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Abstract

In POPL’17, Kang et al. introduced the promising semantics

for relaxed-memory concurrency (PS-RLX), the �rst mem-

ory model supporting many features of the relaxed fragment

of the C++ concurrency model while satisfying the DRF

guarantee. PS-RLX uses a consistency check that prevents

semantical deadlocks. However, this check comes at the price

of making the veri�cation of even simple programs practi-

cally infeasible. This is due to the unbounded number of runs

that need to be checked in order to validate the promises. In

this paper, we propose a new consistency de�nition called

strong consistency semantics which (1) captures most of the

common program transformations performed by the relaxed

fragment of C++, (2) is deadlock free (i.e., all promises will

eventually be ful�lled), and (3) does not require the analysis

of an unbounded number of runs. Then, we show that the

reachability problem under the promising semantics with

the (strong) consistency de�nition is highly complex. Given

this high complexity, we consider a bounded version of the

reachability problem. To this end, we bound both the number

of promises and the “view-switches”, i.e, the number of times

the processes may switch their local views of the global mem-

ory. We provide a code-to-code translation from an input

program under PS-RLX to a program under SC. This leads

to a reduction of the bounded reachability problem under

PS-RLX to the bounded context-switching problem under SC.

We have implemented a prototype tool and tested it on a set

of benchmarks, demonstrating that many bugs in programs

can be found using a small bound.

Keywords Model-Checking, weak memory models, Re-

laxed Semantics

1 Introduction

An important long-standing open problem in PL research

was to de�ne a ‘good’ weak memory model for capturing

the semantics of concurrent ‘relaxed’ memory accesses in

languages like Java and C/C++. A model is considered ‘good’

if it can be implemented e�ciently (i.e., if it supports all

usual compiler optimizations and its accesses are compiled

to plain x86/ARM/Power/RISCV accesses), and is “easy” to

, ,
2019.

reason about. The latter is not formally de�ned. Instead,

the literature uses various proxies such as supporting basic

invariant reasoning or the DRF guarantee [21], which states

that programs without races exhibit only SC-behavior.

After many attempts at solving this problem (e.g., [6, 8,

12, 19, 21, 25, 30]), a breakthrough was achieved by Kang et

al. [13], who introduced the promising semantics (PS). PSwas
the �rst model that supported basic invariant reasoning, the

DRF guarantee, and even a non-trivial program logic [28]. In

PS, the memory is modeled as a set of timestamped messages,

each corresponding to a write made by the program. Each

process/thread records its own view of the memory—i.e., the

latest timestamp for each memory location that it is aware of.

When reading from memory, it can either return the value

stored at the timestamp in its view or advance its view to

some larger timestamp and read from that message. When

a process t writes to memory location x , PS creates a new

message with a timestamp larger than t ’s view of x , and t ’s
view is advanced to include the new message. In addition, in

order to allow load-store reorderings, PS allows a process to

promise to produce a certain write in the future. PS uses a

consistency check to ensure that every promised message can

be certi�ed (i.e., made ful�llable) by executing that process

on its own. Furthermore, this should hold from any future

memory (i.e., from any extension of the memory with addi-

tional messages). The quanti�cation prevents deadlocks (i.e.,

processes from making promises they are not able to ful�l).

PS generally allows program executions to contain unbound-

edly many concurrent promised messages, provided that all

of them can be certi�ed. As one can immediately see, PS
is a fairly complex model, and beyond its support for some

basic reasoning patterns, it is not at all obvious whether it

is easy to reason about concurrent programs running under

PS. Furthermore, the unbounded number of future memo-

ries, that need to be checked, makes the veri�cation of even

simple programs practically infeasible. However, as men-

tioned above, the quanti�cation over all future memories is

necessary to ensure the absence of deadlocks. A challeng-

ing problem is then to �nd a consistency de�nition that (1)

captures most of the common program transformations per-

formed by the relaxed fragment of C++, (2) is deadlock-free

(i.e., all promises will eventually be ful�lled) and (3) does not

quantify over all future memories.

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

, , Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Towards this goal, we propose a new consistency de�ni-

tion, called strong consistency semantics, for the relaxed frag-

ment of the promising semantics (PS-RLX), which satis�es

all the three requirements listed above. Roughly speaking,

the new (strong) consistency check requires that promises

can be ful�lled only from the current memory (i.e., no need

for quanti�cation over all possible future memories) by a

run that does not (1) add new messages with non-maximal

timestamp and (2) execute atomic Compare-And-Swap in-

structions. We show that strong consistency implies the

standard consistency (as de�ned in [13]). Furthermore, in

the case where the program Prog does not contain any atomic

Compare-And-Swap instructions, we show that the two se-

mantics coincide. As an immediate consequence, we have

that any behavior under PS-RLX with the strong consistency

de�nition is also a behavior under PS-RLX with the (stan-

dard) consistency de�nition. This implies that PS-RLX with

the strong consistency de�nition is deadlock-free.

Then, we consider the reachability problem for programs

running under PS-RLX. This is a challenging problem since

even if each process is a �nite state system, the program’s

state space is unbounded because the memory can contain

unboundedly many messages and each message has a times-

tampwhose size is also not bounded. Furthermore, a program

under PS-RLX can make an unbounded number of promise

steps, whose certi�cation can further take an unbounded

number of steps. All these aspects make the reachability prob-

lem very di�cult. In fact, we show the reachability problem

under PS-RLX using anyone of the two consistency de�ni-

tions is highly complex: it is non-primitive recursive.

Given this high complexity, we next consider a bounded

version of the reachability problem for PS-RLX. We bound

both the number of promises and, following [1], the number

of “view switches” (i.e., the number of times that a process

reads from a message it has not previously seen). We develop

a practical veri�cation algorithm for this bounded reachabil-

ity problem via a reduction to SC reachability under bounded

context-switching [27].

This reduction is implemented in a tool, called SwInG.
Our experimental results in §6 demonstrate the e�ectiveness

of our approach. We exhibit cases where hard-to-�nd bugs

are detectable using a small view-bound K . Our tool displays
resilience to trivial changes in the position of bugs and

the order of processes. Moreover, our experimental results

con�rm our hypothesis that the standard de�nition of

consistency (as de�ned in [13]) would not scale while strong

consistency performs much better.

Related Work As stated in the introduction, the promising

semantics is the �rst model to support DRF guarantees and

invariant reasoning. Given this, the veri�cation of programs

running under the promising semantics is a fundamental

question, which has not been considered before. To the best

of our knowledge, SwInG is the �rst tool for automated

veri�cation of programs under the promising semantics [13]

and the strong semantics. Most of the existing work concerns

the development of stateless model checking (SMC), coupled

with (dynamic) partial order reduction techniques (e.g., [3,

14, 15, 23, 24]) and do not handle promises as de�ned in [13].

Context-bounding has been proposed in [27] for programs

running under SC. This work has been extended in di�erent

directions and has led to e�cient and scalable techniques

for the analysis of concurrent programs (see e.g., [9, 16–

18, 20, 22]). In the context of weak memory models, context-

bounded analysis has been only proposed to programs run-

ning under TSO/PSO in [5, 29] and under POWER in [2].

In our bounded reachability veri�cation procedure, we

adapt the view-bounding approach proposed in [1] for pro-

grams under release-acquire semantics to the promising se-

mantics. Our code to code translation to bounded context

SC is much more complex than the one in [1] because in

addition to executing instructions, a process can perform

various other roles like making and certifying promises as

well as checking consistency. The main challenge in the code-

to-code translation of [1] was to keep track of the causality

between di�erent variables. In our case, the challenge is fun-

damentally di�erent and is to provide a procedure that (i)

guesses the promises non-deterministically in a manner that

guarantees consistency after each step, and (ii) verify that

each promise so guessed is ful�lled.

As future work, a practical veri�cation in RC11 in the

presence of both relaxed and release-acquire semantics is

de�nitely possible, albeit technically challenging because

of the di�erences in the two view-switch notions we have

versus [1]. We hope to address this in future by �nding a

uniform view switch concept that is compatible with the two

semantics as well as with the semantics of SC accesses.

2 Preliminaries

In this section, we introduce the simple programming lan-

guage and the notation that will be used throughout.

Notations. Given two natural numbers i, j ∈ N s.t. i ≤ j,
we use [i, j] to denote the set {k | i ≤ k ≤ j}. Let A and B be

two sets. We use f : A → B to denote that f is a function

from A to B. We de�ne f [a 7→ b] to be the function f ′

such that f ′(a) = b and f ′(a′) = f (a′) for all a′ , a. Given
a set A′ ⊆ A, we use f |A′ to denote the function from A′

to B such that f |A′(a) = f (a) for all a ∈ A′. For a binary

relation R, we use [R]∗ to denote its re�exive and transitive

closure. Given an alphabet Σ, we use Σ∗ (resp. Σ+) to denote

the set of possibly empty (resp. non-empty) �nite words

over Σ. Let w = a1a2 · · ·an be a word over Σ, we use |w |
to denote the length of w . Given an index i in [1, |w |], we
use w[i] to denote the ith letter of w . Given two indices i
and j s.t. 1 ≤ i ≤ j ≤ |w |, we usew[i, j] to denote the word

aiai+1 · · ·aj . Sometimes, we consider a word as a function

from [1, |w |] to Σ.
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Prog ::= var x∗ (proc p reg $r∗ i∗)∗

i ::= λ : s;

s ::= x = $r | $r = x | bcas(x , $r1, $r2)
$r = exp | SC-fence | assume(exp)
if exp then i∗ else i∗ end if
while exp do i∗ done

Figure 1. Syntax of concurrent programs.

Program Syntax. A program Prog (see Fig. 1) consists of

a set X of (global) variables, followed by the de�nition of

a set P of processes. Each process p declares a set R (p) of
(local) registers followed by a sequence of labeled instructions.
We assume that these sets of registers are disjoint and we

use R := ∪pR (p) to denote their union. We assume also

a (potentially unbounded) data domain D from which the

registers and global variables take values. All global variables

and registers are assumed to be initialized with the special

value 0 ∈ D (if not mentioned otherwise).

An instruction i is of the form λ : s where λ is a unique

label and s is a statement. We use Lp to denote the set of all

labels of the process p, and L =
⋃

p∈P Lp the set of all labels.

We assume that the execution of the process p starts always

with a unique initial instruction labeled by λ
p
init

. A write

instruction is of the form x = $r , and assigns the value of

register $r to the global variable x . A read instruction $r = x
conversely reads the value of the global variable x into the

local register $r . A blocking compare-and-swap (bcas) in-
struction takes the form bcas(x , $r1, $r2) and waits until the

value of the global variable x matches that of register $r1 and
when it is the case, it atomically assigns the value of register

$r2 to x . A local assignment instruction $r = exp assigns to

the register $r the value of exp, where exp is an expression

over a set of operators, constants as well as the contents of

the registers of the current process, but not referring to the

set of global variables. The fence instruction SC-fence is used
to enforce sequential consistency if it is placed between two

memory access operations. Finally, the conditional, assume
and iterative instructions (collectively called cai instructions)
have the standard semantics. We de�ne LWp (resp. LW ), LRp
(resp. LR ), Lbcasp (resp. Lbcas) and LSC-fencep (resp. LSC-fence) as
the subsets of Lp (resp. L) corresponding to write, read, bcas
and SC fence instructions, receptively.

Given a label λ of a process p, let next(λ) denote the labels
of the next instructions that can be executed by p. With the

exception of cai instructions, next(λ) contains at most one

element: it contains no elements for the last instruction(s)

of the process, in which case we write next(λ) = ⊥. In
the case of cai instructions, next(λ) contains at most two

elements (assume can be thought of as a while loop). We

de�ne Tnext(λ) (resp. Fnext(λ)) to be the (unique) label of
the instruction to which the process execution moves in case

the expression appearing in the statement of the instruction

labeled by λ evaluates to true (resp. false). We also use

Tnext(λ) = ⊥ and Fnext(λ) = ⊥ to denote the termination

of the process execution. For simplicity, we sometimes write

assume(x = exp) instead of $r = x ; assume($r = exp) (for

a register $r that is not otherwise used in the program).

This notation is extended in the straightforward manner to

conditional statements.

3 Promising Semantics(PS-RLX)
In the following, we present the PS-RLX memory model,

which de�nes the semantics of global variable accesses.

PS-RLX is obtained from the promising semantics [13], by

restricting attention to relaxed accesses and SC fences.

In order to correctly model relaxed accesses, PS-RLX dis-

penses with the standard SC understanding of memory as

a function from global variables to values. Instead, it repre-

sents memory as a set of messages, each denoting the e�ect

of a single write or compare-and-swap instruction. Although

the memory is shared, each process has its own view of the

memory, since it is aware only of a subset of the messages it

contains. In the absence of SC fences, these views can be rad-

ically di�erent: the only constraint enforced is that messages

to the same variable are totally ordered, so that processes

cannot disagree on the order in which they perceive them.

Finally, messages can be added to the memory either by ex-

ecuting the next instruction of a process or by promising a

future write—that is, immediately adding to memory a mes-

sage that could otherwise only be added after executing a

bunch of instructions. As we will shortly see, promises hold

the key to PS-RLX because they allow load-store reordering,

and pose signi�cant challenges to veri�cation.

Timestamps. PS-RLX uses timestamps to maintain a total

order over all the writes to the same variable. We assume an

in�nite set of timestamps Time, densely totally ordered by

≤, with 0 being the minimum element. A view is a function

V : X → Time that maps each variable to a timestamp.

We use T to denote the set of all view functions. Let Vinit
represent the initial view where all variables are mapped to

0. Let I denote the set of intervals over Time. The intervals
in I have the form (f , t] where either f = t = 0 or f < t ,
with f , t ∈ Time. Given an interval I = (f , t] ∈ I, I .frm and

I .to denote f , t respectively.

Memory. In PS-RLX, the memory is modelled as a set of

messages, where each message represents the e�ect of one

write or compare-and-swap instruction. In more detail, a

message m is a tuple (x ,v, (f , t]) where x ∈ X, v ∈ D
and (f , t] ∈ I. We use m.var , m.val , m.to and m.frm
to denote respectively x , v , t and f . Two messages are

said to be disjoint (m1⊥m2) if they concern di�erent vari-

ables (m1.var , m2.var ) or their intervals do not overlap

(m1.to ≤ m2.frm or m2.to ≤ m1.frm). Two sets of mes-

sagesM,M ′ are disjoint, denotedM⊥M ′, ifm⊥m′ for every

3
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m ∈ M,m′ ∈ M ′. Two messagesm1,m2 are adjacent denoted
Adj(m1,m2) ifm1.var =m2.var andm1.to =m2.frm.

A memory M is a set of pairwise disjoint messages. A

memoryM can be extended with a messagem = (x ,v, (f , t])
in a number of ways:

Additive insertion M
A
←↩ m is de�ned if M⊥{m} and re-

turnsM ∪ {m}.

Maximal additive insertion M
Am
←↩ m is de�ned if

M⊥{m} and m.to > m′.to for all m′ ∈ M , and re-

turns M ∪ {m}. The maximal additive insertion is a

special case of the additive insertion that we will need

to check the consistency of the promises.

Splitting insertion M
S
←↩ m is de�ned if there exists

m′ = (x ,v ′, (f , t ′]) with t < t ′ in M , in which case

it results inM being updated toM
S
←↩m = (M\{m′}∪

{m, (x ,v ′, (t , t ′])}).

Ful�lment insertion M
F
←↩ m is de�ned if m ∈ M , in

which case it returnsM unchanged.

Machine States. A machine state MS is a tuple

(J ,R,View, PS,M,G), where J : P 7→ Lmaps each process p
to the label of the next instruction to be executed, R : R → D
maps each register to its current value, View : P 7→ T maps

each process to its view of the memory, M is a memory,

PS : P 7→ 2
M

maps each process to a set of messages (called

promise set), andG ∈ T is the global view (that will be used

by SC fences). Let C denote the set of all machine states.

Given a machine state MS = (J ,R,View, PS,M,G)
and a process p, we use MS↓p to denote

(J (p),R |R(p),View(p), PS(p),M,G), the projection ofMS to

the process p. The �rst four entries inMS↓p constitute the

process state. We callMS↓p the process con�guration. Let

Cp denote the set of all process con�gurations.

