Application of Markov Logic Networks to Entity Resolution

An Introduction

Anup Kulkarni and Prashanth Kamle
Department of Computer Science and Engineering
Indian Institute of Technology, Bombay

April 30, 2009

Outline

(1) Markov Network
(2) Markov Logic Network
(3) Ground Markov Network
(4) Entity Resolution
(5) Experiment with Alchemy

6 Conclusion

Markov Network

- A Markov network is a model of the joint probability distribution of a set X of random variables having the Markov property.
- Constituents
- An undirected graph G
- A set of potentials functions f_{k}
- Every node is associated with a random variable
- A potential function is associated with every clique

Joint distribution

$$
\begin{equation*}
P(X=x)=\frac{1}{Z} \prod_{k} f_{k}\left(x_{\{k\}}\right) \tag{1}
\end{equation*}
$$

where $x_{\{k\}}$ is the state of variables that appear in the $k^{\text {th }}$ clique. Z, called the partition function, is given by

$$
\begin{equation*}
Z=\sum_{x \in \mathcal{X}} \prod_{k} f_{k}\left(x_{\{k\}}\right) . \tag{2}
\end{equation*}
$$

Markov Network as a log-linear model

$$
\begin{equation*}
P(X=x)=\frac{1}{Z} \exp \left(\sum_{k} w_{k}^{\top} \phi_{k}\left(x_{\{k\}}\right)\right) \tag{3}
\end{equation*}
$$

- Exact inference is NP-complete
- Approximation techniques such as Markov Chain Monte Carlo and loopy belief propagation used
- MAP estimates found using standard gradient-based or quasi-Newton optimization methods (L-BFGS).

Markov Logic Networks

- A first order knowledge base is a set of hard constraints.
- A Markov Logic Network intends to make these constraints soft by associating a weight to every constraint.
- Greater the weight, more important is the constraint.
- In MLNs, if a constraint is violated by a world, it simply becomes less probable.

Formal definition

A Markov logic network L is a set of pairs $\left(F_{i}, w_{i}\right)$

- F_{i} is a formula in first-order logic
- w_{i} is a real number

A Markov Logic Network

English	First-Order Logic	Clausal Form	Weight
Friends of friends are friends.	$\forall \mathrm{x} \forall \mathrm{y} \forall \mathrm{z} \mathrm{Fr}(\mathrm{x}, \mathrm{y}) \wedge \mathrm{Fr}(\mathrm{y}, \mathrm{z}) \Rightarrow \mathrm{Fr}(\mathrm{x}, \mathrm{z})$	$\neg \mathrm{Fr}(\mathrm{x}, \mathrm{y}) \vee \neg \mathrm{Fr}(\mathrm{y}, \mathrm{z}) \vee \mathrm{Fr}(\mathrm{x}, \mathrm{z})$	0.7
Friendless people smoke.	$\forall \mathrm{x}(\neg(\exists \mathrm{y} \operatorname{Fr}(\mathrm{x}, \mathrm{y})) \Rightarrow \mathrm{Sm}(\mathrm{x}))$	$\mathrm{Fr}(\mathrm{x}, \mathrm{g}(\mathrm{x}) \mathrm{)} \vee \mathrm{Sm}(\mathrm{x})$	2.3
Smoking causes cancer.	$\forall \mathrm{Sm}(\mathrm{x}) \Rightarrow \mathrm{Ca}(\mathrm{x})$	$\neg \mathrm{Sm}(\mathrm{x}) \vee \mathrm{Ca}(\mathrm{x})$	1.5
If two people are friends, either	$\forall \mathrm{x} \forall \mathrm{y} \operatorname{Fr}(\mathrm{x}, \mathrm{y}) \Rightarrow(\mathrm{Sm}(\mathrm{x}) \Leftrightarrow \operatorname{Sm}(\mathrm{y}))$	$\neg \mathrm{Fr}(\mathrm{x}, \mathrm{y}) \vee \mathrm{Sm}(\mathrm{x}) \vee \neg \mathrm{Sm}(\mathrm{y})$,	1.1
both smoke or neither does.		$\neg \mathrm{Fr}(\mathrm{x}, \mathrm{y}) \vee \neg \mathrm{Sm}(\mathrm{x}) \vee \mathrm{Sm}(\mathrm{y})$	1.1

Figure: Example of a first-order knowledge base and MLN. $\operatorname{Fr}()$ is short for Friends(), Sm() for Smokes(), and Ca() for Cancer()

MLN as a Markov Network

With a finite set of constants $C=\left\{c_{1}, c_{2}, \ldots, c_{|C|}\right\}$, it defines a Markov Network $M_{L, C}$

- $M_{L, C}$ contains one binary node for each possible grounding of each predicate appearing in L.
- The value of the node is 1 if the ground atom is true, and 0 otherwise.
- $M_{L, C}$ contains one feature for each possible grounding of each formula F_{i} in L.
- The value of this feature is 1 if the ground formula is true, and 0 otherwise.
- The weight of the feature is the w_{i} associated with F_{i} in L.

