
Indian Institute of Technology
Bombay

CS 492 : BTP Stage I

Erlang Distributed File System
(eDFS)

By:
Aman Mangal
(100050015)

Coordinator:
Prof. G. Sivakumar

November 30, 2013

Contents

Abstract 3

1 Introduction 3

2 Taxonomy of Distributed File System 4
2.1 Transparency . 4
2.2 Architecture . 5
2.3 Processes . 5
2.4 Communication Protocol . 5
2.5 Namespace Structure . 6
2.6 Sharing Semantics . 6
2.7 Caching . 6
2.8 Consistency & Replication . 7
2.9 Fault Tolerance . 7
2.10 Scalability . 7
2.11 Security . 8

3 History of DFS 8
3.1 Unix United [5, p. 342] . 8
3.2 Locus [5, p. 345] . 9
3.3 Sun Network File System (Sun NFS) [5, p. 351] 9
3.4 Sprite [5, p. 357] . 11
3.5 Andrew [5, p. 360] . 11
3.6 Panasas Active Scale Storage Cluster [6] 12
3.7 Google File System (GFS) [7] 12
3.8 Hadoop Distributed File System (HDFS) [8] 13
3.9 TidyFS [9] . 14
3.10 Green HDFS [10] . 15

4 Erlang 16

5 Erlang Distributed File System (eDFS) 16
5.1 Architecture . 16
5.2 Master node (Metadata Server) 17
5.3 Generation of Chunk Id . 18
5.4 Worker Node . 18
5.5 Garbage Collector . 19
5.6 Client Server . 19
5.7 DataFlow . 19

5.7.1 Create New File . 19

1

5.7.2 Append to File . 19
5.8 OTP Hierarchy . 20
5.9 Master Application . 20
5.10 Worker Application . 21
5.11 Client Application . 22

6 Future Work 22

References 23

2

Abstract

It is extremely difficult for single system to provide high availability, fast
response, large data storage and low cost all at the same time. We need mul-
tiple systems running in parallel working closely together towards the same
goal. We call such systems Distributed Systems. Permanent storages are key
component to any computing systems and we, therefore, need Distributed
File System (DFS) to store data. It satisfies the needs of applications that
process large volumes of data such as search engines, data mining applica-
tions.

Erlang [1] is recently developed general purpose highly concurrent func-
tional programming language. It was designed to support distributed, fault
tolerant, scalable, non-stop applications. It has been used in production sys-
tems (e.g. AXD301 ATM switch) with an uptime percentage of 99.9999999%
(nine nine’s) [3, p. 170] [4]. It is being used by Facebook, Github, Riak,
Amazon etc. to develop large distributed systems.

We have leveraged the distributed capabilities of Erlang and have devel-
oped yet another DFS namely Erlang Distributed File System (eDFS). It is
highly concurrent, reliable, scalable and fault tolerant. In this report, we
first develop small taxonomy of DFSs. We, then describe the architecture of
eDFS and compare the design with the existing DFSs. We will also compare
the different underlining techniques to choose over the other technique.

1 Introduction

Distributed File System is an extension of file system which manages files and
data on multiple storage devices and provides more performance and relia-
bility using various modern techniques. Outside world only sees it as a single
storage device and thus simplifying the interface to a great extent. It also
provides location transparency and redundancy to improve data availability
in case of failure or heavy load.

Initially DFSs were implemented as part of operating system of each of
the connected computers. They either added a software subsystem to UNIX
kernel as in Unix United [5, p. 342] or have developed distributed kernel from
scratch like Locus [5, p. 345]. These DFSs have treated failures as exceptions
and focused on sharing of resources. Network File System (NFS) protocol
[5, p. 351] was developed in this sequence to perform remote file operations.

In recent years, there has been as explosion of interest in computing using
clusters of commodity or shared resources. Recently developed the Hadoop
Distributed File System [8] and the Google File System [7] are designed for

3

use in these commodity computing clusters with a prototypical workload
consisting of write once, high throughput, sequential I/O. These systems
are cluster based and typically store the metadata separate from the actual
data. They provide reliability by replication and consider component failures
as norm rather than exceptions.

eDFS is developed with the same strategy using Erlang distributed ca-
pabilities. It provides network transparency, location transparency, server
and client side caching for high performance, fault tolerance and scalability
to some extent. It is highly concurrent and reliable. Security issues are not
handled as of now, upcoming versions of eDFS may provide security as well.

