OWL Sights and Insights

Prashanth K

Department of Computer Science and Engineering IIT Bombay

Ontology Languages

- Formal languages to describe ontologies
- Include reasoning rules

Examples

- CycL
- KIF (Knowledge Interchange Format)
- FLogic (frame based)
- RDF (Resource Description Framework) and RDFS (RDF Schema)
- OIL (Ontology Inference Layer)
- OWL (Web Ontology Language)

Using RDFS, you can..

- Declare classes like Country, Person, Student and Indian
- State that Student is a subclass of Person
- State that India and China are instances of class Country
- Declare nationality as a property relating classes
 Person and Country
- State that age is a property with Person as its domain and integer as its range
- State that Ram is an instance of class Indian, and that his age has value 48

Using OWL, you can..

- State that Country and Person are disjoint classes
- State that India and China are distinct individuals
- Declare hasCitizen as the Inverse property of nationality
- State that the class Stateless is defined precisely as those members of class Person that have no values for property nationality

Using OWL, you can..

- State that class MultipleNationals is defined precisely as those members of class Person that have at least 2 values for property nationality
- State that class Indian is defined precisely as those members of class Person that have India as the value of nationality

OWL-Ingredients

- Description Logic
- Frames
- RDF/XML
- RDFS
- OIL+DAML

DL Influence

- Formalization of semantics
- Automated reasoning to check knowledge base consistency and entailment
- OWL design based on SH family of DL
 - SHIF
 - SHIQ
 - SHOQ(D)

Frames influence

- Frames group together info about each class, easier reading and understanding
- Class frame=DL axiom
- Property frame=set of axioms asserting domain, range, transitivity etc
- OWL abstract syntax heavily influenced by frames

RDF influence

- Goal: Max upward compatibility with RDF
- Effort to make OWL semantics consistent with RDF semantics
 - Problems

DAML+OIL

- DAML Darpa Agent Markup Language (US)
- OIL (Europe)
 - First to use DL to describe ontologies
 - Fully compatible with RDF syntactically, but not semantically
- DAML+OIL
 - Uses RDF and RDFS vocabulary to a greater extent
 - No standard theory of inference

OWL species

- OWL DL
 - Decidable inference, uses DL
 - Well formed RDF graphs a necessity
- OWL Lite
 - More tractable inference
 - Syntactic subset of OWL DL
- OWL Full
 - Syntactic and semantic extension of RDF & RDFS
 - Reasoning undecidable
 - Arbitrary RDF graphs

OWL-DL

- Vocabulary partitioning
- Explicit typing
- Property separation
- No transitive cardinality restrictions
- Uses SHOIN(D)
- Non deterministic exponential time reasoning

OWL Lite

- No unions and complements
- No individuals in class axioms
- Cardinalities only 0-1
- SHIF(D)
- Deterministic exponential time reasoning
- FaCT and RACER reasoners

OWL Full

- Goes well outside DL framework
- Eg: You can even impose cardinality restriction on rdfs:subClassOf

