Collective Annotation of Wikipedia Entities in Web Text

Sayali Kulkarni Amit Singh Ganesh Ramakrishnan Soumen Chakrabarti

IIT Bombay

Introduction

Our aim

Aggressive open domain annotation of unstructured Web text with uniquely identified entities in a social media (Wikipedia)

The incentive

Use the annotations for search and mining tasks

Outline for today

- Terminologies
- About entity disambiguation
- Our contributions
- Evaluation and results
- Conclusion

Terminologies

Web NASDAQ.com Page: Symbol List: || | France To Host Meeting Of Afghanistan 's Neighbors -Foreign Min PARIS (AFP)--France has invited Pakistan and Iran to take part in a meeting of Afghanistan 's neighbors to help advance peace in the insurgency -hit country, Foreign Minister Bernard Kouchner said Tuesday. "There will be a meeting , I hope in Paris, of neighboring countries," Kouchner told members of the parliamentary foreign affairs committee . Paris has asked Pakistan , Iran and other neighboring countries to attend because they could play a role in helping Afghanistan reach peace with the Taliban militia , he said. Kouchner didn't give a date for the meeting . The foreign minister reiterated that France supports Afghan President Hamid Karzai 's bid to hold talks with moderates within the Taliban movement , which was ousted from Kabul in 2001 during a U.S. -led invasion

Figure: A plain page from unstructured data source

Terminologies (2)

Web [NASDAQ.com] Page: Symbol List: [1] France To Host Meeting Of Afghanistan 's Neighbors -Foreign Min PARIS (AFP)-France has invited Pakistan and Iran to take part in a meeting of Afghanistan's neighboring davance peace in the insurgency -hit country, Foreign Minister Bernard Kouchner said Tuesday. "There will be a meeting , I hope in Paris, of neighboring countries," Kouchner told members of the parliamentary foreign affairs committee . Paris has asked Pakistan , Iran and other neighboring countries to attend because they could play a role in helping Afghanistan reach peace with the Takiban militia , he said. Kouchner didn't give a date for the meeting]. The foreign minister reiterated that France supports Afghan President Hand Karzai 's bid to hold talks with moderates within the | Takiban movement , which web ousted from [sabu] in 2001 during a US. -led invasion .

Spots

Figure: A spot on a page

Spot is an occurrence of text on a page that can be possibly linked to a Wikipedia article

Related notations:

 S_0 All candidate spots in a Web page

 $s \in S_0$ One spot, including surrounding context

Terminologies (3)

Figure: Possible attachments for a spot

Attachments are Wikipedia entities that can be possibly linked

to a spot

Related notations:

- Γ_s Set of candidate entity labels for spot s on a page
- $\Gamma_0 = \bigcup_{s \in S_0} \Gamma_s$, set of all candidate labels for the page

Entity disambiguation

button pulses with a heartbeat cadence

Figure: Clues from local context help in disambiguation

Figure: Disambiguation based on compatibility between spot and label

Spot-to-lab

Document

Spots

Candidate label

 Γ_{s}

Г,,

Related work: SemTag and Seeker[2]

Collective entity disambiguation

Figure: Other spots on page help in disambiguation

Figure: Disambiguation based on local compatibility and coherence between labels

Related work: Cucerzan[1] and Milne et al.[3]

Relatedness information from entity catalog

- \blacktriangleright How related are two entities γ,γ' in Wikipedia?
- Embed γ in some space using $g: \Gamma \to \mathbb{R}^c$
- ▶ Define relatedness $r(\gamma, \gamma') = g(\gamma) \cdot g(\gamma')$ or related
- Cucerzan's proposal: relatedness between entity based on cosine measure
- Milne et al. proposal: c = number of Wikipedia pages; g(γ)[p] = 1 if page p links to page γ, 0 otherwise

 $r(\gamma, \gamma') = \frac{\log |g(\gamma) \cap g(\gamma')| - \log \max\{|g(\gamma)|, |g(\gamma')|\}}{\log c - \log \min\{|g(\gamma)|, |g(\gamma')|\}}$