The initial machine stateMSinit is one where: (1) each

process p is in its initial instruction; (2) all registers have

value 0; (3) each process has the initial process view (that

maps each variable to 0); (4) the set of promises is empty; (5)

the initial memoryMinit contains exactly one initial message

(x , 0, (0, 0]) for each variable x ; and (6) the initial global view
maps each variable to 0.

Transition Relation. We next explain the transition rela-

tion between process con�gurations, from which we will

induce the transition relation between machine states.

Process Relation. We de�ne the transition relation induced

by the process p as a relation −→
p
⊆ Cp × (Lp ∪ (Lp ×

{A,Am, S, F }) ∪ {prm}) × Cp between the con�gurations of

a given process p. For an instruction λ : s of a process p
and two process con�gurations c = (λ,R,V , P ,M,G) and

c′ = (λ′,R′,V ′, P ′,M ′,G ′), we write c
λ:s
−−→
p
c′ to denote that

(c, λ, c′) ∈−→
p
. For a write or bcas instruction λ : s of a pro-

cess p and a ∈ {A,Am, S, F }, we write c
(λ:s,a)
−−−−−→

p
c′ to denote

that (c, (λ,a), c′) ∈−→
p
. The letter a ∈ {A,Am, S, F } is used to

distinguish the di�erent ways a write/bcas instruction is

executed where A, Am, S , and F stand for Additive, Maxi-
mal Additive, Splitting and Ful�lment. Similarly, we write

c
prm
−−→
p
c′ to denote that (c, prm, c′) ∈−→

p
. The relation −→

p
is

de�ned through a set of inference rules given in Figure 2.

Below, we explain these inference rules.

• The Read rule handles the case when process p executes

a read instruction λ : $r = x . For the read to be successful,

there must be some message of the form (x ,v, (f , t]) in the

global memory such that V (x) ≤ t (i.e., process p must not

be aware of a later message for x). In this case, the value v
is assigned to $r and the timestamp of the read message is

incorporated intop’s view. The current instruction of process
p gets updated to next(λ). The global memoryM , the set of

promises P , and the global view G remain the same.

• The Write rule handles the case when a write instruc-

tion λ : x = $r is executed. Let v be the value of $r (i.e.,

v = R($r )). To perform this instruction, there must exist an

unused interval (f , t] s.t. V (x) ≤ f . Then, there are three
cases, depending on the set of promises P of p.

• (Maximal) Additive Insertion: If the new message

(x ,v, (f , t]) is disjoint from the memory M (i.e.,

{(x ,v, (f , t])}⊥M), then we addm = (x ,v, (f , t]) toM

to obtain the new global memoryM
A
←↩m (orM

Am
←↩m

if we are using the maximal additive insertion oper-

ation). The view of p is updated to V [x 7→ t]. Notice

that (P
a
←↩m)\{m} leaves P unchanged.

• Splitting Insertion: Letm = (x ,v, (f , t]). To use split-

ting insertion, there should exist a message m′ =

(x ,v ′, (f , t ′′]) in P ⊆ M with t < t ′′. Then M
S
←↩ m

results in M\{m′} ∪ {m, (x ,v ′, (t , t ′′])} while (P
S
←↩

m)\{m} results in P ′ = (P\{m′})∪ {(x ,v ′, (t , t ′′])}. To
addm to the memory, we modifym′ in the promise

set and the memory, and extend the memory withm.

• Ful�lment Insertion: Letm = (x ,v, (f , t]). To use ful�l-
ment insertion ofm, themessagem should be in P ⊆ M .

Then M
F
←↩ m results in M while (P

F
←↩ m)\{m} re-

sults in P ′ = (P\{m}). Essentially, we keep thememory

the same and we removem from the set of promises.

The current instruction and view of p are respectively up-

dated to next(λ), and V [x 7→ t].
• The CAS rule executes a compare-and-swap instruction

of the form λ : bcas(x , $r1, $r2). To perform the bcas instruc-
tion, there must be a message m = (x ,R($r1), (f , t]) ∈ M
such thatV (x) ≤ t . Letm′ = (x ,R($r2), (t , t

′]). Then we have

4
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(x ,v, (f , t]) ∈ M, V (x) ≤ t

(λ,R,V , P ,M,G)
λ:$r=x
−−−−−→

p
(next(λ),R[$r 7→ v],V [x 7→ t], P ,M,G)

Read

m = (x ,R($r ), (f , t]), V (x) ≤ f , P ′ = (P
a
←↩m)\{m}, M ′ = M

a
←↩m

(λ,R,V , P ,M,G)
(λ:x=$r,a)
−−−−−−−−→

p
(next(λ),R,V [x → t], P ′,M ′,G)

Write
a ∈ {A,Am, S, F }

(x ,R($r1), (f , t]) ∈ M, V (x) ≤ t ,

m = (x ,R($r2), (t , t
′]), P ′ = (P

a
←↩m)\{m}, M ′ = M

a
←↩m

(λ,R,V , P ,M,G)
(λ:bcas(x,$r1,$r2),a)
−−−−−−−−−−−−−−−→

p
(next(λ),R,V [x → t ′], P ′,M ′,G)

CAS
a ∈ {A,Am, S, F }

P ′ = P
a
←↩m, M ′ = M

a
←↩m

(λ,R,V , P ,M,G)
prm
−−→
p
(λ,R,V , P ′,M ′,G)

Promise
a ∈ {A, S}

(λ,R,V , P ,M,G)
λ:SC-fence
−−−−−−−−→

p
(next(λ),R,V tG, P ,M,V tG)

SC fence

Figure 2. PS-RLX inference rules at the process level, de�ning the

transition (λ, R, V , P, M, G)
α
−→
p
(λ′, R′, V ′, P ′, M ′, G′) where p ∈ P and

α is one of the labels used above. The merge operation t returns the

pointwise maximum of the two views, i.e., (V tV ′)(y) is the maximum of

V (y) and V ′(y).

three cases obtained by usingm′ in place of (x ,v, (f , t]) in
the explanation of the write operation for a ∈ {A,Am, S, F }.
• The SC-fence rule concerns the execution of an SC

fence. In such cases, the process view V (p) is compared to

global viewG and they both get updated to the maximum of

the two using the merge operationt. Formally, the merge op-

eration t between two views V and V ′ is de�ned as follows:

for any variable y ∈ X, (V tV ′)(y) = V ′(y) if V ′(y) ≥ V (y),
and V (y) otherwise.
• The Promise rule enables process p to promise any mes-

sagem that can be added to both P andM by an additive or

a splitting insertion.

Besides these rules shown in Figure 2, there are inference

rules for the other instructions (assignments, assumes, con-

ditionals, and iterations). These are de�ned in the usual way

and a�ect only the label of the instruction to get executed

and the values of its registers.

Machine Relation. Now we are ready to de�ne the induced

transition relation between machine states using the process

transition relations de�ned in the previous paragraph. For

that, let INFR = (Lp ∪ (Lp × {A,Am, S, F }) ∪ {prm}) and

p
⇒

def
=

⋃
α ∈INFR

α
−→
p
, and ⇒

def
=

⋃
p∈P

p
⇒

This induces a relation between machine states as follows.

For machine statesMS = (J ,R,View, PS,M,G) andMS′ =

(J ′,R′,View′, PS ′,M ′,G ′), we write MS
p
⇒ MS′ i� (1)

MS↓p
p
⇒ MS↓p and (J (p ′),R |R(p′),View(p ′), PS(p ′)) =

(J ′(p ′),R′ |R(p′),View′(p ′), PS ′(p ′)) for all p ′ , p.

Consistency. There is one �nal requirement on machine

states called consistency, which roughly states that in ev-

ery machine state encountered in a program execution, all

the messages promised by a process p can be certi�ed (i.e.,

made ful�llable) by executing p on its own from any future

memory, i.e., any extension of the memory with additional

messages. The quanti�cation over all the future memory en-

sures that the current execution will not deadlock due to the

impossibility of the ful�lment of a promise. In other words, a

process cannot make any promises that it is not able to ful�l.

According to Kang et al. [13, §4], during the certi�cation

of promises, a process cannot make any further promises,

execute any SC fences. We call such steps consistent steps,

→cons
p

def
=

⋃
α ∈INFR\{prm,LSC-fencep }

α
−→
p
.

A machine stateMS = (J ,R,View, PS,M,G) is consistent
if, from any future memory M ′ such that M ⊆ M ′, every
processp ∈ P can certify/ful�l all its promises by performing

consistent steps, i.e., (J (p),R,View(p), PS(p),M ′,G) [→cons
p ]∗

(λ,R′,V ′, ∅,M ′′,G ′).

3.1 Quanti�cation over all Future Memories

The purpose of the introduction of the quanti�cation over

futurememories in Kang et al. [13, §4] is to prevent deadlocks

(i.e., all promises will eventually be ful�lled). However, this

comes at the price of making the veri�cation of even simple

programs practically infeasible. This is due to the unbounded

number of future memories that need to be checked.

As mentioned in the introduction, the challenge that we

consider in this paper is to �nd a consistency de�nition that

(1) captures common program transformations performed

by C++, (2) is deadlock free, and (3) does not quantify over

future memories.

We can achieve (3) by simply dropping the quanti�cation

over future memories and instead only requiring that the

set of promises can be certi�ed from the current memory.

However, this will introduce deadlocks. To see why, consider

the following example:

bcas(x,0,1); assume(y = 1)

(Deadlock-c)

y:=1; bcas(x,0,1);

In the above example, the �rst process can promise to set

y to 1 (if we do not consider all possible future memories

during the certi�cation phase). Now the second process can

atomically update the value of the variable x from 0 to 1

which results in forbidding the �rst process to execute its

bcas instruction and so the promise can be never ful�lled.

The deadlock that we face in this example is caused by the

use of bcas during the certi�cation phase. Thus, a potential

�x is to disallow bcas. Unfortunately, this is not su�cient to

prevent deadlocks; as illustrated by the following example:

x=2; x:=1 x:=3

(Deadlock-w)assume(x=1); assume(y = 1)

y:=1;

In the above example, let us assume that the second pro-

cess executes its write instruction which results in a new

5
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message in the memory of the form (x , 1, (1, 2]). Then, the
�rst process can promise (y, 1, (1, 3]). This is possible since
this promise can be certi�ed when we allow additive inser-

tion of the write operation x := 2 in the certi�cation phase.

Next, the assume instruction assume(y = 1) of the second

process can be executed. After that, the third process per-

forms its write instruction which results in a new message in

the memory of the form (x , 3, (0, 1]). Now, the �rst process
cannot ful�l its promise anymore, since the timestamp asso-

ciated to its write instruction x = 2 should be smaller than

the one of the write instruction x = 1. However, there is no

such available timestamp due to the message (x , 3, (0, 1]) of
the third process. The previous example suggests that we

also need to disallow the additive insertion of write opera-

tions with non-maximal timestamp. Interestingly, this is all

what we need to achieve (2), i.e., preventing deadlocks. In

Section 3.2, we show (1) is also achieved.

In the following, we formally de�ne this new se-

mantics (called here strong consistency). In this model,

during the certi�cation of promises, we allow only to

add writes with maximal timestamps; while bcas op-

erations, promises and SC-fences are disallowed. We

call these steps strong consistent steps, →scons
p

def
=⋃

α ∈INFR\{prm,(LWp ,A),(Lbcasp ,Am),(Lbcasp ,A),LSC-fencep }

α
−→
p
. Then, a ma-

chine stateMS = (J ,R,View, PS,M,G) is strongly consistent
ifMS↓p [→scons

p ]∗ (λ,R′,V ′, ∅,M ′,G ′).

Theorem 3.1. If a machine state is strongly consistent then
it is also consistent. Furthermore, in the case where the program
Prog does not contain any bcas instruction, we have that if a
machine state is consistent then it is also strongly consistent.

A proof of Theorem 3.1 is in the supplement. As an imme-

diate consequence of Theorem 3.1, the strong consistency

de�nition is deadlock-free since the (standard) consistency

is deadlock-free.

3.2 Comparison of the two notions of consistency

In the following, we describe how strong consistency cap-

tures the common program transformations performed by

C++ (as in Kang et al. [13, §4]).

Consider the following two variants of the “load bu�er”

litmus test:

a:=x; b:=y

(LB)

a:=x; b:=y

(LBd)

y:=1; x:=b y:=a; x:=b

In the LB litmus test, C++ allows to assign 1 to the register

a. Such behavior can also be observed in our semantics with

the strong consistency de�nition. To see why, consider a

run where the �rst process (whose code on the left side)

promises to write 1 to y. Such a promise can be certi�ed by

that process. Then, the second process can read from the

promise that the value of y is 1 and set the variable x to 1.

Finally, the �rst process can ful�l its promise by setting y to

1. In the LBd litmus test, it is desirable to not observe that

the value of the register a is 1. It is indeed the case in our

semantics (with the strong consistency de�nition) since the

�rst process cannot promise that the value of y is 1.

Let us now consider the following variant of LBd :

a:=x; b:=y

(LBfd)

y:=a+1-a; x:=b

In the LBfd litmus test, C++ allows to assign 1 to the

register a. Such behavior is also allowed by our semantics

with the strong consistency de�nition by exactly proceeding

in the same way as in the case of the LB litmus test.

As an immediate consequence of Theorem 3.1, any ob-

served behavior under PS-RLX with the strong consistency

de�nition is also a behavior under PS-RLXwith the (standard)

consistency de�nition. Furthermore, any forbidden behav-

ior under PS-RLX with the (standard) consistency de�nition

is also a forbidden behavior under PS-RLX with the strong

consistency de�nition. However, PS-RLX with the (standard)

consistency de�nition allows strictly more behaviors than

PS-RLX with the strong consistency de�nition as we will

see in the next paragraph. This can be observed when we

use bcas operations during the certi�cation phase where the

values read by these operations are somehow irrelevant.

To see the di�erence between the two consistency def-

initions, let us consider another variant of the LB litmus

test where we add a bcas operation in the code of the �rst

process between its read and write operations.

a:=x; b:=y

(LBcu)bcas(x,a,a); x:=b

y:=1;

The bcas operation can succeed for any value of x . This
allows the �rst process to promise that the value of y is 1 un-

der PS-RLX with the (standard) consistency de�nition since

for any future memory, the �rst process sets the variabley to

1. Then, the execution continues exactly in the same way as

in the case of the LB litmus test to observe that the value of

a is 1. Such behavior is not possible under PS-RLX with the

strong consistency de�nition since the �rst process cannot

promise that the value of y is 1 (because we disallow the use

of bcas operations during certi�cation).

Now, let us consider a variant of LBcu where the bcas
operation can only succeed for some particular values.

a:=x; b:=y

(LBcd)bcas(x,0,1); x:=b

y:=1;

In LBcd litmus test the bcas needs to read a particular

value of the variable x and therefore the �rst process cannot

promise to set the value of y to 1 under PS-RLX with the

(strong) consistency de�nition for any future memory (i.e.,

any value of the variable x ).
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4 The (Strong) Reachability Problem

In this section, we discuss the question of reachability in

the (strong) consistency semantics. First, we give the formal

de�nition of the reachability problem under both seman-

tics. Then, we show that the reachability problem under

the strong consistency semantics is non-primitive recursive.

Given this high complexity, we propose a bounded version

of the (strong) reachability problem where we bound both

the number of promises and the number of “view switches”

(i.e., the number of times that a process reads from a message

it has not previously seen).

Formal de�nition. A strongly consistent run of Prog is a

sequence of the form: MS0 [
pi

1

⇒]∗ MS1 [
pi

2

⇒]∗ MS2 [
pi

3

⇒]∗

. . . [
pin
⇒]∗MSn whereMS0 =MSinit is the initial machine

state andMS1, . . . ,MSn are (strongly) consistent machine

states. In this case, the machine statesMS0, . . . ,MSn are

said to be (strongly) reachable fromMSinit.

Given an instruction label function J : P ⇀ L that maps

each process p ∈ P to a label in Lp , the (strong) reachability
problem asks whether there exists a machine state of the

form (J ,R,View, PS,M,G) that is (strongly) reachable from
MSinit. In the case of a positive answer to this problem, we

say that J is (strongly) reachable in Prog.

Lower-bound time complexity. As mentioned in Section

3.1, checking reachability is not tractable in practice due

to the unbounded number of future memories that need to

be considered. In the following, we show that the (strong)

reachability problem for concurrent programs under PS-RLX
is highly non-trivial (i.e., non-primitive recursive). The proof

is done by reduction from the reachability problem for lossy

channel systems, in a similar to the case of TSO [4] where

we insert SC-fence instructions everywhere in the process

that simulates the lossy channel process (in order to ensure

that no promises can be made by that process). A detailed

proof can be found in the supplement.

