Verification of C11 Programs with Relaxed Accesses

Parosh Aziz Abdulla

Uppsala University, Sweden
parosh@it.uu.se

S. Krishna
II'T Bombay, India
krishnas@cse.iitb.ac.in

Abstract

In POPL’17, Kang et al. introduced the promising semantics
for relaxed-memory concurrency (PS-RLX), the first mem-
ory model supporting many features of the relaxed fragment
of the C++ concurrency model while satisfying the DRF
guarantee. PS-RLX uses a consistency check that prevents
semantical deadlocks. However, this check comes at the price
of making the verification of even simple programs practi-
cally infeasible. This is due to the unbounded number of runs
that need to be checked in order to validate the promises. In
this paper, we propose a new consistency definition called
strong consistency semantics which (1) captures most of the
common program transformations performed by the relaxed
fragment of C++, (2) is deadlock free (i.e., all promises will
eventually be fulfilled), and (3) does not require the analysis
of an unbounded number of runs. Then, we show that the
reachability problem under the promising semantics with
the (strong) consistency definition is highly complex. Given
this high complexity, we consider a bounded version of the
reachability problem. To this end, we bound both the number
of promises and the “view-switches”, i.e, the number of times
the processes may switch their local views of the global mem-
ory. We provide a code-to-code translation from an input
program under PS-RLX to a program under SC. This leads
to a reduction of the bounded reachability problem under
PS-RLX to the bounded context-switching problem under SC.
We have implemented a prototype tool and tested it on a set
of benchmarks, demonstrating that many bugs in programs
can be found using a small bound.

Keywords Model-Checking, weak memory models, Re-
laxed Semantics

1 Introduction

An important long-standing open problem in PL research
was to define a ‘good’ weak memory model for capturing
the semantics of concurrent ‘relaxed’ memory accesses in
languages like Java and C/C++. A model is considered ‘good’
if it can be implemented efficiently (i.e., if it supports all
usual compiler optimizations and its accesses are compiled
to plain x86/ARM/Power/RISCV accesses), and is “easy” to

2019.

Mohamed Faouzi Atig
Uppsala University, Sweden
mohamed_faouzi.atig@it.uu.se

Adwait Godbole
II'T Bombay, India
adwait@cse.iitb.ac.in

Viktor Vafeiadis
MPI-SWS
viktor@mpi-sws.org

reason about. The latter is not formally defined. Instead,
the literature uses various proxies such as supporting basic
invariant reasoning or the DRF guarantee [21], which states
that programs without races exhibit only SC-behavior.

After many attempts at solving this problem (e.g., [6, 8,
12, 19, 21, 25, 30]), a breakthrough was achieved by Kang et
al. [13], who introduced the promising semantics (PS). PS was
the first model that supported basic invariant reasoning, the
DRF guarantee, and even a non-trivial program logic [28]. In
PS, the memory is modeled as a set of timestamped messages,
each corresponding to a write made by the program. Each
process/thread records its own view of the memory—i.e., the
latest timestamp for each memory location that it is aware of.
When reading from memory, it can either return the value
stored at the timestamp in its view or advance its view to
some larger timestamp and read from that message. When
a process t writes to memory location x, PS creates a new
message with a timestamp larger than ’s view of x, and t’s
view is advanced to include the new message. In addition, in
order to allow load-store reorderings, PS allows a process to
promise to produce a certain write in the future. PS uses a
consistency check to ensure that every promised message can
be certified (i.e., made fulfillable) by executing that process
on its own. Furthermore, this should hold from any future
memory (i.e., from any extension of the memory with addi-
tional messages). The quantification prevents deadlocks (i.e.,
processes from making promises they are not able to fulfil).
PS generally allows program executions to contain unbound-
edly many concurrent promised messages, provided that all
of them can be certified. As one can immediately see, PS
is a fairly complex model, and beyond its support for some
basic reasoning patterns, it is not at all obvious whether it
is easy to reason about concurrent programs running under
PS. Furthermore, the unbounded number of future memo-
ries, that need to be checked, makes the verification of even
simple programs practically infeasible. However, as men-
tioned above, the quantification over all future memories is
necessary to ensure the absence of deadlocks. A challeng-
ing problem is then to find a consistency definition that (1)
captures most of the common program transformations per-
formed by the relaxed fragment of C++, (2) is deadlock-free
(i.e., all promises will eventually be fulfilled) and (3) does not
quantify over all future memories.

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

108
109
110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

Towards this goal, we propose a new consistency defini-
tion, called strong consistency semantics, for the relaxed frag-
ment of the promising semantics (PS-RLX), which satisfies
all the three requirements listed above. Roughly speaking,
the new (strong) consistency check requires that promises
can be fulfilled only from the current memory (i.e., no need
for quantification over all possible future memories) by a
run that does not (1) add new messages with non-maximal
timestamp and (2) execute atomic Compare-And-Swap in-
structions. We show that strong consistency implies the
standard consistency (as defined in [13]). Furthermore, in
the case where the program Prog does not contain any atomic
Compare-And-Swap instructions, we show that the two se-
mantics coincide. As an immediate consequence, we have
that any behavior under PS-RLX with the strong consistency
definition is also a behavior under PS-RLX with the (stan-
dard) consistency definition. This implies that PS-RLX with
the strong consistency definition is deadlock-free.

Then, we consider the reachability problem for programs
running under PS-RLX. This is a challenging problem since
even if each process is a finite state system, the program’s
state space is unbounded because the memory can contain
unboundedly many messages and each message has a times-
tamp whose size is also not bounded. Furthermore, a program
under PS-RLX can make an unbounded number of promise
steps, whose certification can further take an unbounded
number of steps. All these aspects make the reachability prob-
lem very difficult. In fact, we show the reachability problem
under PS-RLX using anyone of the two consistency defini-
tions is highly complex: it is non-primitive recursive.

Given this high complexity, we next consider a bounded
version of the reachability problem for PS-RLX. We bound
both the number of promises and, following [1], the number
of “view switches” (i.e., the number of times that a process
reads from a message it has not previously seen). We develop
a practical verification algorithm for this bounded reachabil-
ity problem via a reduction to SC reachability under bounded
context-switching [27].

This reduction is implemented in a tool, called SwinG.
Our experimental results in §6 demonstrate the effectiveness
of our approach. We exhibit cases where hard-to-find bugs
are detectable using a small view-bound K. Our tool displays
resilience to trivial changes in the position of bugs and
the order of processes. Moreover, our experimental results
confirm our hypothesis that the standard definition of
consistency (as defined in [13]) would not scale while strong
consistency performs much better.

Related Work As stated in the introduction, the promising
semantics is the first model to support DRF guarantees and
invariant reasoning. Given this, the verification of programs
running under the promising semantics is a fundamental
question, which has not been considered before. To the best
of our knowledge, SwInG is the first tool for automated

verification of programs under the promising semantics [13]
and the strong semantics. Most of the existing work concerns
the development of stateless model checking (SMC), coupled
with (dynamic) partial order reduction techniques (e.g., [3,
14, 15, 23, 24]) and do not handle promises as defined in [13].

Context-bounding has been proposed in [27] for programs
running under SC. This work has been extended in different
directions and has led to efficient and scalable techniques
for the analysis of concurrent programs (see e.g., [9, 16—
18, 20, 22]). In the context of weak memory models, context-
bounded analysis has been only proposed to programs run-
ning under TSO/PSO in [5, 29] and under POWER in [2].

In our bounded reachability verification procedure, we
adapt the view-bounding approach proposed in [1] for pro-
grams under release-acquire semantics to the promising se-
mantics. Our code to code translation to bounded context
SC is much more complex than the one in [1] because in
addition to executing instructions, a process can perform
various other roles like making and certifying promises as
well as checking consistency. The main challenge in the code-
to-code translation of [1] was to keep track of the causality
between different variables. In our case, the challenge is fun-
damentally different and is to provide a procedure that (i)
guesses the promises non-deterministically in a manner that
guarantees consistency after each step, and (ii) verify that
each promise so guessed is fulfilled.

As future work, a practical verification in RC11 in the
presence of both relaxed and release-acquire semantics is
definitely possible, albeit technically challenging because
of the differences in the two view-switch notions we have
versus [1]. We hope to address this in future by finding a
uniform view switch concept that is compatible with the two
semantics as well as with the semantics of SC accesses.

2 Preliminaries

In this section, we introduce the simple programming lan-
guage and the notation that will be used throughout.

Notations. Given two natural numbers i,j € N s.t. i < j,
we use [i, j] to denote the set {k|i < k < j}. Let Aand B be
two sets. We use f : A — B to denote that f is a function
from A to B. We define f[a — b] to be the function f’
such that f’(a) = b and f’(a’) = f(a’) for all a’ # a. Given
aset A C A we use f|a to denote the function from A’
to B such that f|a(a) = f(a) for all a € A’. For a binary
relation R, we use [R]" to denote its reflexive and transitive
closure. Given an alphabet 3, we use X* (resp. 2*) to denote
the set of possibly empty (resp. non-empty) finite words
over X. Let w = aja,---a, be a word over X, we use |w|
to denote the length of w. Given an index i in [1, |w]|], we
use w[i] to denote the i? letter of w. Given two indices i
and js.t. 1 <i<j<|w|, weuse w[i,j] to denote the word
a;ait1 - - - a;. Sometimes, we consider a word as a function
from [1, |w|] to 2.

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

258
259
260
261
262
263
264
265
266

268
269
270
271
272
273
274
275

Prog == var x* (procp reg $r* i*)*

i u= A:s;

x = $r | $r = x | bcas(x, $r1, $r2)
$r = exp | SC-fence | assume(exp)
if exp then i* else i* endif
while exp do i* done

Figure 1. Syntax of concurrent programs.

Program Syntax. A program Prog (see Fig. 1) consists of
a set X of (global) variables, followed by the definition of
a set P of processes. Each process p declares a set R (p) of
(local) registers followed by a sequence of labeled instructions.
We assume that these sets of registers are disjoint and we
use R := U,R (p) to denote their union. We assume also
a (potentially unbounded) data domain D from which the
registers and global variables take values. All global variables
and registers are assumed to be initialized with the special
value 0 € D (if not mentioned otherwise).

An instruction i is of the form A : s where A is a unique
label and s is a statement. We use L, to denote the set of all
labels of the process p, and L. = {J,ep L, the set of all labels.
We assume that the execution of the process p starts always
with a unique initial instruction labeled by A‘fnit. A write
instruction is of the form x = $r, and assigns the value of
register $r to the global variable x. A read instruction $r = x
conversely reads the value of the global variable x into the
local register $r. A blocking compare-and-swap (bcas) in-
struction takes the form bcas(x, $r;, $r2) and waits until the
value of the global variable x matches that of register $r; and
when it is the case, it atomically assigns the value of register
$r, to x. A local assignment instruction $r = exp assigns to
the register $r the value of exp, where exp is an expression
over a set of operators, constants as well as the contents of
the registers of the current process, but not referring to the
set of global variables. The fence instruction SC-fence is used
to enforce sequential consistency if it is placed between two
memory access operations. Finally, the conditional, assume
and iterative instructions (collectively called cai instructions)
have the standard semantics. We define]LZV (resp. LY), Lﬁ
(resp. LK), Lgcas (resp. LP¢3) and L?,C'fence (resp. LSCfencey ag
the subsets of L,, (resp. L) corresponding to write, read, bcas
and SC fence instructions, receptively.

Given a label A of a process p, let next(A) denote the labels
of the next instructions that can be executed by p. With the
exception of cai instructions, next(A) contains at most one
element: it contains no elements for the last instruction(s)
of the process, in which case we write next(d) = L. In
the case of cai instructions, next(A) contains at most two
elements (assume can be thought of as a while loop). We
define Tnext(A) (resp. Fnext(A)) to be the (unique) label of
the instruction to which the process execution moves in case
the expression appearing in the statement of the instruction

labeled by A evaluates to true (resp. false). We also use
Tnext(Ad) = L and Fnext(4) = L to denote the termination
of the process execution. For simplicity, we sometimes write
assume(x = exp) instead of $r = x; assume($r = exp) (for
a register $r that is not otherwise used in the program).
This notation is extended in the straightforward manner to
conditional statements.

3 Promising Semantics(PS-RLX)

In the following, we present the PS-RLX memory model,
which defines the semantics of global variable accesses.
PS-RLX is obtained from the promising semantics [13], by
restricting attention to relaxed accesses and SC fences.

In order to correctly model relaxed accesses, PS-RLX dis-
penses with the standard SC understanding of memory as
a function from global variables to values. Instead, it repre-
sents memory as a set of messages, each denoting the effect
of a single write or compare-and-swap instruction. Although
the memory is shared, each process has its own view of the
memory, since it is aware only of a subset of the messages it
contains. In the absence of SC fences, these views can be rad-
ically different: the only constraint enforced is that messages
to the same variable are totally ordered, so that processes
cannot disagree on the order in which they perceive them.
Finally, messages can be added to the memory either by ex-
ecuting the next instruction of a process or by promising a
future write—that is, immediately adding to memory a mes-
sage that could otherwise only be added after executing a
bunch of instructions. As we will shortly see, promises hold
the key to PS-RLX because they allow load-store reordering,
and pose significant challenges to verification.

Timestamps. PS-RLX uses timestamps to maintain a total
order over all the writes to the same variable. We assume an
infinite set of timestamps Time, densely totally ordered by
<, with 0 being the minimum element. A view is a function
V : X — Time that maps each variable to a timestamp.
We use 7 to denote the set of all view functions. Let Viy;;
represent the initial view where all variables are mapped to
0. Let I denote the set of intervals over Time. The intervals
in 7 have the form (f, t] where either f =t =0 or f < t,
with f,t € Time. Given an interval I = (f,t] € 7, I.frmand
I.to denote f, t respectively.

Memory. In PS-RLX, the memory is modelled as a set of
messages, where each message represents the effect of one
write or compare-and-swap instruction. In more detail, a
message m is a tuple (x,v,(f,t]) where x € X, v € D
and (f,t] € I. We use m.var, m.val, m.to and m.frm
to denote respectively x, v, t and f. Two messages are
said to be disjoint (m;Lm;) if they concern different vari-
ables (mj.var # my.var) or their intervals do not overlap
(m;.to < my.frm or my.to < my.frm). Two sets of mes-
sages M, M’ are disjoint, denoted M_LM’, if mLm’ for every

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

m e M,m’ € M’'. Two messages my, m, are adjacent denoted
Adj(my, my) if my.var = my.var and m;.to = my.frm,

A memory M is a set of pairwise disjoint messages. A
memory M can be extended with a message m = (x, v, (f, t])
in a number of ways:

A
Additive insertion M < m is defined if M_L{m} and re-
turns M U {m}.

Maximal additive insertion M pls m is defined if
M1{m} and m.to > m’.to for all m’ € M, and re-
turns M U {m}. The maximal additive insertion is a
special case of the additive insertion that we will need
to check the consistency of the promises.

S
Splitting insertion M <« m is defined if there exists
m’ = (x,v’,(f,t']) with t < t’ in M, in which case

s
it results in M being updated to M «— m = (M\{m’} U
{m, (x,v, (t,t'])}).
F
Fulfilment insertion M « m is defined if m € M, in
which case it returns M unchanged.

Machine States. A machine state MS is a tuple
(J, R, View, PS, M, G), where] : P +— L maps each process p
to the label of the next instruction to be executed, R : R — D
maps each register to its current value, View : £ — 7~ maps
each process to its view of the memory, M is a memory,
PS : P+ 2M maps each process to a set of messages (called
promise set), and G € 7 is the global view (that will be used
by SC fences). Let C denote the set of all machine states.

Given a machine state MS = (J,R,View, PS,M,G)
and a process p, we use MS|p to denote
J(p), qug(p), View(p), PS(p), M, G), the projection of MS to
the process p. The first four entries in MS |p constitute the
process state. We call MS |p the process configuration. Let
C, denote the set of all process configurations.

The initial machine state MSjy;; is one where: (1) each
process p is in its initial instruction; (2) all registers have
value 0; (3) each process has the initial process view (that
maps each variable to 0); (4) the set of promises is empty; (5)
the initial memory Miy;; contains exactly one initial message
(x,0,(0,0]) for each variable x; and (6) the initial global view
maps each variable to 0.

Transition Relation. We next explain the transition rela-
tion between process configurations, from which we will
induce the transition relation between machine states.

