## **Semantic Search**

Prashanth Kamle (08305006)

Under the guidance of Dr. Pushpak Bhattacharyya Department of Computer Science IIT Bombay

## **Semantic Search**



is taj mahal taller than eiffel tower?

Search: • the web • pages from India

Web

#### Amazon.com: Lego Make & Create Eiffel Tower 1:300: Toys & Games ⊼ 🗙

Standing taller than 3-1/2 feet, the Lego Make & Create Eiffel Tower kit lets builders re-create an ... Lego Taj Mahal - Make and Create Set 10189 ... www.amazon.com/Lego-Make-Create-Eiffel-Tower/dp/B000P0Z9KQ - 299k - Cached - Similar pages -

#### Plans for Eiffel Tower in Dubailand, Dubai UAE 🔺 🖂

Eiffel Tower, Dubai is to be part of the \$1.5 billion Falcon city of ... Believe it or not, the 'Dubai Eiffel Tower' is to be in true Dubai style, taller than the ... Dubailand-Leaning-Tower-Pisa-Taj-Mahal-replicas ...

www.overseaspropertymall.com/regions/middle-east-property/uae-property/dubaiproperty/eiffel-tower-in-dubai/ - 75k - Cached - Similar pages - 💬

#### World's tallest viaduct to be inaugurated in France.(Worldwatch ... $\overline{T}$

... reaches 343 metres at its highest point, 19 metres taller than the Eiffel Tower. ... Look, I said, there's the top of the Eiffel Tower. Don't be so daft, ... The Eiffel Tower is in France. yes no 5. The Taj Mahal is blue. yes no 6. ... www.encyclopedia.com/doc/1G1-125568202.html - 51k - Cached - Similar pages - 🖘

#### Routemaster scale: constructions $\overline{\mathbb{A}}$

The **Eiffel Tower**, Paris, France The Great Pyramid of Giza, Egypt ... The top of the dome is 365 ft (111 metres) high - **taller than** a column of ... In contrast, only two buses could safely be accomodated in the **Taj Mahal** in Crawley, UK. ... www.lighthouse.org.uk/rms/constructions.html - 14k - <u>Cached</u> - <u>Similar pages</u> -  $\bigcirc$ 

#### Dubai's the Limit; In the Persian Gulf, on a not particularly oil ... ⊼ 🗙

1 Jun 2006 ... The Dubai Eiffel Tower Residence will be "taller than its Parisian cousin." The Dubai Grand Taj Mahal Hotel is "rich with the complexity and ... www.accessmylibrary.com/coms2/summary\_0286-15603407\_ITM - 35k -Cached - Similar pages - (=)

#### Falconcity of Wonders (L.L.C) T

The Falconcity includes multi-purpose/ residential buildings, **Eiffel Tower (taller than** original), **Taj Mahal** (bigger **than** the original), Hanging Gardens of ... www.falconcity.com/faq.asp - 27k - Cached - Similar pages - 💬

#### Falconcity of Wonders - Wikipedia, the free encyclopedia 📧 🛛

14 Feb 2009 ... It would be **taller than** the original **Eiffel Tower** and be named "Dubai **Eiffel Tower**". ... Leaning **Tower** of Pisa and **Taj Mahal** replicas ... en.wikipedia.org/wiki/Falcon city of wonders - 34k - Cached - Similar pages - 💬

# Is that a yes or a no?

Sear

# Semantic Search (contd)

- 1. Understand that "tall" relates to height
- 2. Fetch the heights of "Taj Mahal" and "Eiffel Tower" from semantically annotated sites on the internet
- 3. Perform a comparison
- 4. Return the result

In short, do Logical Inferencing

## Outline

- Motivational example
- Ontologies
- Description Logic
- Querying
- Conclusion

## Present day search: Keyword based

- 1. Automobile stereo and radio retail store
- 2. Automobile engine rebuilding, repair and exchange workshop
- 3. Car repair and retail shop
- 4. Jeep repair and retail shop
- 5. Motor mending and replacement workshop

| Query             | Results |
|-------------------|---------|
| Automobile        | 1,2     |
| Automobile retail | 1       |
| Car repair        | 3       |
| Motor repair      |         |
| Engine repair     | 2       |
| Motor exchange    |         |

\*Example from Ontoseek(1999) by Guarino et al

## Improve: Add structure

| No | Business type | Activity                        | Object           | Market area |
|----|---------------|---------------------------------|------------------|-------------|
| 1  | Store         | Retail                          | Radio,<br>Stereo | Automobile  |
| 2  | Workshop      | Rebuilding, repair,<br>exchange | Engine           | Automobile  |
| 3  | Shop          | Retail, repair                  | Car              |             |
| 4  | Shop          | Retail, repair                  | Jeep             |             |
| 5  | Workshop      | Replacement, mending            | Motor            | 322         |

| No | Business<br>type | Activity | Object     | Market<br>area | Result |
|----|------------------|----------|------------|----------------|--------|
| 1  | -                | -        | Automobile | -              |        |
| 2  | -                | Retail   | Automobile | -              |        |
| 3  | -                | Repair   | Car        | -              | 3      |
| 4  |                  | Repair   | Motor      | -              |        |
| 5  | -                | Repair   | Engine     | -              | 2      |
| 6  | -                | Repair   | Motor      | -              |        |