Theorem 4.1. The (strong) reachability problem for concur-
rent programs under PS-RLX over a �nite data domain is non-
primitive recursive.

Bounded (strong) reachability problem. Given the high-

complexity of the (strong) reachability problem, we re-

strict our attention to runs which have bounded number

of promises and view-switches. The latter notion was intro-

duced in Abdulla et al. [1] for the release-acquire model. Let

us formally de�ne such runs for PS-RLX with the strong con-

sistency de�nition. The problem can be de�ned in a similar

manner for PS-RLX with the standard consistency de�nition.

Consider a strongly consistent run ρ of the formMS0

α1

−−→
p1

MS1

α2

−−→
p2
c2 . . .

αn
−−→
pn
MSn . A step labeled by α j is view-

altering in ρ if it involves reading a message from the mem-

ory which changes the view of pj w.r.t. some variable. Let

nProдoB (〈global vars〉; 〈Main〉; (nproc p reg $r∗i∗o)∗
nproc p reg $r∗ i∗oB proc p reg $r∗〈local vars〉〈InitProc〉〈CSO〉p,λ0 (niop )∗

nλ : iop B λ : 〈CSI〉; nsop ; 〈CSO〉p,λ
nif exp then i∗ else i∗op B if exp then (niop )∗ else(niop )∗

nwhile exp do i∗op B while exp do (niop )∗
nassume(exp)op B assume(exp)

n$r = expop B $r = exp

nx = $rop B see Algorithm 3

n$r = xop B see Algorithm 4

Figure 3. Translation map n.o.
Sw be the set {i | pi , pi+1} recording the points of context

switches in ρ. Also, let Cons be the set of strong consistency

check runs for ρ, i.e., runs of the form ci↓pi [→
scons
pi ]

∗ c′i for

i ∈ Sw where the promise set of pi is empty in c′i .

LetK ′ be the number of view-switches and promises along

ρ, and let K ′′ by the total number of view-switches in Cons .
The run ρ is called K-bounded under the relaxed semantics

(denoted K-Bd(PS,Vw)−RLX) if K ′′ + K ′ ≤ K . Observe that
the messages read during strong consistency checks are not

considered as view-switches in the traditional sense (they do

not change the view permanently, but are only used locally

within that strong consistency check phase).

Finally, given K ∈ N, the K-(promise, view) bounded

strong reachability under PS-RLX can be de�ned in simi-

lar manner to the strong reachability problem by replacing

strong runs with the K-bounded ones.

K-Bounded-Context Reachability in SC. Given a program, a

run τ under SC is a sequence γ0
p1
⇒ γ1

p2
⇒ γ2 · · ·

pn
⇒ γn . A

context switch in τ is a machine state γj , s.t. pj−1 , pj . A
run τ is K-context-bounded if it contains at most K context

switches. The K-bounded reachability under SC is de�ned

by requiring that τ is K-context bounded.

5 Solving the Strong Reachability Under

Bounded Promises and View-Switches

Let K ∈ N be a bound on the promises and view-switches.

In this section, we propose an algorithm that reduces the

K-(promise, view) bounded strong consistent reachability

under PS-RLX to a K + n bounded context reachability prob-

lem under SC, where n is the number of processes in the

concurrent program. The bounded-context reachability prob-

lem under SC for �nite-state programs is decidable [27]. In

concrete terms, given a concurrent program Prog as input,

our algorithm constructs a program Prog′ having the same

variable domain as Prog and size polynomial in Prog and K
s.t. for every K-(promise, view) bounded strongly consistent

run of Prog under PS-RLX, there is a K + n bounded context

run of Prog′ under SC reaching the same set of instruction

labels, and vice-versa.

For the rest of the section, we use ρrel (resp. τsc) to denote

a run under PS-RLX (resp. SC).

7
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Translation Overview. Let Prog be a program under

PS-RLX and let P and X be its sets of processes and shared

variables respectively. Our reduction relies on the transla-

tion of Prog under the bounded strong consistency semantics

to a context-bounded SC program nProgo, as shown in Fig-

ure 3. The translation keeps the same data domain for local

variables, but adds a �nite amount of additional global and

local states, which we will describe shortly. Besides the new

global variables, nProgo also adds a new process (Main) that

initializes these variables, and then translates each process

in turn. The translation of a process p ∈ P adds some lo-

cal variables, such as the view array that records the most

recent value and timestamp seen by p for each shared vari-

able x ∈ X. The function 〈InitProc〉 initializes these local
variables. Each instruction i in process p is translated to a

sequence of instructions: 〈CSI 〉 that checks if the process
is active in the current context; the translation nsop of the

statement s in i; and 〈CSO〉p,λ that checks switching out

of context. 〈CSO〉p,λ facilitates two things: (i) it allows p to

make promises after each λ (possibly in di�erent contexts),

s.t. the control is back at λ after the promises; (ii) it helps

in certi�cation of promises when p switches out of context

from λ. The translation of bcas and SC-fence is discussed
in the supplement, to keep the presentation simple. We will

elaborate on read, write later.

One of the key ingredients in the translation is to bound

the size of thememory. This is done via the notion of essential

messages (these messages are either promises or alter the

view of processes which read them) detailed below. A bound

on the number of time stamps (details below) is achieved

from the number of essential messages. Then we describe

our data structures, local and global variables, subroutines,

and then eventually the translation of each statement.

Essential Messages.Messages in the memory can be classi-

�ed into three categories: (i) view-switching messages (that al-
ter the view of some process when they are read), (ii) promise
messages (that are generated as a promise by some process

and may or may not alter the view of another process), and

(iii) redundant messages (that are never read by any process).

When a new message is created, we can guess the type of

the message as one of the above. We need not allocate fresh

timestamps for redundant messages. Only essential messages

(either view-switching or promise) require fresh timestamps.

The bound K on the number of promises and view switches

gives the bound K on the number of essential messages and

their timestamps. For the translation wemaintain 2K distinct

timestamps. The reason is as follows: for each view-switch

of a process, its existing timestamp is compared with that

of an essential message. Hence we need 2 timestamps for a

view-switch (a promise requires only one timestamp). Since

we have at most K view-switches and promises, 2K times-

tamps su�ce. We choose Time = {0, 1, 2, . . . , 2K} as the set

of timestamps. This bound on the number of timestamps is

crucial in the translation.

Data Structures.We use auxilary data structures to repre-

sent messages and process views.

TheMessage data structure represents a message gener-

ated by a write or a promise. It is a record with four �elds: (i)

var , the address of the shared variable that was written to; (ii)
t , the timestamp in Time associated with the message; (iii) v ,
the value written; and (iv) �ag, a number in {−1, 0, 1, . . . ,n},
where n is the number of processes. Flag 0 represents a non-

promised message or a promise that has been ful�lled; �ag

−1 represents a certi�ed promise; while a positive number

�ag > 0 denotes a (not yet certi�ed) promise by thread �ag.
The View data structure stores for each shared variable

x , (i) a timestamp t ∈ Time, (ii) a value v written to x , (iii)
a boolean l ∈ {true, false} representing whether t is a
legitimate timestamp which can be used for comparisons

(since we have messages which are not essential, t could
represent a timestamp which is not used for comparisons),

(iv) a boolean f ∈ {true, false} which represents whether

the value v may be used by the same process for a local read,

and (v) a boolean u ∈ {true, false} which is true if the

process has most recently executed a continuous sequence

of bcas instructions. The entries in View for a variable x are

referred to as view[x].t, view[x].v, etc.

Global Variables.We introduce the following global vari-

ables: (1) messageStore, an array of messages of size K that

will be populated with the essential messages generated

by the program; (2) messagesUsed, the current number of

messages in messageStore; (3) numContexts, the number of

context switches that have occurred; (4) numEE, the number

of promises and view switches that have occurred; and (5)

avail, a boolean array of size 2K|X|, that, for each variable

x ∈ X, records the available timestamps in Time. The Main

process initializes the global counters to 0 and all entries in

the avail array to contain true.

Local Variables. In addition to its local registers, each pro-

cess has the following local variables: (i) view: a local instance
of View, (ii) active: a boolean variable which is set when the

process is running in the current context, (iii) checkMode: a
boolean checking if the process is in the certi�cation mode,

(iv) liveChain: a boolean array indexed by global variables

x ∈ X, used to ensure no additive insertions of x are allowed

during strong consistency checking (however maximal ad-

ditive insertions are allowed), and (v) retAddr: a variable

storing the instruction label corresponding to the most re-

cent instruction before entering the certi�cation phase.

Since strong consistency disallows additive insertions, we

check that only splitting insertions are used during the certi-

�cation phase. liveChain[x] is true only in certi�cation mode

(i.e., when checkMode is true) when the most recent write to

x during the current certi�cation phase was not promised.
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Algorithm 1:Main, CSI, Publish

Algorithm Main
atomic_begin

messagesUsed, numContexts, numEE← 0

for x ∈ X, ts ∈ {1, 2, ..., 2K } do
avail[x ][ts] ← true

end

atomic_end

Algorithm CSI
if ¬active then

atomic_begin

active← true

numContexts← numContexts + 1
assume(numContexts ≤ K + n)

end

Algorithm Publish(message)
assume(messagesUsed < K )

messageStore[messagesUsed] ← message
messagesUsed ← messagesUsed + 1

When liveChain[x] is true, the process must make the suc-

ceeding writes with consecutive timestamps ending with

a promise (which will set liveChain[x] to false) before it

makes a global read. This precisely forbids additive insertion.

liveChain[x] may only be true when checkMode is true.

Subroutines.

• genMessage(·, ·, ·, ·) is a subroutine which generates a mes-

sage with the four �elds as speci�ed above in the data struc-

tureMessage. In case some �elds are not speci�ed, these are

chosen non-deterministically from the relevant domain.

• saveState(p) is a subroutine which saves the state of global

variables (de�ned above) and the local state of only the pro-

cess p passed as argument. We however do not store numEE
and the contents ofmessageStore. (details in the supplement)

• loadState(p) is a subroutine which loads the global state

and process p’s local state saved using saveState(p).
We use the gotoLabel(retAddr) statement which switches

to the instruction label indexed by retAddr . We note that

there are only �nitely many instruction labels.

The Code-to-Code Translation. In what follows we

illustrate how the translation simulates a run under

Bd(PS,Vw)−RLX. At the outset we note that each process

interleaves in its execution between two phases: a normal
phase that runs at the beginning of each context and the cer-
ti�cation phase at the end of the context, where it may make

new promises and certify all the promises before switching

out of context. In this way we incorporate the witness for

the consistency check in the run of the program itself.

By certi�cation of a promise, we mean an event that shows

that the promise can be ful�lled as part of the witness run

proving the machine state to be consistent. By ful�lment

of a promise we mean making a write that permanently re-

moves the promise message from the promise set. Ful�lment

Algorithm 2: CSO
p,λ

σsw :

if ∗ then

if ¬checkMode then
if ¬active then

atomic_begin

active← true
numContexts← numContexts + 1
assume(numContexts ≤ K + n)

end

checkMode← true
retAddr ← λ, saveState(p)

else

form ∈ messageStore do
assume(m .�ag , p)
if m.�ag == −1 then m.�ag ← p

end

for x ∈ X do assume(¬liveChain[x ])
loadState(p), gotoLabel(retAddr)
checkMode← false
active← false
atomic_end

end

goto σsw
end

(resp. Certi�cation) is only done during the normal (resp.
certi�cation) phase of the run.

Context Switch Out (CSOp,λ
). CSOp,λ

is placed after each

instruction in the original program and serves an entry and

exit point for the consistency check phase of the process.

If the process is currently in normal mode, CSO non-

deterministically switches to certi�cation mode, and vice

versa. When switching from normal to certi�cation mode,

if the process is not active, �rst a new context is created

and the process is made active. Then, the mode is recorded,

the current instruction λ and the local state of the process

are recorded so that they can be reinstated at the end of the

certi�cation run.

To switch from certi�cation mode back to normal mode,

we �rst check that there are no outstanding promises of p
(i.e., all messages in the memory have a �ag di�erent from p).
For messages with a �ag of −1 (denoting a certi�ed promise

by p), we set their �ag back to p so that they get certi�ed

again in subsequent certi�cation rounds.

Then, to preserve the liveChain invariant, we enforce that

all its entries are false which ensures that there were no

additive insertions during the certi�cation phase. Now using

the loadState routine, we load back the state that was stored

on entering the certi�cation phase. The process then returns

to the instruction label fromwhere it entered the certi�cation

phase, and checkMode is set to false, and it exits the context.

Write Statements. The translation of a write instruction

x = $r of process p is shown in Algorithm 3. Let us �rst

consider execution in the normal phase (i.e., when checkMode
is false). First, the value of val($r ) is recorded in the local

view, and view[x].f is set meaning that later instructions in

p can read from the write. Then, we non-deterministically
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Algorithm 3: nx = $rop write

view[x].v ← val($r ), view[x].f ← true

if ∗ then /* (i) no fresh timestamp */
view[x].l ← false

if checkMode then liveChain[x ] ← true

else if ∗ then /* (ii) and (iii) */
view[x].l ← true

if liveChain[x ] then
newStamp← view[x].t + 1

else

newStamp← nondetInt(view[x].t + 1, 2K )
end

view[x].t ← newStamp
assume(avail[x ][newStamp])
avail[x ][newStamp] ← false

if ∗ then /* (ii) essential message */
if checkMode then

message← genMessage(x, newStamp, val($r ), −1)
liveChain[x ] ← false, numEE← numEE + 1

else

message← genMessage(x, newStamp, val($r ), 0)
end

Publish(message)
else /* (iii) */

if checkMode then liveChain[x ] ← true

end

else /* (iv) fulfilling a promise */
view[x].l ← true

messageNum← nondetInt(0, messagesUsed − 1)
message← messageStore[messageNum]
assume(message.var == &x ∧message.t > view[x].t)
assume(message.v == val($r ) ∧message.�ag == p)
view[x].t ← message.t
if checkMode then

message.�ag ← −1, liveChain[x ] ← false

else

message.�ag ← 0

end

messageStore[messageNum] ← message

choose one of four possibilities for the write: it either (i)

is not assigned a fresh timestamp, (ii) is assigned a fresh

timestamp and published, (iii) is assigned a fresh timestamp

but not published (that is, the message is not added to the

memory), or (iv) ful�ls some outstanding promise.

In case (i), no message is created, and view[x].l is set to
false, signifying that the timestamp recorded in the view

does not correspond to the most recent write to x and should

therefore not be used in the comparisons.

In cases (ii) and (iii), we allocate a new timestamp and

store it into view[x].t. We use the avail array to ensure that

allocated timestamps are unique: we check that the selected

timestamp is available (i.e., not allocated), and remove it

from the array of available stamps. If the message is to be

published (case ii), the appropriate message is constructed

and published; otherwise (case iii), this step is skipped.

Finally, if the process decides to ful�ll a promise (case

(iv)), a message is fetched from messageStore and checked to

be an unful�lled promise by the current process (checking

�ag = p), and the �ag is set to 0.

Let us now consider a write executing in the certi�cation

phase (i.e., when checkMode is true).
Wewill only highlight di�erences between the normal and

certi�cation phase writes. Most importantly, we maintain

and use the liveChain invariant whenever a fresh timestamp

is assigned. Indeed, if liveChain is true, the process must

assign consecutive timestamps (line 8). Also, when it does

not publish the current write as a promise message, or ful�ll

an older promise (cases (iii) and (iv)), it sets liveChain to true

(lines 4, 24). In cases (iii) and (iv), the message �ag is set to −1

rather than 0, indicating that the promise has been certi�ed,

but not yet ful�lled.

Algorithm 4: n$r = xop read

if ∗ then /* View-switching read */
assume(numEE < K )
msgNum← nondetInt(0, messagesUsed − 1)
msg ← messageStore[msgNum]
assume(msg.var == &x )
assume(view[x].l ∧ view[x].t ≤ msg.t)
view[x].t ← msg.t, view[x].v ← msg.v
view[x].f ← true, numEE← numEE + 1
assume(¬liveChain[x])

else /* Non-view-switching read */
assume(view[x].f )

end

val($r ) = view[x].v

Read Statements. Algorithm 4 is used to translate read

statements of the form $r = x . At line 1, the process guesses
and takes the then branch if the read is view-switching.

