
Data Mining Assignment 2
Cost sensitive classifiers

08305006: Prashanth K
08305023: Prashant Borole
08305028: Sriram Kashyap
08305045: Anup Kulkarni

October 10, 2008

1 Introduction

1.1 Basic Info

• Classifiers Implemented:

– Cost sensitive Decision Tree

– Cost sensitive Naive Bayes Classifier

• Files Created/Modified:

– weka/classifiers/trees/CostTree.java

– weka/classifiers/bayes/CostSensitiveNaiveBayes.java

– weka/gui/GenericObjectEditor.props

– costs.cfg

1.2 Instructions

Instructions to run:

• Run weka.jar from the command-line: java -jar weka.jar

• Edit the costs.cfg file so that the first line is the file path of the attribute
cost file and the second line is the file path of the cost matrix file (The
remaining lines are ignored).

1

• Load the dataset, and run one of these classifiers:

– trees.CostTree

– bayes.CostSensitiveNaiveBayes

Note: The classifiers work for data sets with numeric/nominal/missing at-
tributes, and nominal classes (numeric classes are currently not supported).

2 Cost Sensitive Naive Bayes Classifier

2.1 Formulation

Fiven (D, C, T), where:

• D is a training dataset consisting of N samples (x1, x2, ..., xN) from
P classes (c1, c2, ..., cP) Each sample xi is described by M attributes
(A1, x2, ..., AM) among whom there can be missing values.

• C is a misclassifcation cost matrix. Each entry Cij = C(i, j) specifies
the cost of classifying a sample from class ci as belonging to class cj(1 ≤
i, j ≤ P) . Usually, Cii = 0.

• T is a test-cost vector. Each entry Tk = T (k) specifies the cost of
taking a test on attribute Ak(1 ≤ k ≤ M);

Build a test-cost sensitive naive Bayes classi?er csNB and for every test
case, a test strategy with the aim to minimize the sum of the misclassification
cost Cmc and test cost Ctest.

2.1.1 Strategy

A sequential test strategy is as follows. During the process of classification,
based on the results of previous tests, decisions are made sequentially on
whether a further test on an unknown attribute should be performed, and if
so, which attribute to select.

Suppose that x = (a1, a2, ..., aM) is a test example. Each attribute ai

can be either known or unknown. Let Ã denote the set of known attributes
among all the attributes A and Ā the unknown attributes. The expected
misclassification cost of classifying x as class cj based on Ã is:

R(cj|x) = R(cj|Ã) =
∑

Cij × P (ci|Ã, 1 ≤ j ≤ P (1)

cj∗ with the minimum expected cost is predicted as the class label.

2

To decide which attribute Ã ∈ Ā to select, we define the utility of testing
an unknown attribute Āi as follows:

Util(Āi) = Gain(Ã, Āi)− Ti (2)

Gain(Ã, Āi) = Cmc(Ã)− Cmc(Ã ∪ Āi) (3)

Cmc(Ã) = minjR(cj|Ã) (4)

Cmc(Ã ∪ Āi) =

|Āi|∑
k=1

P (Āi = xk|Ã)×minjR(cj|Ã, = Ai = xk) (5)

Overall, an attribute Āi is worth testing if testing it offers more gain than
the cost it brings. We select the attribute Ai with the maximum utility, read
its value, update Ã and Ā with Ai, and continue this process until none of
the remaining attributes are worth testing.

3 CostTree

The cost sensitive decision tree is based on a modification of the algorithm
suggested by Ling et al. in “Decision Trees with Minimal Costs”. It has been
built using weka’s REP-Tree as a base, and modifiying the gain functions that
it uses.

3.1 Formulation

The decision tree is made cost-sensitive by selecting those attributes that
have highest gain, at each stage of the tree building process. The gain is
defined as:

Gain = priorCost− cCost− attribCost×N (6)

Here, priorCost is the cost of misclassification before the split, and cCost
is the cost of misclassification after the split. attribCost is the cost of evalu-
ating the attribute over which the split is taking place. This cost is multiplied
by the number of instances (N) for which this attribute should be evaluated.

currentCost =
n∑

i=0

d∑
j=0

(N ∗ distj) ∗ Cjk (7)

3

where: n is the number of values that the attribute can take,
N is the number of instances,
d is the number of attributes,
distj is the probability of class value j,
Cjk is the cost of misclassifying an instance of class j as that of class
k, where k is the dominating class of the split.

Given a distribution for c classes, the dominating class i for that node is
calculated as follows:

arg min
i

cost =
c∑

j=0

distj ∗ Cji (8)

It has been shown that if a tree is built using these rules, the best at-
tributes to evaluate are at the top of the tree, and the most expensive at-
tributes move to the bottom of the tree. This means that evaluating the class
of a new instance using this tree is just the matter of traversing the tree, till
the leaf node is reached. Any attributes which are un-economical to expand
are not included in the tree building process.

The class of an instance is calculated from the distributions by weighing
each class distribution by the misclassification costs of that class, as shown
above.

4

4 Results

5

6