Relatedness information from entity catalog

- \blacktriangleright How related are two entities γ,γ' in Wikipedia?
- Embed γ in some space using $g: \Gamma \to \mathbb{R}^c$
- ▶ Define relatedness $r(\gamma, \gamma') = g(\gamma) \cdot g(\gamma')$ or related
- Cucerzan's proposal: relatedness between entity based on cosine measure
- Milne et al. proposal: c = number of Wikipedia pages; g(γ)[p] = 1 if page p links to page γ, 0 otherwise

 $r(\gamma, \gamma') = \frac{\log |g(\gamma) \cap g(\gamma')| - \log \max\{|g(\gamma)|, |g(\gamma')|\}}{\log c - \log \min\{|g(\gamma)|, |g(\gamma')|\}}$

Relatedness information from entity catalog

- How related are two entities γ, γ' in Wikipedia?
- Embed γ in some space using $g: \Gamma \to \mathbb{R}^c$
- ▶ Define relatedness $r(\gamma, \gamma') = g(\gamma) \cdot g(\gamma')$ or related
- Cucerzan's proposal: relatedness between entity based on cosine measure
- Milne et al. proposal: c = number of Wikipedia pages; g(γ)[p] = 1 if page p links to page γ, 0 otherwise

$$r(\gamma, \gamma') = \frac{\log |g(\gamma) \cap g(\gamma')| - \log \max\{|g(\gamma)|, |g(\gamma')|\}}{\log c - \log \min\{|g(\gamma)|, |g(\gamma')|\}}$$

Our contributions

- Posing entity disambiguation as an optimization problem
- Single optimization objective
 - Using integer linear programs (NP Hard)
 - Heuristics for approximate solutions
- Rich node features with systematic learning
- Back off strategy for controlled annotations

Modeling local compatibility

- Feature vector f_s(γ) ∈ ℝ^d expresses local textual compatibility between (context of) spot s and candidate label γ
- Components of $f_s(\gamma)$

Sense probability prior: probability that a Wikipedia entity can be associated with a spot (Pr(\[\gamma\]|s))

Components of our objective

Node score

- ▶ Node scoring model $w \in \mathbb{R}^d$
- Node score defined as $w^{\top} f_s(\gamma)$
- ▶ w is learned using a linear adaptation of rankSVM

Clique Score

► Use relatedness measure (*r*) as described by Milne *et. al.* Total objective

y is the final set of assignments on a page

Components of our objective

Node score

- ▶ Node scoring model $w \in \mathbb{R}^d$
- Node score defined as $w^{\top} f_{s}(\gamma)$
- ▶ w is learned using a linear adaptation of rankSVM

Clique Score

► Use relatedness measure (*r*) as described by Milne *et. al.* Total objective

y is the final set of assignments on a page

Backoff strategy

- Not all spots may be tagged. Allow backoff from tagging
- ► Assign a special label "NA" to mark a "no attachment"
- Reward a spot for attaching to NA RNA
- Spots marked NA do not contribute to clique potential
- Smaller the value of RNA, more aggressive is the tagging

Modified Objective

 $N_0 \subseteq S_0$: spots assigned NA $A_0 = S_0 \setminus N_0$: remaining spots

$$\max_{y} \frac{1}{|S_0|} \left(\sum_{s \in N_0} \rho_{\text{NA}} + \sum_{s \in A_0} w^\top f_s(y_s) \right)$$
(Node Score)
$$+ \frac{1}{\binom{|S_0|}{2}} \sum_{s \neq s' \in A_0} r(y_s, y_{s'})$$
(Clique Score)

Backoff strategy

- Not all spots may be tagged. Allow backoff from tagging
- ► Assign a special label "NA" to mark a "no attachment"
- Reward a spot for attaching to NA RNA
- Spots marked NA do not contribute to clique potential
- Smaller the value of RNA, more aggressive is the tagging

Modified Objective

 $m{N}_0 \subseteq S_0$: spots assigned NA $m{A}_0 = S_0 \setminus m{N}_0$: remaining spots

$$\max_{y} \frac{1}{|S_0|} \left(\sum_{s \in N_0} \rho_{\text{NA}} + \sum_{s \in A_0} w^\top f_s(y_s) \right)$$
(Node Score)
$$+ \frac{1}{\binom{|S_0|}{2}} \sum_{s \neq s' \in A_0} r(y_s, y_{s'})$$
(Clique Score)

Methodologies for solving the objective

Integer linear program (ILP) based formulation

- ► Casting as 0/1 integer linear program
- Using up to $|\Gamma_0| + |\Gamma_0|^2$ variables
- Relaxing it to an LP