In the case of a view-switching load, we check that we

have not reached the context-/view-switching bound, we

fetch a new message from messageStore with a larger times-

tamp that the one in the current view, update the process

view to include that new message, and increment the num-

ber of context and view switches. We �nally ensure that

liveChain[x] is false before the read in order to forbid ad-

ditive insertions when checking consistency of promises.

Recall from the liveChain invariant that liveChain[x] is true
only when the process is in certi�cation mode and the last

write on x was not published as a promise message.

x:=1; // t2
a:=x; // t3
x:=2; // t3 + 1

Reading a message from the mem-

ory when liveChain[x] is true im-

plies additive insertion during certi�-

cation, as illustrated by the adjacent

code fragment. Assume the process

is in the promise certi�cation mode, with view[x].t set to
t1, and let the �rst write use a timestamp t2 > t1 with the

message not published as promise, with liveChain[x] as true.
Now the instruction a:=x uses a message in the memory

with a timestamp t3 ≥ t2. If the next write certi�es a promise

10
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message, the interval in the message will be t3 + 1, since

liveChain[x] is true. This results in two writes during the

certi�cation, with non-adjacent timestamps t2, t3 + 1, with
only the latter being promised. The choice of the timestamps

clearly shows additive insertion. Notice that if the earlier

write also resulted in a promise message then we do not

have additive insertion (since both are promised) and the

read with timestamp t2 is allowed since liveChain[x] is false.
If the read is not view-switching, the process checks that

the local value is usable (line 13) and loads its local value

view[x].v into $r . The local value may become unusable if

the process crosses an SC-fence which updates its view[x].t.

6 Implementation and Evaluation

To evaluate the e�ciency of the technique presented in the

previous section, we have implemented it as a tool called

SwInG. SwInG takes as input a C program and a bound, K ,
and translates it to an SC program. We use CBMC version

5.10 as the backend tool, which takes as input L, the loop
unrolling parameter, specifying the number of iterations for

which loops are unrolled. SwInG then considers the subset

of executions respecting the bounds K and L provided. If it

returns unsafe, then the program has an unsafe execution in

this subset. Conversely, if it returns safe, then none of these

executions violate any assertion.

In the promise free mode, we compare SwInG with

three state-of-the-art stateless model checking (SMC) tools,

CDSChecker [23], GenMC [15] and Rcmc [14] that support

the relaxed semantics without promises (as de�ned in [13]).

We use a version of CDSChecker that halts on the �rst bug

discovered while GenMC and Rcmc do this by default. In

the tables that follow, we specify the used values of L (for all

tools) and K (only for SwInG).
The main takeaways of our experiments are: (1) SwInG

can uncover hard-to-�nd bugs faster than the others with

relatively small values ofK ; (2) our approach is more resilient

to trivial changes in the position of bugs as compared to the

SMC tools; (3) in many instances, our technique fares better

at capturing relevant behaviours instead of exploring all

possible traces as done by some SMC tools.

We note that the tools we are comparing with do not re-

quire as input the bound, K . Hence, the comparison may

not be fair for some safe examples, since SwInG only con-

siders the subset of executions which K enforces. However,

in certain instances we have set the parameter K such that

all executions are considered (modulo the loop unwinding

bound). In such cases, we note that SwInG is comparable to

the others. We highlight such cases (only for safe examples)

with a green checkmark (X) accompanying the value of K
used. Additionally, we have put forth cases where we can

iteratively increment K to prove correctness. This di�erence

in comparison has no bearing on the reliability of the results.

Considering the above observations, we realise that the

SMC tools and SwInG have orthogonal approaches to �nding

bugs, and can be used to complement each other. SMC tools

are limited by how they explore all executions, which might

be sub-optimal in cases where we have a shallow counterex-

ample but which is explored only after several executions,

while SwInG is limited by the bound K .
We do not consider compilation time for any tool while

reporting the results. For SwInG, the time reported is the time

taken by the CBMC backend for analysis. The timeout used

is 1 hour for all benchmarks. All experiments are conducted

on a machine equipped with a 2.80 GHz Intel Core i7-860

and 4GB RAM running a Debian 9 (stretch) 64-bit operating

system. We denote timeout by ‘TO’. We mark a hyphen ‘-’

in the table for when the process is killed with a maximum

resident set size (RAM used) of 3.7 GB or higher.

In the main paper we provide indicative examples of the

experiments conducted. The complete set of benchmarks are

in the supplement. We �rst compare strong and standard

consistency on some examples. For the remaining bench-

marks, to enable comparison with other tools which do not

support promises (as de�ned in [13]), we run the SwInG in

the promise-free mode. Then, we show the ability of SwInG:
(1) to detect hard-to-�nd bugs, (2) to adapt to concurrent

data-structure benchmarks and (2) resilience to location of

bugs and number of executions.

testcase K SwInG[strong] D SwInG[standard]

splitCAS 5 1.378s

20 12.284s

40 37.166s

60 2m15s

80 4m26s

LBcu 7 4.434s

100 1m13s

200 2m39s

LB2cu 7 5.331s

10 1m16s

20 15m40s

LBcd 7 1.003s

100 10.984s

200 25.010s

�bonacci_2_safe 5 17.244s 10 3m11s

�bonacci_3_safe 5 14m14s 10 TO

Table 1. Comparing the two notions of consistency

Comparing the notions of consistency. In order to em-

pirically con�rm our hypothesis that the standard de�nition

of consistency (as de�ned in [13]) would not scale, we run

SwInG, on similar small examples under the strong and stan-

dard consistency, while varying the size of the data domain,

speci�ed by D. Observe that we need to vary D for the stan-

dard consistency de�nition since it is required during the

quanti�cation over all future memories (which implicitly

includes all possible data values). We run SwInG on a variety

of safe and unsafe test cases from [7, 13]. The �rst three ex-

amples are unsafe while the other ones are safe. In all these

cases, we observe, the dependence of run-time on the size of

the data domain when the standard consistency de�nition is

used. Strong consistency, on the other hand performs much

better without any restriction on the size of the data domain.

Evaluation using parametrized benchmarks. We com-

pare SwInG with CDSChecker, GenMC and Rcmc in Ta-

ble 2 on three parametrized benchmarks: ExponentialBug
(from Fig. 2 of [11]), Fibonacci and safe and unsafe
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versions of Triangular taken from SV-COMP 2018. In

ExponentialBug(N ) and Triangular(N), the processes

compete to write to a shared variable and N repre-

sents the number of times a process may write. In

ExponentialBug(N ), the number of executions grows as

O(N !), while the fraction of interleavings that expose the

bug reduce exponentially with N . In the unsafe version of

Triangular(N ), there is exactly one interleaving that ex-

poses the bug, while the total number of interleavings in-

creases exponentially with N . In Fibonacci(N ), two pro-

cesses compute the value of the nth Fibonacci number. In

the safe examples, we note that we use a conservative upper

bound on the value of K . Hence this table demonstrates the

ability of SwInG in exposing hard-to-�nd bugs as well as its

adaptability for safe cases.

benchmark L K SwInG CDSChecker GenMC RCMC

exponential_25_unsafe 25 10 3.433s 14.737s 4.697s TO

exponential_50_unsafe 50 10 9.021s 1m6s 1m2s TO

exponential_70_unsafe 70 10 14.136s 2m52s 4m3s TO

�bonacci_2_safe 2 X20 4.045s 8.811s 0.104s 0.133s

�bonacci_3_safe 3 X20 10.899s TO 0.984s 4.443s

�bonacci_4_safe 4 X20 30.475s TO 41.576s 3m2s

triangular_3_safe 3 X6 1m3s 18.737s 0.152s 0.290s

triangular_4_safe 4 X8 4m58s 20m20s. 1.602s 2.282s

triangular_5_safe 5 X10 8m16s TO 28.883s 34.819s

triangular_3_unsafe 3 10 9.422s 2.903s 0.126s 0.244s

triangular_4_unsafe 4 10 2m54s 3m25s 1.254s 1.531s

triangular_5_unsafe 5 10 12m23s TO 21.619s 26.730s

Table 2. Evaluation using parametrized benchmarks

Evaluation using concurrent data structures. We com-

pare the tools in Tables 3 on benchmarks based on concurrent

data structures. The �rst of these is a concurrent locking al-

gorithm from Hehner and Shyamasundar [10]. The second,

LinuxLocks(N) is a benchmark extracted from the Linux

kernel. If not completely fenced, this benchmark is unsafe

under the relaxed semantics and we fence all but one lock

accesses. The other two are safe benchmarks adapted from

SVCOMP-2018. The queue benchmark is parameterized by

the number of processes and the stack benchmark is param-

eterized by the size of the stack. The processes operate on

these data structures and we check whether certain invari-

ants are maintained. These benchmarks illustrate the ability

of our tool to handle concurrent data-structures similar to

those seen in real-world examples.

benchmark L K SwInG CDSChecker GenMC RCMC

hehner2_unsafe 4 5 6.130s 0.028s 0.042s 0.072s

hehner3_unsafe 4 5 26.729s 0.026s 4m4s 1m26s

linuxlocks2_unsafe 2 4 0.748s 0.010s 0.036s 0.081s

linuxlocks3_unsafe 2 4 1.113s 0.013s 0.037s 0.084s

queue_2_safe 4 4 2.141s 0.020s 0.039s 0.079s

queue_3_safe 4 4 9.417s 0.024s 0.053s 0.086s

stack_4_safe 4 4 2.127s 8.313s 0.819s 1.287s

stack_5_safe 5 4 6.467s 5m2s 14.132s 43.903s

stack_6_safe 6 4 24.185s TO 7m14s 25m44s

Table 3. Evaluation using concurrent data structures

Evaluation using two synthetic safe benchmarks. We

compare the tools in Table 4 on adaptations of two synthetic

safe benchmarks: ReaderWriter(N) (from Norris and Dem-

sky [24]) and RedundantCo(N) (fromAbdulla et al. [3]). Both

these examples involve N processes writing distinct values

to a shared variable and one process reading from it. The

number of traces in these examples grow as O(N !). The

number of possible values for the reads however is justO(N )
in the �rst example andO(1) in the second. The performance

of the SMC tools depends on how e�ciently they explore the

executions. SwInG on the other hand depends on the reads

observed, illustrating the point mentioned earlier. We again

note that K is chosen conservatively and our tool declares

the benchmarks to be safe considering all executions.

benchmark L K SwInG CDSChecker GenMC RCMC

readerwriter_9 0 X5 1.068s 0.007s 0.053s 1m17s

readerwriter_10 0 X5 1.393s 0.007s 0.056s 14m49s

redundant_co_50 50 X5 3.219s 8.965s 4.143s TO

redundant_co_70 70 X5 6.093s 13.843s 18.185s TO

Table 4. Evaluation using two synthetic safe benchmarks

Evaluation using mutual exclusion protocols. In this

section, we consider mutual exclusion protocols from the

SV-COMP 2018 benchmarks. The unfenced versions of the

protocols are unsafe. All the tools considered report a bug

for these examples within two seconds. We now consider

variations of these benchmarks.

benchmark L K SwInG CDSChecker GenMC RCMC

peterson1U(4) 1 4 1.868s 0.005s TO 0.113s

peterson1U(6) 1 4 9.408s 0.005s TO 0.179s

peterson1U(8) 1 4 43.680s TO TO 5.432s

peterson1U(10) 1 4 4m12s TO TO TO

Table 5. Evaluation using mutual exclusion protocols with a

single unfenced process

In Table 5, we evaluate the Peterson protocols for N pro-

cesses and keep all but one process fenced. This leads to a

lower fraction of buggy executions. The values of K taken

for these benchmarks assert that the bugs can be found (even

for non-trivial examples) with small K . We call this example

peterson1U and it is parameterized by N .

benchmark L K SwInG CDSChecker GenMC RCMC

peterson1C(3) 1 2 0.743s 0.012s 0.085s 0.786s

peterson1C(4) 1 2 1.827s 5.032s TO 4.157s

peterson1C(5) 1 2 4.185s 59m42s TO TO

peterson1C(6) 1 2 8.483s TO TO TO

peterson2C(3) 1 2 0.758s 0.005s 0.068s 0.061

peterson2C(4) 1 2 1.848s 0.015s TO 12.308s

peterson2C(5) 1 2 4.041s 1m36s TO TO

peterson2C(6) 1 2 7.562s TO TO TO

Table 6. Evaluation using mutual exclusion protocols with

a bug introduced in the critical section of a single process

Table 6 exhibits a pair of benchmarks that exhibit the

sensitivity of DPOR-based algorithms to the location of bugs.

We consider the completely fenced version of the Peterson

protocol. However, we introduce a bug (write a value to a

shared variable and read a di�erent value from it) in the

critical section of one of the processes. Between the two

12
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examples, the only di�erence is the process in which this

bug has been introduced. We call these examples peterson1C

and peterson2C and they are parameterized by the number

of processes. We can see the di�erence in the performance

of the DPOR-based tools (especially CDSChecker) on the

two examples. On the other hand, our tool is resilient to such

super�cial changes. We note again that K is small.

7 Undecidability

In this section, we show that both the normal and the strong

reachability problem for concurrent programs under the

relaxed semantics are undecidable even for �nite-state pro-

grams. The proof is by a reduction from Post’s Correspon-

dence Problem (PCP) [26]. Our proof crucially uses promises

to ensure that a process cannot skip any writes made by

another process. Unlike the undecidability proof in [1] about

RA, our proof does not make use of any bcas operations,

and so it works even with just plain read and write instruc-

tions. It also works even when we restrict our analysis to

executions that can be split into a bounded number of con-

texts, where within each context, only one process is active.

Our undecidability result is also tight in the sense that the

reachability problem becomes decidable when we restrict

ourselves to machine states where the number of promises

is bounded.

Theorem 7.1. The (weakly) consistent reachability problem
for concurrent programs over a �nite data domain is unde-
cidable under the promising semantics with relaxed accesses.

Undecidability is obtained by a reduction from Post’s Cor-

respondence Problem (PCP) [26].

We construct a concurrent program with

two processes p1 and p2, six shared variables

X = {x ,y, validate, index, index ′, term}, and two regis-

ters {$r , $r ′}. The �nite data domain of Prog is de�ned

as D = Σ ∪ {0, 1, . . . ,n} ∪ {⊥, #}, where ⊥ and # are two

special symbols (not in Σ ∪ {0, 1, . . . ,n}). All the variables
and registers are initialized to zero.

The code of the two processes is given in Figure 4. De-

pending on the value of the validate �ag read, process p1 can
run in generation mode (top-level then branch) or validation
mode (top-level else branch). In generation mode, process

p1 writes in sequential manner the sequence of indices (al-

ternated with the special symbol #) to the variable index
and at the same time writes, letter by letter, the sequence

of letters of the word ui to the variable x each time p1 sets
the variable index to i (using the Modulep1ui procedure). In
validation mode, p1 reads from the variables index ′ and y
and writes back what it has read to the variables index and x ,
respectively. The second process proceeds in a similar man-

ner as the else branch of the �rst process: It reads from the

variables index and x and writes the values reads to index ′

and y, respectively.