In this report, we begin with developing taxonomy in section 2 of various
techniques and architectures used in DFSs. In section 3 we look at some of the
existing DFSs which are important to understand the architecture of eDFS.
In section 4 we outline some of the prominent features of Erlang. Sections
5 describes the architecture of eDFS. The main focus has been scalability,
efficiency and simplicity while developing the file system. At the end, we
discuss the results and future work.

2 Taxonomy of Distributed File System

2.1 Transparency

The different types of transparencies a DFS tries to provide, are as follows-

Transparency Description
Access Hide the differences in the data representation and how

the resources are accessed
Location From the file descriptor it is almost impossible to find

out the actual location of the file
Migration Hide the movement of resources within the file system

Replication Hide the fact that multiple copies are present for a file
inside the system

Network Allow to access remote file as if they are locally stored
Failure Hide the failure and recovery of connected components

in the system
Persistence Hide whether the data is stored in memory or disk

4

2.2 Architecture

Following are the various architectures used by DFSs, not necessarily mutu-
ally exclusive-

Architecture Description Examples
Client-Server Communication directly with the

server having the file, no intermediate
server

Sun NFS 3.3,
Unix United 3.1

Cluster Based Single master node and multiple worker
nodes or storage sites

GFS 3.7, HDFS
3.8, TidyFS 3.9

Symmetric All nodes understand disk structure
and metadata, all nodes are alike

Sun NFS 3.3

Asymmetric Only a few dedicated metadata man-
agers

Locus 3.2, An-
drew 3.5

Parallel Data is striped, in parallel, across mul-
tiple storage

Panasas 3.6

Object Based Provides objects storing all the infor-
mation required to perform any opera-
tion with the file

Panasas 3.6

2.3 Processes

Processes can either be stateful or stateless-

Stateless Fault tolerant, servers don’t maintain states so
it doesn’t matter to client or server if other has
crashed

Sun NFS
3.3

Stateful More efficient but complex in nature, component
failures has to be handled explicitly

GFS 3.7

2.4 Communication Protocol

Most of the DFSs use RPC over TCP as communication protocol. HDFS
3.8 uses RPC over UDP at times to improve the performance of the system.
Some other file systems like Lustre have used a more sophisticated approach
to provide network independence. In eDFS, we have used a combination of
TCP sockets and Erlang Message Passing for communication between various
nodes.

5

2.5 Namespace Structure

Namespace structure is important to a distributed file system. It is an ab-
straction of real physical storage. Following approaches has been used by
DFSs-

Approach Description Example
Central
Metada Server

Single metadata server stores all the map-
pings from actual path of the file to its phys-
ical location on disk including the storage site
location

GFS 3.7

Distributed
Metadata
Approach

Multiple synchronised metadata servers HDFS 3.8

Mount Proto-
col

Client mounts the server in a local directory
and treats it as part of local file system

Sun NFS
3.3

2.6 Sharing Semantics

Mostly file systems provide locking mechanism and follow write-once-read-
many access models. In such cases, there is some delay before other clients
reading the file sees the newly written data. On the other hand, Google File
System 3.7 follow multiple-producer-single-consumer access model to support
its search engine requirements. Some follow Unix semantics for file sharing
(everybody sees the effect of write as soon as writing is complete) but it
impacts efficiency a lot.

2.7 Caching

Caching has been extensively exploited to improve efficiency of DFS but
handling cache is complex and requires server to be stateful. Following types
of caches have been implemented by file systems-

Method Description Example
Server Side
Caching

Metadata is cached in memory to provide
fast access

Sprite 3.4

Client Side
Caching

Data is fetched in blocks and cached by
clients

Locus 3.2

6

2.8 Consistency & Replication

It is very important to ensure the consistency of the data in the file system.
Most of the DFSs use checksum to validate the data after sending it over
the network. HDFS 3.8 stores file’s metadata (e.g. checksum per block)
in a different file than the actual data on worker node to avoid corruption
in both data and metadata at the same time. GFS 3.7 doesn’t even allow
modifications in a file once written. Only appends are possible through lease
mechanism so that consistency of the data is maintained.