Process Relation. We define the transition relation induced
by the process p as a relation —-C C, x (L, U (L, X
P

{A,Am, S, F}) U {prm}) x C, between the configurations of
a given process p. For an instruction A : s of a process p
and two process configurations ¢ = (A, R,V,P,M,G) and

A
¢ =W,R,V',P',M',G’), we write ¢ 22, ¢’ to denote that
P

(¢, A,¢’) €—. For a write or bcas instruction A : s of a pro-
p

Azs,
cess p and a € {A, Am, S, F}, we write ¢ (——a)—> ¢’ to denote
p
that (¢, (4, @), ¢’) €é—. The letter a € {A, Am, S, F} is used to
P

distinguish the different ways a write/bcas instruction is
executed where A, Am, S, and F stand for Additive, Maxi-
mal Additive, Splitting and Fulfilment. Similarly, we write

¢ 2 to denote that (¢,prm,¢’) €—. The relation — is
P p

deﬁpned through a set of inference rules given in Figure 2.
Below, we explain these inference rules.

o The Read rule handles the case when process p executes
a read instruction A : $r = x. For the read to be successful,
there must be some message of the form (x, v, (f, t]) in the
global memory such that V(x) < ¢ (i.e., process p must not
be aware of a later message for x). In this case, the value v
is assigned to $r and the timestamp of the read message is
incorporated into p’s view. The current instruction of process
p gets updated to next(A). The global memory M, the set of
promises P, and the global view G remain the same.

e The Write rule handles the case when a write instruc-
tion A : x = $r is executed. Let v be the value of $r (i.e.,
v = R($r)). To perform this instruction, there must exist an
unused interval (f,t] s.t. V(x) < f. Then, there are three
cases, depending on the set of promises P of p.

e (Maximal) Additive Insertion: If the new message
(x,v,(f,t]) is disjoint from the memory M (i.e,
{(x,v,(f, t])} LM), then we add m = (x, v, (f,t]) to M

A A
to obtain the new global memory M < m (or M < m
if we are using the maximal additive insertion oper-
ation). The view of p is updated to V[x — t]. Notice

that (P & m)\{m} leaves P unchanged.
e Splitting Insertion: Let m = (x, v, (f, t]). To use split-
ting insertion, there should exist a message m’ =

S
(o, (f,t”])in P € Mwitht < t”. Then M «— m

results in M\{m’} U {m, (x,v’, (¢,t”’])} while (P S
m)\{m} results in P’ = (P\{m'}) U{(x, v, (¢,t"'])}. To
add m to the memory, we modify m’ in the promise
set and the memory, and extend the memory with m.
o Fulfilment Insertion: Let m = (x, v, (f, t]). To use fulfil-
ment insertion of m, the message m shouldbein P C M.

F F
Then M < m results in M while (P <« m)\{m} re-
sultsin P’ = (P\{m}). Essentially, we keep the memory
the same and we remove m from the set of promises.

The current instruction and view of p are respectively up-
dated to next(A), and V[x +— t].

e The CAS rule executes a compare-and-swap instruction
of the form A : bcas(x, $r1, $r2). To perform the bcas instruc-
tion, there must be a message m = (x,R($r1),(f,t]) € M
such that V(x) < t.Let m’ = (x, R($r2), (t,t']). Then we have

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

438
439
440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

478
479
480
481
482
483
484
485
486

488
489
490
491
492
493
494
495

(x,0,(f,t) eM, V(x) <t

(A R,V,P,M,G) ii;: (next(A), R[$r — o], V[x > t],P, M, G)

Read

m = (x,RSr), (f,t]), V(x) < f, P’ = (P < m)\{m}, M' =M & m Write

et A Am,S,F
ARV, P,M,G) LY, (next(A), R, VIx — 1], P, M', G) a € {4 Am.5F}
P

(0 RGm). (f 1) € M, V() <1,
m = (x,R@r), (0,0']), P = (P < m)\{m}, M' =M <& m CAS
a € {A, Am,S, F}

(LR,V,P,M,G) (A:bcas(x,$r1,$r2), @)
P

(next(A), R, V[x — t'], P’, M’, G)

P’:P(i’m, M=M&m Promise
(AR V,P,M,G) 25 (L, RV, P, M’,G) BE AL
P

SC fence

(LR.V,P,M,G) 225", (next(1), R,V UG, P, M,V LG)
P

Figure 2. PS-RLX inference rules at the process level, defining the
transition (A, R, V, P, M, G) % N, R, V', P', M’, G’') where p € P and
«a is one of the labels used above. The merge operation LI returns the

pointwise maximum of the two views, i.e., (V U V’)(y) is the maximum of
V(y) and V'(y).

three cases obtained by using m’ in place of (x, v, (f, t]) in
the explanation of the write operation for a € {A, Am, S, F}.

e The SC-fence rule concerns the execution of an SC
fence. In such cases, the process view V(p) is compared to
global view G and they both get updated to the maximum of
the two using the merge operation LI. Formally, the merge op-
eration LI between two views V and V” is defined as follows:
for any variabley € X, (VU V')(y) = V'(y) if V'(y) = V(y),
and V(y) otherwise.

e The Promise rule enables process p to promise any mes-
sage m that can be added to both P and M by an additive or
a splitting insertion.

Besides these rules shown in Figure 2, there are inference
rules for the other instructions (assignments, assumes, con-
ditionals, and iterations). These are defined in the usual way
and affect only the label of the instruction to get executed
and the values of its registers.

Machine Relation. Now we are ready to define the induced
transition relation between machine states using the process
transition relations defined in the previous paragraph. For
that, let INFR = (L, U (L, x {A, Am, S, F}) U {prm}) and

P def a def P
= = U —, and = = U =
a€INFR P peP

This induces a relation between machine states as follows.
For machine states MS = (J, R, View, PS, M, G) and MS’ =

(J',R’,View’,PS’,M’,G’), we write MS £> MS’ iff (1)
p ’ . ’ ’
MSlp = MS|p and (J(p'), Rlgg), View(p’), PS(p’)) =
J' (") R |r(p), View'(p”), PS'(p")) for all p” # p.
Consistency. There is one final requirement on machine
states called consistency, which roughly states that in ev-

ery machine state encountered in a program execution, all
the messages promised by a process p can be certified (i.e.,

made fulfillable) by executing p on its own from any future
memory, i.e., any extension of the memory with additional
messages. The quantification over all the future memory en-
sures that the current execution will not deadlock due to the
impossibility of the fulfilment of a promise. In other words, a
process cannot make any promises that it is not able to fulfil.

According to Kang et al. [13, §4], during the certification
of promises, a process cannot make any further promises,

execute any SC fences. We call such steps consistent steps,
def a
cons = —_
P - szelNFR\{prm,Lf,C’fence} » .

A machine state MS = (J, R, View, PS, M, G) is consistent
if, from any future memory M’ such that M C M’, every
process p € P can certify/fulfil all its promises by performing
consistent steps, i.e., (J(p), R, View(p), PS(p), M’, G) [—>;°”5]*
AR,V 0,M”,G).

3.1 Quantification over all Future Memories

The purpose of the introduction of the quantification over
future memories in Kang et al. [13, §4] is to prevent deadlocks
(i.e., all promises will eventually be fulfilled). However, this
comes at the price of making the verification of even simple
programs practically infeasible. This is due to the unbounded
number of future memories that need to be checked.

As mentioned in the introduction, the challenge that we
consider in this paper is to find a consistency definition that
(1) captures common program transformations performed
by C++, (2) is deadlock free, and (3) does not quantify over
future memories.

We can achieve (3) by simply dropping the quantification
over future memories and instead only requiring that the
set of promises can be certified from the current memory.
However, this will introduce deadlocks. To see why, consider
the following example:

bcas(x,0,1);
y:=1;

assume(y = 1)

bcas(x,0,1); (Deadlock-c)

In the above example, the first process can promise to set
y to 1 (if we do not consider all possible future memories
during the certification phase). Now the second process can
atomically update the value of the variable x from 0 to 1
which results in forbidding the first process to execute its
bcas instruction and so the promise can be never fulfilled.

The deadlock that we face in this example is caused by the
use of bcas during the certification phase. Thus, a potential
fix is to disallow bcas. Unfortunately, this is not sufficient to
prevent deadlocks; as illustrated by the following example:

xX=2; x:=1 x:=3
assume(x=1); || assume(y = 1)
y:=1;

(Deadlock-w)

In the above example, let us assume that the second pro-
cess executes its write instruction which results in a new

496
497

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

message in the memory of the form (x, 1, (1, 2]). Then, the
first process can promise (y, 1, (1, 3]). This is possible since
this promise can be certified when we allow additive inser-
tion of the write operation x := 2 in the certification phase.
Next, the assume instruction assume(y = 1) of the second
process can be executed. After that, the third process per-
forms its write instruction which results in a new message in
the memory of the form (x, 3, (0, 1]). Now, the first process
cannot fulfil its promise anymore, since the timestamp asso-
ciated to its write instruction x = 2 should be smaller than
the one of the write instruction x = 1. However, there is no
such available timestamp due to the message (x, 3, (0, 1]) of
the third process. The previous example suggests that we
also need to disallow the additive insertion of write opera-
tions with non-maximal timestamp. Interestingly, this is all
what we need to achieve (2), i.e., preventing deadlocks. In
Section 3.2, we show (1) is also achieved.

In the following, we formally define this new se-
mantics (called here strong consistency). In this model,
during the certification of promises, we allow only to
add writes with maximal timestamps; while bcas op-
erations, promises and SC-fences are disallowed. We

def
: scons —
call these steps strong consistent steps, —j =

a
U(ZE|NFR\{pr‘m, (LZV’A)’ (L;J)cas’Am)’ (Lans’A)’LZC-fence} ;) Then, ama-

chine state MS = (J, R, View, PS, M, G) is strongly consistent
ifMSp [=5°"] (LR, V', 0,M",G').

Theorem 3.1. If a machine state is strongly consistent then
it is also consistent. Furthermore, in the case where the program
Prog does not contain any bcas instruction, we have that if a
machine state is consistent then it is also strongly consistent.

A proof of Theorem 3.1 is in the supplement. As an imme-
diate consequence of Theorem 3.1, the strong consistency
definition is deadlock-free since the (standard) consistency
is deadlock-free.

3.2 Comparison of the two notions of consistency

In the following, we describe how strong consistency cap-
tures the common program transformations performed by
C++ (as in Kang et al. [13, §4]).

Consider the following two variants of the “load buffer”
litmus test:

a:=x;

y:=1;

In the LB litmus test, C++ allows to assign 1 to the register
a. Such behavior can also be observed in our semantics with
the strong consistency definition. To see why, consider a
run where the first process (whose code on the left side)
promises to write 1 to y. Such a promise can be certified by
that process. Then, the second process can read from the
promise that the value of y is 1 and set the variable x to 1.
Finally, the first process can fulfil its promise by setting y to

b:=y a:=x; || b=y
(LB) x:=b

x:=b y:=a; (LBd)

1. In the LBd litmus test, it is desirable to not observe that
the value of the register a is 1. It is indeed the case in our
semantics (with the strong consistency definition) since the
first process cannot promise that the value of y is 1.

Let us now consider the following variant of LBd :

a:=x;
y:=a+1-a;

b:=y

oy (LBfd)

In the LBfd litmus test, C++ allows to assign 1 to the
register a. Such behavior is also allowed by our semantics
with the strong consistency definition by exactly proceeding
in the same way as in the case of the LB litmus test.

As an immediate consequence of Theorem 3.1, any ob-
served behavior under PS-RLX with the strong consistency
definition is also a behavior under PS-RLX with the (standard)
consistency definition. Furthermore, any forbidden behav-
ior under PS-RLX with the (standard) consistency definition
is also a forbidden behavior under PS-RLX with the strong
consistency definition. However, PS-RLX with the (standard)
consistency definition allows strictly more behaviors than
PS-RLX with the strong consistency definition as we will
see in the next paragraph. This can be observed when we
use bcas operations during the certification phase where the
values read by these operations are somehow irrelevant.

To see the difference between the two consistency def-
initions, let us consider another variant of the LB litmus
test where we add a bcas operation in the code of the first
process between its read and write operations.

a:=x; b:=y
bcas(x,a,a); || x:=b (LBcu)
y:=1;

The bcas operation can succeed for any value of x. This
allows the first process to promise that the value of y is 1 un-
der PS-RLX with the (standard) consistency definition since
for any future memory, the first process sets the variable y to
1. Then, the execution continues exactly in the same way as
in the case of the LB litmus test to observe that the value of
a is 1. Such behavior is not possible under PS-RLX with the
strong consistency definition since the first process cannot
promise that the value of y is 1 (because we disallow the use
of bcas operations during certification).

Now, let us consider a variant of LBcu where the bcas
operation can only succeed for some particular values.

a:=x; b:=y
bcas(x,0,1); || x:=b (LBcd)
y:=1;

In LBcd litmus test the bcas needs to read a particular
value of the variable x and therefore the first process cannot
promise to set the value of y to 1 under PS-RLX with the
(strong) consistency definition for any future memory (i.e.,
any value of the variable x).

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

4 The (Strong) Reachability Problem

In this section, we discuss the question of reachability in
the (strong) consistency semantics. First, we give the formal
definition of the reachability problem under both seman-
tics. Then, we show that the reachability problem under
the strong consistency semantics is non-primitive recursive.
Given this high complexity, we propose a bounded version
of the (strong) reachability problem where we bound both
the number of promises and the number of “view switches”
(i.e., the number of times that a process reads from a message
it has not previously seen).

Formal definition. A strongly consistent run of Prog is a

sequence of the form: MS, [g]* MS, [g]* MS; [g]*
. [B]° MS,, where MSy = MSiyy is the initial machine
state and MSy, ..., MS, are (strongly) consistent machine
states. In this case, the machine states MS,, ..., MS,, are
said to be (strongly) reachable from MSiy;.

Given an instruction label function J : # — L that maps
each process p € P to a label in Ly, the (strong) reachability
problem asks whether there exists a machine state of the
form (J, R, View, PS, M, G) that is (strongly) reachable from
MSipit- In the case of a positive answer to this problem, we
say that J is (strongly) reachable in Prog.

Lower-bound time complexity. As mentioned in Section
3.1, checking reachability is not tractable in practice due
to the unbounded number of future memories that need to
be considered. In the following, we show that the (strong)
reachability problem for concurrent programs under PS-RLX
is highly non-trivial (i.e., non-primitive recursive). The proof
is done by reduction from the reachability problem for lossy
channel systems, in a similar to the case of TSO [4] where
we insert SC-fence instructions everywhere in the process
that simulates the lossy channel process (in order to ensure
that no promises can be made by that process). A detailed
proof can be found in the supplement.

Theorem 4.1. The (strong) reachability problem for concur-
rent programs under PS-RLX over a finite data domain is non-
primitive recursive.

Bounded (strong) reachability problem. Given the high-
complexity of the (strong) reachability problem, we re-
strict our attention to runs which have bounded number
of promises and view-switches. The latter notion was intro-
duced in Abdulla et al. [1] for the release-acquire model. Let
us formally define such runs for PS-RLX with the strong con-
sistency definition. The problem can be defined in a similar
manner for PS-RLX with the standard consistency definition.

Consider a strongly consistent run p of the form MS, i

P1
MS; =, ... RN MS,,. A step labeled by «; is view-
P2 Pn

altering in p if it involves reading a message from the mem-
ory which changes the view of p; w.r.t. some variable. Let

[Prog] := ({global vars); (MAIN); ([proc p reg $r*i*])*
[[proc p reg $r* i*] := proc p reg $r*(local vars) (INI'TPROC) (CSOYP- 40 ([[i]P)*
[A : i = A : (CSI); [[s]P; (CSO)P-*
[if exp then i* else i*]P := if exp then ([i]P)* else([i]")*
[while exp do i*]P := while exp do ([i]P)*
[assume(exp)]|P := assume(exp)
[$r = exp]l? = $r = exp
[x = $r]P == see Algorithm 3

[$r = x]P := see Algorithm 4

Figure 3. Translation map [.].

Sw be the set {i | p; # pi+1} recording the points of context
switches in p. Also, let Cons be the set of strong consistency
check runs for p, i.e., runs of the form ¢;|p; [—-}°™]" ¢] for
i € Sw where the promise set of p; is empty in c;.

Let K’ be the number of view-switches and promises along
p, and let K” by the total number of view-switches in Cons.
The run p is called K-bounded under the relaxed semantics
(denoted K-Bd(PS, Vw)—RLX) if K" + K’ < K. Observe that
the messages read during strong consistency checks are not
considered as view-switches in the traditional sense (they do
not change the view permanently, but are only used locally
within that strong consistency check phase).

Finally, given K € N, the K-(promise, view) bounded
strong reachability under PS-RLX can be defined in simi-
lar manner to the strong reachability problem by replacing
strong runs with the K-bounded ones.

K-Bounded-Context Reachability in SC. Given a program, a

. P P2 Pn
run 7 under SC is a sequence yp = y; = Y2 - = Yn- A
context switch in 7 is a machine state y;, s.t. pj_1 # p;. A
run 7 is K-context-bounded if it contains at most K context
switches. The K-bounded reachability under SC is defined
by requiring that 7 is K-context bounded.

5 Solving the Strong Reachability Under
Bounded Promises and View-Switches

Let K € N be a bound on the promises and view-switches.
In this section, we propose an algorithm that reduces the
K-(promise, view) bounded strong consistent reachability
under PS-RLX to a K + n bounded context reachability prob-
lem under SC, where n is the number of processes in the
concurrent program. The bounded-context reachability prob-
lem under SC for finite-state programs is decidable [27]. In
concrete terms, given a concurrent program Prog as input,
our algorithm constructs a program Prog’ having the same
variable domain as Prog and size polynomial in Prog and K
s.t. for every K-(promise, view) bounded strongly consistent
run of Prog under PS-RLX, there is a K + n bounded context
run of Prog’ under SC reaching the same set of instruction
labels, and vice-versa.