Let λ (resp. λ′) be the label of the assume(true) instruction
of p1 (resp. p2). We will show that a solution of the PCP

problem exists i� we can reach the pair of labels (λ, λ′) in
the program Prog.
Assume that we can (weakly) reach the pair of labels

(λ, λ′). The idea behind the reduction is as follows. In or-

der for p1 to reach label λ, it must execute the else branch
of its conditional statement. Let us assume it does so. Then,

p1 will read the sequence of indices i1, i2, . . . , ik written by

the process p2 on the variable index ′. Let us assume that

the process p2 writes the sequence of indices j1, j2, . . . , jm
on the variable index ′. Each time that the process p1 reads
an index from the variable index ′, it writes it back on the

variable index. The process p1 (resp. p2) alternates between
writing/reading an index in {1, . . . ,n} and the special sym-

bol # in order to make sure that each written index is at

most read once. In similar manner, the process p2 reads the
sequence of indices j1, j2, . . . , jm written by the process p1
on the variable index and it writes it back on the variables

index ′. This implies that the sequence j1, j2, . . . , jm is a subse-

quence of i1, i2, . . . , ik (since the process p2 can miss reading

some written indices by the process p1) and also that the

sequence i1, i2, . . . , ik is also a subsequence of j1, j2, . . . , jm
(since p1 can miss reading some written index by the pro-

cess p2). Thus, we have that the sequences i1, i2, . . . , ik and

j1, j2, . . . , jm are the same. Every time the process p1 (resp.
p2) reads an index i from the variable index ′ (resp. index), it
(1) tries to read in sequential manner the sequence of letters

appearing in vi (resp. ui ) (alternated with the special sym-

bol #) from the variable y (resp. x), and (2) writes the same

sequence of letters to the variable x (resp. y). Using a similar

argument as in the case of indices, we can deduce that if p1
(resp. p2) writes the words vi1vi2 · · ·vik (resp. uj1uj2 · · ·ujm ),
letter by letter (with an alternation with the symbol#), to the

variable x (resp. y), then vi1vi2 · · ·vik (resp. uj1uj2 · · ·ujm ) is
a subsequence of uj1uj2 · · ·ujm (resp. vi1vi2 · · ·vik ). Thus, if
the pair of labels (λ, λ′) is reachable then there exist two se-

quences i1, i2, . . . , ik and j1, j2, . . . , jm , written, respectively,
by p1 and p2 such that i1, i2, . . . , ik is equal to j1, j2, . . . , jm ,
and vi1vi2 · · ·vik is equal to uj1uj2 · · ·ujm . Observe that se-
quence of indices i1, i2, . . . , ik is non-empty due to the as-

sume statement assume($r ′ ∈ [1,n]).
Let us now show the other direction. Let us assume

that a solution of the PCP problem exists. This means

that there is a sequence of indices i1, i2, . . . , ik such that

vi1vi2 · · ·vik = ui1ui2 · · ·uik . Let w = ui1ui2 · · ·uik . Let
us show that the pair of labels (λ, λ′) can be (weakly)

reachable in Prog. For that aim, consider the follow-

ing (weakly consistent) run of the program Prog: p2
starts �rst by setting the variable term to 1. Then, p1
will use the then branch of its conditional statement

to promise the two following sequence of promises

(index, i1, (1, 2]), (index, i2, (2, 3]), . . . , (index, ik , (k,k + 1])

and (x ,w[1], (1, 2]), (x ,w[2], (2, 3]), . . . , (x ,w[|w |], (|w |, |w |+
13
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Process p1 Process p2 Module
p1
vi

Module
p2
ui

if validate = 0 then
while term = 0 do

index = 1

Module
p1
u1

index = #

. . .

index = n
Module

p1
un

index = #

done
index = ⊥

else
$r ′ = index′

assume($r ′ ∈ [1, n])
while $r ′ , ⊥ do

if $r ′ = 1 then
Module

p1
v1

else if $r ′ = 2 then
Module

p1
v2

. . .

else if $r ′ = n then
Module

p1
vn

end if
assume(index′ = #)

$r ′ = index′

assume(index′ , #)

done
index = ⊥
assume(true)

end if

term = 1;

$r = index;
assume($r ∈ [1, n])
while $r , ⊥ do
if $r = 1 then

Module
p2
u1

else if $r = 2 then
Module

p2
u2

. . .

else if $r = n then
Module

p2
un

end if
assume(index = #)

$r = index
assume(index , #)

done
validate = 1

index′ = ⊥
assume(true);

assume(y = vi [1])
assume(y = #)

assume(y = vi [2])
. . .

assume(y = vi [ |vi |])
assume(y = #)

x = vi [1]
x = #

x = vi [2]
. . .

x = vi [ |vi |]
index = i
index = #

Module
p1
ui

x = ui [1]
x = #

x = ui [2]
. . .

x = ui [ |ui |]
x = #

assume(x = ui [1])
assume(x = #)

assume(x = ui [2])
. . .

assume(x = ui [ |ui |])
assume(x = #)

y = ui [1]
y = #

y = ui [2]
. . .

y = ui [ |ui |]
index′ = i
index′ = #

Figure 4. The code of processes p1 and p2.

1]). Observe that p1 can certify such sequences of promises

under the two semantics for relaxed accesses by iterating

its iterative statement in the then branch of its alternative

statements. Once these promises are performed, p2 reads
these two sequences and writes them back to the variables

index ′ and y, respectively. p2 then sets the variable z to 2.

Now p1 can resume its execution by reading the variable

z written by the second process and enter its else branch

of its alternative statement. Then, p1 will iteratively read

the values written by p2 on the variable index ′ and y and

write them back to the variables index and x , respectively.
By doing this p1 ful�ls also the sequence of promises that

has been issued.

Notice that the number of promises made by p1 is un-

bounded. Also, the proof uses only 3-context executions,

where, following Qadeer and Rehof [27], a context is a con-

tiguous sequence of operations performed by only one pro-

cess and a k-context run, for a given k ∈ N, is a run that can

be partitioned into k contexts.
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A Proof of Theorem 3.1

Let us prove that strong consistency implies consistency. Assume that a machine state MS = (J ,R,View, PS,M,G) is
strongly consistent. Then, we have (λ0,R0,V0, P0,M0,G0)→

scons
p (λ1,R1,V1, P1,M1,G1)→

scons
p · · · →scons

p (λn ,Rn ,Vn , Pn ,Mn ,Gn)

withMS↓p→scons
p = (λ0,R0,V0, P0,M0,G0) and Pn = ∅. Since→

scons
p ⊆ →cons

p , we can show that, for any future memory

M ′ such thatM ⊆ M ′, we have (λ0,R0,V0, P0,M
′
0
,G0)→

cons
p (λ1,R1,V1, P1,M

′
1
),G1)→

cons
p · · · →cons

p (λn ,Rn ,Vn , Pn ,Mn ,Gn) with

M ′
0
= M ′. Intuitively, the second consistency run will proceed in the same way as the strong consistency run by reading from

the same sequence of messages, performing the same write instructions with splitting, ful�lment or maximal insertions. and

bcas instructions with splitting or ful�llement insertions.

Now let us assume that the program Prog does not contain any bcas and that the machine state MS =

(J ,R,View, PS,M,G) is consistent. This means that, for any future memory M ′ such that M ⊆ M ′, we have

(λ0,R0,V0, P0,M
′
0
,G0)→

cons
p (λ1,R1,V1, P1,M

′
1
),G1)→

cons
p · · · →cons

p (λn ,Rn ,Vn , Pn ,Mn ,Gn) with M ′
0
= M ′ and Pn = ∅. This

is in particular true for the future memory M ′ where all the the intermediate holes in M are �lled up. This means that

in the following consistent run (λ0,R0,V0, P0,M
′
0
,G0)→

cons
p (λ1,R1,V1, P1,M

′
1
),G1)→

cons
p · · · →cons

p (λn ,Rn ,Vn , Pn ,Mn ,Gn) no

insertion of write operations with non-maximal timestamp has been performed. Thus, we have (λ0,R0,V0, P0,M
′
0
\ (M ′

0
\

M),G0)→
scons
p (λ1,R1,V1, P1,M

′
1
\ (M ′

0
\M),G1)→

scons
p · · · →scons

p (λn ,Rn ,Vn , Pn ,M
′
n \ (M

′
0
\M),Gn) andMS is strongly con-

sistent.

B Proof of Theorem 4.1

In this section, we show the Fωω -hardness of reachability of PFS-RLX over a �nite domain with only read, write and SC-fence
instructions. Fωω is a level in the fast-growing hierarchy of recursive functions. The fast growing hierarchy is a class (Fα )α ) of
number-theoretic functions indexed by ordinals. Chambart and Schnoebelen (LICS 2008) established the Fωω lower bound for

the reachability and termination of lossy channel systems.

B.1 The non-primitive recursive lower bound of PFS-RLX without bcas

Our proof follows by a reduction from the reachability problem of lossy channel systems.

Lossy Channel Systems. A lossy channel system (LCS) is a tuple S = (Q,M,C,∆) where Q is a �nite set of states, M is a

�nite message alphabet, C is a �nite set of lossy channels, and ∆ ⊆ Q ×C × {!, ?} ×M ×Q is a �nite set of transition rules. A

rule of the form (q, c, !,a,q′) (respectively (q, c, ?,a,q′)) is a write (respectively read) transition.

Assume S = (Q,M,C,∆) is a LCS with ` channels. A con�guration of S is a pair (q, (u1, . . . ,u`)) where q ∈ Q and

ui ∈ M∗ for all 1 ≤ i ≤ `. ui is the sequence of messages contained in channel ci (reading a message happens at the head

of the channel, and writing from the tail of the channel). Two con�gurations are compared using the subword ordering :

((q,u1, . . . ,u`) v (q
′,u ′

1
, . . . ,u ′

`
)) ⇔ (q = q′) ∧

∧`
i=1(ui v u

′
i )

LetConf represent the set of all con�gurations. The operational semantics of S is given as a transition systemTS = (Conf ,→).
Let σ = (q, (u1, . . . ,u`) and σ

′ = (q′, (u ′
1
, . . . ,u ′

`
) be two con�gurations. Then a perfect step is one of the following.

1. Let δ = (q, ci ,a, ?,q
′). Then σ

δ
→ σ ′, with ui = au ′i , and uj = u

′
j for j , i , or

2. Let δ = (q, ci ,a, !,q
′). Then σ

δ
→ σ ′, with u ′i = uia, and uj = u

′
j for j , i .

Since the channels are lossy, we can have lossy steps too. A lossy step can happen after a perfect read step, and we lose

messages arbitrarily from any of the channels. A run is a perfect run if there are no losses in between two perfect steps.

Otherwise, the run is lossy. Notice that we have chosen to lose messages after a read and also after a write. The choice of losing

a message after a read or after a write or after either (like in our case) are all equivalent and does not impact the complexity

result of Chambart and Schnoebelen.

Reachability in LCS. Given states q1,q2 in the LCS, the reachability problem asks whether, starting from state q1 with all

channels empty, one can reach state q2 with arbitrary contents in the channels.

Reduction from LCS to PFS-RLXwith only reads andwrites. We now present our reduction from an LCS S = (Q,M,C,∆)
to a concurrent program using only read and write operations, over PFS-RLX semantics. Assume there are ` lossy channels in

S , and let Q = {q1, . . . ,qn}. Assume that all transitions going out of each state qi are numbered. Thus, if qi has k outgoing

transitions, then we refer to them as trani,1, . . . , trani,k .
We construct a concurrent program with ` + 2 processes. Each channel ci is modeled using shared variables xi ,yi . A shared

variable tran holds the values of the possible transitions tran11, . . . , trannj . Finally, a shared variable reach (initialized to false)

keeps track of whether we have reached the desired state in LCS. The number of shared variables needed in the construction

of the RA program is hence 2|C | + 2. The domain of the constructed program is the set of states and transitions of the LCS,

along with the set of messagesM . The processes are as follows.
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Figure 5. Processes pmaster and pch simulating writes and reads in channel ch . pmaster writes to variable xh simulating a

write to channel ch ; pch reads xh and copies it to yh . pmaster reads yh simulating a read from channel ch .

The Processes

Process ptran : There is a process ptran which repeatedly writes to a shared variable tran (as long as reach is false), the names

tran11, . . . , trann, j of the transitions in ∆.
Processes pmaster and pch :

Given the reachability problem from state qi to state qj , the process pmaster starts by initializing a local register to qi . It keeps
track of the states in the LCS, and the control �ow while simulating a run in the LCS starting from qi . This process simulates

the transitions of the LCS depending on the current state. In doing so, pmaster simulates the read and write transitions and

ensures that control moves to the correct next state depending on the choice of the transition. pmaster does the following

repeatedly.

• To begin, pmaster initializes a local register $r with the value qi , if we are interested in reaching a state qj in the LCS

starting from state qi . At any point of time, $r holds the name of the state in the LCS where the control �ow resides

currently. Assume $r stores the state q1, and let there be k outgoing transitions from q1. pmaster has blocks of code

corresponding to each state in the LCS. Each such block has the form while($r == q) do . . .done and simulates an

outgoing transition from the current state, and either remains in the same block if the state remains the same, or goes to

another block depending on the transition chosen.

– pmaster reads the shared variable tran. The value which is read must be one of the transitions tran11, . . . , tran1k since

the control resides in the block corresponding to state q1. Let the value of tran be tran1, j ,
– Assume the 1, jth transition is (q1, ch ,a, !,qi ). Then, pmaster writes the value a to the shared variable xh , and writes

the state name qi into $r . It then exits the block corresponding to q1 and enters the one corresponding to qi .
– Assume the 1, jth transition is (q1, ch ,a, ?,qi ). Notice that if pmaster reads from the variable xh , it can only read its

latest write following the relaxed semantics, since it is the only process which writes to variables x1, . . . ,xn . This does
not simulate the (lossy) channel discipline. To facilitate the proper simulation of the lossy channel ch , pmaster must be

able to jump to any message in the channel ch and read it as if that was the head of the channel. To enable pmaster
in doing so, we have a process pch which repeatedly reads values of xh and writes the into yh . Indeed, pch may omit

certain values of xh , copying a proper subset of the values into yh . pch is the only process which reads from xh , and is

the only process which writes to yh . Likewise, pmaster is the only process which writes to xh and reads from yh . See
�gure 5.

To simulate (q, ch ,a, ?,q
′), pmaster reads the variable yh and checks if its value is a. If so, it writes the state name qi

into $r , and then exits the block corresponding to q1 and enters the one corresponding to qi . Notice that if pch copies

xh to yh every time pmaster has written to yh , then pmaster has the possibility to read the �rst value it wrote to xh
(simulating a lossless read). However, pmaster can choose to read any yh from the memory pool, and being the sole

reader of yh , ensures the channel discipline, along with the lossiness.

• Once the state qj is reached in pmaster , (this is true when pmaster sets the register $r to qj from the current state (say

qk )). Once this is done, pmaster sets a boolean shared variable reach to true, and reaches term. The other processes

(ptran ,pch ) check if reach is true, and if so, also reach term.

Inserting SC-fence instructions. To ensure no promises can be made, each of the above read, write in pmaster and each pch
are followed by SC-fence instructions.
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Theorem B.1. The constructed program under PFS-RLX semantics faithfully simulates the LCS : starting from state qi , we reach
state qj in the LCS i� the instruction term is reached in all processes.

Example B.2. We illustrate the reduction on an example. Consider the LCS in Figure 6. The constructed program can be seen

in Table 7.

ptran pmaster pc1 pc2
while (r each , >) do $r = q1 while (r each , >) do while (r each , >) do
tran = tran11 while (r each , >) do $r1 = x1 $r2 = x2
tran = tran12 while($r == q1) do y1 = $r1 y2 = $r2
tran = tran13 assume(tran =

∨
3

i=1 trans13) if(r each == >) if(r each == >)
tran = tran21 if(tran == tran11) break break
tran = tran22 x1 = a end if end if
tran = tran31 else if(tran == tran12)
if(r each == >) $r ′ = y2
break assume($r ′ = b)
end if $r = q2 break

else if(tran = tran13)
$r ′ = y1
assume($r ′ = a)
$r = q3; r each = >; break
end if
done
while($r == q2) do
. . .

done
while($r == q3) do
assume(tran = tran31)
x1 = b ; $r = q2; break
done

done done done done
term term term term

Table 7. Instruction labels have been omitted. To avoid clutter, we have also not written the SC-fence instruction that follows

each instruction in pmaster , pc1 and pc2 . The PFS-RLX program simulating the LCS.

q1 q2 q3
c2?b

c1?a

c1?a

c1!b
c1!a c2?b

Figure 6. A LCS with 2 lossy channels c1, c2 and states q1,q2,q3. The message alphabet is {a,b}.

As mentioned above, we number the transitions in the LCS depending on their source state. In the LCS given, we have

tran11 representing the self-loop at q1, tran12 representing the transition from q1 to q2 and tran13 representing the transition

from q1 to q3. Likewise, tran31 represents the transition from q3 to q2, and so on. The domain of the constructed program

Prog is D={a,b,q1,q2,q3, tran11, tran12, tran13, tran21, tran22, tran31}. The shared variables are {x1,y1,x2,y2, tran, reach}, of
which reach is a boolean variable which is initialized to false. We reduce the reachability of LCS to the control reachability

problem in Prog, and show that starting from q1, q3 is reachable in the LCS i� we reach the instruction term in all processes.
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C Details for Section 5

We �rst give a glossary of all the variables used in the code. The list contains variables global to all processes or local to a

process. A small description of their role is also mentioned, which serve as invariants.

