s

queue_2_safe 4 4 2.141s 0.020s 0.039s 0.079s

queue_3_safe 4 4 9.417s 0.024s 0.053s 0.086s

Table 10. Evaluation using concurrent data structures - I

benchmark L SwInG[K = 4] SwInG[K = 6] CDSChecker GenMC RCMC

stack_2_safe 2 0.354s 1.467s 0.009s 0.067s 0.063s

stack_3_safe 3 0.879s 4.755s 0.229s 0.073s 0.108s

stack_4_safe 4 2.127s 14.426s 8.313s 0.819s 1.287s

stack_5_safe 5 6.467s 44.993s 5m2s 14.132s 43.903s

stack_6_safe 6 24.185s 5m8s TO 7m14s 25m44s

Table 11. Evaluation using concurrent data structures - II

We compare the tools in Tables 10 and 11 on benchmarks based on concurrent data structures. The �rst of these is a

concurrent locking algorithm from Hehner and Shyamasundar [10]. The second, LinuxLocks(N) is a benchmark extracted

from the Linux kernel. If not completely fenced, this benchmark is unsafe under relaxed semantics and we fence all but one

lock accesses. The other two are safe benchmarks adapted from SVCOMP-2018. The queue benchmark is parameterized by the

number of processes and the stack benchmark is parameterized by the size of the stack. The processes operate on these data

structures and we check whether certain invariants are maintained. These benchmarks illustrate the ability of our tool to

handle concurrent data-structures similar to those seen in real-world examples.

E.4 Evaluation using two synthetic safe benchmarks

We compare the tools in Table 12 on adaptations of two synthetic safe benchmarks: ReaderWriter(N) (from Norris and

Demsky [24]) and RedundantCo(N) (from Abdulla et al. [3]). Both these examples involve N processes writing distinct values

to a shared variable and one process reading from it. The number of traces in these examples grow as O(N !). The number of

possible values for the reads however is just O(N) in the �rst example and O(1) in the second one. The performance of the

SMC tools depends on how e�ciently they explore the executions. SwInG on the other hand depends on the reads observed,

illustrating the point mentioned earlier. We again note that K is chosen conservatively and our tool declares the benchmarks

to be safe considering all executions.

benchmark L K SwInG CDSChecker GenMC RCMC

readerwriter_7 0 X5 0.719s 0.005s 0.057s 0.690s

readerwriter_8 0 X5 0.839s 0.006s 0.056s 7.425s

readerwriter_9 0 X5 1.068s 0.007s 0.053s 1m17s

readerwriter_10 0 X5 1.393s 0.007s 0.056s 14m49s

redundant_co_10 10 X5 0.470s 0.114s 0.087s 38m12s

redundant_co_20 20 X5 1.031s 0.548s 0.218s TO

redundant_co_50 50 X5 3.219s 8.965s 4.143s TO

redundant_co_70 70 X5 6.093s 13.843s 18.185s TO

Table 12. Evaluation using two synthetic safe benchmarks

E.5 Evaluation using variations of mutual exclusion protocols

In this section, we consider mutual exclusion protocols from the SV-COMP 2018 benchmarks. The unfenced versions of the

protocols are unsafe. All the tools considered report a bug for these examples within two seconds. We now consider variations

of these benchmarks.

In Table 13, we evaluate the Peterson and Szymanski protocols for N processes and keep all but one process fenced. This

leads to a lower fraction of buggy executions. The values of K taken for these benchmarks assert the fact that there are bugs to

be found (even for non-trivial examples) with small K . We call these examples peterson1U and szymanski1U, parameterized by

31

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

benchmark L K SwInG CDSChecker GenMC RCMC

peterson1U(4) 1 4 1.868s 0.005s TO 0.113s

peterson1U(6) 1 4 9.408s 0.005s TO 0.179s

peterson1U(8) 1 4 43.680s TO TO 5.432s

peterson1U(10) 1 4 4m12s TO TO TO

szymanski1U(4) 1 2 1.280s 0.008s - 0.130s

szymanski1U(6) 1 2 3.519s TO - TO

szymanski1U(8) 1 2 7.574s TO TO TO

szymanski1U(10) 1 2 15.437s TO TO TO

Table 13. Evaluation using mutual exclusion protocols with a single unfenced process

benchmark L K SwInG CDSChecker GenMC RCMC

peterson1C(3) 1 2 0.743s 0.012s 0.085s 0.786s

peterson1C(4) 1 2 1.827s 5.032s TO 4.157s

peterson1C(5) 1 2 4.185s 59m42s TO TO

peterson1C(6) 1 2 8.483s TO TO TO

peterson1C(7) 1 2 15.678s TO TO TO

peterson2C(3) 1 2 0.758s 0.005s 0.068s 0.061

peterson2C(4) 1 2 1.848s 0.015s TO 12.308s

peterson2C(5) 1 2 4.041s 1m36s TO TO

peterson2C(6) 1 2 7.562s TO TO TO

peterson2C(7) 1 2 14.729s TO TO TO

Table 14. Evaluation using completely fenced peterson mutual exclusion protocol with a bug introduced in the critical section