There are two types of data to be replicated- metadata and actual data
replication. Following expensive techniques are used for metadata replication
considering the importance of it-

1. backup metadata server like in HDFS 3.8

2. Periodic Checkpoints, Snapshots and transaction logs

For data replication, following techniques are useful-

Method Description Example
Synchronous
Replication

A pipeline is setup and data is mutated on all
the replicas

GFS 3.7

Asynchronous
Replication

Data is first mutated on one replica and client
it notified. Rest replicas are updated later

Locus 3.2

RAID Use various RAID technologies for replication RAID 0 in
Lustre

2.9 Fault Tolerance

Two ways to treat and recover component failures-

Method Description Example
Failures as
exceptions

System will isolate the failure node or recover
the system from the last running normal state

Sun NFS
3.3

Failures as
norm

They assume failures are possible and imple-
ment programs to handle them

GFS 3.7,
HDFS 3.8

2.10 Scalability

Scalability has been a major issue for the file systems. Following points are
important in this regard-

7

1. DFS relying on broadcasting is not scalable e.g. Sprite 3.4

2. Central control systems for example having single metadata server can
be scaled only to limited extent e.g. GFS 3.7

3. The practical approximation to symmetric and autonomous configu-
ration is clustering, where a system is partitioned into a collection of
semi-autonomous clusters. Cross cluster references should be avoided
in such a case e.g. Locus 3.2

4. Light weight processes are important to scalable systems. In such cases,
an I/O request only delays a single process (thread) not the entire
service. I/O requests are frequent in DFS. Also sharing among the
threads is easily facilitated.

2.11 Security

Most DFS employs security with authentication, authorization and privacy.
Some are only for specific purposes where clients can be trusted. No security
is implemented in such systems.

3 History of DFS

3.1 Unix United [5, p. 342]

This is one of the earliest attempt to extend UNIX file system to a distributed
file system without modifying the linux kernel. A software subsystem (ap-
plication) named Newcastle Connection is added on top of kernel on each of
the connected computers.

Unix United name structure is a hierarchy composed of component UNIX
subtrees. Roots of each component unit (connected computer) are assigned
names except its own root. Therefore, only relative path names are allowed.
This leads to network transparency but not complete location transparency.
The connection layer Newcastle, intercepts all system calls concerning files
and filters out the remote access commands. Each system stores a partial
skeleton of global naming structure related to only its neighbouring systems.
To access a file farther than 1 system unit, remote traversals has to be contin-
ued. One client one process model is implemented to perform operations on
remote files. RPC protocol is used for communication between component
units.

It is the simplest possible distributed file system. The issue of autonomy
of component system is well demonstrated but the stateful service scheme

8

makes it less robust. It does not provides any reliability, no fault tolerance
either.

3.2 Locus [5, p. 345]

Locus is a full scale true distributed operating system and implements dis-
tributed file system as one part of it. It uses the facility of light weight
processes (LWP) to achieve multitasking. The most powerful feature is sepa-
ration of logical view of the file system with the actual storage. All the high
level operation like read and write only need to worry about the logical view.
The distributed operating system takes care of the rest providing reliability,
fault tolerance, network and location transparency.

A removable file system in Locus is called filegroup, a logical name struc-
ture. Each file group is mapped to multiple physical containers called packs
storing replicas of the files in the filegroup. One copy is assigned primary
tag and always contains the most recent version of the data. Current syn-
chronization site (CSS) is responsible for updating the rest of the replicas.
A mount table is maintained on each node to provide network transparency.

Caching is used for efficient read and write operations. While reading a
file, Using Site (US) finds a potential Storage Site (SS) with the help of CSS
and communicates directly to get the data. The whole page is fetched to
US and stored in kernel buffer. Further read calls are serviced from kernel
buffer. While writing, on the other hand, first the primary copy is updated
and then CSS is informed to update the rest of the replicas. It used shadow
page mechanism for implementing atomic commit. CSS is responsible to
ensure fault tolerance. Locking facilities are provided in order to enforce
exclusive-writer-multiple readers policy.

Though Locus is fault tolerant, reliable DFS but it is not meant for very
large distributed environment. One CSS per file group, extensive message
traffic and server load caused by the access synchronization and replication
of logical mount table at all sites does not allow it to scale largely.

3.3 Sun Network File System (Sun NFS) [5, p. 351]

NFS provides file services in a heterogeneous environment of different ma-
chines, operating systems and network architectures. This is achieved through
the use of RPC primitives built on top of External Data Representation
(XDR) protocol. It is mostly divided into two parts- mount protocol and file
access protocol. Mount protocol allows user to treat the remote file system
locally whereas file access protocol enables reading, writing in a file, searching
in a directory etc.

9

NFS has 3 layered architecture as shown in figure 1. The top layer pro-
vides a clean interface to users to perform operations on files. Middle layer is
Virtual File System (VFS). It activates file system specific operations for lo-
cal requests and NFS protocol procedures for handling remote requests. The
bottom layer implements the NFS protocol. Every system has its own view
of logical name structure. For I/O operations, each client communicates to
the server directly. Pathname traversal is also performed client to server with
no mediator. A directory lookup cache is maintained for efficient traversal.