Simpler heuristics

Hill climbing for optimization

Evaluation of the annotation system

Evaluation measures:

Precision

Number of spots tagged correctly out of total number of spots tagged

Recall

Number of spots tagged correctly out of total number of spots in ground truth

F1 <u>2×Recall×Precision</u> (Recall+Precision) Datasets for evaluation

- Documents(IITB) crawled from popular sites
- Publicly available data from Cucerzan's experiments (CZ)

	IITB	CZ
Number of documents	107	19
Total number of spots	17,200	288
Spot per 100 tokens	30	4.48
Average ambiguity per spot	5.3	18

Figure: Corpus statistics.

Effect of learning in node score calculation

- Using w is better than using individual node features in isolation
- Enough to outperform other baseline systems

Effect of learning in node score calculation

 Using w is better than using individual node features in isolation

 Enough to outperform other baseline systems

Benefits of collective annotation

Figure: Recall/precision on IITB data

 Adding collective inference adds to the accuracy of the annotations

Results summary

- Selection of features for defining the node score is important
- Collective inference improves accuracy further
- Able to gain high recall without sacrificing much on precision

Evaluation:

	Our system	Cucerzan	Milne <i>et al.</i>
Recall	70.7%	31.43%	66.1%
Precision	68.7%	53.41%	19.35%
F1	69.69%	39.57%	29.94%

Future work

- Extending collective inference beyond page-level boundaries
- Associating confidence with annotations
- Reducing cognitive load during the process manual annotations
- Building an entity search system over annotations

KDD Demo: 30 June '09, 17:30 onwards

Future work

- Extending collective inference beyond page-level boundaries
- Associating confidence with annotations
- Reducing cognitive load during the process manual annotations
- Building an entity search system over annotations

KDD Demo: 30 June '09, 17:30 onwards

Questions?

Additional slides

- Multitopic models
- Belief about the objective
- Tuning RNA
- More about data sets
- Human Supervision
- ILP in detail
- Hill climbing algorithm
- Timing graphs
- References

Dendrogram with multitopic model

Multi-topic model

- Current clique potentials encourages a single cluster model
- The single cluster hypothesis is not always true
- ▶ Partition the set of possible attachments as $C = \Gamma^1, \ldots, \Gamma^K$
- Refined clique potential for supporting multitopic model

$$\frac{1}{|C|} \sum_{\Gamma^k \in C} \frac{1}{\binom{\Gamma^k}{2}} \sum_{s,s': y_s, y_{s'} \in \Gamma^k} r(y_s, y_{s'}).$$
(CPK)

- Using $\binom{\Gamma^k}{2}$ instead of $\binom{S_0}{2}$ to reward smaller coherent clusters
- Node score is not disturbed

Is our belief about the objective correct?

 As the objective value increases, the F1 increases

 Validates our belief about the objective

Figure: F1 versus Objective

Effect of tuning RNA

 Best RNA for LOCAL is lesser than the best RNA for HILL1 and LP1

Figure: F1 for Local, Hill and LP for different RNA values

Effect of tuning RNA (2)

Figure: Precision for different RNA values

- Smaller the value of RNA, more aggressive is the tagging
- Precision increases with increase in RNA value
- Recall decreases with increase in RNA value

Figure: Recall for different RNA values

More about data sets

More on IITB dataset

- Collected a total of about 19,000 annotations
- Done by by 6 volunteers
- About 50 man-hours spent in collecting the annotations
- Exhaustive tagging by volunteers
- \blacktriangleright Spots labeled as NA was about 40%

#Spots tagged by more than one person	
$\#_{\mathrm{NA}}$ among these spots	524
#Spots with disagreement	
#Spots with disagreement involving NA	

Figure: Inter-annotator agreement.