OWL to DL mapping

Abstract Syntax	DL Syntax	Semantics	
Descriptions (C)			
A (URI reference)	A	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$	
owl:Thing	Т	$\texttt{owl:Thing}^\mathcal{I} = arDelta^\mathcal{I}$	
owl:Nothing		$\texttt{owl:Nothing}^\mathcal{I} = \{\}$	
$intersectionOf(C_1 \ C_2 \ \dots)$	$C_1 \sqcap C_2$	$(C_1 \sqcap D_1)^{\mathcal{I}} = C_1^{\mathcal{I}} \cap D_2^{\mathcal{I}}$	
unionOf($C_1 \ C_2 \ \ldots$)	$C_1 \sqcup C_2$	$(C_1 \sqcup C_2)^{\mathcal{I}} = C_1^{\mathcal{I}} \cup C_2^{\mathcal{I}}$	
complementOf(C)	$\neg C$	$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$	
$oneOf(o_1 \ldots)$	$\{o_1,\ldots\}$	$\{o_1,\ldots\}^{\mathcal{I}} = \{o_1^{\mathcal{I}},\ldots\}$	
restriction(R someValuesFrom(C))	$\exists R.C$	$(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \text{ and } y \in C^{\mathcal{I}}\}$	
restriction(R allValuesFrom(C))	$\forall R.C$	$(\forall R.C)^{\mathcal{I}} = \{ x \mid \forall y. \langle x, y \rangle \in R^{\mathcal{I}} \to y \in C^{\mathcal{I}} \}$	
restriction(R hasValue(o))	R:o	$(\forall R.o)^{\mathcal{I}} = \{x \mid \langle x, o^{\mathcal{I}} \rangle \in R^{\mathcal{I}}\}$	
restriction(R minCardinality(n))	$\geqslant n R$	$(\geqslant n R)^{\mathcal{I}} = \{x \mid \sharp(\{y.\langle x, y \rangle \in R^{\mathcal{I}}\}) \geqslant n\}$	
restriction(R minCardinality(n))	$\leq n R$	$(\geqslant n R)^{\mathcal{I}} = \{ x \mid \sharp(\{y.\langle x, y \rangle \in R^{\mathcal{I}}\}) \leqslant n \}$	
restriction(U someValuesFrom(D))	$\exists U.D$	$(\exists U.D)^{\mathcal{I}} = \{x \mid \exists y. \langle x, y \rangle \in U^{\mathcal{I}} \text{ and } y \in D^{\mathbf{D}}\}$	
restriction(U allValuesFrom(D))	$\forall U.D$	$(\forall U.D)^{\mathcal{I}} = \{ x \mid \forall y. \langle x, y \rangle \in U^{\mathcal{I}} \to y \in D^{\mathbf{D}} \}$	
restriction(U hasValue(v))	U:v	$(U:v)^{\mathcal{I}} = \{x \mid \langle x, v^{\mathcal{I}} \rangle \in U^{\mathcal{I}}\}$	
restriction(U minCardinality(n))	$\geq n U$	$(\geq n U)^{\mathcal{I}}_{-} = \{ x \mid \sharp(\{y, \langle x, y \rangle \in U^{\mathcal{I}}_{-}\}) \geq n \}$	
restriction(U maxCardinality(n))	$\leq n U$	$(\leqslant n U)^{\mathcal{I}} = \{ x \mid \sharp(\{ y. \langle x, y \rangle \in U^{\mathcal{I}} \}) \leqslant n \}$	
Data Ranges (D)			
D (URI reference)	D	$D^{\mathbf{D}} \subseteq \Delta^{\mathcal{I}}_{\mathbf{D}}$	
$oneOf(v_1 \ldots)$	$\{v_1,\ldots\}$	$\{v_1,\ldots\}^\mathcal{I}=\{v_1^\mathcal{I},\ldots\}$	
Object Properties (R)			
R (URI reference)	R	$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$	
	R^{-}	$(R^-)^{\mathcal{I}} = (R^{\mathcal{I}})^-$	
Datatype Properties (U)			
U (URI reference)	U	$U^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}_{\mathbf{D}}$	
Individuals (o)			
o (URI reference)	0	$o^{\mathcal{I}} \in \Delta^{\mathcal{I}}$	
Data Values (v)			
v (RDF literal)	v	$v^{\mathcal{I}} = v^{\mathbf{D}}$	

Fig. 1. OWL DL descriptions, data ranges, properties, individuals and data values.