For the rest of the section, we use pye| (resp. 7sc) to denote
a run under PS-RLX (resp. SC).

736

746

752

763

768

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

Translation Overview. Let Prog be a program under
PS-RLX and let and X be its sets of processes and shared
variables respectively. Our reduction relies on the transla-
tion of Prog under the bounded strong consistency semantics
to a context-bounded SC program [Prog]), as shown in Fig-
ure 3. The translation keeps the same data domain for local
variables, but adds a finite amount of additional global and
local states, which we will describe shortly. Besides the new
global variables, [Prog]| also adds a new process (MAIN) that
initializes these variables, and then translates each process
in turn. The translation of a process p € P adds some lo-
cal variables, such as the view array that records the most
recent value and timestamp seen by p for each shared vari-
able x € X. The function (INTTPROC) initializes these local
variables. Each instruction i in process p is translated to a
sequence of instructions: {(CSI) that checks if the process
is active in the current context; the translation [[s]]? of the
statement s in i; and (CSO)?* that checks switching out
of context. (CSO)?-* facilitates two things: (i) it allows p to
make promises after each A (possibly in different contexts),
s.t. the control is back at A after the promises; (ii) it helps
in certification of promises when p switches out of context
from A. The translation of bcas and SC-fence is discussed
in the supplement, to keep the presentation simple. We will
elaborate on read, write later.

One of the key ingredients in the translation is to bound
the size of the memory. This is done via the notion of essential
messages (these messages are either promises or alter the
view of processes which read them) detailed below. A bound
on the number of time stamps (details below) is achieved
from the number of essential messages. Then we describe
our data structures, local and global variables, subroutines,
and then eventually the translation of each statement.

Essential Messages. Messages in the memory can be classi-
fied into three categories: (i) view-switching messages (that al-
ter the view of some process when they are read), (ii) promise
messages (that are generated as a promise by some process
and may or may not alter the view of another process), and
(iii) redundant messages (that are never read by any process).
When a new message is created, we can guess the type of
the message as one of the above. We need not allocate fresh
timestamps for redundant messages. Only essential messages
(either view-switching or promise) require fresh timestamps.
The bound K on the number of promises and view switches
gives the bound K on the number of essential messages and
their timestamps. For the translation we maintain 2K distinct
timestamps. The reason is as follows: for each view-switch
of a process, its existing timestamp is compared with that
of an essential message. Hence we need 2 timestamps for a
view-switch (a promise requires only one timestamp). Since
we have at most K view-switches and promises, 2K times-
tamps suffice. We choose Time = {0, 1, 2,. .., 2K} as the set

of timestamps. This bound on the number of timestamps is
crucial in the translation.

Data Structures. We use auxilary data structures to repre-
sent messages and process views.

The Message data structure represents a message gener-
ated by a write or a promise. It is a record with four fields: (i)
var, the address of the shared variable that was written to; (ii)
t, the timestamp in Time associated with the message; (iii) v,
the value written; and (iv) flag, a number in {-1,0,1,...,n},
where n is the number of processes. Flag 0 represents a non-
promised message or a promise that has been fulfilled; flag
—1 represents a certified promise; while a positive number
flag > 0 denotes a (not yet certified) promise by thread flag.

The View data structure stores for each shared variable
x, (i) a timestamp ¢ € Time, (ii) a value v written to x, (iii)
a boolean | € {true,false} representing whether ¢ is a
legitimate timestamp which can be used for comparisons
(since we have messages which are not essential, ¢ could
represent a timestamp which is not used for comparisons),
(iv) a boolean f € {true, false} which represents whether
the value v may be used by the same process for a local read,
and (v) a boolean u € {true, false} which is true if the
process has most recently executed a continuous sequence
of bcas instructions. The entries in View for a variable x are
referred to as view[x].t, view[x].v, etc.

Global Variables. We introduce the following global vari-
ables: (1) messageStore, an array of messages of size K that
will be populated with the essential messages generated
by the program; (2) messagesUsed, the current number of
messages in messageStore; (3) numContexts, the number of
context switches that have occurred; (4) numkEE, the number
of promises and view switches that have occurred; and (5)
avail, a boolean array of size 2K|X|, that, for each variable
x € X, records the available timestamps in Time. The MAIN
process initializes the global counters to 0 and all entries in
the avail array to contain true.

Local Variables. In addition to its local registers, each pro-
cess has the following local variables: (i) view: a local instance
of View, (ii) active: a boolean variable which is set when the
process is running in the current context, (iii) checkMode: a
boolean checking if the process is in the certification mode,
(iv) liveChain: a boolean array indexed by global variables
x € X, used to ensure no additive insertions of x are allowed
during strong consistency checking (however maximal ad-
ditive insertions are allowed), and (v) retAddr: a variable
storing the instruction label corresponding to the most re-
cent instruction before entering the certification phase.

Since strong consistency disallows additive insertions, we
check that only splitting insertions are used during the certi-
fication phase. liveChain[x] is true only in certification mode
(i.e., when checkMode is true) when the most recent write to
x during the current certification phase was not promised.

836

862

867

869
870
871
872
873
874
875
876
877
878
879
880

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

933
934
935

Algorithm 1: MaIN, CSI, Publish

Algorithm Main
atomic_begin

messagesUsed, numContexts, numEE « 0
forx e X, ts € {1,2,...,2K} do
‘ avail[x]|[ts] « true
end
atomic_end
Algorithm CSI
if —active then
atomic_begin
active « true
numContexts <— numContexts + 1
assume(numContexts < K + n)
end
Algorithm Publish(message)
assume(messagesUsed < K)
messageStore| messagesUsed] « message

messagesUsed «— messagesUsed + 1

When liveChain[x] is true, the process must make the suc-
ceeding writes with consecutive timestamps ending with
a promise (which will set liveChain[x] to false) before it
makes a global read. This precisely forbids additive insertion.
liveChain[x] may only be true when checkMode is true.

Subroutines.
e genMessage(-, -, -, -) is a subroutine which generates a mes-
sage with the four fields as specified above in the data struc-
ture Message. In case some fields are not specified, these are
chosen non-deterministically from the relevant domain.
e saveState(p) is a subroutine which saves the state of global
variables (defined above) and the local state of only the pro-
cess p passed as argument. We however do not store numEE
and the contents of messageStore. (details in the supplement)
e loadState(p) is a subroutine which loads the global state
and process p’s local state saved using saveState(p).

We use the gotoLabel(retAddr) statement which switches
to the instruction label indexed by retAddr. We note that
there are only finitely many instruction labels.

The Code-to-Code Translation. In what follows we
illustrate how the translation simulates a run under
Bd(PS, Vw)—RLX. At the outset we note that each process
interleaves in its execution between two phases: a normal
phase that runs at the beginning of each context and the cer-
tification phase at the end of the context, where it may make
new promises and certify all the promises before switching
out of context. In this way we incorporate the witness for
the consistency check in the run of the program itself.

By certification of a promise, we mean an event that shows
that the promise can be fulfilled as part of the witness run
proving the machine state to be consistent. By fulfilment
of a promise we mean making a write that permanently re-
moves the promise message from the promise set. Fulfilment

Algorithm 2: CSOP*

Oswt
if * then
if —checkMode then
if —active then
atomic_begin
active « true
numContexts < numContexts + 1
assume(numContexts < K + n)
end
checkMode « true
retAddr « A, saveState(p)

else
for m € messageStore do
assume(m.flag # p)
if m.flag == —1 then m.flag < p
end
for x € X do assume(=liveChain[x])
loadState(p), gotoLabel(retAddr)
checkMode «— false
active «— false
atomic_end

end

goto Oy
end

(resp. Certification) is only done during the normal (resp.
certification) phase of the run.

Context Switch Out (CSOP*). CSOP is placed after each
instruction in the original program and serves an entry and
exit point for the consistency check phase of the process.

If the process is currently in normal mode, CSO non-
deterministically switches to certification mode, and vice
versa. When switching from normal to certification mode,
if the process is not active, first a new context is created
and the process is made active. Then, the mode is recorded,
the current instruction A and the local state of the process
are recorded so that they can be reinstated at the end of the
certification run.

To switch from certification mode back to normal mode,
we first check that there are no outstanding promises of p
(i.e., all messages in the memory have a flag different from p).
For messages with a flag of —1 (denoting a certified promise
by p), we set their flag back to p so that they get certified
again in subsequent certification rounds.

Then, to preserve the liveChain invariant, we enforce that
all its entries are false which ensures that there were no
additive insertions during the certification phase. Now using
the loadState routine, we load back the state that was stored
on entering the certification phase. The process then returns
to the instruction label from where it entered the certification
phase, and checkMode is set to false, and it exits the context.

Write Statements. The translation of a write instruction
x = $r of process p is shown in Algorithm 3. Let us first
consider execution in the normal phase (i.e., when checkMode
is false). First, the value of val($r) is recorded in the local
view, and view[x].f is set meaning that later instructions in
p can read from the write. Then, we non-deterministically

936
937
938
939
940
941
942
943
944
945
946
947

961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976

978
979
980
981
982
983
984
985
986

988
989
990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

Algorithm 3: [x = $r]|P write

view[x].v « val($r), view[x].f « true

if « then /* (i) no fresh timestamp x/
view[x].l « false

if checkMode then liveChain[x] « true

/* (ii) and (iii) =*/

else if * then
view[x].l « true
if liveChain[x] then

‘ newStamp «— view[x].t + 1
else

‘ newStamp < nondetInt(view[x].t + 1, 2K)
end
view|x].t < newStamp
assume(avail[x |[newStamp])
avail[x][newStamp] « false
if * then
if checkMode then

message < genMessage(x, newStamp, val($r), —1)

/* (ii) essential message */

liveChain|x] « false, numEE < numEE + 1

else
‘ message < genMessage(x, newStamp, val($r), 0)
end
Publish(message)
else /* (iii) =/
‘ if checkMode then liveChain[x] « true
end

/* (iv) fulfilling a promise */

view[x].l « true
messageNum <« nondetInt(0, messagesUsed — 1)
message < messageStore[messageNum]
assume(message.var == &x A message.t > view[x].t)
assume(message.v == val($r) A message.flag == p)
view[x].t < message.t
if checkMode then

‘ message.flag < —1, liveChain[x] « false
else

‘ message.flag < 0
end

messageStore[messageNum] <« message

choose one of four possibilities for the write: it either (i)
is not assigned a fresh timestamp, (ii) is assigned a fresh
timestamp and published, (iii) is assigned a fresh timestamp
but not published (that is, the message is not added to the
memory), or (iv) fulfils some outstanding promise.

In case (i), no message is created, and view[x].[is set to
false, signifying that the timestamp recorded in the view
does not correspond to the most recent write to x and should
therefore not be used in the comparisons.

In cases (ii) and (iii), we allocate a new timestamp and
store it into view|x].t. We use the avail array to ensure that
allocated timestamps are unique: we check that the selected
timestamp is available (i.e., not allocated), and remove it
from the array of available stamps. If the message is to be
published (case ii), the appropriate message is constructed
and published; otherwise (case iii), this step is skipped.

10

Finally, if the process decides to fulfill a promise (case
(iv)), a message is fetched from messageStore and checked to
be an unfulfilled promise by the current process (checking
flag = p), and the flag is set to 0.

Let us now consider a write executing in the certification
phase (i.e., when checkMode is true).

We will only highlight differences between the normal and
certification phase writes. Most importantly, we maintain
and use the liveChain invariant whenever a fresh timestamp
is assigned. Indeed, if liveChain is true, the process must
assign consecutive timestamps (line 8). Also, when it does
not publish the current write as a promise message, or fulfill
an older promise (cases (iii) and (iv)), it sets liveChain to true
(lines 4, 24). In cases (iii) and (iv), the message flag is set to —1
rather than 0, indicating that the promise has been certified,
but not yet fulfilled.

Algorithm 4: [[$r = x]? read

if = then
assume(numEE < K)

/* View-switching read */

msgNum «— nondetInt(0, messagesUsed — 1)
msg « messageStore msgNum]
assume(msg.var == &x)

assume(view[x].l A view[x].t < msg.t)
view[x].t « msg.t, view[x].v « msg.v

view|x].f « true, numEE < numEE + 1

assume(—liveChain[x])
else
‘ assume(view[x].f)

/* Non-view-switching read */

end
val($r) = view[x].v

Read Statements. Algorithm 4 is used to translate read
statements of the form $r = x. At line 1, the process guesses
and takes the then branch if the read is view-switching.

In the case of a view-switching load, we check that we
have not reached the context-/view-switching bound, we
fetch a new message from messageStore with a larger times-
tamp that the one in the current view, update the process
view to include that new message, and increment the num-
ber of context and view switches. We finally ensure that
liveChain[x] is false before the read in order to forbid ad-
ditive insertions when checking consistency of promises.
Recall from the liveChain invariant that liveChain[x] is true
only when the process is in certification mode and the last
write on x was not published as a promise message.

Reading a message from the mem-

ory when liveChain[x] is true im- | x:=1; //t
plies additive insertion during certifi- | a:=x; //t3
cation, as illustrated by the adjacent x:=2; //t3+1

code fragment. Assume the process
is in the promise certification mode, with view|[x].t set to
t1, and let the first write use a timestamp t, > t; with the
message not published as promise, with liveChain[x] as true.
Now the instruction a:=x uses a message in the memory
with a timestamp t3 > f,. If the next write certifies a promise

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

message, the interval in the message will be #; + 1, since
liveChain[x] is true. This results in two writes during the
certification, with non-adjacent timestamps f,, t3 + 1, with
only the latter being promised. The choice of the timestamps
clearly shows additive insertion. Notice that if the earlier
write also resulted in a promise message then we do not
have additive insertion (since both are promised) and the
read with timestamp #, is allowed since liveChain[x] is false.

If the read is not view-switching, the process checks that
the local value is usable (line 13) and loads its local value
view[x].v into $r. The local value may become unusable if
the process crosses an SC-fence which updates its view[x].t.

6 Implementation and Evaluation

To evaluate the efficiency of the technique presented in the
previous section, we have implemented it as a tool called
SwinG. SwinG takes as input a C program and a bound, K,
and translates it to an SC program. We use CBMC version
5.10 as the backend tool, which takes as input L, the loop
unrolling parameter, specifying the number of iterations for
which loops are unrolled. SwinG then considers the subset
of executions respecting the bounds K and L provided. If it
returns unsafe, then the program has an unsafe execution in
this subset. Conversely, if it returns safe, then none of these
executions violate any assertion.

In the promise free mode, we compare SwinG with
three state-of-the-art stateless model checking (SMC) tools,
CDSCHECKER [23], GENMC [15] and Rcmc [14] that support
the relaxed semantics without promises (as defined in [13]).
We use a version of CDSCHECKER that halts on the first bug
discovered while GENMC and Rcmc do this by default. In
the tables that follow, we specify the used values of L (for all
tools) and K (only for SwinG).

The main takeaways of our experiments are: (1) SwinG
can uncover hard-to-find bugs faster than the others with
relatively small values of K; (2) our approach is more resilient
to trivial changes in the position of bugs as compared to the
SMC tools; (3) in many instances, our technique fares better
at capturing relevant behaviours instead of exploring all
possible traces as done by some SMC tools.

We note that the tools we are comparing with do not re-
quire as input the bound, K. Hence, the comparison may
not be fair for some safe examples, since SwinG only con-
siders the subset of executions which K enforces. However,
in certain instances we have set the parameter K such that
all executions are considered (modulo the loop unwinding
bound). In such cases, we note that SwinG is comparable to
the others. We highlight such cases (only for safe examples)
with a green checkmark () accompanying the value of K
used. Additionally, we have put forth cases where we can
iteratively increment K to prove correctness. This difference
in comparison has no bearing on the reliability of the results.

Considering the above observations, we realise that the
SMC tools and SwInG have orthogonal approaches to finding

11

bugs, and can be used to complement each other. SMC tools
are limited by how they explore all executions, which might
be sub-optimal in cases where we have a shallow counterex-
ample but which is explored only after several executions,
while SwInG is limited by the bound K.

We do not consider compilation time for any tool while
reporting the results. For SwInG, the time reported is the time
taken by the CBMC backend for analysis. The timeout used
is 1 hour for all benchmarks. All experiments are conducted
on a machine equipped with a 2.80 GHz Intel Core i7-860
and 4GB RAM running a Debian 9 (stretch) 64-bit operating
system. We denote timeout by “TO’. We mark a hyphen ‘-’
in the table for when the process is killed with a maximum
resident set size (RAM used) of 3.7 GB or higher.