Figure 1: NFS Architecture

For security reasons, each server maintains an export list that specifies
the local file systems it allows to export (get mount) along with the names
of machines permitted to mount them. Cascading mounts does not exhibit
transitive property and the security of the system is still preserved. The list
is also used to notify the servers if any of the connecting server goes down.
Only administrator/s has rights to change the export list.

The prominent feature of NFS servers is that servers are stateless. Caching
is used for efficient file operations but it is handled such that stateless prop-
erty is preserved. The changes, therefore, may take some time to be visible
to others. Overall it provides network transparency, fault tolerance to some
extent but fail to provide location transparency, reliability.

10

3.4 Sprite [5, p. 357]

Sprite, similar to Locus 3.2 developed from scratch, is distributed operating
system. It is complete location and network transparent. Every domain (the
component unit) maintains a prefix table containing the path of the topmost
directory of a domain as the key. Longest prefix search gives the location
of the file. If the file is not found at the location, the broadcast protocol
is invoked and the table is updated. In this protocol, whoever has the file
replies to the broadcast message.

Sprite uses caches extensively to provide efficient reads. Delayed write,
version numbers and stateful servers provide efficient writes. It follows one
write multiple read model but cache is disabled when multiple clients are
performing reads and write. This leads to substantial degradation in per-
formance. Replication can be arranged so that servers storing a replicated
domain give different prefix to different clients for the same domain.

Sprite has powerful prefix table management technique but it is not so
much fault tolerant and scalable because of the extensive use of broadcast
protocol and caching techniques.

3.5 Andrew [5, p. 360]

Andrew file system is known for its scalability features. It is implemented
by modifying linux kernel. It follows cluster based architecture. The master
node is called Vice whereas the worker node runs the process named Venus.
Vice presents with a location and network transparent view of the file system
to clients. The DFS consists of many clusters, each cluster containing one
master node and multiple worker nodes (workstations). For performance
reasons, inter cluster references are avoided.

Clients are presented with a partitioned space of file names- local and
shared name space. workstations are required to have local disks where they
store their local name space, whereas servers collectively are responsible for
the management and storage of the shared name space in Vice.

Andrew file system exploits extensive use of disk caching to increase the
performance. It caches contents of directories and symbolic links for path-
name translations. For missing paths, Venus does a traversal and caches the
information. Entire File is cached while reading and writing. Kernel can
directly read data from cache without any intervention of Venus. An event
driven callback mechanism is used to invalidate cache when file is modified
by other clients.

Andrew was a successful attempt towards scalable DFS. It provided net-
work and location transparency and fault tolerance were treated as errors.

11

3.6 Panasas Active Scale Storage Cluster [6]

It is a general purpose storage system developed by combining a DFS with
smart hardware based on Object based Storage Devices (OSD). It uses RAID
and in memory cache to provide efficient access. Decoupling the data path
(read and write) from the control path (metadata) allows direct access to
files for clients.

The primary component is the object and object devices. An object is
an entity which contains the data and has enough information to allow the
data to be autonomous and self managing. The object based storage devices
(OSDs) are more intelligent evolution of disk drives that can layout, manage
and server objects. A cluster contains metadata server (MDS), OSDs and
client module providing POSIX compliant interface to the user.

MDS is responsible for metadata management. It constructs, manages
and disseminates a map describing the layout of each file , allowing clients
to access objects directly. A map enumerates the OSDs over which the file
is striped. It uses secure, cryptographic token called capability for secure
access to the data. It is also responsible for reconstruction of lost component
objects, parity scrubbing, directory management and callback mechanism for
validating cache.

OSDs, on the other hand, are responsible for data storage and concurrent
access. While writing to disk, OSD file system (OSDFS) attempts to write
data in contiguously blocks on disk. It breaks up the write into multiple seeks
otherwise, making sure to place per object data on physically contiguous
block. Read ahead mechanism is used with in memory cache to enable fast
read access. Objects store a rich set of information for the purpose of read
ahead algorithm.

The OSD also reduces the metadata management burden on the MDS by
maintaining one component object per OSD. Successive object stripe units
are added to initial component object for every stripe on every drive to avoid
the need for client to go to MDS again. Overall this is a good example of
object based secure, scalable distributed file system.