Human Supervision

http://en.wikipedia.org/wiki/Training (meteorology)

In meteorology, training is when a successive series of showers or thunderstorms moves repeatedly over the same area, usually causing some form of flooding, especially flash floods. Often, this happens when a line of rain or storms forms along a stationary front, and moves down the length of the front, while the front is stalled. It is <u>named so herause this is similar</u> to the way train cars

from your training	CLEAR ANNOTATION	cions[NO ATTACHMENT] the putrients[Nutrient] and supplements[Supplement] that you
nom your training	NO ATTACHMENT	sions and supplements and supplements and supplements
consume after you	American Civil Wen	ve a huge wattachnexif impact on how you'll be rewarded for the work you did while
you were there. Pos	American civil war	exercise] Nutrition[Nutrition] During intense[NO ATTACHMENT] exercise our
you were mere. 1 os	Train	Fundation During Interface extense, our
bodies ^[Body] use	Training	<pre>hydrate] , glycogen[Glycogen] , amino acids[Amino acid] and [fluids[NO ATTACHMENT] at</pre>
a rapid ^{[NO ATTACHM}	Training	[Invention] what is often referred to as a catabolic[Catabolism] state. Our goal[Goal]
with your post- w	(meteorology)	nutrition ^[Nutrition] is to return the body to an anabolic ^[Anabolism] state as soon as
we can once your	Training	Session ^[NO ATTACHMENT] is over. This will help you recover from the training ^{[Sports}]
training] session[N	(disambiguation)	u can be ready for the next one, which will both cut down your risk of injury[Injury] and
allow you to improv	Training (civil)	and conditioning ^[Physical exercise] at a faster rate. Let's take a look at some general
quidelines ^{[NO ATTAC}	Sports training	pere as effectively as possible[Possibility] . Carbohydrates[Carbohydrate]

- System identifies spots and mentions
- Shows pull-down list of (subset of) Γ_s for each s
- ▶ User selects $\gamma^* \in \Gamma_s \cup NA$

Variables:

$$\begin{aligned} &z_{s\gamma} = \llbracket \text{spot } s \text{ is assigned label } \gamma \in \mathsf{F}_s \rrbracket \\ &u_{\gamma\gamma'} = \llbracket \text{both } \gamma, \gamma' \text{ assigned to spots} \rrbracket \end{aligned}$$

Figure: Defining the variables for ILP

Objective:

$$\max_{\{z_{s\gamma}, u_{\gamma\gamma'}\}} (\mathsf{NP'}) + (\mathsf{CP1'})$$

Node potential:

$$\frac{1}{|S_0|} \sum_{s \in S_0} \sum_{\gamma \in \Gamma_s} z_{s\gamma} w^\top f_s(\gamma) \tag{NP'}$$

Clique potential:

$$\frac{1}{\binom{|S_0|}{2}} \sum_{s \neq s' \in S_0} \sum_{\gamma \in \Gamma_s, \gamma' \in \Gamma_{s'}} u_{\gamma \gamma'} r(\gamma, \gamma')$$
(CP1')

$$\begin{aligned} \forall s, \gamma : z_{s\gamma} \in \{0, 1\}, \quad \forall \gamma, \gamma' : \ u_{\gamma\gamma'} \in \{0, 1\} \\ \forall s, \gamma, \gamma' : u_{\gamma\gamma'} \le z_{s\gamma} \quad \text{and} \quad u_{\gamma\gamma'} \le z_{s\gamma'} \\ \forall s : \ \sum_{\gamma} z_{s\gamma} = 1. \end{aligned}$$
(1) (1)

Objective:

$$\max_{\{z_{s\gamma}, u_{\gamma\gamma'}\}} (\mathsf{NP'}) + (\mathsf{CP1'})$$

Node potential:

$$\frac{1}{|S_0|} \sum_{s \in S_0} \sum_{\gamma \in \Gamma_s} z_{s\gamma} w^\top f_s(\gamma)$$
 (NP')

Clique potential:

$$\frac{1}{\binom{|S_0|}{2}} \sum_{s \neq s' \in S_0} \sum_{\gamma \in \Gamma_s, \gamma' \in \Gamma_{s'}} u_{\gamma \gamma'} r(\gamma, \gamma')$$
(CP1')

$$\begin{aligned} \forall s, \gamma : z_{s\gamma} \in \{0, 1\}, \quad \forall \gamma, \gamma' : \ u_{\gamma\gamma'} \in \{0, 1\} \\ \forall s, \gamma, \gamma' : u_{\gamma\gamma'} \le z_{s\gamma} \quad \text{and} \quad u_{\gamma\gamma'} \le z_{s\gamma'} \\ \forall s : \ \sum_{\gamma} z_{s\gamma} = 1. \end{aligned}$$
(1) (2)