In the main paper we provide indicative examples of the
experiments conducted. The complete set of benchmarks are
in the supplement. We first compare strong and standard
consistency on some examples. For the remaining bench-
marks, to enable comparison with other tools which do not
support promises (as defined in [13]), we run the SwInG in
the promise-free mode. Then, we show the ability of SwinG:
(1) to detect hard-to-find bugs, (2) to adapt to concurrent
data-structure benchmarks and (2) resilience to location of
bugs and number of executions.

testcase K SwinG[strong] D SwInG[standard]

20 12.284s

. 40 37.166s

splitCAS 5 1.378s 60 am15s

80 4m26s

100 1m13s

LBcu 7 4.434s 200 2m39s

10 1m16s

LB2cu 7 5.331s 20 15m40s

100 10.984s

LBcd 7 1.003s 200 25.010s

fibonacci_2_safe 5 17.244s 10 3mlls
fibonacci_3_safe 5 14m14s 10 TO

Table 1. Comparing the two notions of consistency

Comparing the notions of consistency. In order to em-
pirically confirm our hypothesis that the standard definition
of consistency (as defined in [13]) would not scale, we run
SwinG, on similar small examples under the strong and stan-
dard consistency, while varying the size of the data domain,
specified by D. Observe that we need to vary D for the stan-
dard consistency definition since it is required during the
quantification over all future memories (which implicitly
includes all possible data values). We run SwInG on a variety
of safe and unsafe test cases from [7, 13]. The first three ex-
amples are unsafe while the other ones are safe. In all these
cases, we observe, the dependence of run-time on the size of
the data domain when the standard consistency definition is
used. Strong consistency, on the other hand performs much
better without any restriction on the size of the data domain.
Evaluation using parametrized benchmarks. We com-
pare SwInG with CDSCHECKER, GENMC and Rcmc in Ta-
ble 2 on three parametrized benchmarks: ExponentialBug
(from Fig. 2 of [11]), Fibonacci and safe and unsafe

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

versions of Triangular taken from SV-COMP 2018. In
ExponentialBug(N) and Triangular(N), the processes
compete to write to a shared variable and N repre-
sents the number of times a process may write. In
ExponentialBug(N), the number of executions grows as
O(N!), while the fraction of interleavings that expose the
bug reduce exponentially with N. In the unsafe version of
Triangular(N), there is exactly one interleaving that ex-
poses the bug, while the total number of interleavings in-
creases exponentially with N. In Fibonacci(N), two pro-
cesses compute the value of the n'* Fibonacci number. In
the safe examples, we note that we use a conservative upper
bound on the value of K. Hence this table demonstrates the

safe benchmarks: ReaderWriter(N) (from Norris and Dem-
sky [24]) and RedundantCo(N) (from Abdulla et al. [3]). Both
these examples involve N processes writing distinct values
to a shared variable and one process reading from it. The
number of traces in these examples grow as O(N!). The
number of possible values for the reads however is just O(N)
in the first example and O(1) in the second. The performance
of the SMC tools depends on how efficiently they explore the
executions. SwInG on the other hand depends on the reads
observed, illustrating the point mentioned earlier. We again
note that K is chosen conservatively and our tool declares
the benchmarks to be safe considering all executions.

o . . } benchmark L K SwinG CDSChecker GenMC RCMC
ability of SwInG in exposing hard-to-find bugs as well as its readerwriter 9 0 /5 1068 0.007s 00535 1mi7s
adaptability for safe cases. readerwriter 10 0 /5 1.393s 0.007s 0.056s 14m49s

redundant_co_50 50 5 3.219s 8.965s 4.143s TO
benchmark L K SwinG CDSChecker GenMC RCMC redundant_co 70 70 /5 6.093s 13.843s 181855 TO
exponential_25_unsafe 25 10 3.433s 14.737s 4.697s TO . . .
exponential 50_unsafe 50 10 9.021s més 1mas To Table 4. Evaluation using two synthetic safe benchmarks
exponential 70 _unsafe 70 10 14.136s 2m52s 4m3s TO Evaluation using mutual exclusion protocols. In this
fibonacci_2_safe 2 /20 4.045s 8.811s 0.104s 0.133s . . .
fbonacci 3 safe 3 /20 10899 o 0988 44830 section, we consider mutual exclusion protocol§ from the
fibonacci_4_safe 4 /20 30475s TO 41.576s 3m2s SV-COMP 2018 benchmarks. The unfenced versions of the
triangular 3 _safe 3 /6 1m3s 187375 01525 0.290s protocols are unsafe. All the tools considered report a bug
triangular_4_safe 4 /8 4m58s 20m20s. 1.602s 2.282s . .
triangular_5_safe 5 /10 8miés 0 28.883s 34.819s for these examples within two seconds. We now consider
triangular_3_unsafe 3 10 9.422s 2.903s 0.126s 0.244s variations Of these benchmarks_

triangular_4_unsafe 4 10 2mb54s 3m25s 1.254s 1.531s

triangular_5_unsafe 5 10 12m23s TO 21.619s 26.730s benchmark L K SwInG CDSChecker GenMC RCMC

Table 2. Evaluation using parametrized benchmarks petersonlU(4) 1 4 1.868s 0.005s TO 0.113s

Evaluati . t data st ¢ Wi peterson1U(6) 1 4 9.408s 0.005s TO 0.179s

valuation qsmg concurrent data structures. We com- peterson1U(8) 1 4 43.680s TO To 5 4325
pare the tools in Tables 3 on benchmarks based on concurrent peterson1U(10) 1 4 4ml2s TO TO TO

data structures. The first of these is a concurrent locking al-
gorithm from Hehner and Shyamasundar [10]. The second,
LinuxLocks(N) is a benchmark extracted from the Linux
kernel. If not completely fenced, this benchmark is unsafe
under the relaxed semantics and we fence all but one lock
accesses. The other two are safe benchmarks adapted from
SVCOMP-2018. The queue benchmark is parameterized by
the number of processes and the stack benchmark is param-
eterized by the size of the stack. The processes operate on

Table 5. Evaluation using mutual exclusion protocols with a
single unfenced process

In Table 5, we evaluate the Peterson protocols for N pro-
cesses and keep all but one process fenced. This leads to a
lower fraction of buggy executions. The values of K taken
for these benchmarks assert that the bugs can be found (even
for non-trivial examples) with small K. We call this example
peterson1U and it is parameterized by N.

these data structures and we check whether certain invari- benchmark L K SwinG CDSChecker GenMC RCMC
ants are maintained. These benchmarks illustrate the ability peterson1C(3) 1 2 0.743s 0.012s 0.085s __ 0.786s
of our tool to handle concurrent data-structures similar to peterson1C(4) 1 2 1.827s 5.032s TO 4.157s
those seen in real-world examples. petersonlC(5) 1 2 4.185s >9m42s TO TO
peterson1C(6) 1 2 8.483s TO TO TO
benchmark L K SwIinG CDSChecker GenMC RCMC peterson2C(3) 1 2 0.758s 0.005s 0.068s 0.061
hehner2_unsafe 4 5 6.130s 0.028s 0.042s 0.072s peterson2C(4) 1 2 1.848s 0.015s TO 12.308s
hehner3_unsafe 4 5 26729 0.026s 4mds 1m26s peterson2C(5) 1 2 4.041s 1m36s TO TO
linuxlocks2_unsafe 2 4 0.748s 0.010s 0.036s 0.081s peterson2C(6) 1 2 7.562s TO TO TO
linuxlocks3_unsafe 2 4 1.113s 0.013s 0.037s _ 0.084s Table 6. Evaluation using mutual exclusion protocols with
queue_2_safe 4 4 2.141s 0.020s 0.039s 0.079s . . L. . .
queue 3 safe 4 4 9.417s 0.024s 0.053s 0.086s a bug introduced in the critical section of a single process
stack_4_safe 4 4 2127s 8.313s 0.819s 1.287s . . -
stack 5 safe 5 4 6467 S 141325 43.903s Table 6 exhibits a pair of benchmarks that exhibit the
stack_6_safe 6 4 24185 TO 7ml4s 25mdds sensitivity of DPOR-based algorithms to the location of bugs.

Table 3. Evaluation using concurrent data structures

Evaluation using two synthetic safe benchmarks. We
compare the tools in Table 4 on adaptations of two synthetic

12

We consider the completely fenced version of the Peterson
protocol. However, we introduce a bug (write a value to a
shared variable and read a different value from it) in the
critical section of one of the processes. Between the two

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375

examples, the only difference is the process in which this
bug has been introduced. We call these examples peterson1C
and peterson2C and they are parameterized by the number
of processes. We can see the difference in the performance
of the DPOR-based tools (especially CDSCHECKER) on the
two examples. On the other hand, our tool is resilient to such
superficial changes. We note again that K is small.

7 Undecidability

In this section, we show that both the normal and the strong
reachability problem for concurrent programs under the
relaxed semantics are undecidable even for finite-state pro-
grams. The proof is by a reduction from Post’s Correspon-
dence Problem (PCP) [26]. Our proof crucially uses promises
to ensure that a process cannot skip any writes made by
another process. Unlike the undecidability proof in [1] about
RA, our proof does not make use of any bcas operations,
and so it works even with just plain read and write instruc-
tions. It also works even when we restrict our analysis to
executions that can be split into a bounded number of con-
texts, where within each context, only one process is active.
Our undecidability result is also tight in the sense that the
reachability problem becomes decidable when we restrict
ourselves to machine states where the number of promises
is bounded.

Theorem 7.1. The (weakly) consistent reachability problem
for concurrent programs over a finite data domain is unde-
cidable under the promising semantics with relaxed accesses.

Undecidability is obtained by a reduction from Post’s Cor-
respondence Problem (PCP) [26].

We construct a concurrent program with
two processes p; and pp;, six shared variables
X = {x,y, validate, index, index’, term}, and two regis-
ters {$r,$r’}. The finite data domain of Prog is defined
asD =X U{0,1,...,n} U{L,#}, where L and # are two
special symbols (not in X U {0, 1,. .., n}). All the variables
and registers are initialized to zero.

The code of the two processes is given in Figure 4. De-
pending on the value of the validate flag read, process p; can
run in generation mode (top-level then branch) or validation
mode (top-level else branch). In generation mode, process
p1 writes in sequential manner the sequence of indices (al-
ternated with the special symbol #) to the variable index
and at the same time writes, letter by letter, the sequence
of letters of the word u; to the variable x each time p; sets
the variable index to i (using the Moduleﬁ‘i procedure). In
validation mode, p; reads from the variables index” and y
and writes back what it has read to the variables index and x,
respectively. The second process proceeds in a similar man-
ner as the else branch of the first process: It reads from the
variables index and x and writes the values reads to index’
and y, respectively.

13

Let A (resp. A’) be the label of the assume(true) instruction
of p; (resp. ps). We will show that a solution of the PCP
problem exists iff we can reach the pair of labels (4, 1") in
the program Prog.

Assume that we can (weakly) reach the pair of labels
(A4, 4”). The idea behind the reduction is as follows. In or-
der for p; to reach label A, it must execute the else branch
of its conditional statement. Let us assume it does so. Then,
p1 will read the sequence of indices iy, iy, . . ., i Written by
the process p; on the variable index’. Let us assume that
the process p, writes the sequence of indices ji, j2, . . ., jm
on the variable index’. Each time that the process p; reads
an index from the variable index’, it writes it back on the
variable index. The process p; (resp. p;) alternates between
writing/reading an index in {1, ..., n} and the special sym-
bol # in order to make sure that each written index is at
most read once. In similar manner, the process p; reads the
sequence of indices ji, jo, . . ., jm Written by the process p;
on the variable index and it writes it back on the variables
index’. This implies that the sequence jy, ja, . . . , jm is a subse-
quence of iy, iz, . . ., ix (since the process p, can miss reading
some written indices by the process p;) and also that the
sequence iy, iy, . . ., i is also a subsequence of ji, ja, . . ., jm
(since p; can miss reading some written index by the pro-
cess py). Thus, we have that the sequences iy, iy, . . ., iy and
J1sJ2» - - - »jm are the same. Every time the process p; (resp.
p2) reads an index i from the variable index’ (resp. index), it
(1) tries to read in sequential manner the sequence of letters
appearing in v; (resp. u;) (alternated with the special sym-
bol #) from the variable y (resp. x), and (2) writes the same
sequence of letters to the variable x (resp. y). Using a similar
argument as in the case of indices, we can deduce that if p;
(resp. pp) writes the words v, vy, - - - v;, (resp. ujuj, - - - uj,,),
letter by letter (with an alternation with the symbol#), to the
variable x (resp. y), then v; v;, - - - v;, (resp. uju;, - - - uj,) is
a subsequence of uj uj, - - - u;j,, (resp. v;, vy, - - - v;,). Thus, if
the pair of labels (4, 1”) is reachable then there exist two se-
quences iy, iz, . . ., ig and ji, j2, . . . , jm, Written, respectively,
by p; and p; such that iy, iy, . .., i, is equal to ji, j2, - - - s jms
and v, vy, - - - v;, is equal to uj uj, - - - u;,,. Observe that se-
quence of indices iy, iz, . . ., ix is non-empty due to the as-
sume statement assume($r’ € [1, n]).

Let us now show the other direction. Let us assume
that a solution of the PCP problem exists. This means
that there is a sequence of indices iy, iy, . .., i such that
Vi, Vi, Vg, uj U, - uj,. Let w = uju, - u;,. Let
us show that the pair of labels (1,1") can be (weakly)
reachable in Prog. For that aim, consider the follow-
ing (weakly consistent) run of the program Prog: p,
starts first by setting the variable term to 1. Then, p;
will use the then branch of its conditional statement
to promise the two following sequence of promises
(index, i1, (1, 2]), (index, is, (2,3]), . . ., (index, ix, (k, k + 1])
and (x, w[1], (1, 2]), (x, w[2], (2,3]), . . ., (x, wl|wl], (|wl, [wl+

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430

1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

Process p; [Process p; ModuleTi [Moduleﬁf]
if validate = 0 then term = 1; assume(y = v;[1]) assume(x = u;[1])
while term = 0 do $r = index; assume(y = #) assume(x = #)

$r’ = index’
assume($r’ € [1, n])
while $7’ # L do

$r = index

if $r’ =1 then done
Module}! validate = 1

else if $r/ = 2 then | index’ = L
Module512 assume(true);

else if $r' = n then
Module}!

endif

assume(index’ = #)

$r’ = index’

assume(index’ # #)

done

index = L

assume(true)
endif

index = 1 assume($r € [1, n])
Modulef! while $r # L do
index = # if $r =1 then
... Modulef?
index =n else if $r = 2 then
Modulef)! Module{?2
index = # ce
done else if $r = n then
index = L Modulef?
else endif

assume(index = #)

assume(index # #)

assume(y = v;[2]) assume(x = u;[2])

assume(x = u;[|u;|])
assume(x = #)

assume(y = v;[|v;|])
assume(y = #)

x = v;[1] y =u;1]

x=# y=+#

x = vi2] y = u2]

x = vi[lvil] y = uillu;l]

index = i index’ = i

index = # index’ = #
Moduleﬁ1i

x = u;[1]

x =#

x = u;[2]

x = uif|u;l]
X =#

Figure 4. The code of processes p; and p;.

1]). Observe that p; can certify such sequences of promises
under the two semantics for relaxed accesses by iterating
its iterative statement in the then branch of its alternative
statements. Once these promises are performed, p, reads
these two sequences and writes them back to the variables
index” and y, respectively. p, then sets the variable z to 2.
Now p; can resume its execution by reading the variable
z written by the second process and enter its else branch
of its alternative statement. Then, p; will iteratively read
the values written by p, on the variable index’” and y and
write them back to the variables index and x, respectively.
By doing this p; fulfils also the sequence of promises that
has been issued.

Notice that the number of promises made by p; is un-
bounded. Also, the proof uses only 3-context executions,
where, following Qadeer and Rehof [27], a context is a con-
tiguous sequence of operations performed by only one pro-
cess and a k-context run, for a given k € N, is a run that can
be partitioned into k contexts.

References

[1] Parosh Aziz Abdulla, Jatin Arora, Mohamed Faouzi Atig, and
Shankara Narayanan Krishna. 2019. Verification of programs under
the release-acquire semantics. In PLDI 2019. ACM, 1117-1132.

14

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and
Tuan Phong Ngo. 2017. Context-Bounded Analysis for POWER. In
Tools and Algorithms for the Construction and Analysis of Systems - 23rd
International Conference, TACAS 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, Part II (Lecture Notes in Computer
Science), Axel Legay and Tiziana Margaria (Eds.), Vol. 10206. Springer,
56-74.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and
Tuan Phong Ngo. 2018. Optimal stateless model checking under the
release-acquire semantics. Proc. ACM Program. Lang. 2, OOPSLA
(2018), 135:1-135:29.

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and
Madanlal Musuvathi. 2010. On the verification problem for weak mem-
ory models. In Proceedings of the 37th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2010, Madrid,
Spain, January 17-23, 2010. ACM, 7-18.

Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato. 2011.
Getting Rid of Store-Buffers in TSO Analysis. In Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, Fuly 14-20, 2011. Proceedings (Lecture Notes in Computer Science),
Ganesh Gopalakrishnan and Shaz Qadeer (Eds.), Vol. 6806. Springer,
99-115.

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber.
2011. Mathematizing C++ concurrency. In POPL 2011, Thomas Ball
and Mooly Sagiv (Eds.). ACM, 55-66. https://doi.org/10.1145/1926385.
1926394

[3

[t}

[l

[4

5

—

[6

—

https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/1926385.1926394

1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595

(7]
(8]

(10]

(11]

(12]

(13]

(14

[l

[15

—

(16]

(17

—

[18

—

(19]

[20]

[21]

Soham Sundar Chakraborty and Viktor Vafeiadis. 2019. Grounding
thin-air reads with event structures. PACMPL 3 (2019), 70:1-70:28.
Karl Crary and Michael J. Sullivan. 2015. A Calculus for Relaxed
Memory. In POPL 2015, Sriram K. Rajamani and David Walker (Eds.).
ACM, 623-636. https://doi.org/10.1145/2676726.2676984

Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. 2011. Delay-
bounded scheduling. In Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.).
ACM,, 411-422.

Eric C.R. Hehner and R.K. Shyamasundar. 1981. An implementation
of P and V. Inform. Process. Lett. 12, 4 (1981), 196 — 198. https://doi.
0org/10.1016/0020-0190(81)90100-9

Jeff Huang. 2015. Stateless model checking concurrent programs with
maximal causality reduction. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Port-
land, OR, USA, June 15-17, 2015, David Grove and Steve Blackburn
(Eds.). ACM, 165-174.

Alan Jeffrey and James Riely. 2019. On Thin Air Reads: Towards
an Event Structures Model of Relaxed Memory. Logical Methods in
Computer Science 15, 1 (2019). https://doi.org/10.23638/LMCS-15(1:
33)2019

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek
Dreyer. 2017. A promising semantics for relaxed-memory concurrency.
In POPL 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM,
175-189.

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Vik-
tor Vafeiadis. 2017. Effective Stateless Model Checking for C/C++
Concurrency. Proc. ACM Program. Lang. 2, POPL, Article 17 (Dec.
2017), 32 pages. https://doi.org/10.1145/3158105

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019.
Model checking for weakly consistent libraries. In PLDIL https://doi.
org/10.1145/3314221.3314649

Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. 2008.
Context-Bounded Analysis of Concurrent Queue Systems. In Tools
and Algorithms for the Construction and Analysis of Systems, 14th In-
ternational Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29-April 6, 2008. Proceedings (Lecture Notes in Com-
puter Science), C. R. Ramakrishnan and Jakob Rehof (Eds.), Vol. 4963.
Springer, 299-314.

Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. 2009. Reduc-
ing Context-Bounded Concurrent Reachability to Sequential Reach-
ability. In Computer Aided Verification, 21st International Conference,
CAV 2009, Grenoble, France, June 26 - July 2, 2009. Proceedings (Lecture
Notes in Computer Science), Ahmed Bouajjani and Oded Maler (Eds.),
Vol. 5643. Springer, 477-492.

Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. 2010. Model-
Checking Parameterized Concurrent Programs Using Linear Interfaces.
In Computer Aided Verification, 22nd International Conference, CAV
2010, Edinburgh, UK, Fuly 15-19, 2010. Proceedings (Lecture Notes in
Computer Science), Tayssir Touili, Byron Cook, and Paul B. Jackson
(Eds.), Vol. 6174. Springer, 629-644.

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. 2017. Repairing sequential consistency in C/C++11. In PLDI
2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 618-632. https:
//doi.org/10.1145/3062341.3062352

Akash Lal and Thomas W. Reps. 2009. Reducing concurrent analysis
under a context bound to sequential analysis. Formal Methods in
System Design 35, 1 (2009), 73-97.

Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java
memory model. In POPL 2015, Jens Palsberg and Martin Abadi (Eds.).
ACM, 378-391. https://doi.org/10.1145/1040305.1040336

15

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Madanlal Musuvathi and Shaz Qadeer. 2007. Iterative context bounding
for systematic testing of multithreaded programs. In Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10-13, 2007, Jeanne
Ferrante and Kathryn S. McKinley (Eds.). ACM, 446-455.

Brian Norris and Brian Demsky. 2013. CDSchecker: Checking Concur-
rent Data Structures Written with C/C++ Atomics. In OOPSLA 2013.
ACM, New York, NY, USA, 131-150. https://doi.org/10.1145/2509136.
2509514

Brian Norris and Brian Demsky. 2016. A Practical Approach for Model
Checking C/C++11 Code. ACM Trans. Program. Lang. Syst. 38, 3, Article
10 (May 2016), 51 pages. https://doi.org/10.1145/2806886

Jean Pichon-Pharabod and Peter Sewell. 2016. A concurrency seman-
tics for relaxed atomics that permits optimisation and avoids thin-air
executions. In POPL 2016, Rastislav Bodik and Rupak Majumdar (Eds.).
ACM, 622-633. https://doi.org/10.1145/2837614.2837616

Emil L. Post. 1946. A variant of a recursively unsolvable problem. Bull
Amer. Math. Soc. 52 (1946), 264-268.

Shaz Qadeer and Jakob Rehof. 2005. Context-Bounded Model Checking
of Concurrent Software. In TACAS 2005 (LNCS), Vol. 3440. Springer,
93-107.

Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and
Viktor Vafeiadis. 2018. A Separation Logic for a Promising Semantics.
In 27th European Symposium on Programming, ESOP 2018 (LNCS), Amal
Ahmed (Ed.), Vol. 10801. Springer, 357-384. https://doi.org/10.1007/
978-3-319-89884-1_13

Ermenegildo Tomasco, Truc Lam Nguyen, Bernd Fischer, Salvatore La
Torre, and Gennaro Parlato. 2017. Using Shared Memory Abstractions
to Design Eager Sequentializations for Weak Memory Models. In Soft-
ware Engineering and Formal Methods - 15th International Conference,
SEFM 2017, Trento, Italy, September 4-8, 2017, Proceedings (Lecture Notes
in Computer Science), Alessandro Cimatti and Marjan Sirjani (Eds.),
Vol. 10469. Springer, 185-202.

Yang Zhang and Xinyu Feng. 2013. An Operational Approach to
Happens-Before Memory Model. In Seventh International Symposium
on Theoretical Aspects of Software Engineering, TASE 2013, 1-3 July 2013,
Birmingham, UK. IEEE Computer Society, 121-128. https://doi.org/10.
1109/TASE.2013.24

1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650

https://doi.org/10.1145/2676726.2676984
https://doi.org/10.1016/0020-0190(81)90100-9
https://doi.org/10.1016/0020-0190(81)90100-9
https://doi.org/10.23638/LMCS-15(1:33)2019
https://doi.org/10.23638/LMCS-15(1:33)2019
https://doi.org/10.1145/3158105
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1145/3314221.3314649
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/2806886
https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1109/TASE.2013.24
https://doi.org/10.1109/TASE.2013.24

1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

A Proof of Theorem 3.1

Let us prove that strong consistency implies consistency. Assume that a machine state MS = (J, R, View, PS, M, G) is
strongly consistent. Then, we have (4o, Ry, Vo, Py, Mo, GO)—>;C°"S(/11, Ry, Vi, P1, My, Gl)—>;°°“5 _ —>;°°”5(An, Ry, Vi, Py, My, Gy)
with MSlp—>;C°”S = (Ao, Ry, Vi, Py, My, Gy) and P,, = 0. Since H;‘f"”s - —>;,°"S, we can show that, for any future memory
M’ such that M C M’, we have (Ao, Ro, Vo, Po, Mg, Go) =5 (A1, Ry, Vi, P, M), G1)—=p™ - -+ =3 (An, Ry Vi, P, M, G) with
M{ = M’. Intuitively, the second consistency run will proceed in the same way as the strong consistency run by reading from
the same sequence of messages, performing the same write instructions with splitting, fulfilment or maximal insertions. and
bcas instructions with splitting or fulfillement insertions.

Now let us assume that the program Prog does not contain any bcas and that the machine state MS =
(J,R,View, PS,M,G) is consistent. This means that, for any future memory M’ such that M < M’, we have
(Ao Ro, Vo, Po, Mj, Go) =52 (A, Ry, Vi, Py, M}), G1) =5 -+ =S (A, Ry, Vi, Py My, Gy) with M = M’ and P, = 0. This
is in particular true for the future memory M’ where all the the intermediate holes in M are filled up. This means that
in the following consistent run (Ao, Ry, Vo, Po, M, GO)—>ICJ°“S(/11,R1, Vi, Py, My), Gl)—>1c;’"5 e —>;,°“S(/1,,,Rn, Vs Pny My, G,) no
insertion of write operations with non-maximal timestamp has been performed. Thus, we have (4o, Ry, Vo, Po, Mj \ (M, \
M), Go) 5" (A1, Ry, Vi, Py, My \ (Mg \ M), G)— 57" - -+ =5 (An, Ry, Vg, P, My, \ (M \ M), Gp,) and M is strongly con-
sistent.

B Proof of Theorem 4.1

In this section, we show the 7« -hardness of reachability of PFS-RLX over a finite domain with only read, write and SC-fence
instructions. F,« is a level in the fast-growing hierarchy of recursive functions. The fast growing hierarchy is a class (Fy)) of
number-theoretic functions indexed by ordinals. Chambart and Schnoebelen (LICS 2008) established the ¥~ lower bound for
the reachability and termination of lossy channel systems.

B.1 The non-primitive recursive lower bound of PFS-RLX without bcas

Our proof follows by a reduction from the reachability problem of lossy channel systems.

Lossy Channel Systems. A lossy channel system (LCS) is a tuple S = (Q, M, C, A) where Q is a finite set of states, M is a
finite message alphabet, C is a finite set of lossy channels, and A € Q X C x {!,?} X M X Q is a finite set of transition rules. A
rule of the form (g, ¢, !, a, ¢’) (respectively (g, ¢, ?, a, q")) is a write (respectively read) transition.

Assume S = (Q,M,C,A) is a LCS with ¢ channels. A configuration of S is a pair (g, (u1,...,ur)) where ¢ € Q and
u; € M* forall 1 <i < {. u;is the sequence of messages contained in channel ¢; (reading a message happens at the head
of the channel, and writing from the tail of the channel). Two configurations are compared using the subword ordering :
(q u1,...,ue) (g, ug,.. .,ué,)) S @=9)NA /\le(ui Cuj)

Let Conf represent the set of all configurations. The operational semantics of S is given as a transition system Ts = (Conf, —).
Let o = (q,(u1,...,ur) and 0’ = (¢, (u, . . ., uy) be two configurations. Then a perfect step is one of the following.

)
1. Let § = (q,¢i,a,?,q"). Then 0 — o', with u; = au},and u; = uj' for j # i, or

2. Let 5 =(q,¢i,a,!,q"). Then o i o', with u] = u;a, and u; = uj' for j #i.

Since the channels are lossy, we can have lossy steps too. A lossy step can happen after a perfect read step, and we lose
messages arbitrarily from any of the channels. A run is a perfect run if there are no losses in between two perfect steps.
Otherwise, the run is lossy. Notice that we have chosen to lose messages after a read and also after a write. The choice of losing
a message after a read or after a write or after either (like in our case) are all equivalent and does not impact the complexity
result of Chambart and Schnoebelen.

Reachability in LCS. Given states g1, gz in the LCS, the reachability problem asks whether, starting from state g; with all
channels empty, one can reach state q; with arbitrary contents in the channels.

Reduction from LCS to PFS-RLX with only reads and writes. We now present our reduction froman LCS S = (Q, M, C, A)
to a concurrent program using only read and write operations, over PFS-RLX semantics. Assume there are ¢ lossy channels in
S,and let Q = {q1,...,qn}. Assume that all transitions going out of each state g; are numbered. Thus, if ¢; has k outgoing
transitions, then we refer to them as tran; 1,. .., tran; .

We construct a concurrent program with € + 2 processes. Each channel c; is modeled using shared variables x;, y;. A shared
variable tran holds the values of the possible transitions tranis, . . ., trany;. Finally, a shared variable reach (initialized to false)
keeps track of whether we have reached the desired state in LCS. The number of shared variables needed in the construction
of the RA program is hence 2|C| + 2. The domain of the constructed program is the set of states and transitions of the LCS,
along with the set of messages M. The processes are as follows.

16

1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760

1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815

(:vh,a.l,tl,Vl) <zh10'2yt2|V2) oo Ty nytn, V) o e e

ead Yr

write Yp

v

(yh:aintg,sViI) (yluaizvt’izavi;>' . '<yhxaim7t§m V; >' ..

t Vi

Figure 5. Processes ppasrer and p., simulating writes and reads in channel cy. ppasser Writes to variable xj simulating a
write to channel cy; pe, reads xj and copies it to yp. pmaster reads yp, simulating a read from channel cp.

The Processes

Process pirqn : There is a process ps,qn Which repeatedly writes to a shared variable tran (as long as reach is false), the names
tranii, ..., trany ; of the transitions in A.
Processes ppqsier and pe, :

Given the reachability problem from state g; to state g;, the process py4s:er starts by initializing a local register to g;. It keeps
track of the states in the LCS, and the control flow while simulating a run in the LCS starting from g;. This process simulates
the transitions of the LCS depending on the current state. In doing so, pasrer Simulates the read and write transitions and
ensures that control moves to the correct next state depending on the choice of the transition. pyqs:e does the following
repeatedly.

e To begin, pmaster initializes a local register $r with the value g;, if we are interested in reaching a state g; in the LCS
starting from state g;. At any point of time, $r holds the name of the state in the LCS where the control flow resides
currently. Assume $r stores the state g;, and let there be k outgoing transitions from q1. pmaster has blocks of code
corresponding to each state in the LCS. Each such block has the form while($r == ¢) do ...done and simulates an
outgoing transition from the current state, and either remains in the same block if the state remains the same, or goes to
another block depending on the transition chosen.

— Dmaster reads the shared variable ¢tran. The value which is read must be one of the transitions tranys, . . ., trany; since
the control resides in the block corresponding to state g;. Let the value of tran be tran, j,

— Assume the 1, jth transition is (g1, ¢y, @, !, ¢;). Then, ppmasser Writes the value a to the shared variable xj,, and writes
the state name g; into $r. It then exits the block corresponding to g; and enters the one corresponding to g;.

— Assume the 1, jth transition is (qi, ¢, a, ?, g;). Notice that if p,gsser reads from the variable xp, it can only read its

latest write following the relaxed semantics, since it is the only process which writes to variables xy, . . ., x,. This does
not simulate the (lossy) channel discipline. To facilitate the proper simulation of the lossy channel ¢y, prnaster must be
able to jump to any message in the channel ¢, and read it as if that was the head of the channel. To enable pp,qszer
in doing so, we have a process p., which repeatedly reads values of x;, and writes the into yj. Indeed, p., may omit
certain values of xj, copying a proper subset of the values into yp. p, is the only process which reads from xj, and is
the only process which writes to yj,. Likewise, ppqsser is the only process which writes to xj, and reads from yy,. See
figure 5.
To simulate (¢, ¢y, a, ?, Q") Pmaster reads the variable yj, and checks if its value is a. If so, it writes the state name g;
into $r, and then exits the block corresponding to g; and enters the one corresponding to g;. Notice that if p., copies
Xp to yp every time pp4srer has written to yp,, then pp,asrer has the possibility to read the first value it wrote to xp,
(simulating a lossless read). However, py,4ster can choose to read any y;, from the memory pool, and being the sole
reader of yy,, ensures the channel discipline, along with the lossiness.

e Once the state g; is reached in ppasser, (this is true when ppaser sets the register $r to g; from the current state (say
qk))- Once this is done, ppasser sets a boolean shared variable reach to true, and reaches term. The other processes
(Prrans pe,) check if reach is true, and if so, also reach term.

Inserting SC-fence instructions. To ensure no promises can be made, each of the above read, write in p,45:¢r and each pe,
are followed by SC-fence instructions.

17

1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

Theorem B.1. The constructed program under PFS-RLX semantics faithfully simulates the LCS : starting from state q;, we reach
state q; in the LCS iff the instruction term is reached in all processes.

Example B.2. We illustrate the reduction on an example. Consider the LCS in Figure 6. The constructed program can be seen
in Table 7.

Ptran Pmaster Pcy Pey
while (reach # T)do | $r=qi while (reach # T)do | while (reach # T) do
tran = trany; while (reach # T) do $ri =x; $ro = x3
tran = trans while($r == q1) do y1 = $ry Yo = $r2
tran = trangs assume(tran = \/g:1 transiz) | if(reach==T) if(reach==T)
tran = trany; if(¢tran == tran) break break
tran = trang; X1 =a end if end if
tran = trans; else if(tran == tranyz)
if(reach==T) $r' =y,
break assume($r’ = b)
end if $r = q2 break
else if(tran = tran;s)
$r' =y

assume($r’ = a)

$r = q3;reach = T; break
end if

done

while($r == g3) do
assume(tran = transy)
x1 = b; $r = qo; break

done
done done done done
term term term term

Table 7. Instruction labels have been omitted. To avoid clutter, we have also not written the SC-fence instruction that follows
each instruction in ppaster, pe, and pe,. The PFS-RLX program simulating the LCS.

cila c?b

Figure 6. A LCS with 2 lossy channels c;, ¢, and states g, g2, 3. The message alphabet is {a, b}.