3.7 Google File System (GFS) [7]

Google file system was developed to meet the rapidly growing demands of
Google’s data processing needs. It is scalable, highly fault tolerant, reliable
system and provides complete network and location transparency. The design
is driven by the following facts-

• Component failures are very common in large cluster, hence treated as
norms rather than exceptions

12

• Files are huge by traditional standards. Block size is, therefore, kept
as 64MB

• Most files are mutated by appending new data rather than overwriting
existing data. GFS is optimized for sequential access and append writes
compared to random access. It provides multiple append operation by
multiple clients at a time.

A GFS cluster consists of single master node and multiple chunk servers.
The master maintains all the system metadata including namespace, access
control information, mapping from files to chunk and current location of
chunks. It controls chunk lease management, garbage collection of orphaned
chunks and chunk migration between chunk servers. The master periodi-
cally communicates with each chunk server in Heartbeat messages to give
instructions and collect its state.

Neither the client nor the ChunkServer caches the file data. Client caches
offer little benefit because most applications streams through huge files. Not
having them simplifies the client. ChunSservers need not cache file data
because chunks are stored as local files and so Linux’s buffer cache already
keeps frequently accessed data in memory.

Lease mechanism is used to minimize the master’s involvement in all
operations. A lease is assigned to any ChunkServer for a particular chunk and
is responsible to update all the changes in the chunk to the rest of the replicas.
A lease times out unless extensions are granted through HearBeat messages
by master node. While writing, a pipeline is first setup and data is pushed to
all replicas by client. Once all the replicas have acknowledged receiving the
data, a write request from the client is issued. The primary having the lease,
assigns consecutive serial numbers to all the mutations it receives possibly
from multiple clients. After applying the mutation to itself, the primary
forwards the write request to rest of the replicas. Master node offers locking
mechanism if demanded explicitly. If the mutation is not successful at any
replica, it is left in inconsistent state and later on garbage collected by the
master. Stale replicas are detected by keeping version numbers. It stores
checksum along with data per each 64 KB blocks to ensure data integrity.

3.8 Hadoop Distributed File System (HDFS) [8]

Hadoop, mainly developed by yahoo, is a distributed parallel and fault tol-
erant file system. It provides framework for analysis and transformation of
very large data clusters as well. Hadoop has the capability to partition data
among thousands of clusters and perform computation in parallel. It follows
cluster based architecture just like Google File System.

13

The HDFS namespace is hierarchy of files and directories. Everything
is stored on the NameNode (metadata server) with attributes like permis-
sion, modification and access times including the locations of replicas of each
block of the file. Everything is kept in RAM for fast servicing the client. Each
block replica on a DataNode is represented by two files in the localhost’s na-
tive file system. The first file contains the data itself and the second file
is block’s metadata including checksums. DataNode performs a handshake
while startup and informs the NameNode about its presence. It sends the
block report containing details of all the blocks maintained by it during hand-
shake. Heartbeats are periodically sent to NameNode providing information
about the capacity of the DataNode. These details are used while making
allocation and load balancing decisions by the NameNode. It replies to the
heartbeats in case it wants the DataNode to perform any specific operation.

Checkpoints are periodically created and maintained by keeping a journal
of namespace to protect the file system metadata. DataNode other than stor-
ing data, can behave as CheckpointNode or BackupNode. CheckpointNode
is responsible for combining existing checkpoints and journals. BackupNode
stores all the metadata same as NameNode except block locations and is
capable to creating new checkpoints.

HDFS implements single writer multiple reader model. Lease mechanism
is used to avoid multiple clients to write at the same time. Lease is renewed
through HeartBeats. Servers are stateful and uses buffer of size 64KB while
writing. A pipeline is setup from client to the DataNodes. TCP like mecha-
nism is implemented to achieve reliable writes. It takes some time before the
data is visible to other clients to read. hflush operation is provided if data
is required to be made visible instantly. Checksums are stored to ensure the
integrity of the data on the local disk.

HDFS has a balancer to balance the data across the Data Nodes. NameN-
ode is responsible for replication management for blocks on the DataNodes.
A garbage collector is also present on DataNode in order to verify checksums
and making sure the correct data is present. Any corruption is informed to
the NameNode and recover methods are executed. Hadoop is highly scalable,
reliable, efficient and fault tolerant distributed file system. It also provides
complete network and location transparency.

3.9 TidyFS [9]

TidyFS, developed at Microsoft Research Center, is a simple and small dis-
tributed file system providing the abstraction necessary for data parallel com-
putation. The prototypical workload is assumed to be high throughput, write
once, sequential I/O. Cluster based architecture is implemented. The files

14

are divided in the sequence of streams (blocks) and stored on the data node.
The mapping of streams to sequence of partitions is stored on the metadata
server. The metadata server is implemented as state machine and replicated
for scalability and fault tolerant. The system provides a Graphical User In-
terface which enables users to view the state of the file system. A small
service installed at each cluster machine is responsible for replication, valida-
tion and garbage collection. Clients read and write data directly to get the
best possible I/O performance.