1. numEE : global variable, initialized to 0, keeps track of the number pf promises and view switches so far. Each time a

promise or a view altering read happens, numEE is incremented.

2. numContexts : global variable, initialized to 0, keeps track of the number of context switches so far. This is used in the

translation to SC.

3. view[x].v : local variable, stores the value of x ∈ X in the local view of the process

4. view[x].t : local variable, stores the time stamp ∈ Time of x ∈ X in the local view of the process.

5. view[x].l : local variable, boolean, which is set to true when view[x].t is a valid timestamp, used in comparisons with

timestamps of other messages.

6. view[x]. f : local variable, boolean. A true value indicates that view[x].v is recent, and can be used for reading locally.

7. view[x].u : local variable, boolean. A true value indicates that the sequence of events starting from the one that resulted

in the timestamp view[x].t till the most recent, form a chain of bcas operations on x . Whenever a write is published,

view[x].u is set to true. view[x].u is set to false on an unpublished write. On a sequence of bcas operations, view[x].u is

left unchanged.

8. checkMode : local variable, boolean. Set to true when the process is in certi�cation phase, which means the process is

making and certifying promises.

9. liveChain[x] : local variable, for each x ∈ X, boolean. Can be true only when checkMode is true. A true value represents

that the last write done while the process is in certi�cation phase is not a published promise message.

10. extView[x] : local variable, for each x ∈ X, boolean. A true value represents that the local value view[x].v of the process

comes from a message generated external to the certi�cation phase.

11. avail[x][] : for each x ∈ X, a global boolean array of length 2K + 1 corresponding to the 2K + 1 time stamps, checks

availability of a time stamp on a fresh write.

12. upd[x][] : for each x ∈ X, a global boolean array of length 2K + 1 corresponding to the 2K + 1 time stamps, checks

whether a certain timestamp has been used to read in a bcas.
13. globalTimeMap[x] : global variable, for each x ∈ X, stores a time stamp ∈ Time. Maintains the globally maximal time

stamp of each variable.

14. messageStore : This is an array of messages, where each message is of type Message as described in the main paper. The

length of the array is K , the bound on the number of promises + view switches.

15. messagesUsed : a number from 0 to K which keeps track of the number of populated messages in messageStore.
16. messageNum : a number from 0 to K which chooses a number from the available free cells in messageStore.

We will denote the K-(promise, view) bounded strong consistency as Bd(PS,Vw)−RLX.

Translating Bd(PS,Vw)−RLX to bounded-context SC

Now we describe all the missing algorithms, and provide details of the codes. To start, we note that we are representing interval

timestamps by integers in the translation. For each interval we only maintain its rightmost endpoint in our translation. Note

that we can make discrete the dense points used in the intervals due to boundedness of the number of essential messages.

C.1 Main

Main. Algorithm 5 is the process that initializes all the global variables. This process executes atomically before all the other

processes. avail[x] for each shared variable x in Prog is an array of size 2K + 1 which keeps track of time stamps which have

not yet been assigned. Since all variables have a time stamp 0 initially, the �rst entry of this array is false for all variables. All

entries of upd[x][view[x].t] are initialized to true.

C.2 InitProc

Initialize Process. Before the simulation of each process, we initialize its variables of type View. The values and time stamps

of all variables are 0, hence the initial view coincides with the view in the initial machine state of all runs. The variables

liveChain[x] is set to false for all shared variables x . Not that this sets up the invariant mentioned on the previous page.

extView[x] is initialized to true, since to begin, we are not in the certi�cation phase and the initial value 0 comes from the

initial message (which is generated outside any certi�cation phase). Algorithm 6 details the function which is called at the

beginning of each process.
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Algorithm 5:Main

atomic_begin

messagesUsed ← 0

numContexts ← 0

numEE← 0

for x ∈ X do

upd[x][0] ← true

globalTimeMap[x] ← 0

for ts ∈ {1, 2, ..., 2K} do
avail[x][ts] ← true

upd[x][ts] ← true

end

end

atomic_end

Algorithm 6: InitProc

atomic_begin

for x ∈ X do

view[x].t ← 0

view[x].v ← 0

view[x].l ← true

view[x].u ← true

liveChain[x] ← false

extView[x] ← true

end

C.3 ContextSwitchIn (CSI)

Algorithm 7: ContextSwitchIn

if ¬active then
atomic_begin

active ← true

numContexts ← numContexts + 1

assume(numContexts ≤ K + n)

end

Switch Into Context. This is called before each instruction λ : i in a process p, to check if the process is active in the current

context, which is kept track of by the boolean variable active . The counter numContexts is incremented signalling that one

more context has been consumed. Since we translate into SC under K + n-bounded contexts, we check whether the context

switching bound has already exceeded K + n. Algorithm 7 describes the context switching in.

C.4 Publish

Algorithm 8: Publish(message)

assume(messagesUsed < K )

messageStore[messagesUsed] ← message
messagesUsed ← messagesUsed + 1

Publish Subroutine. This is used to add messages to the messageStore. Each time a write or a bcas happens, depending

on whether it results in an essential message or not, Publish(message) is called. Promise messages are also added using
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Publish(message). Each time a new message is published, the size of the messageStore is increased. Since we have the bound on
the number of essential messages, we check if the bound K on the number of view switches and promises has been exceeded.

C.5 loadState and saveState

Load and Save State while changing modes. The saveState subroutine copies the local state of the calling process and

the global state into a what we refer to as ‘copy’ variables. We note that it does not however copy numEE and contents of

messageStore. The reason for this being, the promises the process makes with checkMode true are retained even after checkMode
is made false. Hence the increments made to numEE and the messages added to messageStore should be maintained even

beyond after checkMode is false. Analogously in loadState, we load the contents of the (saved) ‘copy variables’ into their

original counterparts.

Another subtle point to be noted is that when the process publishes a message (as a promise) when checkMode is true, we
also update the ‘copy’ variables corresponding to avail[x]. This is done so that when the process returns to normal mode, the

changes are re�ected in their original counterparts (which is essential since promise messages are maintained beyond the time

checkMode is false and hence their timestamps must be unavailable).

C.6 ScFence

Algorithm 9: ScFence

assume(¬checkMode)
for x ∈ X do

if globalTimeMap[x] > view[x].t then
view[x].t ← globalTimeMap[x]
view[x]. f ← false

view[x].l ← true

else

if (view[x].l) then
globalTimeMap[x] ← view[x].t

else

globalTimeMap[x] ← view[x].t + 1
end

end

end

SC fences. An SC-fence, in Algorithm 9, essentially takes the join of the globalTimeMap[x] and the local timemap (view[x].t
for all x ∈ X) of the process. First we ensure we are not in checkMode phase of the run, otherwise the run will not be consistent

[13]. For each variable x the following is done.

• Lines 2-5 handle the case, where the former is greater. Then view[x].t updated to match it; view[x].l is set to true since

the timestamp is now valid (can be used in comparisons). Also, view[x]. f is set to false, since the timestamp of the

message corresponding to the current local value, view[x].v , is lower than view[x].t , and hence view[x].v is no longer

usable.

• Lines 7-11 handle the other case where the process timestamp is greater. If view[x].l is valid (line 7-8) then, we can

set view[x].t to globalTimeMap[x]. If it is not valid (line 9-10), the process timestamp has actually proceeded beyond

view[x].t . Note crucially that view[x].t was the latest timestamp from Time that the process had. In this case, we set

globalTimeMap[x] to view[x].t + 1, the next ‘useful’ timestamp following view[x].t .

C.7 ContextSwitchOut (CSO)

Context Switch Out. We have described the full algorithm in the main paper. CSO
p,λ

allows the process allows the process

to enter and exit context and it also serves to check the consistency of the process. When the process enters the certi�cation

phase, its local state (and program counter) are saved. When it returns back from the certi�cation phase, liveChain being false

is assumed which enforces that the process did not perform additive insertion. Then, the state is loaded and the program

counter is reset to the same value it had before entering the certi�cation phase.
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Algorithm 10: CSO
p,λ

σsw :

if ∗ then

if ¬checkMode then
if ¬active then

atomic_begin

active← true
numContexts← numContexts + 1
assume(numContexts ≤ K + n)

end

checkMode← true
retAddr ← λ, saveState(p)

else

form ∈ messageStore do
assume(m .�ag , p)
if m.�ag == −1 then m.�ag ← p

end

for x ∈ X do assume(¬liveChain[x ])
loadState(p), gotoLabel(retAddr)
checkMode← false
active← false
atomic_end

end

goto σsw
end

C.8 Read

Algorithm 11: Translating n$r = xop read

if ∗ then

assume(¬liveChain[x])
assume(numEE < K )

messageNum← nondetInt(0,messagesUsed − 1)
message← messageStore[messageNum]
assume(message.var == &x )

assume(view[x].l )
assume(view[x].t ≤ message.t )
view[x].t ← message.t
view[x].v ← message.v
extView[x] ← true

numEE← numEE + 1
end

val($r ) = view[x].v

Read and Write. We have already described in good detail, the algorithms for read and write. However, we commented out a

few lines which deal with the variable extView[x] (‘external view’) from the code, which is used in bcas. Here, we produce the
complete codes (Algorithms 11, 12) for the read and write instructions. In Algorithm 11, line 11), during a global read, the

variable extView[x] is set to true, indicating that the value view[x].v read is generated by a message external to the current

certi�cation phase. Indeed, whenever a process makes a global read while checkMode is true, it obviously reads from a message

which has been created outside its current certi�cation phase. Hence, extView[x] will be set to true.

In the case of Algorithm 12, if the process has checkMode false, then after the write, the value of view[x].v comes from

the current write (whether or not it resulted in a published message), and hence extView[x] is set to true, since the value in

view[x].v is generated outside any certi�cation phase. Likewise, if the process has checkMode true, then after the write, the

value of view[x].v comes from the current write (whether or not it resulted in a published message), but since it does arise

from the current certi�cation phase, it is not external, and hence extView[x] is set to false (lines 44-48). Finally, view[x].u is set
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to true (line 49) i� view[x].l is true. Indeed, if view[x].l is false after the write, then the time stamp view[x].t is not legitimate

for comparisons, and hence starting from view[x].t , there cannot be sequence of bcass.

C.9 Write

Algorithm 12: nx = $rop write

if ∗ then

view[x ].v ← val ($r ), view[x ].l ← true
if ∗ then

if liveChain[x ] then
newStamp← view[x ].t + 1

else

newStamp← nondetInt(view[x ].t + 1, 2K )
end

view[x ].t ← newStamp
assume(avail[x ][newStamp])
avail[x ][newStamp]← false
if ∗ then

if checkMode then
message← genMessage(x, newStamp, val ($r ), −1)
liveChain[x ] ← false, numEE← numEE + 1

else

message← genMessage(x, newStamp, val ($r ), 0)
end

Publish(message)
else

if checkMode then
liveChain[x ] ← true

end

end

else

messageNum← nondetInt(0, messagesUsed − 1)
assume(message.var == &x , message.t > view[x ].t )
assume(message.v == view[x ].v , message.�ag == p)
view[x ].t ← message.t
if ¬checkMode then

message.�ag ← 0

else

message.�ag ← −1, liveChain[x ] ← false
end

messageStore[messageNum] ← message
end

else

view[x ].v ← val ($r ), view[x ].l ← false
if checkMode then

liveChain[x ] ← true
end

end

view[x ].f ← true
if ¬checkMode then

extView[x ] ← true
else

extView[x ] ← false
end

view[x ].u ← view[x ].l
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C.10 bcas(x , $r1, $r2)

Algorithm 13: Translating bcas(x , $r1, $r2)op update

if ∗ then

assume(¬liveChain[x ] ∧ numEE < K )

messageNum← nondetInt(0, messagesUsed − 1)
message← messageStore[messageNum]
assume(message.var == &x ∧ view[x ].l ∧ view[x ].t ≤ message.t )
view[x ].t ← message.t , view[x ].v ← message.v
extView[x ] ← true, numEE← numEE + 1

else

assume(view[x ].f )
end

assume(view[x ].v == val ($r1))
if view[x ].l then

assume(upd[x ][view[x ].t ]), upd[x ][view[x ].t ] ← false
end

view[x ].v ← val ($r2)
if ∗ then

if checkMode then
assume(¬extView[x ]), liveChain[x ] ← true

end

view[x ].l ← false
else

if ∗ then

if view[x ].u ∨ liveChain[x ] then
newStamp← view[x ].t + 1

else

newStamp← nondetInt(view[x ].t + 1, 2K )
end

view[x ].t ← newStamp, assume(avail[x ][newStamp]), avail[x ][newStamp]← false
if ∗ then

if ¬checkMode then
message← genMessage(x, newStamp, val ($r2), 0)

else

message← genMessage(x, newStamp, val ($r2), −1), liveChain[x ] ← false, numEE← numEE + 1
end

Publish(message)
else

if checkMode then
assume(¬extView[x ]),liveChain[x ] ← true

end

end

else

messageNum← nondet Int (0, messagesUsed − 1), message← messageStore[messageNum]
assume(message.var == &x ∧message.t > view[x ].t )
assume(message.v == val ($r2) ∧message.�ag == p)
view[x ].t ← message.t
if ¬checkMode then

message.�ag ← 0

else

message.�ag ← −1, liveChain[x ] ← false
end

messageStore[messageNum] ← message
end

view[x ].l, view[x ].u ← true
end

view[x ].f ← true
if ¬checkMode then

extView[x ] ← true
else

extView[x ] ← false
end

Compare and swap bcas(x , $r1, $r2). This module (Algorithm 13) combines the read and write modules.

In lines 2-7, the process reads a message from the messageStore, and updates the local view setting extView[x] to true,

and incrementing numEE. extView[x] is set to true since the value of view[x].v is taken from a message in the messageStore:
irrespective of whether checkMode is true or not, the value comes from a message generated outside this phase. Notice that

liveChain[x]must be false, as explained in the case of the read instruction in the main paper, to ensure no additive insertions. If

the local view is already in sync with the global view, then line 9 is executed, and there is no need to read from themessageStore.
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Lines 11-15 checks if the value in view[x].v is equal to R($r1), and in case the time stamp view[x].l is legitimate (allowing

for comparisons), then whether the message with this time stamp has not been read/used already for a bcas. Then the new

value view[x].v is set to R($r2). Now comes the part where this value has to be written to a new message.

There are two possibilities, depending on whether the write is assigned a timestamp or not. If not, the �rst part (lines 16-20)

sets view[x].l to false, and if the process in the certi�cation phase, sets liveChain[x] to true (this follows from the liveChain
invariant explained in the main paper), and sets extView[x] to false (the value view[x].v comes from this certi�cation phase).

Note that when view[x].l is set to false, we do not set view[x].u also to false, unlike the case of the write instruction (Algorithm

12, line 49). The reason is, if view[x].u is true (the process executes a consecutive chain of bcas instructions, each reading from

the previous) and does not assign a timestamp to all of them, for those that it does, the timestamps chosen must be immediate

successors of one another (re�ecting the fact that this indeed is a sequence of adjacent intervals). Thus, the invariant related to

view[x].u holds.

Otherwise, view[x].l is set to true (line 53). Assume view[x].l is set to true; (view[x].u is set to true as well). Then, there are

four possibilities.

1. Lines 22-40 deal with two possibilities (i) not publishing the message (lines 36-40), (ii) publishing a promise message

(immediate certi�cation if checkMode is true, lines 32-35) or publishing a message in normal phase (lines 30, 31, 35). In

both these cases, lines 23-27 deal with the choice of the fresh time stamp. If liveChain[x] is true, then the new timestamp

is an immediate successor of the existing one (this has been explained in the main paper, as part of the invariant for

liveChain[x]). If view[x].u is true, then starting from this timestamp view[x].t , there is a chain of bcas, to the most recent

message, and hence, we need to choose the next immediate time stamp. When both liveChain[x] and view[x].u are false,

then the new time stamp can be chosen as any available higher value (line 26). As usual, we check the availability of this

position in the array avail[x].
2. Lines 41-53 deal with the other two cases. (iii) Either checkMode is true and the process is certifying promises made

before (lines 42-45, line 49) or (iv) checkMode is false and the process is ful�lling a promise (lines 42-47).

Finally, view[x]. f is set to true in any case, since the value view[x].v is recent. The updates to extView[x] are exactly as in

Algorithm 12.