As mentioned above, we number the transitions in the LCS depending on their source state. In the LCS given, we have
trany; representing the self-loop at gy, tran;, representing the transition from ¢; to q; and tran;s representing the transition
from ¢q; to gs. Likewise, trans; represents the transition from g3 to gz, and so on. The domain of the constructed program
Prog is D={a, b, q1, q2, q3, tranyy, tranyy, tranys, tranyy, tranyy, trans; }. The shared variables are {x1, yi, X3, Y2, tran, reach}, of
which reach is a boolean variable which is initialized to false. We reduce the reachability of LCS to the control reachability
problem in Prog, and show that starting from ¢, g3 is reachable in the LCS iff we reach the instruction term in all processes.

18

1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980

1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035

C Details for Section 5

We first give a glossary of all the variables used in the code. The list contains variables global to all processes or local to a
process. A small description of their role is also mentioned, which serve as invariants.

1. numEE : global variable, initialized to 0, keeps track of the number pf promises and view switches so far. Each time a
promise or a view altering read happens, numEE is incremented.
2. numContexts : global variable, initialized to 0, keeps track of the number of context switches so far. This is used in the
translation to SC.
3. view[x].v : local variable, stores the value of x € X in the local view of the process
4. view[x].t : local variable, stores the time stamp € Time of x € X in the local view of the process.
5. view[x].l : local variable, boolean, which is set to true when view[x].t is a valid timestamp, used in comparisons with
timestamps of other messages.
6. view[x].f : local variable, boolean. A true value indicates that view[x].v is recent, and can be used for reading locally.
7. view|[x].u : local variable, boolean. A true value indicates that the sequence of events starting from the one that resulted
in the timestamp view[x].t till the most recent, form a chain of bcas operations on x. Whenever a write is published,
view[x].u is set to true. view[x].u is set to false on an unpublished write. On a sequence of bcas operations, view|[x].u is
left unchanged.
8. checkMode : local variable, boolean. Set to true when the process is in certification phase, which means the process is
making and certifying promises.
9. liveChain[x] : local variable, for each x € X, boolean. Can be true only when checkMode is true. A true value represents
that the last write done while the process is in certification phase is not a published promise message.
10. extView[x] : local variable, for each x € X, boolean. A true value represents that the local value view[x].v of the process
comes from a message generated external to the certification phase.
11. avail[x][] : for each x € X, a global boolean array of length 2K + 1 corresponding to the 2K + 1 time stamps, checks
availability of a time stamp on a fresh write.
12. upd[x][] : for each x € X, a global boolean array of length 2K + 1 corresponding to the 2K + 1 time stamps, checks
whether a certain timestamp has been used to read in a bcas.
13. globalTimeMap|x] : global variable, for each x € X, stores a time stamp € Time. Maintains the globally maximal time
stamp of each variable.
14. messageStore : This is an array of messages, where each message is of type Message as described in the main paper. The
length of the array is K, the bound on the number of promises + view switches.
15. messagesUsed : a number from 0 to K which keeps track of the number of populated messages in messageStore.
16. messageNum : a number from 0 to K which chooses a number from the available free cells in messageStore.

We will denote the K-(promise, view) bounded strong consistency as Bd(PS, Vw)—RLX.

Translating Bd(PS, Vw)—RLX to bounded-context SC

Now we describe all the missing algorithms, and provide details of the codes. To start, we note that we are representing interval
timestamps by integers in the translation. For each interval we only maintain its rightmost endpoint in our translation. Note
that we can make discrete the dense points used in the intervals due to boundedness of the number of essential messages.

C.1 MaAIN

Main. Algorithm 5 is the process that initializes all the global variables. This process executes atomically before all the other
processes. avail[x] for each shared variable x in Prog is an array of size 2K + 1 which keeps track of time stamps which have
not yet been assigned. Since all variables have a time stamp 0 initially, the first entry of this array is false for all variables. All
entries of upd[x][view[x].t] are initialized to true.

C.2 INiTPrOC

Initialize Process. Before the simulation of each process, we initialize its variables of type View. The values and time stamps
of all variables are 0, hence the initial view coincides with the view in the initial machine state of all runs. The variables

liveChain[x] is set to false for all shared variables x. Not that this sets up the invariant mentioned on the previous page.

extView[x] is initialized to true, since to begin, we are not in the certification phase and the initial value 0 comes from the
initial message (which is generated outside any certification phase). Algorithm 6 details the function which is called at the
beginning of each process.

19

2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144

2145

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

Algorithm 5: MAIN

atomic_begin

messagesUsed «— 0

numContexts < 0

numEE < 0

for x € X do

upd[x][0] « true

globalTimeMap|[x] < 0

for ts € {1,2,...,2K} do
avail[x][ts] « true
upd[x][ts] « true

end

end
atomic_end

Algorithm 6: INrTPROC

atomic_begin

for x € X do

view[x].t « 0
view[x].v « 0
view[x].l « true
view[x].u < true
liveChain[x] « false
extView[x] « true
end

C.3 ConTExTSWITCHIN (CSI)

Algorithm 7: CONTEXTSWITCHIN

if —active then
atomic_begin
active < true
numContexts < numContexts + 1
assume(numContexts < K + n)
end

Switch Into Context. This is called before each instruction A : i in a process p, to check if the process is active in the current
context, which is kept track of by the boolean variable active. The counter numContexts is incremented signalling that one
more context has been consumed. Since we translate into SC under K + n-bounded contexts, we check whether the context
switching bound has already exceeded K + n. Algorithm 7 describes the context switching in.

C.4 PuBLISH

Algorithm 8: Publish(message)

assume(messagesUsed < K)
messageStore[messagesUsed] < message
messagesUsed «— messagesUsed + 1

Publish Subroutine. This is used to add messages to the messageStore. Each time a write or a bcas happens, depending
on whether it results in an essential message or not, Publish(message) is called. Promise messages are also added using
20

2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255

Publish(message). Each time a new message is published, the size of the messageStore is increased. Since we have the bound on
the number of essential messages, we check if the bound K on the number of view switches and promises has been exceeded.

C.5 LOADSTATE and SAVESTATE

Load and Save State while changing modes. The saveState subroutine copies the local state of the calling process and
the global state into a what we refer to as ‘copy’ variables. We note that it does not however copy numEE and contents of
messageStore. The reason for this being, the promises the process makes with checkMode true are retained even after checkMode
is made false. Hence the increments made to numEE and the messages added to messageStore should be maintained even
beyond after checkMode is false. Analogously in loadState, we load the contents of the (saved) ‘copy variables’ into their
original counterparts.

Another subtle point to be noted is that when the process publishes a message (as a promise) when checkMode is true, we
also update the ‘copy’ variables corresponding to avail[x]. This is done so that when the process returns to normal mode, the
changes are reflected in their original counterparts (which is essential since promise messages are maintained beyond the time
checkMode is false and hence their timestamps must be unavailable).

C.6 ScFENCE

Algorithm 9: SCFENCE

assume(—checkMode)
for x € X do
if globalTimeMap|x] > view[x].t then
view[x].t « globalTimeMap|x]
view[x].f « false
view[x].l « true
else
if (view[x].l) then

‘ globalTimeMap|x] « view[x].t
else

‘ globalTimeMap(x| « view[x].t + 1
end

end
end

SC fences. An SC-fence, in Algorithm 9, essentially takes the join of the globalTimeMap|x] and the local timemap (view[x].t
for all x € X) of the process. First we ensure we are not in checkMode phase of the run, otherwise the run will not be consistent
[13]. For each variable x the following is done.

o Lines 2-5 handle the case, where the former is greater. Then view[x].t updated to match it; view[x].] is set to true since
the timestamp is now valid (can be used in comparisons). Also, view[x].f is set to false, since the timestamp of the
message corresponding to the current local value, view[x].v, is lower than view[x].t, and hence view[x].v is no longer
usable.

e Lines 7-11 handle the other case where the process timestamp is greater. If view[x].l is valid (line 7-8) then, we can
set view|x].t to globalTimeMap[x]. If it is not valid (line 9-10), the process timestamp has actually proceeded beyond
view[x].t. Note crucially that view[x].t was the latest timestamp from TiMmE that the process had. In this case, we set
globalTimeMap|x] to view[x].t + 1, the next ‘useful’ timestamp following view[x].t.

C.7 ConTeEXTSWITCHOUT (CSO)

Context Switch Out. We have described the full algorithm in the main paper. CSO?* allows the process allows the process
to enter and exit context and it also serves to check the consistency of the process. When the process enters the certification
phase, its local state (and program counter) are saved. When it returns back from the certification phase, liveChain being false
is assumed which enforces that the process did not perform additive insertion. Then, the state is loaded and the program
counter is reset to the same value it had before entering the certification phase.

21

2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310

2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

Algorithm 10: CSO?*

Osw:
if * then
if —checkMode then
if —active then
atomic_begin
active « true
numContexts < numContexts + 1
assume(numContexts < K + n)
end
checkMode «— true
retAddr « A, saveState(p)

else
for m € messageStore do
assume(m.flag # p)
if m.flag == —1 then m.flag < p
end
for x € X do assume(=liveChain[x])
loadState(p), gotoLabel(retAddr)
checkMode « false
active «— false
atomic_end

end
goto Oy

end

C.8 REeaD
Algorithm 11: Translating [$r = x]? read

if * then
assume(—liveChain[x])
assume(numEE < K)

messageNum «— nondetInt(0, messagesUsed — 1)
message «— messageStore[messageNum)|
assume(message.var == &x)

assume(view[x].[)

assume(view[x].t < message.t)

view[x].t « message.t

view[x].v « message.v

extView[x] « true

numEE «— numEE + 1

end
val($r) = view[x].v

Read and Write. We have already described in good detail, the algorithms for read and write. However, we commented out a
few lines which deal with the variable extView[x] (‘external view’) from the code, which is used in bcas. Here, we produce the
complete codes (Algorithms 11, 12) for the read and write instructions. In Algorithm 11, line 11), during a global read, the
variable extView[x] is set to true, indicating that the value view[x].v read is generated by a message external to the current
certification phase. Indeed, whenever a process makes a global read while checkMode is true, it obviously reads from a message
which has been created outside its current certification phase. Hence, extView[x] will be set to true.

In the case of Algorithm 12, if the process has checkMode false, then after the write, the value of view[x].v comes from
the current write (whether or not it resulted in a published message), and hence extView[x] is set to true, since the value in
view[x].v is generated outside any certification phase. Likewise, if the process has checkMode true, then after the write, the
value of view[x].v comes from the current write (whether or not it resulted in a published message), but since it does arise
from the current certification phase, it is not external, and hence extView[x] is set to false (lines 44-48). Finally, view[x].u is set

22

2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420

2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475

to true (line 49) iff view[x].l is true. Indeed, if view[x].I is false after the write, then the time stamp view[x].t is not legitimate
for comparisons, and hence starting from view|[x].t, there cannot be sequence of bcass.

C.9 WRITE
Algorithm 12: [x = $r]? write
if * then
view[x].v « val($r), view[x].l « true
if = then

if liveChain[x] then

| newStamp — view[x].t +1
else

| newStamp < nondetInt(view[x].t + 1, 2K)
end
view[x].t < newStamp
assume(avail[x][newStamp))
avail[x][newStamp] « false
if * then
if checkMode then

else

end
Publish(message)
else
if checkMode then
| liveChain[x] « true
end

end
else
messageNum <« nondetInt(0, messagesUsed — 1)
assume(message.var == &x, message.t > view[x].t)
assume(message.v == view|x].v, message.flag == p)
view[x].t < message.t
if —~checkMode then

| message.flag — 0
else

| message.flag — —1, liveChain[x] « false
end
messageStore messageNum| < message

end
else
view[x].v « val($r), view[x].l « false
if checkMode then
| liveChain[x] < true
end

end
view[x].f « true
if —checkMode then

| extView[x] « true
else

| extView[x] < false
end
view[x|.u « view[x].l

message < genMessage(x, newStamp, val($r), —1)
liveChain[x] « false, numEE « numEE + 1

‘ message «— genMessage(x, newStamp, val($r), 0)

23

2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500

2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

C.10 bcas(x, $r1, $r7)

Algorithm 13: Translating bcas(x, $r1, $r2)]P update

if * then
assume(—liveChain|[x] A numEE < K)
messageNum < nondetInt(0, messagesUsed — 1)
message «— messageStore[messageNum)|
assume(message.var == &x A view[x].l A view[x].t < message.t)
view[x].t < message.t, view[x].v « message.v
extView|[x| < true, numEE < numEE + 1

else
| assume(view[x].f)
end
assume(view[x].v == val($ry))

if view[x].l then
| assume(upd[x][view[x].t]), upd[x][view[x].t] « false

end
view[x].v « val($rz)
if * then
if checkMode then
‘ assume(—extView[x]), liveChain[x] « true
end
view[x].l « false
else
if * then
if view[x].u V liveChain[x] then
| newStamp — view[x].t + 1
else
\ newStamp «— nondetInt(view[x].t + 1, 2K)
end
view[x].t « newStamp, assume(avail[x][newStampl), avail[x][newStamp] < false
if * then
if —checkMode then
| message «— genMessage(x, newStamp, val($r,), 0)
else
\ message «— genMessage(x, newStamp, val($r;), —1), liveChain[x] « false, numEE «— numEE + 1
end
Publish(message)
else
if checkMode then
| assume(-extView[x]),liveChain[x] « true
end
end
else
messageNum «— nondetInt(0, messagesUsed — 1), message «— messageStore] messageNum)|
assume(message.var == &x A message.t > view[x].t)
assume(message.v == val($ry) A message.flag == p)
view[x].t < message.t
if —checkMode then
| message.flag — 0
else
| message.flag < —1, liveChain[x] « false
end
messageStore| messageNum] «— message
end
view[x].l, view[x].u « true
end
view[x].f « true
if —~checkMode then
| extView[x] « true
else
| extView[x] « false
end

Compare and swap bcas(x, $r1, $r2). This module (Algorithm 13) combines the read and write modules.

In lines 2-7, the process reads a message from the messageStore, and updates the local view setting extView[x] to true,
and incrementing numkEE. extView|[x] is set to true since the value of view[x].v is taken from a message in the messageStore:
irrespective of whether checkMode is true or not, the value comes from a message generated outside this phase. Notice that
liveChain[x] must be false, as explained in the case of the read instruction in the main paper, to ensure no additive insertions. If
the local view is already in sync with the global view, then line 9 is executed, and there is no need to read from the messageStore.

24

2586
2587
2588
2589

2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640

2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695

Lines 11-15 checks if the value in view[x].v is equal to R($r;), and in case the time stamp view[x].l is legitimate (allowing
for comparisons), then whether the message with this time stamp has not been read/used already for a bcas. Then the new
value view[x].v is set to R($r;). Now comes the part where this value has to be written to a new message.

There are two possibilities, depending on whether the write is assigned a timestamp or not. If not, the first part (lines 16-20)
sets view[x].l to false, and if the process in the certification phase, sets liveChain[x] to true (this follows from the liveChain
invariant explained in the main paper), and sets extView[x] to false (the value view[x].v comes from this certification phase).
Note that when view[x].[is set to false, we do not set view[x].u also to false, unlike the case of the write instruction (Algorithm
12, line 49). The reason is, if view[x].u is true (the process executes a consecutive chain of bcas instructions, each reading from
the previous) and does not assign a timestamp to all of them, for those that it does, the timestamps chosen must be immediate
successors of one another (reflecting the fact that this indeed is a sequence of adjacent intervals). Thus, the invariant related to
view[x].u holds.

Otherwise, view[x].l is set to true (line 53). Assume view[x].l is set to true; (view[x].u is set to true as well). Then, there are
four possibilities.

1. Lines 22-40 deal with two possibilities (i) not publishing the message (lines 36-40), (ii) publishing a promise message
(immediate certification if checkMode is true, lines 32-35) or publishing a message in normal phase (lines 30, 31, 35). In
both these cases, lines 23-27 deal with the choice of the fresh time stamp. If liveChain[x] is true, then the new timestamp
is an immediate successor of the existing one (this has been explained in the main paper, as part of the invariant for
liveChain[x]). If view[x].u is true, then starting from this timestamp view[x].t, there is a chain of bcas, to the most recent
message, and hence, we need to choose the next immediate time stamp. When both liveChain[x] and view[x].u are false,
then the new time stamp can be chosen as any available higher value (line 26). As usual, we check the availability of this
position in the array avail[x].