TidyFS has 2 interesting concepts. One is the implementation of servers
as state machine and other is lazy replication to provide fault tolerance. Ev-
ery storage machine can be in one of the four state: ReadWrite, the common
state, ReadOnly, Distress or Unavailable. Machines transition among states
as the result of an administrator’s command. During the transition appro-
priate actions are executed. If a computer transitions from ReadWrite to
ReadOnly, its pending replicas are reassigned to other computers that are in
the ReadWrite state. If a computer transitions to the Distress state, then
all parts, including any which are pending, are reassigned to other comput-
ers that are in the ReadWrite state. The Unavailable state is similar to the
Distress state, however in the Distress state, parts may be read from the
distressed computer while creating additional replicas, while in the Unavail-
able state they cannot. The Distress state is used for a computer that is
going to be removed from the system, e.g. for planned re-imaging, or for a
computer whose disk is showing signs of imminent failure. The Unavailable
state signifies that TidyFS should not use the computer at all.

3.10 Green HDFS [10]

The energy conservation of the extremely large scale, commodity data centers
has become a priority problem, especially when the whole world is trying to
go green. In 2010, a variant of HDFS called GreenHDFS is proposed, which
focuses on energy consuming issue in DFS.

In GreenHDFS, the data node is categorized into two zones, the cold
zone and the hot zone. Hot zone consists of files that are being accessed
currently or newly created. Performance is the greatest importance here
so the energy savings are traded-off for high performance. The cold zone
consists of files with low accesses. Files in cold zone are moved from hot
zone by File Migration policy. For optimal energy savings, the servers in
cold zone are in a sleeping mode by default. Each file in GreenHDFS is
associated with temperature. A file is in hot zone when its created, but its
temperature decreases if its not accessed frequently. When its temperature
is lower than a threshold, its moved to the cold zone. Similarly, a file in cold

15

zone is moved to hot zone if its accessed frequently.
GreenHDFS has a straight-forward goal and a simple design to achieve

it. It is capable of achieving 24% savings in energy costs. However, moving
files between servers and putting servers into sleep mode will definitely do
harm to the overall performance.

4 Erlang

Erlang is pure functional, concurrency oriented, distributive, fault tolerant
programming language. It runs on BEAM virtual machine, has its own
scheduler, garbage collector and completely based on no shared memory but
asynchronous message passing. Creating a process and destroying it is as
quick as allocating an object in object oriented language. It believes in ”Let
it Crash” model and recover from normal state back again. It provides the
concept of linking processes so that other process is informed when the linked
process crashes. It has built in support for distributed operations. OTP are
libraries and design principles in Erlang to provide middle-ware to develop
large scale systems. It makes creating a distributed system as easy as a single
server system.

5 Erlang Distributed File System (eDFS)

It is cluster based, complete location and network transparent, fault toler-
ant, reliable and based on light weight processes provided by Erlang. The
workload is assumed to be general purpose but file system is optimized for
high throughput, sequential I/O. Component failures are considered as norm
rather than exceptions.

5.1 Architecture

A cluster of eDFS contains a master node, many worker nodes and one
or more than one client servers as shown in figure 2. Client communicate
with client server in order to perform operations on file system. Client can
be a browser or any other application which can communicate over tcp/ip
connection. Client server can directly communicate to master node or any
worker node. Multiple clients can perform operations on file system at the
same time using same client server. Multiple client servers can be deployed
for load balancing.

All the communication between client and any other node (master or
worker) uses standard Bert protocol [2] unless it is simply message passing.

16

Each time a client wants to perform operation on file system, it connects to
client server. The client server in turn connects to master node or worker
node depending upon the type of request. The client and each worker node
creates separate processes corresponding to the operations performed on a
single file. Every process has an associated time-out giving fault tolerance to
the system.

Figure 2: eDFS design

5.2 Master node (Metadata Server)

Master node takes care of handling metadata. It is stored in mnesia in ets
tables only. Each file, when created, is divided into chunks of approximately
equal size. Every chunk is assigned a unique id and stored on multiple worker

17

nodes based on the replication factor of the file. Replication factor is 3 by
default but can be controlled by the client.

A chunk is assigned replicas such that all the nodes have approximately
equal amount of data stored. Whenever a file is allocated a chunk, it de-
creases the node capacity. Worker node keeps informing the actual storage
periodically and the capacity is corrected.

