Description Logics An Introduction

Prashanth Kamle

Department of Computer Science and Engineering Indian Institute of Technology, Bombay

March 3, 2009

イロト イヨト イヨト イヨト

Description Logics

- A family of languages for formal knowledge representation
- Represents knowledge by
 - Defining relevant concepts in the domain Terminology
 - Using terminology to specify properties of individuals and objects -World Description
- Reasoning a central service

- 4 同 6 4 日 6 4 日 6

 Concepts
 Unary predicates Eg. Person, Female

 Roles
 Binary predicates Eg. hasChild

 Individuals
 Constants Eg. Mary, John

 Constructors
 • Union ⊔: Eg. Man ⊔ Woman

 • Intersection ⊓: Eg. Person ⊓ Female

 • Restriction Exists ∃: Eg. ∃hasChild.Female

 • Restriction ForAll ∀: Eg. ∀hasChild.Engineer

- Negation ¬: Eg. ¬Man
- Number restriction: $\leq k, \geq m$

Axioms Mother \sqsubseteq Parent

E Sac

イロト イヨト イヨト

"A man that is married to a doctor and has at least five children, all of whom are professors"

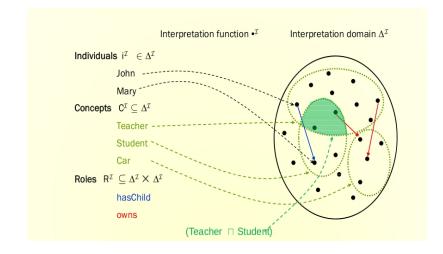
Human $\sqcap \neg$ *Female* $\sqcap \exists$ *married*.*Doctor* $\sqcap (\geq 5child) \sqcap \forall child$.*Professor*

< ロ > < 同 > < 三 > < 三

DL Semantics

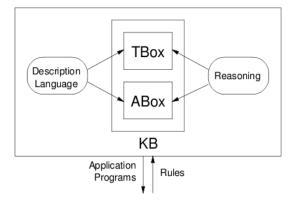
- A terminology consists of concepts and roles
- An interpretation ${\mathcal I}$ is a tuple(${\bigtriangleup}^{I}, {\cdot}^{I})$ where
 - \triangle^{I} is the domain
 - .¹ is a mapping which maps
 - ★ Names of individuals to elements of $△^{I}$
 - ★ Names of concepts to subsets of △'
 - ★ Names of roles to subsets of $\triangle^{I} \times \triangle^{I}$

DL Semantics



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Knowledge Representation System Architecture



Prashanth Kamle (IIT Bombay)

(日) (周) (三) (三)

TBox and ABox

- Knowledge Base = TBox + ABox
- TBox: Terminology Inclusion axioms and Equivalence axioms

Woman \equiv Person \sqcap Female $Man \equiv$ Person $\sqcap \neg$ Woman $Mother \equiv$ Woman $\sqcap \exists$ has Child. Person Father \equiv Man $\sqcap \exists$ has Child. Person Parent \sqsubseteq Person

• ABox: Assertions

Father(PETER) Mother(MARY) hasChild(MARY, PETER) hasChild(PETER, HARRY)

Inferencing

- Satisfiability: Is there some interpretation that satisfies axioms in TBox?
- Subsumption: Is concept A more general than concept B?
- In Equivalence: Same?
- Instance check: Assertion α entailed by ABox?
- Setrieval: Which individuals satisfy concept C?

All are reducible to satisfiability check.

.

Central Idea: Find an individual which satisfies the concept

- Convert description to Negation Normal form
- For any existential restriction, introduce a new individual as role filler such that it satisfies the constraints expressed by the restriction.
- Use value restrictions in interaction with already defined role relationships to impose new constraints on individuals
- For disjunctive constraints, try both possibilities in successive attempts. Backtrack if you reache an obvious contradiction
- If an at-most number restriction is violated then the algorithm must identify different role fillers

Completion rules

The \rightarrow_{\Box} -rule **Condition:** A contains $(C_1 \sqcap C_2)(x)$, but it does not contain both $C_1(x)$ and $C_2(x)$. Action: $\mathcal{A}' = \mathcal{A} \cup \{C_1(x), C_2(x)\},\$ The \rightarrow _-rule **Condition:** A contains $(C_1 \sqcup C_2)(x)$, but neither $C_1(x)$ nor $C_2(x)$. Action: $\mathcal{A}' = \mathcal{A} \cup \{C_1(x)\}, \ \mathcal{A}'' = \mathcal{A} \cup \{C_2(x)\}.$ The $\rightarrow \exists$ -rule **Condition:** A contains $(\exists R.C)(x)$, but there is no individual name z such that C(z)and R(x, z) are in \mathcal{A} . **Action:** $\mathcal{A}' = \mathcal{A} \cup \{C(y), R(x, y)\}$ where y is an individual name not occurring in \mathcal{A} . The $\rightarrow \forall$ -rule **Condition:** A contains $(\forall R.C)(x)$ and R(x, y), but it does not contain C(y). Action: $\mathcal{A}' = \mathcal{A} \cup \{C(y)\}.$ The $\rightarrow \neg$ -rule **Condition:** A contains $(\ge n R)(x)$, and there are no individual names z_1, \ldots, z_n such that $R(x, z_i)$ $(1 \le i \le n)$ and $z_i \ne z_j$ $(1 \le i < j \le n)$ are contained in A. **Action:** $A' = A \cup \{R(x, y_i) \mid 1 \le i \le n\} \cup \{y_i \neq y_i \mid 1 \le i \le j \le n\}$, where y_1, \ldots, y_n are distinct individual names not occurring in \mathcal{A} . The $\rightarrow -$ rule **Condition:** A contains distinct individual names y_1, \ldots, y_{n+1} such that $(\leq n R)(x)$ and $R(x, y_1), \ldots, R(x, y_{n+1})$ are in \mathcal{A} , and $y_i \neq y_j$ is not in \mathcal{A} for some $i \neq j$. **Action:** For each pair y_i, y_j such that i > j and $y_i \neq y_j$ is not in \mathcal{A} , the ABox $\mathcal{A}_{i,i} = [y_i/y_i]\mathcal{A}$ is obtained from \mathcal{A} by replacing each occurrence of y_i by y_i .

(日) (同) (三) (三)

References

- F. Baader, W. Nutt. Basic Description Logics. In the Description Logic Handbook, edited by F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider, Cambridge University Press, 2002, pages 47-100.
- Jidi Zhao, 2008. *Introduction to Description Logic and Ontology Languages.* Institute of Computer Technology, TU Vienna.

(日) (周) (三) (三)