of a single process

the number of processes. Table 14 exhibits a pair of benchmarks that exhibit the sensitivity of DPOR-based algorithms to the

location of bugs. We consider the completely fenced version of the Peterson protocol. However, we introduce a bug (write a

value to a shared variable and read a di�erent value from it) in the critical section of one of the processes. Between the two

examples, the only di�erence is the process in which this bug has been introduced. We call these examples peterson1C and

peterson2C, parameterized by the number of processes. We can see the di�erence in the performance of the DPOR-based tools

(especially CDSChecker) on the two examples. On the other hand, our tool is resilient to such super�cial changes. We note

again that the value of K is small (2).

benchmark L K SwInG CDSChecker GenMC RCMC

szymanski(3) 1 2 0.690s 0.047s 28.886s 2m35s

szymanski(4) 1 2 1.121s 5m25s - TO

szymanski(5) 1 2 1.795 TO - TO

szymanski(6) 1 2 2.671s TO - TO

szymanski(7) 1 2 3.751s TO - TO

Table 15. Evaluation using completely fenced szymanski mutual exclusion protocol with a bug introduced in the critical

section of a single process

We repeat in Table 15 the above experiment with the Szymanski mutual exclusion protocol.

We consider in Table 16 completely fenced versions of the mutual exclusion protocols. We note that these versions are safe

due to the introduction of SC-fences. In this experiment, we sequentially increase the loop unwinding bound. These examples

exhibit the practicality of iterative increments in K . Following convention, the �gure in the parenthesis represents the number

of processes.

32

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

, ,

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

benchmark L K SwInG CDSChecker GenMC RCMC

bakery(2) 1 2 0.463s 6.249s 0.056s 0.067s

lamport(2) 1 2 0.777s 5.451s 0.070s 0.089s

peterson(3) 1 2 0.878s TO 9.665s 26.208s

peterson(2) 1 2 0.321s 0.325s 0.087s 0.068s

tbar(2) 1 2 0.240s 0.007s 0.080s 0.081s

tbar(3) 1 2 0.514s 2.077s 0.087s 0.074s

bakery(2) 2 2 0.872s TO 0.709s 0.884s

lamport(2) 2 2 3.798s TO 1m31s 5m5s

peterson(3) 2 2 1.695s TO - TO

peterson(2) 2 2 0.539s 15m22s 0.039s 0.428s

tbar(2) 2 2 0.375s 0.504s 0.044s 0.061s

tbar(3) 2 2 0.918s TO 0.080s 0.094s

bakery(2) 4 2 5.827s TO TO TO

lamport(2) 4 2 5m31s TO TO TO

peterson(3) 4 2 15.900s TO - TO

peterson(2) 4 2 3.412s TO TO TO

tbar(2) 4 2 1.578s 41m25s 0.262s 0.071s

tbar(3) 4 2 4.741s TO 6.460s 15.489s

Table 16. Evaluation using safe mutual exclusion protocols

33

	Abstract
	1 Introduction
	2 Preliminaries
	3 Promising Semantics(PS-RLX)
	3.1 Quantification over all Future Memories
	3.2 Comparison of the two notions of consistency

	4 The (Strong) Reachability Problem
	5 Solving the Strong Reachability Under Bounded Promises and View-Switches
	6 Implementation and Evaluation
	7 Undecidability
	References
	A Proof of Theorem 3.1
	B Proof of Theorem 4.1
	B.1 The non-primitive recursive lower bound of PFS-RLX without bcas

	C Details for Section 5
	C.1 Main
	C.2 InitProc
	C.3 ContextSwitchIn (CSI)
	C.4 Publish
	C.5 loadState and saveState
	C.6 ScFence
	C.7 ContextSwitchOut (CSO)
	C.8 Read
	C.9 Write
	C.10 bcas(x, $r1, $r2)

	D Correctness of Translation
	D.1 SC to Bd(PS,Vw)-RLX
	D.2 Bd(PS,Vw)-RLX to SC

	E Details for Section 6 - Implementation and Experimental Results
	E.1 Comparing the notions of consistency
	E.2 Evaluation using parametrized benchmarks
	E.3 Evaluation using concurrent data structures based benchmarks
	E.4 Evaluation using two synthetic safe benchmarks
	E.5 Evaluation using variations of mutual exclusion protocols