Metadata server constantly monitors all the nodes and the worker appli-
cation running on the worker nodes. If any of the server goes down, it deletes
all the available replicas from metadata on that server. At the same time it
verifies that all the chunks have enough number of replicas. If not, it creates
more replicas. When the node comes back, it informs all the available chunks
on that node to metadata server.

As it is evident that master node plays very important role in a cluster.
We will replicate and divide the work into multiple master nodes in future
using mnesia distributive capabilities.

5.3 Generation of Chunk Id

Chunk id is a unique randomly generated string. The chunk is stored with
the same name on every worker node assigned to it. The name can only
contain letters a-z, A-Z, 0-9, ”.”, ” ” (64 letters). It is assumed that name
is calculated with less than a million per sec frequency. Timestamp from
operating system is converted into an equivalent representation of a random
string and used as the name of a chunk. It is represented using 8 letters (64
bits). It is possible to generate such ids upto year of 2170 which is approx-
imately 200 years later than the time since when cpu counts the number of
seconds (1970).

5.4 Worker Node

Worker node maintains the actual data of the file as instructed by the meta-
data server. It maintains a list of chunks in memory as well as on disk in
mnesia database to fast access the data. It implements a finite state machine
with 4 state similar to TidyFS 3.9. It informs the metadata server for any
change in the state. Appropriate actions are then executed when the state
is changed.

At startup, it performs handshake with master node. It informs about
its presence and sends the available capacity and used capacity. All the
processes are started only after the handshake. It provides TCP servers for
clients to directly communicate in order to perform operations on any chunk.
A separate process is created to handle each client.

18

5.5 Garbage Collector

Each worker node periodically scans through a list of chunks available on
it and verifies the checksum of the data stored in mnesia tables. It deletes
the chunks which does not have any record in the chunk table and sends an
updated list to metadata server. The metadata server makes sure that the
information is synchronized.

5.6 Client Server

Client server provides UNIX like semantics to perform file operations. It
assigns a file handler to perform operations on each file. Whenever a request
comes to the client, it checks whether there is an existing file handler for the
given file. If no such handler is present, it creates a new file handler process.
If no operation is performed by the client on a file for fixed duration, the
process exits normally.

5.7 DataFlow

5.7.1 Create New File

Client server sends a request to create the file with a complete path name of
the file and replication factor if different than 3, to the master node. Master
node creates the path if doesn’t exist and makes an entry in the mnesia table.
If the file is successfully created, ok is returned.

5.7.2 Append to File

Client server sends an append request to master node with the name of the
file. Master node replies with chunk id, the maximum amount of data allowed
to be written on that chunk, location of all the replicas including the primary
replica. It also returns the ip and the port of worker nodes corresponding to
all the replicas. A TCP connection is set up with the primary worker node
based on the provided information. The primary worker node, in turn, sets
up another TCP connection with the node having the first replica and pass
the list of rest of the replicas to it. In such a way whole pipeline is setup
recursively and ready to perform append on the chunk as shown in figure 3

The client server caches the data and sends it over the network in fixed
size. The primary performs the append and if the append is successful the
data is passed ahead in the pipeline. If the pipeline is broken at any point
of time while writing, such replicas are marked as invalid and operation is

19

Figure 3: Append Operation pipeline

carried out on rest of the replicas further. If it fails on primary, the operation
is aborted.

If amount of data written exceeds the max amount of data allowed to be
written on that chunk, client server requests a new chunk from the metadata
server and the same process is repeated. At the end when file is closed, rest
of the data is written and all the TCP sockets are closed. If no operation is
carried out for timeout amount of time, the TCP sockets are automatically
closed.

5.8 OTP Hierarchy

5.9 Master Application

There is one top supervisor process in master application. Rightnow, it
only supervises one process namely edfsm metadata server. This process
maintains the metadata and performs operations on it. It also maintains
the list of worker nodes with their storage capacity in mnesia as well as in
memory. This information is used while choosing a replica for a chunk.

20

5.10 Worker Application

Apart from the top supervisor, following processes are added in the worker
application-

• chunk server- handles the state of the worker node. 4 states are
possible- READONLY, READWRITE, DISTRESS, UNAVAILABLE.
The default and normal state is READWRITE. while startup, it per-
forms a handshake with the master node and informs the storage ca-
pacity of the node.

• tcp supervisor- it supervises all the processes required to provide
all the TCP communications happen e.g. TCP listen servers, socket
servers.