Once again, we recall that K-(promise, view) bounded strong consistency is denoted as Bd(PS,Vw)−RLX.

D Correctness of Translation

The proof is in two parts. In the �rst part, we show that that every K + n context bounded run of Prog′ in SC corresponds

to a K-bounded run of Prog under Bd(PS,Vw)−RLX, and in the second part, we show that for every K-bounded run in

Bd(PS,Vw)−RLX, there is a K + n context bounded run in SC.

At the outset we review a high level description of the translation. We denote by ‘normal’ (checkMode is false) and checkMode
(true), the two phases in which a process functions. Each process executes instructions in the normal phase by skipping over

theCSO blocks of code. When a process needs to switch out, it enters theCSO block following the most recent instruction and

sets checkMode to true. Now, it makes a ‘ghost’ run in checkMode, a terminology to indicate that this phase of the run does

not change the the global state and local state of the process permanently (this is facilitated by the saveState and loadState
functions). One exception to this is the writes that the process makes as published promises which are maintained permanently.

Hence, this part of the run is equivalent to the process making fresh promises after normal execution; providing a witness

for consistency and then switching out of context. The run then is a sequence of interleaved normal and checkMode phases.
Moreover the local states of the process is identical at the start and end of any given checkMode phase.
We request the reader to refer to the glossary [C] of the variables used which will aid in better understanding of the

translation.

D.1 SC to Bd(PS,Vw)−RLX

Intuition We note that non-essential messages (which are not view-switching or promises), need to be accommodated along

the time-line for each variable (while they were not in the SC-run). We account for these by separating the essential messages

by su�ciently large intervals, so that, the non-essential ones can be inserted in between, respecting their order.

Details We start from SC to Bd(PS,Vw)−RLX. We show that every K + n context bounded run of Prog′ corresponds to a

K-bounded run of Prog. Keeping in mind the description above, we split this proof into two parts. First we consider only

the normal run and prove that it has an analog in Bd(PS,Vw)−RLX. Then we prove that any checkMode phase is indeed an

analog of a process making fresh promises and certifying them along with previous unful�lled promises. Combining these

two, indeed, we will have a run under Bd(PS,Vw)−RLX.
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We begin by de�ning some terminology. Consider a run τ of program Prog′. Each event of the run τ is an execution of either

a read, write, bcas or SC-fence. A read in this run is called global (and otherwise local) if the process decides to read from

the global array messageStore. Only global reads can be view-switching in the corresponding run under Bd(PS,Vw)−RLX. A
write can be of four types - pubSim, pubFul, stamped and local. These represent, ‘simple published’, ‘ful�lling published’,

‘timestamp assigned but unpublished’ and ‘timestamp not assigned writes’ respectively (published implies that timestamp is

assigned too). Note that each of these types can be performed in normal as well checkMode. A bcas can therefore be of 8 types

since it involves a read and write.

Letw1 be the number of write events in the normal part of the run,w2 be the maximum number of write events, maximum

being taken over all checkMode phases of the run, u − 1 be the number of bcas events in the run, and let l = w1+w2+u. LetMx,

for each shared variable x , be an increasing function from [2K] to N representing a mapping from the notion of time-stamps in

SC to time-stamps in Bd(PS,Vw)−RLX. For each variable x , and each process p, let ViewSC(x) = view[x].t (de�ned above) and

ViewBd(PS,Vw)−RLX(x) be the time stamp of x in the view of p in ρ. Given a run τ , we will construct a K bounded run ρ of Prog
which reaches the same set of labels after i events, for any i .

We will �rst treat the normal (non-checkMode) part of the run. While going through the steps, we will also construct the

increasing functions Mx. In addition to the invariants in C , we maintain the following timestamp-based invariants for all

processes p and variables x .

1. If view[x].l is true for a process in τ , then Mx(ViewSC(x)) = ViewBd(PS,Vw)−RLX(x).
2. If view[x].l is true and the time-stamp view[x].t corresponds to a write message instead of a message added due to an

bcas, thenMx(view[x].t ) = view[x].t · l · u.
3. If view[x].l is false, then Mx(view[x].t) < ViewBd(PS,Vw)−RLX(x) < (view[x].t + 1) · l · u. Moreover, if the last event to

assign false to view[x].l was a write, then ViewBd(PS,Vw)−RLX(x) is a multiple of u.
4. If a message is of type bcas, then its time-stamp t in ρ satis�es t . 0 mod u.
5. The sum of view-switch points and promises is ≤ K in ρ.
6. The time-stamps of an essential messages in τ and the corresponding message in ρ are related by Mx. That is,

Mx(ViewSC(x)) = ViewBd(PS,Vw)−RLX(x).

The base case, that is, after 0 events (i = 0) is trivial since the con�gurations are semantically equivalent and we de-

�neMx(0) = 0 for all variables, which satis�es the invariants. Wemake the following three cases depending on the ith event of τ .

• Case 1. ei is an execution of a write for process p, variable x and value v .
– If the write is of pubSim, pubFul or stamped type, then view[x].t is updated from t to a new time-stamp t ′ (which
in the case of pubFul is the timestamp of the retrieved message) and view[x].l is assigned true. In ρ, if we can make

ViewBd(PS,Vw)−RLX(x) = t ′′ = t ′ · l · u then the invariants are satis�ed. It is not possible for t ′′ to have been assigned

already to some write message in ρ since t ′ was not assigned to some message in τ (checked using avail[x][t ′]). A
bcas message could not have been assigned t ′′ either, by the fourth invariant. Since t < t ′, ViewBd(PS,Vw)−RLX(x) < t ′′

(by invariants 2 and 3). Hence, ViewBd(PS,Vw)−RLX(x) can be updated to t ′′ since it is available and is greater than the

current view. If the write is published, then the message is added to messageStore. This is done to maintain invariant

(6). Note how, if the write is of pubFul type, the message �ag is set to 0, e�ectively removing it from the promise bag

and maintaining the f laд invariant [5].

– If the write is local, then we pick the smallest available multiple of u betweenMx(view[x].t) and (view[x].t + 1) · l ·u.
This can always be done since there are l − 1 multiples of u between view[x].t · l ·u and (view[x].t + 1) · l ·u and there

are ≤ (l − 1) messages (even considering those produced in checkMode) in total. Notice that multiples of u have been

reserved for writes by invariant 4.

• Case 2. ei is an execution of a read for process p, variable x .
– If the read is local in τ , then the process is either reading a local message written by itself or a useful message. In either

case, this read can be performed in ρ without any change in time-stamps. Note that this cannot be a view-switching

event. Moreover note that the local value in view[x].v has been ascertained to be usable.

– If the read is global, then numEE < k before the read and therefore numEE ≤ k afterwards. In this case, a message

is fetched from messageStore and the process view is updated according to this message. Since Mx is an increasing

function, the results of comparisons in SC will be the same as in Bd(PS,Vw)−RLX and the read operation has the

same e�ect on values and time-stamps of the variables. Moreover view[x]. f is set to true maintaining the view[x]. f
invariant [C].

• Case 3. ei is an execution of an bcas for process p, variable x and values v , v ′.
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– If the read here is local, and view[x].u is true then we need to ensure that the timestamp chosen for the write

immediately followsMx(view[x].t). It is �rst checked if view[x].t has been used for an update earlier or not. If it has

not been, then the time-stampMx(view[x].t) + 1 is available in Bd(PS,Vw)−RLX since all messages that come from

writes have time-stamps in multiples of u andMx(view[x].t) is a multiple of u. Note, that we also ensure that view[x]. f
is true in this case, which implies that the local value is usable.

– If the read here is local and view[x].u is false (and hence so is view[x].l), then it de�nitely has not been used for

an update (bcas) in τ since the process reading the message is the only one that knows of its existence. Now, if this

message was a result of a local write, then its time-stamp t in Bd(PS,Vw)−RLX is a multiple of u and t + 1 is available
for the update message. Otherwise, this message was a result of a bcas whose write was local and has a time-stamp

of the form a · u + b where b < u. Note that this implies b − 1 consecutive bcass were made to get here since all the

messages that are a result of (non-bcas) write operations get time-stamps that are multiples of u. Since u − 1 is the
total number of bcass in τ , b < u − 1 (at most u − 2 bcass have taken place before this one). This implies a · u + b + 1
is available and can be used for the write.

– If the read is global, then it is done correctly as explained in Case 2. The write part of the bcas goes through as

explained above.

• Case 4: ei is an SC-fence
– We iterate over the variables, updating globalTimeMap[x] and view[x].t to the maximum of the two.

– In case, the former was greater, we set view[x].l to true, signifying that view[x].t is valid and maintaining invariant

(1) above. Moreover we set view[x]. f to false. This is necessary since, the timestamp of the message corresponding to

view[x].v is now less than view[x].t and hence the locally stored value is unusable.

– If the latter is greater, we check whether view[x].l is true (which signi�es that view[x].t is valid). If it is we can set

globalTimeMap[x] to it. If not, then theMx(view[x].t) < ViewBd(PS,Vw)−RLX(x) (by invariant (6)), and hence we set it to

view[x].t + 1. Finally we note that ViewBd(PS,Vw)−RLX(x) < (view[x].t + 1) · l ·u and henceMx(globalTimeMap[x]) now
matches the essential event immediately following the event with timestamp view[x].t .

We now brie�y justify the checkMode phase of the run. For any such phase, we need to ascertain that the run has analogous

run in Bd(PS,Vw)−RLX which respects the notion of consistency. The management of timestamps is identical to the normal

phase explained above so we only highlight the special aspects. First we recall some invariants:

1. liveChain[x] is true only when the most recent write made in the current checkMode phase was unpublished (was not a

promise).

2. extView[x] is true if view[x].v corresponds to a message from outside checkMode.
3. For the process p currently in checkMode,messaдe_f laд is -1 for temporarily (only within current checkMode phase)

certi�ed promises and p for as yet uncerti�ed promises. If it is p ′ , p, then the message is in the promise bag of some

other process. Additionally if it is 0, it is not in the promise bag of any process. Note how this is maintained in the write,

bcas sections above.

We’ll review how these invariants are maintained and used throughout the code. When entering checkMode, liveChain[x] is
false. For any write happening in normal phase we set extView[x] to true. Otherwise we set it to false. Once again we consider

cases for a particular event ei :

• Case 1. ei is a write event.
– In the case, the process performs a local or stamped write, liveChain[x] is set to true, maintaining the invariant.

– In the case the process decides to publish a write it must publish it as a promise, incrementing numEE (after checking

that the bound of K has not been crossed), setting the promise �ag to -1, maintaining invariant (3) above. Also, if it

decides to certify a previous promise, it does so, similar to the normal phase, though it now sets the timestamp to -1,

indicating that the certi�cation is local to the current phase and must be reset when normal phase resumes. Moreover

note that liveChain[x] is set to false maintaining invariant (1).

– Also, note that extView[x] is set to true maintaining invariant (2).

• Case 2. ei is a read event.

– The main highlight of read events in checkMode, is that we ascertain that liveChain[x] is false while making a global

read. This is to ensure that we forbid additive insertion. Indeed, following invariant (1) above, if liveChain[x] were
true during a global read, it would mean that the interval corresponding to the previous message (which caused

liveChain[x] to be true) is additively.

• Case 3. ei is a bcas event.

– Once again similar to normal phase we guess whether we make a local or a global read. Crucially however, we note

that we forbid making a local or stamped write for a bcas when extView[x] is true. Considering the invariant (2)
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above, this is done precisely to forbid bcas where, the promised interval containing the write is non-adjacent to the

message being read from. The remainder bookkeeping of is identical to previous cases.

• Case 4. ei is an SC-fence event. This case does not arise since a process in checkMode may not execute an SC-fence
instruction else the run will not be consistent [13].

To conclude, note due to loadState and saveState functions, only promises are retained after the checkMode phase. Moreover

due to the check of message �ags after a checkMode phase terminates, it is ensured that the process is in a consistent state

while switching contexts. Noting that we keep track of promises as well as view-switches using numEE we may only generate

a run in which the sum of the two is bounded by K .

D.2 Bd(PS,Vw)−RLX to SC

We now prove the second part, from Bd(PS,Vw)−RLX to SC. We prove that for every K-bounded run ρ in Bd(PS,Vw)−RLX,
there is a K + n context bounded run τ in SC. We will show this in two steps.

• Given the K-bounded ρ, �rst we will construct a run ρ ′′ which is K-bounded and K + n context bounded that reaches

the same con�guration as ρ.
• We will then construct a run τ of SC using ρ ′′.

IntuitionWe ensure that each process only switches out of context when it is awaiting a message for a (global) read from

another process. Note that in each such case the process waiting will undergo a view-switch. Since the total number of

view-switches along a ‘normal’ phase + additional messages in all checkMode phases is bounded above by K , we need atmost

K + n context switches. We add n for the concluding contexts required to reach the term con�gurations.

Let r f (called reads-f rom) be a binary relation on events such that (ea , eb ) ∈ r f i� eb reads from a message published by ea .
Note that every run under Bd(PS,Vw)−RLX semantics de�nes a r f relation as the reads are executed. For construction of

ρ ′′, the intuition is that a context switch is required only when the current process has reached term or it needs a message

that is yet to be published by some other process. At a con�guration ci of ρ, we say that an event of ρ is a requesting event

if it is a view-altering event in ρ and it reads a message that is not in the message pool at ci . Also, we call the events that

publish messages for these events as servicing events (write or bcas, either simple or promises). Note that the set of servicing

and requesting events is dependent on the con�guration ci . The two sets change along the run ρ. Speci�cally, an event is

removed from the requesting event set as soon as the servicing event corresponding to it is executed. Let the size of the set of

requesting events be r . At cinit , r = K . We will prove by induction that given a set of processes (n), the r f relation, and a run ρ
in Bd(PS,Vw)−RLX that maintains the r f relation, there is a run which uses at most r + n context switches and de�nes the

same r f relation.

The Base Case. For r + n = 1, there is only one process so the number of context switches is 0 and the ρ itself uses 0 context

switches.

The Inductive Step. Assume the hypothesis for r + n = l and we prove the claim for r + n = l + 1. Clearly at cinit , there

is at least one process which either has no requesting events, or has a servicing event before any requesting events in its

instruction sequence. Otherwise, the run ρ will not be able to execute all the events since no process will be able to move

past its requesting event. If we have a process that can reach termination directly, then in ρ ′′, we run that process and reduce

r + n. Otherwise, consider the instructions of the process (pj ) that has a servicing event before any of its requesting events.

The instructions of pj , till the �rst requesting event, can be executed since all the messages they need are already in the pool

and hence we can create a new run ρt in which these instructions are executed �rst and the remaining ones follow the same

order as ρ. Note that ρt reduces r by at least 1 while executing the instructions of pj . By applying the hypothesis on the

remaining sequence of instructions, we have a run that uses r − 1 + n context switches and that maintains r f of the remaining

instructions. This can now be combined by the instructions of pj that have already been executed to give ρ ′′.
We now construct the run τ from ρ ′′. As explained in the text above, at most 2K time-stamps are needed to simulate the ρ ′′.
Let the set of such time-stamps beU _x for each variable x . Let Mx be an increasing (mapping) function for each variable from

U _x ∪ {0} to {0, . . . 2K} such that Mx(0) = 0.

We will construct the run τ in SC from ρ ′′, event by event, while maintaining the following invariants

1. All the time-stamps, in a particular message inmessageStore, are related to the time-stamps in the corresponding essential

message in Bd(PS,Vw)−RLX by Mx.

2. For a process p, ViewBd(PS,Vw)−RLX(x) ∈ U _x i� view[x].l is true at that point in SC and view[x].t =

Mx(ViewBd(PS,Vw)−RLX(x)))

The ith event of ρ ′′ can be one of the following:

• Case 1. ei is a write to variable x with value v .
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– If the time-stamp t of this write belongs to U _x , then we �rst allocateMx(t) in SC to this write and make view[x].l
true. This maintains invariant (2).

– If the event is a servicing event since , we have that the time-stamp of this message satisfy the requirements of invariant

(1) and hence it can be added to messageStore. Otherwise, we do not update the ViewSC(x) of the process and make

view[x].l false.
• Case 2. ei is a read of variable x If this event is a view-altering event, then the current timestamp in the ViewBd(PS,Vw)−RLX
will be used for comparison. The e�ect of the read in SC will be same as in Bd(PS,Vw)−RLX since V _x is an increasing

function. All the invariants will still hold after this, since all the messages in messageStore satisfy the invariants.