OWL to DL mapping

Abstract Syntax	DL Syntax	Semantics
$Class(A \text{ partial } C_1 \dots C_n)$	$A \sqsubseteq C_1 \sqcap \ldots \sqcap C_n$	$A^{\mathcal{I}} \subseteq C_1^{\mathcal{I}} \cap \ldots \cap C_n^{\mathcal{I}}$
$Class(A \text{ complete } C_1 \dots C_n)$	$A = C_1 \sqcap \ldots \sqcap C_n$	$A^{\mathcal{I}} = C_1^{\mathcal{I}} \cap \ldots \cap C_n^{\mathcal{I}}$
EnumeratedClass($A o_1 \ldots o_n$)	$A = \{o_1, \dots, o_n\}$	$A^{\mathcal{I}} = \{o_1^{\mathcal{I}}, \dots, o_n^{\mathcal{I}}\}$
$\texttt{SubClassOf}(C_1 \ C_2)$	$C_1 \sqsubseteq C_2$	$C_1^{\mathcal{I}} \subseteq C_2^{\mathcal{I}}$
$ extsf{EquivalentClasses}(C_1 \dots C_n)$	$C_1 = \ldots = C_n$	$C_1^{\mathcal{I}} = \ldots = C_n^{\mathcal{I}}$
$\texttt{DisjointClasses}(C_1 \dots C_n)$	$C_i \sqcap C_j = \bot, i \neq j$	$C_i^{\mathcal{I}} \cap C_j^{\mathcal{I}}\{\}, i \neq j$
Datatype(D)		$D^{\mathcal{I}} \subseteq \Delta_{\mathbf{D}}^{\mathcal{I}}$
DatatypeProperty(U super(U_1)super(U_n)	$U \sqsubseteq U_i$	$U^{\mathcal{I}} \subseteq U_i^{\mathcal{I}}$
$\texttt{domain}(C_1)$ $\texttt{domain}(C_m)$	$\geqslant 1 U \sqsubseteq C_i$	$U^{\mathcal{I}} \subseteq C_i^{\mathcal{I}} \times \Delta_{\mathbf{D}}^{\mathcal{I}}$
$range(D_1) \ldots range(D_l)$	$\top \sqsubseteq \forall U.D_i$	$U^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times D_i^{\mathcal{I}}$
[Functional])	$\top \sqsubseteq \leq 1 U$	$U^{\mathcal{I}}$ is functional
$\texttt{SubPropertyOf}(U_1 \ U_2)$	$U_1 \sqsubseteq U_2$	$U_1^{\mathcal{I}} \subseteq U_2^{\mathcal{I}}$
$\texttt{EquivalentProperties}(U_1 \dots U_n)$	$U_1 = \ldots = U_n$	$U_1^{\mathcal{I}} = \ldots = U_n^{\mathcal{I}}$
$\texttt{ObjectProperty}(R \text{ super}(R_1) \dots \texttt{super}(R_n)$	$R \sqsubseteq R_i$	$R^{\mathcal{I}} \subseteq R_i^{\mathcal{I}}$
$\texttt{domain}(C_1)$ $\texttt{domain}(C_m)$	$\geqslant 1 R \sqsubseteq C_i$	$R^{\mathcal{I}} \subseteq C_i^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
$range(C_1)$ $range(C_l)$	$\top \sqsubseteq \forall R.C_i$	$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times C_i^{\mathcal{I}}$
[inverseOf(R_0]	$R = (^{-}R_0)$	$R^{\mathcal{I}} = (R_0^{\mathcal{I}})^-$
[Symmetric]	$R = (^{-}R)$	$R^{\mathcal{I}} = (R^{\mathcal{I}})^{-}$
[Functional]	$\top \sqsubseteq \leq 1 R$	$R^{\mathcal{I}}$ is functional
[InverseFunctional]	$\top \sqsubseteq \leq 1 R^{-}$	$(R^{\mathcal{I}})^{-}$ is functional
[Transitive])	Tr(R)	$R^{\mathcal{I}} = (R^{\mathcal{I}})^+$
$\texttt{SubPropertyOf}(R_1 \ R_2)$	$R_1 \sqsubseteq R_2$	$R_1^{\mathcal{I}} \subseteq R_2^{\mathcal{I}}$
$\texttt{EquivalentProperties}(R_1 \dots R_n)$	$R_1 = \ldots = R_n$	$R_1^{\mathcal{I}} = \ldots = R_n^{\mathcal{I}}$
AnnotationProperty(S)		
Individual(o type(C_1)type(C_n)	$o \in C_i$	$o^{\mathcal{I}} \in C_i^{\mathcal{I}}$
$value(R_1 \ o_1) \dots value(R_n \ o_n)$	$\langle o, o_i \rangle \in R_i$	$\langle o^{\mathcal{I}}, o^{\mathcal{I}}_i \rangle \in R^{\mathcal{I}}_i$
$value(U_1 \ v_1) \dots value(U_n \ v_n))$	$\langle o, v_i \rangle \in U_i$	$\langle o^{\mathcal{I}}, v_i^{\mathcal{I}} \rangle \in U_i^{\mathcal{I}}$
SameIndividual($o_1 \ldots o_n$)	$o_1 = \ldots = o_n$	$o_i^{\mathcal{I}} = o_j^{\mathcal{I}}$
$\texttt{DifferentIndividuals}(o_1 \dots o_n)$	$o_i \neq o_j, i \neq j$	$o_i^{\mathcal{I}} \neq o_j^{\mathcal{I}}, i \neq j$