Objective:

$$\max_{\{z_{s\gamma}, u_{\gamma\gamma'}\}} (\mathsf{NP'}) + (\mathsf{CP1'})$$

Node potential:

$$\frac{1}{|S_0|} \sum_{s \in S_0} \sum_{\gamma \in \Gamma_s} z_{s\gamma} w^\top f_s(\gamma)$$
 (NP')

Clique potential:

$$\frac{1}{\binom{|S_0|}{2}} \sum_{s \neq s' \in S_0} \sum_{\gamma \in \Gamma_s, \gamma' \in \Gamma_{s'}} u_{\gamma \gamma'} r(\gamma, \gamma')$$
(CP1')

$$\forall s, \gamma : z_{s\gamma} \in \{0, 1\}, \quad \forall \gamma, \gamma' : u_{\gamma\gamma'} \in \{0, 1\}$$
(1)
$$\forall s, \gamma, \gamma' : u_{\gamma\gamma'} \le z_{s\gamma} \text{ and } u_{\gamma\gamma'} \le z_{s\gamma'}$$
(2)
$$\forall s : \sum_{\gamma} z_{s\gamma} = 1.$$
(3)

Objective:

$$\max_{\{z_{s\gamma}, u_{\gamma\gamma'}\}} (\mathsf{NP'}) + (\mathsf{CP1'})$$

Node potential:

$$\frac{1}{|S_0|} \sum_{s \in S_0} \sum_{\gamma \in \Gamma_s} z_{s\gamma} w^\top f_s(\gamma)$$
 (NP')

Clique potential:

$$\frac{1}{\binom{|S_0|}{2}} \sum_{s \neq s' \in S_0} \sum_{\gamma \in \Gamma_s, \gamma' \in \Gamma_{s'}} u_{\gamma \gamma'} r(\gamma, \gamma')$$
(CP1')

$$\forall s, \gamma : z_{s\gamma} \in \{0, 1\}, \quad \forall \gamma, \gamma' : u_{\gamma\gamma'} \in \{0, 1\}$$
(1)

$$\forall s, \gamma, \gamma' : u_{\gamma\gamma'} \le z_{s\gamma} \quad \text{and} \quad u_{\gamma\gamma'} \le z_{s\gamma'} \tag{2}$$
$$\forall s : \sum z = 1 \tag{3}$$

$$\forall s: \sum_{\gamma} z_{s\gamma} = 1.$$
(3)

LP relaxation for the ILP formulation

Relax the constraints in the formulation as :

$$egin{aligned} &\forall s, \gamma: \mathbf{0} \leq z_{s\gamma} \leq 1, \quad \forall \gamma, \gamma': \ \mathbf{0} \leq u_{\gamma\gamma'} \leq 1 \ &\forall s, \gamma, \gamma': u_{\gamma\gamma'} \leq z_{s\gamma} \quad ext{and} \quad u_{\gamma\gamma'} \leq z_{s\gamma'} \ &\forall s: \ &\sum_{\gamma} z_{s\gamma} = 1. \end{aligned}$$

 Margin between objective of relaxed LP and the rounded LP is quite thin

Hill climbing algorithm

- 1: initialize some assignment $y^{(0)}$
- 2: for k = 1, 2, ... do
- 3: select a small spot set S_{Λ}
- **for** each $s \in S_{\Lambda}$ **do** 4:
- find new γ that improves objective change $y_s^{(k-1)}$ to $y_s^{(k)} = \gamma$ greedily 5:
- 6:
- if objective could not be improved then 7:
- **return** latest solution $y^{(k)}$ 8:

Figure: Outline for hill-climbing algorithm

Scaling and performance measurement

Figure: Scaling the annotation process with number of spots being annotated

- Scaling is mildly quadratically wrt |S₀|
- HILL1 takes about 2–3 seconds
- LP1 takes around 4–6 seconds

References

- S. Cucerzan. Large-scale named entity disambiguation based on Wikipedia data. In *EMNLP Conference*, pages 708–716, 2007.
- S. Dill et al. SemTag and Seeker: Bootstrapping the semantic Web via automated semantic annotation. In WWW Conference, 2003.
- [3] D. Milne and I. H. Witten. Learning to link with Wikipedia. In CIKM, 2008.