2. Lines 41-53 deal with the other two cases. (iii) Either checkMode is true and the process is certifying promises made
before (lines 42-45, line 49) or (iv) checkMode is false and the process is fulfilling a promise (lines 42-47).

Finally, view[x]. f is set to true in any case, since the value view[x].v is recent. The updates to extView[x] are exactly as in
Algorithm 12.
Once again, we recall that K-(promise, view) bounded strong consistency is denoted as Bd(PS, Vw)—RLX.

D Correctness of Translation

The proof is in two parts. In the first part, we show that that every K + n context bounded run of Prog’ in SC corresponds
to a K-bounded run of Prog under Bd(PS, Vw)—RLX, and in the second part, we show that for every K-bounded run in
Bd(PS, Vw)—RLX, there is a K + n context bounded run in SC.

At the outset we review a high level description of the translation. We denote by ‘normal’ (checkMode is false) and checkMode
(true), the two phases in which a process functions. Each process executes instructions in the normal phase by skipping over
the CSO blocks of code. When a process needs to switch out, it enters the CSO block following the most recent instruction and
sets checkMode to true. Now, it makes a ‘ghost’ run in checkMode, a terminology to indicate that this phase of the run does
not change the the global state and local state of the process permanently (this is facilitated by the saveState and loadState
functions). One exception to this is the writes that the process makes as published promises which are maintained permanently.
Hence, this part of the run is equivalent to the process making fresh promises after normal execution; providing a witness
for consistency and then switching out of context. The run then is a sequence of interleaved normal and checkMode phases.
Moreover the local states of the process is identical at the start and end of any given checkMode phase.

We request the reader to refer to the glossary [C] of the variables used which will aid in better understanding of the
translation.

D.1 SC to Bd(PS, Vw)—RLX

Intuition We note that non-essential messages (which are not view-switching or promises), need to be accommodated along
the time-line for each variable (while they were not in the SC-run). We account for these by separating the essential messages
by sufficiently large intervals, so that, the non-essential ones can be inserted in between, respecting their order.

Details We start from SC to Bd(PS, Vw)—RLX. We show that every K + n context bounded run of Prog’ corresponds to a
K-bounded run of Prog. Keeping in mind the description above, we split this proof into two parts. First we consider only
the normal run and prove that it has an analog in Bd(PS, Vw)—RLX. Then we prove that any checkMode phase is indeed an
analog of a process making fresh promises and certifying them along with previous unfulfilled promises. Combining these
two, indeed, we will have a run under Bd(PS, Vw)—RLX.

25

2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750

2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

We begin by defining some terminology. Consider a run 7 of program Prog’. Each event of the run 7 is an execution of either
a read, write, bcas or SC-fence. A read in this run is called global (and otherwise local) if the process decides to read from
the global array messageStore. Only global reads can be view-switching in the corresponding run under Bd(PS, Vw)—RLX. A
write can be of four types - pubSim, pubFul, stamped and local. These represent, ‘simple published’, ‘fulfilling published’,
‘timestamp assigned but unpublished’ and ‘timestamp not assigned writes’ respectively (published implies that timestamp is
assigned too). Note that each of these types can be performed in normal as well checkMode. A bcas can therefore be of 8 types
since it involves a read and write.

Let w; be the number of write events in the normal part of the run, w; be the maximum number of write events, maximum
being taken over all checkMode phases of the run, u — 1 be the number of bcas events in the run, and let [= w; + wy +u. Let My,
for each shared variable x, be an increasing function from [2K] to N representing a mapping from the notion of time-stamps in
SC to time-stamps in Bd(PS, Vw)—RLX. For each variable x, and each process p, let Viewsc(x) = view[x].t (defined above) and
Viewgd(ps,vw)-rLx(X) be the time stamp of x in the view of p in p. Given a run 7, we will construct a K bounded run p of Prog
which reaches the same set of labels after i events, for any i.

We will first treat the normal (non-checkMode) part of the run. While going through the steps, we will also construct the
increasing functions My. In addition to the invariants in C, we maintain the following timestamp-based invariants for all
processes p and variables x.

1. If view[x].l is true for a process in 7, then M,(Viewsc(x)) = Viewgq(ps, vw)-rLx(X)-

2. If view[x].l is true and the time-stamp view[x].t corresponds to a write message instead of a message added due to an
bcas, then My (view[x].t) = view[x].t - | - u.

3. If view|[x].l is false, then M, (view[x].t) < Viewgg(ps,vw)-rix(X) < (view[x].t + 1) - | - u. Moreover, if the last event to
assign false to view[x].] was a write, then Viewgq(ps, vw)-rLx(X) is a multiple of u.

4. If a message is of type bcas, then its time-stamp ¢ in p satisfies t # 0 mod u.

. The sum of view-switch points and promises is < K in p.

6. The time-stamps of an essential messages in 7 and the corresponding message in p are related by M,. That is,
My (Viewsc(x)) = Viewd(ps, vw)-RLx (X)-

wu

The base case, that is, after 0 events (i = 0) is trivial since the configurations are semantically equivalent and we de-
fine M, (0) = 0 for all variables, which satisfies the invariants. We make the following three cases depending on the i*” event of 7.

e Case 1. ¢; is an execution of a write for process p, variable x and value v.

— If the write is of pubSim, pubFul or stamped type, then view[x].t is updated from ¢ to a new time-stamp ¢’ (which
in the case of pubFul is the timestamp of the retrieved message) and view[x]. is assigned true. In p, if we can make
Viewgq(ps,vw)-rLx(X) = t” = t’ - | - u then the invariants are satisfied. It is not possible for ¢ to have been assigned
already to some write message in p since ¢’ was not assigned to some message in 7 (checked using avail[x][t']). A
bcas message could not have been assigned ¢ either, by the fourth invariant. Since t < t’, Viewgq(ps,vw)-rLx(X) < t”/
(by invariants 2 and 3). Hence, Viewgq(ps, vw)-rLx(X) can be updated to ¢” since it is available and is greater than the
current view. If the write is published, then the message is added to messageStore. This is done to maintain invariant
(6). Note how, if the write is of pubFul type, the message flag is set to 0, effectively removing it from the promise bag
and maintaining the flag invariant [5].

— If the write is 1ocal, then we pick the smallest available multiple of u between M, (view|[x].t) and (view[x].t + 1) -1 - u.
This can always be done since there are [— 1 multiples of u between view[x].t - | - u and (view[x].t + 1) - | - u and there
are < (I — 1) messages (even considering those produced in checkMode) in total. Notice that multiples of u have been
reserved for writes by invariant 4.

e Case 2. ¢; is an execution of a read for process p, variable x.

— Ifthe read is local in 7, then the process is either reading a local message written by itself or a useful message. In either
case, this read can be performed in p without any change in time-stamps. Note that this cannot be a view-switching
event. Moreover note that the local value in view[x].v has been ascertained to be usable.

— If the read is global, then numEE < k before the read and therefore numEE < k afterwards. In this case, a message
is fetched from messageStore and the process view is updated according to this message. Since My is an increasing
function, the results of comparisons in SC will be the same as in Bd(PS, Vw)—RLX and the read operation has the
same effect on values and time-stamps of the variables. Moreover view[x].f is set to true maintaining the view[x].f
invariant [C].

e Case 3. ¢; is an execution of an bcas for process p, variable x and values v, v’.
26

2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

— If the read here is local, and view[x].u is true then we need to ensure that the timestamp chosen for the write

immediately follows M, (view[x].t). It is first checked if view[x].t has been used for an update earlier or not. If it has
not been, then the time-stamp M (view[x].t) + 1 is available in Bd(PS, Vw)—RLX since all messages that come from
writes have time-stamps in multiples of u and My (view[x].t) is a multiple of u. Note, that we also ensure that view[x]. f
is true in this case, which implies that the local value is usable.

— If the read here is local and view[x].u is false (and hence so is view[x].[), then it definitely has not been used for

an update (bcas) in 7 since the process reading the message is the only one that knows of its existence. Now, if this
message was a result of a 1local write, then its time-stamp ¢ in Bd(PS, Vw)—RLX is a multiple of u and ¢ + 1 is available
for the update message. Otherwise, this message was a result of a bcas whose write was local and has a time-stamp
of the form a - u + b where b < u. Note that this implies b — 1 consecutive bcass were made to get here since all the
messages that are a result of (non-bcas) write operations get time-stamps that are multiples of u. Since u — 1 is the
total number of bcassin 7, b < u — 1 (at most u — 2 bcass have taken place before this one). This impliesa - u + b + 1
is available and can be used for the write.

— If the read is global, then it is done correctly as explained in Case 2. The write part of the bcas goes through as

explained above.

e Case 4: ¢; is an SC-fence
— We iterate over the variables, updating globalTimeMap[x] and view[x].t to the maximum of the two.
— In case, the former was greater, we set view[x].l to true, signifying that view[x].t is valid and maintaining invariant

(1) above. Moreover we set view[x]. f to false. This is necessary since, the timestamp of the message corresponding to
view[x].v is now less than view[x].t and hence the locally stored value is unusable.

— If the latter is greater, we check whether view[x].l is true (which signifies that view[x].t is valid). If it is we can set

globalTimeMap|x] to it. If not, then the M, (view[x].t) < Viewgq(ps, vw)-rLx(X) (by invariant (6)), and hence we set it to
view[x].t + 1. Finally we note that Viewgq(ps, vw)-rix(X) < (view[x].t + 1) - | - u and hence M,(globalTimeMap[x]) now
matches the essential event immediately following the event with timestamp view[x].z.

We now briefly justify the checkMode phase of the run. For any such phase, we need to ascertain that the run has analogous
run in Bd(PS, Vw)—RLX which respects the notion of consistency. The management of timestamps is identical to the normal
phase explained above so we only highlight the special aspects. First we recall some invariants:

1. liveChain|[x] is true only when the most recent write made in the current checkMode phase was unpublished (was not a
promise).

2. extView[x] is true if view[x].v corresponds to a message from outside checkMode.

3. For the process p currently in checkMode, message_flag is -1 for temporarily (only within current checkMode phase)

certified promises and p for as yet uncertified promises. If it is p” # p, then the message is in the promise bag of some
other process. Additionally if it is 0, it is not in the promise bag of any process. Note how this is maintained in the write,
bcas sections above.

We'll review how these invariants are maintained and used throughout the code. When entering checkMode, liveChain[x] is
false. For any write happening in normal phase we set extView[x] to true. Otherwise we set it to false. Once again we consider
cases for a particular event e;:

e Case 1. ¢; is a write event.

— In the case, the process performs a local or stamped write, liveChain[x] is set to true, maintaining the invariant.
— In the case the process decides to publish a write it must publish it as a promise, incrementing numEE (after checking

that the bound of K has not been crossed), setting the promise flag to -1, maintaining invariant (3) above. Also, if it
decides to certify a previous promise, it does so, similar to the normal phase, though it now sets the timestamp to -1,
indicating that the certification is local to the current phase and must be reset when normal phase resumes. Moreover
note that liveChain[x] is set to false maintaining invariant (1).

— Also, note that extView[x] is set to true maintaining invariant (2).
e Case 2. ¢; is a read event.
— The main highlight of read events in checkMode, is that we ascertain that liveChain[x] is false while making a global

read. This is to ensure that we forbid additive insertion. Indeed, following invariant (1) above, if liveChain[x]| were
true during a global read, it would mean that the interval corresponding to the previous message (which caused
liveChain[x] to be true) is additively.

e Case 3. ¢; is a bcas event.
— Once again similar to normal phase we guess whether we make a local or a global read. Crucially however, we note

that we forbid making a local or stamped write for a bcas when extView|[x] is true. Considering the invariant (2)
27

2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

above, this is done precisely to forbid bcas where, the promised interval containing the write is non-adjacent to the
message being read from. The remainder bookkeeping of is identical to previous cases.
e Case 4. ¢; is an SC-fence event. This case does not arise since a process in checkMode may not execute an SC-fence
instruction else the run will not be consistent [13].

To conclude, note due to loadState and saveState functions, only promises are retained after the checkMode phase. Moreover
due to the check of message flags after a checkMode phase terminates, it is ensured that the process is in a consistent state
while switching contexts. Noting that we keep track of promises as well as view-switches using numEE we may only generate
a run in which the sum of the two is bounded by K.

D.2 Bd(PS, Vw)—RLX to SC

We now prove the second part, from Bd(PS, Vw)—RLX to SC. We prove that for every K-bounded run p in Bd(PS, Vw)—RLX,
there is a K + n context bounded run 7 in SC. We will show this in two steps.

e Given the K-bounded p, first we will construct a run p’’ which is K-bounded and K + n context bounded that reaches
the same configuration as p.
o We will then construct a run 7 of SC using p”’.

Intuition We ensure that each process only switches out of context when it is awaiting a message for a (global) read from
another process. Note that in each such case the process waiting will undergo a view-switch. Since the total number of
view-switches along a ‘normal’ phase + additional messages in all checkMode phases is bounded above by K, we need atmost
K + n context switches. We add n for the concluding contexts required to reach the term configurations.

Let rf (called reads- from) be a binary relation on events such that (e,, ;) € rf iff e, reads from a message published by e,.
Note that every run under Bd(PS, Vw)—RLX semantics defines a r f relation as the reads are executed. For construction of
p”’, the intuition is that a context switch is required only when the current process has reached term or it needs a message
that is yet to be published by some other process. At a configuration ¢; of p, we say that an event of p is a requesting event
if it is a view-altering event in p and it reads a message that is not in the message pool at ¢;. Also, we call the events that
publish messages for these events as servicing events (write or bcas, either simple or promises). Note that the set of servicing
and requesting events is dependent on the configuration ¢;. The two sets change along the run p. Specifically, an event is
removed from the requesting event set as soon as the servicing event corresponding to it is executed. Let the size of the set of
requesting events be r. At ¢;n;t, r = K. We will prove by induction that given a set of processes (n), the r f relation, and a run p
in Bd(PS, Vw)—RLX that maintains the r f relation, there is a run which uses at most r + n context switches and defines the
same r f relation.
The Base Case. For r + n = 1, there is only one process so the number of context switches is 0 and the p itself uses 0 context
switches.
The Inductive Step. Assume the hypothesis for r + n = [and we prove the claim for r + n = [+ 1. Clearly at ¢;p;;, there
is at least one process which either has no requesting events, or has a servicing event before any requesting events in its
instruction sequence. Otherwise, the run p will not be able to execute all the events since no process will be able to move
past its requesting event. If we have a process that can reach termination directly, then in p”’, we run that process and reduce
r + n. Otherwise, consider the instructions of the process (p;) that has a servicing event before any of its requesting events.
The instructions of pj, till the first requesting event, can be executed since all the messages they need are already in the pool
and hence we can create a new run p; in which these instructions are executed first and the remaining ones follow the same
order as p. Note that p; reduces r by at least 1 while executing the instructions of p;. By applying the hypothesis on the
remaining sequence of instructions, we have a run that uses r — 1 + n context switches and that maintains r f of the remaining
instructions. This can now be combined by the instructions of p; that have already been executed to give p”’.
We now construct the run 7 from p”’. As explained in the text above, at most 2K time-stamps are needed to simulate the p”.
Let the set of such time-stamps be U_x for each variable x. Let My be an increasing (mapping) function for each variable from
U_xU{0}to {0,...2K} such that M,(0) = 0.

We will construct the run 7 in SC from p”’, event by event, while maintaining the following invariants

1. All the time-stamps, in a particular message in messageStore, are related to the time-stamps in the corresponding essential
message in Bd(PS, Vw)—RLX by M.
2. For a process p, Viewpgpsvw)-rix(x) € U_x iff view[x]. is true at that point in SC and view[x].t =
Mx(Viewgq(ps vw)-rLx(X)))
The i*" event of p”” can be one of the following:
e Case 1. ¢; is a write to variable x with value v.
28

3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135

— If the time-stamp ¢ of this write belongs to U_x, then we first allocate My(t) in SC to this write and make view[x].]
true. This maintains invariant (2).

— If the event is a servicing event since , we have that the time-stamp of this message satisfy the requirements of invariant
(1) and hence it can be added to messageStore. Otherwise, we do not update the Viewsc(x) of the process and make
view[x].[false.

e Case 2. ¢; is aread of variable x If this event is a view-altering event, then the current timestamp in the Viewgg(ps, vw)-RLx
will be used for comparison. The effect of the read in SC will be same as in Bd(PS, Vw)—RLX since V_x is an increasing
function. All the invariants will still hold after this, since all the messages in messageStore satisfy the invariants.

e Case 3. ¢; is an bcas to variable x with values v, v’. If this event is not view-altering, then the process either reads some
other process’s message again or reads its own. If it reads its own message, then no change to the Viewsc(x) has to be
done for the read part and the new message is added to messageStore if /s message is essential. If it reads some other
processes’ message again, then view[x].l is true, and since this message has not been used for an bcas yet, the check
of upd_x[view[x].t] will go through in Prog’. Now, it needs to be decided if the new message is essential. If the read is
view-altering, then it is similar to Case 2 followed by the decision of adding the new message to messageStore.

o Case 4. ¢; is an SC-fence If globalTimeMap[x] is greater than view[x].t, we maintain invariants (2) by setting view[x].
to true and the view[x].f invariant [C] by setting it to false. On the other hand if view[x].t is greater, we set
globalTimeMap|x] to the smallest member ¢t € Time, which satisfies t > My (Viewgq(ps, vw)-rLx(X)). In case view[x].] is
true, t is view[x].t itself by invariant (2). If not then we set it to view[x].t + 1, since we note, view[x].t is the largest
member of Time, that p has had as Viewgq(ps, vw)-rLx (%), and currently the former is lower than M, (Viewgg(ps, vi)-rLx(x)).