• Case 3. ei is an bcas to variable x with values v,v ′. If this event is not view-altering, then the process either reads some

other process’s message again or reads its own. If it reads its own message, then no change to the ViewSC(x) has to be

done for the read part and the new message is added to messageStore if e ′is message is essential. If it reads some other

processes’ message again, then view[x].l is true, and since this message has not been used for an bcas yet, the check
of upd_x[view[x].t] will go through in Proд′. Now, it needs to be decided if the new message is essential. If the read is

view-altering, then it is similar to Case 2 followed by the decision of adding the new message to messageStore.
• Case 4. ei is an SC-fence If globalTimeMap[x] is greater than view[x].t , we maintain invariants (2) by setting view[x].l
to true and the view[x]. f invariant [C] by setting it to false. On the other hand if view[x].t is greater, we set

globalTimeMap[x] to the smallest member t ∈ Time, which satis�es t ≥ Mx(ViewBd(PS,Vw)−RLX(x)). In case view[x].l is
true, t is view[x].t itself by invariant (2). If not then we set it to view[x].t + 1, since we note, view[x].t is the largest
member of Time, that p has had as ViewBd(PS,Vw)−RLX(x), and currently the former is lower thanMx(ViewBd(PS,Vw)−RLX(x)).

E Details for Section 6 - Implementation and Experimental Results

In the promise free mode, we compare SwInG with three state-of-the-art stateless model checking (SMC) tools, CDSChecker

[23], GenMC [15] and Rcmc [14] that support the relaxed semantics without promises. We use a version of CDSChecker that

halts on the �rst bug discovered while GenMC and Rcmc do this by default. In the tables that follow, we specify the used

values of L (for all tools) and K (only for our tool).

Here we state the results of all our experiments in full. The main takeaways of our experiments are: (1) our tool can uncover

hard-to-�nd bugs faster than the others with relatively small values of K ; (2) our approach is more resilient to trivial changes

in the position of bugs as compared to the SMC tools; (3) in some instances, our technique fares better at capturing relevant

behaviours instead of exploring all possible traces as done by some SMC tools.

We note that the tools we are comparing with do not require as input the bound, K . Hence, the comparison may not be

fair for some safe examples, since SwInG only considers the subset of executions which K enforces. However, in particular

instances we have set the parameter K such that all executions are considered (modulo the loop unwinding bound). In such

cases, we note the tool is comparable to the others. We highlight such cases (only for safe examples) with a green checkmark

(X) accompanying the value of K used. Additionally, we have put forth cases where we can iteratively increment K to prove

correctness.

Considering the above observations, we realise that the SMC tools and our tool have orthogonal approaches to �nding bugs.

SMC tools are limited by how they explore the space of all executions, which might be sub-optimal in cases where we have a

shallow counterexample but which is explored only after several executions. Our tool is limited by the bound K .
We do not consider compilation time for any tool while reporting the results. For our tool, the time reported is the time

taken by the CBMC backend for analysis. The timeout used is 1 hour for all benchmarks. All experiments are conducted on a

machine equipped with a 2.80 GHz Intel Core i7-860 and 4GB RAM running a Debian 9 (stretch) 64-bit operating system. We

denote timeout by ‘TO’. In the tables that follow, we specify the values of L (for all tools) and K (only for our tool) used. We

mark a hyphen ‘-’ in the table for when the process is killed with a maximum resident set size (RAM used) of 3.7 GB or higher.

We �rst compare strong and standard consistency on some examples. For the remaining benchmarks, to enable comparison

with other tools (which do not support promises), we run the tool in promise-free mode. Then, we show the ability of our tool:

(1) to detect hard-to-�nd bugs, (2) to adapt to concurrent data-structure benchmarks and (2) resilience to location of bugs and

number of executions.

E.1 Comparing the notions of consistency

We run SwInG, in promise-mode on a variety of testcases from Kang et al. [13] and Chakraborty and Vafeiadis [7]. In the upper

part of Table 8 are the interesting ones amongst these. The split testcase exhibits the di�erence in the semantics presented

in sections 2 and 4 of Kang et al. [13]. The ARMweak example suggests how a process may read its own promise via a helper
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testcase K SwInG[strong] D SwInG[standard]

split 3 43.717s × ×

ARMweak 2 1.560s × ×

LBfd 3 0.692s × ×

Coh-CYC 4 17.367s × ×

splitCAS 5 1.378s

20 12.284s

40 37.166s

60 2m15s

80 4m26s

LBcd 7 1.003s

100 10.984s

200 25.010s

LBcu 7 4.434s

100 1m13s

200 2m39s

LB2cu 7 5.331s

10 1m16s

20 15m40s

�bonacci_2_safe 5 17.244s 10 3m11s

�bonacci_3_safe 5 14m14s 10 TO

Table 8. Comparing the two notions of consistency

thread. LBfd is an example exhibiting load bu�ering with a false (syntactic) dependency. We note that small values of K are

su�cient to uncover the bug in these cases.

In order to empirically con�rm our hypothesis that the standard de�nition of consistency (as de�ned in [13]) would not

scale, we run SwInG, on similar small examples under the strong and standard consistency, while varying the size of the data

domain, speci�ed by D. Observe that we need to vary D for the standard consistency de�nition since it is required during the

quanti�cation over all future memories (which implicitly includes all possible data values). We run SwInG on a variety of safe

and unsafe test cases from [7, 13]. The �rst three examples are unsafe while the other ones are safe. In all these cases, we

observe, the dependence of run-time on the size of the data domain when the standard consistency de�nition is used. Strong

consistency, on the other hand performs much better without any restriction on the size of the data domain. This is presented

in the lower part of the table.

E.2 Evaluation using parametrized benchmarks

benchmark L K SwInG CDSChecker GenMC RCMC

exponential_5_unsafe 5 10 1.195s 1.795s 0.189s 8.282s

exponential_10_unsafe 10 10 1.786s 4.167s 0.736s 3m50s

exponential_25_unsafe 25 10 3.433s 14.737s 4.697s TO

exponential_50_unsafe 50 10 9.021s 1m6s 1m2s TO

exponential_70_unsafe 70 10 14.136s 2m52s 4m3s TO

�bonacci_2_safe 2 X20 4.045s 8.811s 0.104s 0.133s

�bonacci_3_safe 3 X20 10.899s TO 0.984s 4.443s

�bonacci_4_safe 4 X20 30.475s TO 41.576s 3m2s

triangular_2_safe 2 X4 5.683s 0.403s 0.069s 0.063s

triangular_3_safe 3 X6 1m3s 18.737s 0.152s 0.290s

triangular_4_safe 4 X8 4m58s 20m20s. 1.602s 2.282s

triangular_5_safe 5 X10 8m16s TO 28.883s 34.819s

triangular_2_unsafe 2 10 1.711s 0.070s 0.071s 0.102s

triangular_3_unsafe 3 10 9.422s 2.903s 0.126s 0.244s

triangular_4_unsafe 4 10 2m54s 3m25s 1.254s 1.531s

triangular_5_unsafe 5 10 12m23s TO 21.619s 26.730s

Table 9. Evaluation using parametrized benchmarks

We now compare SwInGwith CDSChecker, GenMC and Rcmc in Table 9 on three parametrized benchmarks: ExponentialBug
(from Fig. 2 of [11]), Fibonacci and safe and unsafe versions of Triangular taken from SV-COMP 2018. In ExponentialBug(N )
and Triangular(N), the processes compete to write to a shared variable and N represents the number of times a process may

write. In ExponentialBug(N ), the number of executions grows as O(N !), while the fraction of buggy interleavings decrease

exponentially with N . In the unsafe version of Triangular(N ), there is exactly one interleaving that exposes the bug, while

the total number of interleavings increases exponentially with N . In Fibonacci(N ), two processes compute the value of the

nth Fibonacci number. In the safe version of Triangular(N ) as well as Fibonacci(N ), we note that we use a conservative
upper bound on the value of K . Hence this table demonstrates the ability of SwInG in exposing hard-to-�nd bugs as well as

adaptability for safe cases.
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E.3 Evaluation using concurrent data structures based benchmarks

benchmark L K SwInG CDSChecker GenMC RCMC

hehner2_unsafe 4 5 6.130s 0.028s 0.042s 0.072s

hehner3_unsafe 4 5 26.729s 0.026s 4m4s 1m26s

linuxlocks2_unsafe 2 4 0.748s 0.010s 0.036s 0.081s

linuxlocks3_unsafe 2 4 1.113s 0.013s 0.037s 0.084s

queue_2_safe 4 4 2.141s 0.020s 0.039s 0.079s

queue_3_safe 4 4 9.417s 0.024s 0.053s 0.086s

Table 10. Evaluation using concurrent data structures - I

benchmark L SwInG[K = 4] SwInG[K = 6] CDSChecker GenMC RCMC

stack_2_safe 2 0.354s 1.467s 0.009s 0.067s 0.063s

stack_3_safe 3 0.879s 4.755s 0.229s 0.073s 0.108s

stack_4_safe 4 2.127s 14.426s 8.313s 0.819s 1.287s

stack_5_safe 5 6.467s 44.993s 5m2s 14.132s 43.903s

stack_6_safe 6 24.185s 5m8s TO 7m14s 25m44s

Table 11. Evaluation using concurrent data structures - II

We compare the tools in Tables 10 and 11 on benchmarks based on concurrent data structures. The �rst of these is a

concurrent locking algorithm from Hehner and Shyamasundar [10]. The second, LinuxLocks(N) is a benchmark extracted

from the Linux kernel. If not completely fenced, this benchmark is unsafe under relaxed semantics and we fence all but one

lock accesses. The other two are safe benchmarks adapted from SVCOMP-2018. The queue benchmark is parameterized by the

number of processes and the stack benchmark is parameterized by the size of the stack. The processes operate on these data

structures and we check whether certain invariants are maintained. These benchmarks illustrate the ability of our tool to

handle concurrent data-structures similar to those seen in real-world examples.

E.4 Evaluation using two synthetic safe benchmarks

We compare the tools in Table 12 on adaptations of two synthetic safe benchmarks: ReaderWriter(N) (from Norris and

Demsky [24]) and RedundantCo(N) (from Abdulla et al. [3]). Both these examples involve N processes writing distinct values

to a shared variable and one process reading from it. The number of traces in these examples grow as O(N !). The number of

possible values for the reads however is just O(N ) in the �rst example and O(1) in the second one. The performance of the

SMC tools depends on how e�ciently they explore the executions. SwInG on the other hand depends on the reads observed,

illustrating the point mentioned earlier. We again note that K is chosen conservatively and our tool declares the benchmarks

to be safe considering all executions.

benchmark L K SwInG CDSChecker GenMC RCMC

readerwriter_7 0 X5 0.719s 0.005s 0.057s 0.690s

readerwriter_8 0 X5 0.839s 0.006s 0.056s 7.425s

readerwriter_9 0 X5 1.068s 0.007s 0.053s 1m17s

readerwriter_10 0 X5 1.393s 0.007s 0.056s 14m49s

redundant_co_10 10 X5 0.470s 0.114s 0.087s 38m12s

redundant_co_20 20 X5 1.031s 0.548s 0.218s TO

redundant_co_50 50 X5 3.219s 8.965s 4.143s TO

redundant_co_70 70 X5 6.093s 13.843s 18.185s TO

Table 12. Evaluation using two synthetic safe benchmarks

E.5 Evaluation using variations of mutual exclusion protocols

In this section, we consider mutual exclusion protocols from the SV-COMP 2018 benchmarks. The unfenced versions of the

protocols are unsafe. All the tools considered report a bug for these examples within two seconds. We now consider variations

of these benchmarks.

In Table 13, we evaluate the Peterson and Szymanski protocols for N processes and keep all but one process fenced. This

leads to a lower fraction of buggy executions. The values of K taken for these benchmarks assert the fact that there are bugs to

be found (even for non-trivial examples) with small K . We call these examples peterson1U and szymanski1U, parameterized by
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benchmark L K SwInG CDSChecker GenMC RCMC

peterson1U(4) 1 4 1.868s 0.005s TO 0.113s

peterson1U(6) 1 4 9.408s 0.005s TO 0.179s

peterson1U(8) 1 4 43.680s TO TO 5.432s

peterson1U(10) 1 4 4m12s TO TO TO

szymanski1U(4) 1 2 1.280s 0.008s - 0.130s

szymanski1U(6) 1 2 3.519s TO - TO

szymanski1U(8) 1 2 7.574s TO TO TO

szymanski1U(10) 1 2 15.437s TO TO TO

Table 13. Evaluation using mutual exclusion protocols with a single unfenced process

benchmark L K SwInG CDSChecker GenMC RCMC

peterson1C(3) 1 2 0.743s 0.012s 0.085s 0.786s

peterson1C(4) 1 2 1.827s 5.032s TO 4.157s

peterson1C(5) 1 2 4.185s 59m42s TO TO

peterson1C(6) 1 2 8.483s TO TO TO

peterson1C(7) 1 2 15.678s TO TO TO

peterson2C(3) 1 2 0.758s 0.005s 0.068s 0.061

peterson2C(4) 1 2 1.848s 0.015s TO 12.308s

peterson2C(5) 1 2 4.041s 1m36s TO TO

peterson2C(6) 1 2 7.562s TO TO TO

peterson2C(7) 1 2 14.729s TO TO TO

Table 14. Evaluation using completely fenced peterson mutual exclusion protocol with a bug introduced in the critical section

of a single process

the number of processes. Table 14 exhibits a pair of benchmarks that exhibit the sensitivity of DPOR-based algorithms to the

location of bugs. We consider the completely fenced version of the Peterson protocol. However, we introduce a bug (write a

value to a shared variable and read a di�erent value from it) in the critical section of one of the processes. Between the two

examples, the only di�erence is the process in which this bug has been introduced. We call these examples peterson1C and

peterson2C, parameterized by the number of processes. We can see the di�erence in the performance of the DPOR-based tools

(especially CDSChecker) on the two examples. On the other hand, our tool is resilient to such super�cial changes. We note

again that the value of K is small (2).

benchmark L K SwInG CDSChecker GenMC RCMC

szymanski(3) 1 2 0.690s 0.047s 28.886s 2m35s

szymanski(4) 1 2 1.121s 5m25s - TO

szymanski(5) 1 2 1.795 TO - TO

szymanski(6) 1 2 2.671s TO - TO

szymanski(7) 1 2 3.751s TO - TO

Table 15. Evaluation using completely fenced szymanski mutual exclusion protocol with a bug introduced in the critical

section of a single process

We repeat in Table 15 the above experiment with the Szymanski mutual exclusion protocol.

We consider in Table 16 completely fenced versions of the mutual exclusion protocols. We note that these versions are safe

due to the introduction of SC-fences. In this experiment, we sequentially increase the loop unwinding bound. These examples

exhibit the practicality of iterative increments in K . Following convention, the �gure in the parenthesis represents the number

of processes.
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benchmark L K SwInG CDSChecker GenMC RCMC

bakery(2) 1 2 0.463s 6.249s 0.056s 0.067s

lamport(2) 1 2 0.777s 5.451s 0.070s 0.089s

peterson(3) 1 2 0.878s TO 9.665s 26.208s

peterson(2) 1 2 0.321s 0.325s 0.087s 0.068s

tbar(2) 1 2 0.240s 0.007s 0.080s 0.081s

tbar(3) 1 2 0.514s 2.077s 0.087s 0.074s

bakery(2) 2 2 0.872s TO 0.709s 0.884s

lamport(2) 2 2 3.798s TO 1m31s 5m5s

peterson(3) 2 2 1.695s TO - TO

peterson(2) 2 2 0.539s 15m22s 0.039s 0.428s

tbar(2) 2 2 0.375s 0.504s 0.044s 0.061s

tbar(3) 2 2 0.918s TO 0.080s 0.094s

bakery(2) 4 2 5.827s TO TO TO

lamport(2) 4 2 5m31s TO TO TO

peterson(3) 4 2 15.900s TO - TO

peterson(2) 4 2 3.412s TO TO TO

tbar(2) 4 2 1.578s 41m25s 0.262s 0.071s

tbar(3) 4 2 4.741s TO 6.460s 15.489s

Table 16. Evaluation using safe mutual exclusion protocols
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