• listen server- listens on a specified port. It creates a process for
each request coming from the client under the supervision of socket
supervisor.

• socket server- performs all the chunk operations. It sets up TCP
connection with other worker nodes and forwards the requests.

Figure 4: Worker Application OTP layout

21

5.11 Client Application

Following processes are running on client server-

• edfsc server- receives all the requests from client and passes them to
master node or the worker node depending upon the type of request.

• file handler- sets up TCP connection with the worker node and for-
wards all the file specific operations to it. It can also communicate
to metadata server over message passing to get the new chunk id if
required.

Figure 5: Client Application OTP layout

6 Future Work

Only create and append operations are available currently in the file system.
Following is the expected work to be done in the stage 2 of this project-

• Explicit error handling when a node crashes

• Metadata is to be stored on disk on worker nodes

22

• Read and concurrent append operations

• Write operation on any file and locking mechanism

• Namespace handling, no directory structure is provided as of now

• Replication of metadata server

• Garbage collection process

• Checkpoint, snapshots or logs if required

• Map reduce framework

References

[1] http://www.erlang.org/

[2] http://bert-rpc.org/

[3] Joe Armstrong, ”Making Reliable Distributed Systems in the Pres-
ence of Software Errors”, A Dissertation submitted to the Royal Institute
of Technology Stockholm Sweden, December 2003.

[4] Joe Armstrong, ”What’s All the Fuss About Erlang”,
http://pragprog.com/articles/erlang, 2007.

[5] Eliezer levy, Abraham silberschatz, ”Distributed File Systems:
Concepts and Examples”, ACM Computing Surveys, Vol. 22, No. 4,
December 1990.

[6] Nagle D., Serenyi D., Matthews A., ”The Panasas ActiveScale
Storage Cluster: Delivering Scalable High Bandwidth Storage”, Pro-
ceedings of the 2004 ACM/IEEE conference on Supercomputing, pp. 53-,
2004.

[7] Sanjay Ghemawat, Howard Gobioff and Shun-Tak Leung,
”The Google file system”, In SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles New York, NY, USA,
2003

[8] Konstantin Shvachko, Hairong Kunag, Sanjay Radia and
Robert Chansler, ”The Hadoop Distributed File System” Sunny-
vale, California USA

23

[9] Dennis Fetterly, Maya Haridasan, Michael Isard and
Swaminathan Sundararaman, ”TidyFS: A Simple and Small Dis-
tributed File System”. Microsoft Research Technical Report, MSR-TR-
20110-24

[10] Yuduo Zhou, ”Large Scale Distributed File System Survey”, Indiana
University Bloomington

[11] Maurya M., Oza C., Shah K. ”A Review of Distributed File
Systems” MPSTME, SVKM’s NMISMS University Vile Parle West,
Mumbai-56

[12] Satyanarayanan, M., ”A Survey of Distributed File Systems”,
Technical Report CMU-CS-89- 116, Department of Computer Science,
Camegie Mellon University, 1989.

[13] Tran Doan Thanh, Subaji Mohan, Eunmi Choi, SangBum Kim,
Pilsung Kil ”A Taxonomy and Survey of Distributed File System”
School of Business IT, Kookmin University Seoul, Korea, 2008

[14] Dean Jeffrey, Ghemawat Sanjay ”MapReduce: simplified data
processing on large clusters” Communications of the ACM New York,
NY, USA, January 2008

[15] Logan Martin, Merritt Eric and Carlsson Richard ”Erlang
and OTP in Action”, 2010

24

	Abstract
	Introduction
	Taxonomy of Distributed File System
	Transparency
	Architecture
	Processes
	Communication Protocol
	Namespace Structure
	Sharing Semantics
	Caching
	Consistency & Replication
	Fault Tolerance
	Scalability
	Security

	History of DFS
	Unix United [p. 342]olddfs
	Locus [p. 345]olddfs
	Sun Network File System (Sun NFS) [p. 351]olddfs
	Sprite [p. 357]olddfs
	Andrew [p. 360]olddfs
	Panasas Active Scale Storage Cluster panasas
	Google File System (GFS) ghemawat03
	Hadoop Distributed File System (HDFS) hadoop
	TidyFS tidyfs
	Green HDFS zhou

	Erlang
	Erlang Distributed File System (eDFS)
	Architecture
	Master node (Metadata Server)
	Generation of Chunk Id
	Worker Node
	Garbage Collector
	Client Server
	DataFlow
	Create New File
	Append to File

	OTP Hierarchy
	Master Application
	Worker Application
	Client Application

	Future Work
	References