Ground Markov Network $M_{L, C}$

$$
\begin{equation*}
P(X=x)=\frac{1}{Z} \exp \left(\sum_{i} w_{i} n_{i}(x)\right)=\frac{1}{Z} \prod_{i} \phi_{i}\left(x_{\{i\}}\right)^{n_{i}(x)} \tag{4}
\end{equation*}
$$

where $n_{i}(x)$ is the number of true groundings of F_{i} in $x, x_{\{i\}}$ is the truth values (state) of the atoms appearing in F_{i}, and $\phi_{i}\left(x_{\{i\}}\right)=e^{w_{i}}$.

Graphical structure of ground markov network

- There is an edge between 2 nodes if the corresponding ground atoms appear together in at least one grounding of a formula in L.
- Atoms in each ground formula form a clique in $M_{L, C}$

Example

Figure: Ground Markov network obtained by applying the last two formulas in Figure 1 to the constants $\operatorname{Alice}(A)$ and $\operatorname{Bob}(B)$

Assumptions

- Each $M_{L, C}$ denotes a possible world.
- To ensure that the set of possible worlds is finite, the following assumptions are made-
(1) Unique names: Different constants refer to different objects
(2) Domain closure: The only objects in the domain are those representable using the constant and function symbols in (L, C).
(3) Known functions: For each function appearing in L, the value of that function applied to every possible tuple of arguments is known, and is an element of C.

Entity Resolution

(1) Entity resolution is the problem to determine which records refer to same real world entity.

- Same authors can be refered differently: Andrew McCallum, McCallum A. and A. McCallum refers to same person
- Same conference can be refered differently: ICML, International Conference of Machine Learning
- Same city name: Los Angeles and LA

Unique Name Assumption

Unique Name Assumption different constants refer to different objects in the domain

Predicate Form Equals(x, y) or $\mathrm{x}=\mathrm{y}$

Unique Name Assumption

Unique Name Assumption different constants refer to different objects in the domain

Predicate Form Equals(x, y) or $\mathrm{x}=\mathrm{y}$

Reflexivity

$$
\forall x, \mathrm{x}=\mathrm{x}
$$

Symmetry

$$
\forall x, y x=y \Longrightarrow y=x
$$

Transitivity

$$
\forall x, y, z x=y \wedge y=z \Longrightarrow a=z
$$

Predicate Equivalence

Predicate Equivalence for each binary relation R is given by

$$
\forall x_{1}, x_{2}, y_{1}, y_{2} x_{1}=x_{2} \wedge y_{1}=y_{2} \Longrightarrow\left(R\left(x_{1}, y_{1}\right)=R\left(x_{2}, y_{2}\right)\right)
$$

if two objects are same if their some of fields are same
Reverse Predicate Equivalence for each binary predicate R

$$
\forall x_{1}, x_{2}, y_{1}, y_{2}\left(R\left(x_{1}, y_{1}\right) \wedge R\left(x_{2}, y_{2}\right)\right) \Longrightarrow\left(x_{1}=x_{2} \wedge y_{1}=y_{2}\right)
$$

if two objects are in the same relation to the same object, this is evidence that they may be the same object two papers appearing in same conference with same author name are likely to be same

Problem Formulation

Binary Relations n -ary relation is represented using n binary relations if a citation database contains ground atoms of the form Paper(title, author, venue), they can be replaced by atoms of the form HasTitle(paper, title), HasAuthor(paper, author) and HasVenue(paper, venue).
Typed Fields All the fields are assumed to be typed the first argument of the predicate HasAuthor(paper, author) is of type Paper, and the second is of type Author

Problem Formulation

Binary Relations n -ary relation is represented using n binary relations if a citation database contains ground atoms of the form Paper(title, author, venue), they can be replaced by atoms of the form HasTitle(paper, title), HasAuthor(paper, author) and HasVenue(paper, venue).
Typed Fields All the fields are assumed to be typed the first argument of the predicate HasAuthor(paper, author) is of type Paper, and the second is of type Author

Goal Goal is to find two author names corresponds to same person or not.
if x_{1} and x_{2} have same type then is $x_{1}=x_{2}$?

Deduplication

HasWord predicate object to be deduplicated is citation which is mainly in the form of string tokens
HasWord(field,word) checks if "word" occurs in "field" $\forall x_{1}, x_{2}, y_{1}, y_{2}\left(\operatorname{HasWord}\left(x_{1}, y_{1}\right) \wedge \operatorname{HasWord}\left(x_{2}, y_{2}\right)\right) \wedge y_{1}=$ $y_{2} \Longrightarrow x_{1}=x_{2}$
if fields have same words then those fields are same.
Putting in Probabilistic Model

$$
\operatorname{Pr}\left(x_{1}=x_{2} \mid n\right)=\frac{\exp (w \times n)}{Z}
$$

w is weight of formula and n is the number of times $x_{1}=x_{2}$.