E Details for Section 6 - Implementation and Experimental Results

In the promise free mode, we compare SwinG with three state-of-the-art stateless model checking (SMC) tools, CDSCHECKER
[23], GENMC [15] and Rcmc [14] that support the relaxed semantics without promises. We use a version of CDSCHECKER that
halts on the first bug discovered while GENMC and Rcmc do this by default. In the tables that follow, we specify the used
values of L (for all tools) and K (only for our tool).

Here we state the results of all our experiments in full. The main takeaways of our experiments are: (1) our tool can uncover
hard-to-find bugs faster than the others with relatively small values of K; (2) our approach is more resilient to trivial changes
in the position of bugs as compared to the SMC tools; (3) in some instances, our technique fares better at capturing relevant
behaviours instead of exploring all possible traces as done by some SMC tools.

We note that the tools we are comparing with do not require as input the bound, K. Hence, the comparison may not be
fair for some safe examples, since SwInG only considers the subset of executions which K enforces. However, in particular
instances we have set the parameter K such that all executions are considered (modulo the loop unwinding bound). In such
cases, we note the tool is comparable to the others. We highlight such cases (only for safe examples) with a green checkmark
(v) accompanying the value of K used. Additionally, we have put forth cases where we can iteratively increment K to prove
correctness.

Considering the above observations, we realise that the SMC tools and our tool have orthogonal approaches to finding bugs.
SMC tools are limited by how they explore the space of all executions, which might be sub-optimal in cases where we have a
shallow counterexample but which is explored only after several executions. Our tool is limited by the bound K.

We do not consider compilation time for any tool while reporting the results. For our tool, the time reported is the time
taken by the CBMC backend for analysis. The timeout used is 1 hour for all benchmarks. All experiments are conducted on a
machine equipped with a 2.80 GHz Intel Core i7-860 and 4GB RAM running a Debian 9 (stretch) 64-bit operating system. We
denote timeout by “TO’. In the tables that follow, we specify the values of L (for all tools) and K (only for our tool) used. We
mark a hyphen *-” in the table for when the process is killed with a maximum resident set size (RAM used) of 3.7 GB or higher.

We first compare strong and standard consistency on some examples. For the remaining benchmarks, to enable comparison
with other tools (which do not support promises), we run the tool in promise-free mode. Then, we show the ability of our tool:
(1) to detect hard-to-find bugs, (2) to adapt to concurrent data-structure benchmarks and (2) resilience to location of bugs and
number of executions.

E.1 Comparing the notions of consistency

We run SwinG, in promise-mode on a variety of testcases from Kang et al. [13] and Chakraborty and Vafeiadis [7]. In the upper
part of Table 8 are the interesting ones amongst these. The split testcase exhibits the difference in the semantics presented
in sections 2 and 4 of Kang et al. [13]. The ARMweak example suggests how a process may read its own promise via a helper

29

3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

testcase K SwinG[strong] D SwinG[standard]
split 3 43.717s X X
ARMweak 2 1.560s X X
LBfd 3 0.692s X X
Coh-CYC 4 17.367s X X
20 12.284s
. 40 37.166s
splitCAS 5 1.378s 60 am15s
80 4m26s
100 10.984s
LBcd 7 1.003s 200 25,0105
100 1m13s
LBcu 7 4.434s 200 2m39s
10 1m1l6s
LB2cu 7 5.331s 20 15m40s
fibonacci_2_safe 5 17.244s 10 3mlls
fibonacci_3_safe 5 14m14s 10 TO

Table 8. Comparing the two notions of consistency

thread. LBfd is an example exhibiting load buffering with a false (syntactic) dependency. We note that small values of K are
sufficient to uncover the bug in these cases.

In order to empirically confirm our hypothesis that the standard definition of consistency (as defined in [13]) would not
scale, we run SwInG, on similar small examples under the strong and standard consistency, while varying the size of the data
domain, specified by D. Observe that we need to vary D for the standard consistency definition since it is required during the
quantification over all future memories (which implicitly includes all possible data values). We run SwInG on a variety of safe
and unsafe test cases from [7, 13]. The first three examples are unsafe while the other ones are safe. In all these cases, we
observe, the dependence of run-time on the size of the data domain when the standard consistency definition is used. Strong
consistency, on the other hand performs much better without any restriction on the size of the data domain. This is presented
in the lower part of the table.

E.2 Evaluation using parametrized benchmarks

benchmark L K SwinG CDSChecker GenMC RCMC
exponential 5_unsafe 5 10 1.195s 1.795s 0.189s 8.282s
exponential 10_unsafe 10 10 1.786s 4.167s 0.736s 3m50s
exponential_25_unsafe 25 10 3.433s 14.737s 4.697s TO
exponential 50 unsafe 50 10 9.021s 1m6s 1m2s TO
exponential 70 unsafe 70 10 14.136s 2m52s 4m3s TO

V20 4.045s 8.811s 0.104s 0.133s
V20 10.899s TO 0.984s 4.443s
V20 30.475s TO 41.576s 3m2s
V4 5.683s 0.403s 0.069s 0.063s

fibonacci_2_safe
fibonacci_3_safe
fibonacci_4_safe
triangular_2_safe

W DU R W N W
<
o)

triangular_3_safe V6 1m3s 18.737s 0.152s 0.290s
triangular_4_safe 4m58s 20m20s. 1.602s 2.282s
triangular_5_safe /10 8mlé6s TO 28.883s 34.819s
triangular_2_unsafe 10 1.711s 0.070s 0.071s 0.102s
triangular_3_unsafe 10 9.422s 2.903s 0.126s 0.244s
triangular_4_unsafe 10 2mb4s 3m25s 1.254s 1.531s
triangular_5_unsafe 5 10 12m23s TO 21.619s 26.730s

Table 9. Evaluation using parametrized benchmarks

We now compare SwinG with CDSCHECKER, GENMC and Rcmc in Table 9 on three parametrized benchmarks: ExponentialBug
(from Fig. 2 of [11]), Fibonacci and safe and unsafe versions of Triangular taken from SV-COMP 2018. In ExponentialBug(N)
and Triangular(N), the processes compete to write to a shared variable and N represents the number of times a process may
write. In ExponentialBug(N), the number of executions grows as O(N!), while the fraction of buggy interleavings decrease
exponentially with N. In the unsafe version of Triangular(N), there is exactly one interleaving that exposes the bug, while
the total number of interleavings increases exponentially with N. In Fibonacci(N), two processes compute the value of the
nth Fibonacci number. In the safe version of Triangular(N) as well as Fibonacci(N), we note that we use a conservative
upper bound on the value of K. Hence this table demonstrates the ability of SwinG in exposing hard-to-find bugs as well as
adaptability for safe cases.
30

3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355

E.3 Evaluation using concurrent data structures based benchmarks

benchmark L K SwinG CDSChecker GenMC RCMC
hehner2_unsafe 4 5 6.130s 0.028s 0.042s 0.072s
hehner3 unsafe 4 5 26.729s 0.026s 4m4s 1m26s
linuxlocks2 unsafe 2 4 0.748s 0.010s 0.036s 0.081s
linuxlocks3_unsafe 2 4 1.113s 0.013s 0.037s 0.084s
queue_2_safe 4 4 2.141s 0.020s 0.039s 0.079s
queue_3_safe 4 4 9417s 0.024s 0.053s 0.086s

Table 10. Evaluation using concurrent data structures - I

benchmark L SwiInG[K =4] SwInG[K =6] CDSChecker GenMC RCMC
stack_2_safe 2 0.354s 1.467s 0.009s 0.067s 0.063s
stack_3_safe 3 0.879s 4.755s 0.229s 0.073s 0.108s
stack_4_safe 4 2.127s 14.426s 8.313s 0.819s 1.287s
stack_5_safe 5 6.467s 44.993s 5m2s 14.132s 43.903s
stack_6_safe 6 24.185s 5m8s TO 7ml4s 25mdds

Table 11. Evaluation using concurrent data structures - II

We compare the tools in Tables 10 and 11 on benchmarks based on concurrent data structures. The first of these is a
concurrent locking algorithm from Hehner and Shyamasundar [10]. The second, LinuxLocks(N) is a benchmark extracted
from the Linux kernel. If not completely fenced, this benchmark is unsafe under relaxed semantics and we fence all but one
lock accesses. The other two are safe benchmarks adapted from SVCOMP-2018. The queue benchmark is parameterized by the
number of processes and the stack benchmark is parameterized by the size of the stack. The processes operate on these data
structures and we check whether certain invariants are maintained. These benchmarks illustrate the ability of our tool to
handle concurrent data-structures similar to those seen in real-world examples.

E.4 Evaluation using two synthetic safe benchmarks

We compare the tools in Table 12 on adaptations of two synthetic safe benchmarks: ReaderWriter (N) (from Norris and
Demsky [24]) and RedundantCo(N) (from Abdulla et al. [3]). Both these examples involve N processes writing distinct values
to a shared variable and one process reading from it. The number of traces in these examples grow as O(N!). The number of
possible values for the reads however is just O(N) in the first example and O(1) in the second one. The performance of the
SMC tools depends on how efficiently they explore the executions. SwInG on the other hand depends on the reads observed,
illustrating the point mentioned earlier. We again note that K is chosen conservatively and our tool declares the benchmarks
to be safe considering all executions.

benchmark L K SwinG CDSChecker GenMC RCMC
readerwriter_7 0 V5 0.719s 0.005s 0.057s 0.690s
readerwriter_8 0 V5 0.839s 0.006s 0.056s 7.425s
readerwriter_9 0 V5 1.068s 0.007s 0.053s 1m17s
readerwriter_10 0 V5 1.393s 0.007s 0.056s 14m49s
redundant co 10 10 /5 0.470s 0.114s 0.087s 38m12s
redundant co_ 20 20 5 1.031s 0.548s 0.218s TO
redundant_co_50 50 5 3.219s 8.965s 4.143s TO
redundant co 70 70 /5 6.093s 13.843s 18.185s TO

Table 12. Evaluation using two synthetic safe benchmarks

E.5 Evaluation using variations of mutual exclusion protocols

In this section, we consider mutual exclusion protocols from the SV-COMP 2018 benchmarks. The unfenced versions of the
protocols are unsafe. All the tools considered report a bug for these examples within two seconds. We now consider variations
of these benchmarks.

In Table 13, we evaluate the Peterson and Szymanski protocols for N processes and keep all but one process fenced. This
leads to a lower fraction of buggy executions. The values of K taken for these benchmarks assert the fact that there are bugs to
be found (even for non-trivial examples) with small K. We call these examples peterson1U and szymanskilU, parameterized by

31

3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
339
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410

3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465

. Parosh Aziz Abdulla, Mohamed Faouzi Atig, Adwait Godbole, S. Krishna, and Viktor Vafeiadis

benchmark L K SwinG CDSChecker GenMC RCMC
peterson1U(4) 1 4 1.868s 0.005s TO 0.113s
peterson1lU(6) 1 4 9.408s 0.005s TO 0.179s
peterson1U(8) 1 4 43.680s TO TO 5.432s
peterson1U(10) 1 4 4mi2s TO TO TO
szymanskilU(4) 1 2 1.280s 0.008s - 0.130s
szymanskilU(6) 1 2 3.519s TO - TO
szymanskilU(8) 1 2 7.574s TO TO TO
szymanskilU(10) 1 2 15.437s TO TO TO

Table 13. Evaluation using mutual exclusion protocols with a single unfenced process

benchmark L K SwIinG CDSChecker GenMC RCMC
peterson1C(3) 1 2 0.743s 0.012s 0.085s 0.786s
peterson1C(4) 1 2 1.827s 5.032s TO 4.157s
peterson1iC(5) 1 2 4.185s 59m42s TO TO
peterson1C(6) 1 2 8.483s TO TO TO
peterson1C(7) 1 2 15.678s TO TO TO
peterson2C(3) 1 2 0.758s 0.005s 0.068s 0.061
peterson2C(4) 1 2 1.848s 0.015s TO 12.308s
peterson2C(5) 1 2 4.041s 1m36s TO TO
peterson2C(6) 1 2 7.562s TO TO TO
peterson2C(7) 1 2 14.729s TO TO TO

Table 14. Evaluation using completely fenced peterson mutual exclusion protocol with a bug introduced in the critical section
of a single process

the number of processes. Table 14 exhibits a pair of benchmarks that exhibit the sensitivity of DPOR-based algorithms to the
location of bugs. We consider the completely fenced version of the Peterson protocol. However, we introduce a bug (write a
value to a shared variable and read a different value from it) in the critical section of one of the processes. Between the two
examples, the only difference is the process in which this bug has been introduced. We call these examples peterson1C and
peterson2C, parameterized by the number of processes. We can see the difference in the performance of the DPOR-based tools
(especially CDSCHECKER) on the two examples. On the other hand, our tool is resilient to such superficial changes. We note

again that the value of K is small (2).

benchmark L K SwinG CDSChecker GenMC RCMC
szymanski(3) 1 2 0.690s 0.047s 28.886s 2m35s
szymanski(4) 1 2 1.121s 5m25s - TO
szymanski(5) 1 2 1.795 TO - TO
szymanski(6) 1 2 2.671s TO - TO
szymanski(7) 1 2 3.751s TO - TO

Table 15. Evaluation using completely fenced szymanski mutual exclusion protocol with a bug introduced in the critical

section of a single process

We repeat in Table 15 the above experiment with the Szymanski mutual exclusion protocol.

We consider in Table 16 completely fenced versions of the mutual exclusion protocols. We note that these versions are safe
due to the introduction of SC-fences. In this experiment, we sequentially increase the loop unwinding bound. These examples
exhibit the practicality of iterative increments in K. Following convention, the figure in the parenthesis represents the number

of processes.

32

3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575

benchmark L K SwInG CDSChecker GenMC RCMC
bakery(2) 1 2 0463s 6.249s 0.056s 0.067s
lamport(2) 1 2 0.777s 5.451s 0.070s 0.089s
peterson(3) 1 2 0.878s TO 9.665s 26.208s
peterson(2) 1 2 0.321s 0.325s 0.087s 0.068s
tbar(2) 1 2 0.240s 0.007s 0.080s 0.081s
tbar(3) 1 2 0514s 2.077s 0.087s 0.074s
bakery(2) 2 2 0872 TO 0.709s 0.884s
lamport(2) 2 2 3.798s TO 1m31s 5mb5s
peterson(3) 2 2 1.695s TO - TO
peterson(2) 2 2 0.539s 15m22s 0.039s 0.428s
tbar(2) 2 2 0375 0.504s 0.044s 0.061s
tbar(3) 2 2 0918s TO 0.080s 0.094s
bakery(2) 4 2 5.827s TO TO TO
lamport(2) 4 2 5m3ls TO TO TO
peterson(3) 4 2 15.900s TO - TO
peterson(2) 4 2 3.412s TO TO TO
tbar(2) 4 2 1.578s 41m25s 0.262s 0.071s
tbar(3) 4 2 4.741s TO 6.460s 15.489s

Table 16. Evaluation using safe mutual exclusion protocols

33

3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630

	Abstract
	1 Introduction
	2 Preliminaries
	3 Promising Semantics(PS-RLX)
	3.1 Quantification over all Future Memories
	3.2 Comparison of the two notions of consistency

	4 The (Strong) Reachability Problem
	5 Solving the Strong Reachability Under Bounded Promises and View-Switches
	6 Implementation and Evaluation
	7 Undecidability
	References
	A Proof of Theorem 3.1
	B Proof of Theorem 4.1
	B.1 The non-primitive recursive lower bound of PFS-RLX without bcas

	C Details for Section 5
	C.1 Main
	C.2 InitProc
	C.3 ContextSwitchIn (CSI)
	C.4 Publish
	C.5 loadState and saveState
	C.6 ScFence
	C.7 ContextSwitchOut (CSO)
	C.8 Read
	C.9 Write
	C.10 bcas(x, $r1, $r2)

	D Correctness of Translation
	D.1 SC to Bd(PS,Vw)-RLX
	D.2 Bd(PS,Vw)-RLX to SC

	E Details for Section 6 - Implementation and Experimental Results
	E.1 Comparing the notions of consistency
	E.2 Evaluation using parametrized benchmarks
	E.3 Evaluation using concurrent data structures based benchmarks
	E.4 Evaluation using two synthetic safe benchmarks
	E.5 Evaluation using variations of mutual exclusion protocols