Fig. 2. OWL DL axioms and facts.

OWL Syntax – class elements

<owl:Class rdf:ID="associateProfessor">
 <rdfs:subClassOf rdf:resource="#academicStaffMember"/>
</owl:Class>

<owl:Class rdf:about="associateProfessor">
 <owl:disjointWith rdf:resource="#professor"/>
 <owl:disjointWith rdf:resource="#assistantProfessor"/>
</owl:Class>

<owl:Class rdf:ID="faculty">
 <owl:equivalentClass rdf:resource="#academicStaffMember"/>
</owl:Class>

Properties

<owl:DatatypeProperty rdf:ID="age">
 <rdfs:range rdf:resource="
 http://www.w3.org/2001/XLMSchema#nonNegativeInteger"/>
 </owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="isTaughtBy">
 <owl:domain rdf:resource="#course"/>
 <owl:range rdf:resource="#academicStaffMember"/>
 <rdfs:subPropertyOf rdf:resource="#involves"/>
</owl:ObjectProperty>

Property restrictions

Boolean Combinations

```
<owl:Class rdf:ID="peopleAtUni">
   <owl:unionOf rdf:parseType="Collection">
        <owl:Class rdf:about="#staffMember"/>
        <owl:Class rdf:about="#student"/>
        </owl:Class rdf:about="#student"/>
   </owl:unionOf>
</owl:Class>
```

```
<owl:Class rdf:ID="nonAcademicStaff">
    <owl:intersectionOf rdf:parseType="Collection">
        <owl:Class rdf:about="#staffMember"/>
        <owl:complementOf>
        <owl:unionOf rdf:parseType="Collection">
            <owl:Class rdf:about="#faculty"/>
            <owl:Class rdf:about="#techSupportStaff"/>
            </owl:Class rdf:about="#techSupportStaff"/>
        </owl:unionOf>
        </owl:complementOf>
        </owl:intersectionOf>
    </owl:class>
```

Enumerations

<owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#Monday"/>
 <owl:Thing rdf:about="#Tuesday"/>
 <owl:Thing rdf:about="#Wednesday"/>
 <owl:Thing rdf:about="#Thursday"/>
 <owl:Thing rdf:about="#Friday"/>
 <owl:Thing rdf:about="#Saturday"/>
 <owl:Thing rdf:about="#Saturday"/>
 <owl:Thing rdf:about="#Sunday"/>
 <owl:Thin

Instances

<academicStaffMember rdf:ID="949352">
 <uni:age rdf:datatype="&xsd;integer">39</uni:age>
</academicStaffMember>

<course rdf:about="CIT1111">
 <isTaughtBy rdf:resource="949318">
 <isTaughtBy rdf:resource="949352">
 </course>

References

- I. Horrocks, P. P. Schneider, and F. van Harmelen, "From SHIQ and RDF to OWL: The making of a web ontology language", Journal of Web Semantics, vol. 1, no. 1, pp. 7-26, 2003.
- "Web Ontology Language: OWL", Grigoris Antoniou, Department of Computer Science, University of Crete and Frank van Harmelen, Department of AI, Vrije Universiteit Amsterdam