Deduplication

$\forall x_{1}, x_{2}, y_{1}, y_{2}\left(\sim \operatorname{HasWord}\left(x_{1}, y_{1}\right) \wedge \operatorname{HasWord}\left(x_{2}, y_{2}\right)\right) \wedge y_{1}=y_{2} \Longrightarrow x_{1} \neq x_{2}$
$\forall x_{1}, x_{2}, y_{1}, y_{2}\left(\operatorname{HasWord}\left(x_{1}, y_{1}\right) \wedge \sim \operatorname{HasWord}\left(x_{2}, y_{2}\right)\right) \wedge y_{1}=y_{2} \Longrightarrow x_{1} \neq x_{2}$
$\forall x_{1}, x_{2}, y_{1}, y_{2}\left(\sim \operatorname{HasWord}\left(x_{1}, y_{1}\right) \wedge \sim \operatorname{HasWord}\left(x_{2}, y_{2}\right)\right) \wedge y_{1}=y_{2} \Longrightarrow x_{1}=x_{2}$

Issues

Misspellings defining the predicate HasEngram(word, engram), which is true iff engram is a substring of word
Fellegi-Sunter Model $\forall x_{1}, x_{2}, y_{1}, y_{2}\left(\operatorname{HasWord}\left(x_{1}, y_{1}\right) \wedge \operatorname{HasWord}\left(x_{2}, y_{2}\right)\right) \wedge y_{1}=$

$$
\begin{aligned}
& y_{2} \wedge R\left(z_{1}, x_{1}\right)=R\left(z_{2}, x_{2}\right) \Longrightarrow z_{1}=z_{2} \\
& \forall x_{1}, x_{2}, y_{1}, y_{2}\left(\operatorname{HasWord}\left(x_{1}, y_{1}\right) \wedge \operatorname{HasWord}\left(x_{2}, y_{2}\right)\right) \wedge y_{1}= \\
& y_{2} \wedge R\left(z_{1}, x_{1}\right)=R\left(z_{2}, x_{2}\right) \Longrightarrow z_{1} \neq z_{2} \\
& \forall x_{1}, x_{2}, y_{1}, y_{2}\left(\operatorname{HasWord}\left(x_{1}, y_{1}\right) \wedge \operatorname{HasWord}\left(x_{2}, y_{2}\right)\right) \wedge y_{1}= \\
& y_{2} \wedge R\left(z_{1}, x_{1}\right)=R\left(z_{2}, x_{2}\right) \Longrightarrow z_{1} \neq z_{2} \\
& \forall x_{1}, x_{2}, y_{1}, y_{2}\left(\operatorname{HasWord}\left(x_{1}, y_{1}\right) \wedge \operatorname{HasWord}\left(x_{2}, y_{2}\right)\right) \wedge y_{1}= \\
& y_{2} \wedge R\left(z_{1}, x_{1}\right)=R\left(z_{2}, x_{2}\right) \Longrightarrow z_{1}=z_{2}
\end{aligned}
$$

Model Variations

(1) $\operatorname{MLN}(B)$: It is most basic model. It has the four reverse predicate equivalence rules connecting each word to the corresponding field/record match predicate.
(2) $\operatorname{MLN}(B+C)$: reverse predicate equivalence rules
(3) $\operatorname{MLN}(B+T)$: adding transitive closure rules to $M L N(B)$
(9) $\mathrm{MLN}(\mathrm{B}+\mathrm{C}+\mathrm{T})$: both reverse predicate equivalence and transitive closure rules
(5) $\mathrm{MLN}(\mathrm{B}+\mathrm{C}+\mathrm{T}+\mathrm{S})$: rules added using structure learning algorithm
(0) $\mathrm{MLN}(\mathrm{B}+\mathrm{N}+\mathrm{C}+\mathrm{T})$: two-level learning/inference step

Performance Analysis

- For venue best performing model is MLN(B+C+T).
- Performance gradually increases from basic model to BCT model. This trend shows how adding each feature in turn enhances the performance, giving the largest improvement when all the features are added to the model.
- $\mathrm{MLN}(\mathrm{B}+\mathrm{C}+\mathrm{T}+\mathrm{S})$ helps improve the performance of $\mathrm{MLN}(\mathrm{B}+\mathrm{C}+\mathrm{T})$ on citations and authors
- $\mathrm{MLN}(\mathrm{B}+\mathrm{N}+\mathrm{C}+\mathrm{T})$ improves performance on authors but not on citations and venues.

Experiments

- Experimented with Alchemy
- Constructed and trained an MLN for entity resolution using CORA citation dataset
- Used $\mathrm{B}+\mathrm{N}+\mathrm{C}+\mathrm{T}$ model

Conclusion

- Logic and probability can be combined into a graphical model for inferencing on a probabilistic knowledge base
- A small number of axioms in Markov logic capture the essential features of citation records
- Markov logic enables us to easily build a sophisticated entity resolution system