## Improve: Add structure

| Control of        | No          | Business t       | уре  | Activity                   |          | Objec | ct     | Ма            | rke  | t area |
|-------------------|-------------|------------------|------|----------------------------|----------|-------|--------|---------------|------|--------|
| State State State | 1           | Store            |      | Retail Radio,<br>Stereo    |          |       |        | Automo        | obil | e      |
| Lak .             | 2           | Workshop         |      | Rebuilding, repair, Engine |          |       | Automo | bil           | e    |        |
|                   | 3           | Shop             |      | Retail. repair             |          | Car   |        |               |      |        |
|                   | 4           | Shop             |      |                            |          |       | 7      |               |      |        |
| Control of        | 5           | Workshop         |      |                            |          | :-:   | . 1    |               |      |        |
|                   |             |                  |      | ncrease in                 | Prec     | ISIO  | 1!     |               |      |        |
| のないのないない          | No          | Business<br>type |      |                            | r        |       |        | arket<br>area |      | Result |
| 200               | -           |                  | -    |                            | Automobi | ile   | -      |               |      |        |
| 2                 | 2 -         |                  | Reta | ul                         | Automobi | ile   | -      |               |      |        |
| (1)               | 3 -         |                  | Rep  | air                        | Car      |       | -      |               | 3    |        |
| 4                 | -           |                  | Rep  | air                        | Motor    |       | -      |               |      |        |
| Ę                 | 5 -         |                  | Rep  | air                        | Engine   |       | -      |               | 2    |        |
| C                 | 74 - 24 Car |                  | Don  | oir                        | Motor    |       |        |               |      |        |

## Improve further: Use Ontology

| No | Document                                                         | Disambiguated description                                                                                                                                                                                |
|----|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1  | Automobile stereo<br>and radio retail store                      | [car, auto, automobile, machine, motorcar], [radio receiver,<br>receiving set, radio set, radio, tuner, wireless], [stereo, stereo<br>system, stereophonic system], [retail, sell retail], [shop, store] |
| 2  | Automobile engine<br>rebuilding, repair and<br>exchange workshop | [car, auto, automobile, machine, motorcar], [engine], [rebuilding],<br>[repair, fix, fixing,mending, reparation], [substitution, exchange],<br>[workshop, shop]                                          |
| 3  | Car repair and retail shop                                       | [car, auto, automobile, machine, motorcar], [repair, fix, fixing, mending, reparation], [retail, sell retail], [shop, store]                                                                             |
| 4  | Jeep repair and retail shop                                      | [jeep, landrover], [repair, fix, fixing, mending, reparation], [retail, sell retail], [shop,store]                                                                                                       |
| 5  | Motor mending and<br>replacement<br>workshop                     | [motor], [repair, fix, fixing, mending, reparation], [replacement, replacing], [workshop,shop]                                                                                                           |

# Use Ontology (contd)

| No | Query             | Disambiguated query                                                                                       |         |
|----|-------------------|-----------------------------------------------------------------------------------------------------------|---------|
| 1  | Automobile        | [car, auto, automobile, machine, motorcar]                                                                | 1,2,3,4 |
| 2  | Automobile retail | [car, auto, automobile, machine, motorcar], [retail, sell, retail]                                        | 1,3,4   |
| 3  | Car repair        | [car, auto, automobile, machine, motorcar], [repair, fix, fixing,mending, reparation]                     | 2,3,4   |
| 4  | Motor repair      | [motor], [repair, fix, fixing, mending, reparation]                                                       | 2,5     |
| 5  | Engine repair     | [locomotive, engine, locomotive engine, railway<br>locomotive], [repair,fix, fixing, mending, reparation] | -       |
| 6  | Motor exchange    | [motor], [substitution, exchange]                                                                         | 2,5     |

# Use Ontology (contd)

| No | Query             | Disambiguated query                                               |                      |       |
|----|-------------------|-------------------------------------------------------------------|----------------------|-------|
| 1  | Automobile        | [car, auto, automobile, machine, motorca                          | 1,2,3,4              |       |
| 2  | Automobile retail | [car, auto, automobile, machine, motorcar], [retail, sell retail] |                      | 1,3,4 |
| 3  | Car repair        | [par auto automobile machine maters                               | ar], [repair, fix,   | 2,3,4 |
| 4  | Motor repair      | Increase in Recall!                                               | ration]              | 2,5   |
| 5  | Engine repair     |                                                                   | ailway<br>eparation] | -     |
| 6  | Motor exchange    | [motor], [substitution, exchange]                                 |                      | 2,5   |



- Individuals
- Concepts
- Relations
- Roles
- Axioms



invertebrate is disjoint from vertebrate.

If bone is an instance of bone, then there exists vertebrate vert so that bone is a part of vert.

# **Description Logic**

- Description logics (DL) are a family of knowledge representation languages
- Used to represent the concept definitions of an application domain formally
- "Description"
  - refers to concept descriptions used to describe a domain
- "Logic"
  - logic-based semantics which can be given by a translation into first-order predicate logic.

## **DL – Constituents**

Concepts Unary predicates Eg. Person, FemaleRoles Binary predicates Eg. hasChildIndividuals Constants Eg. Mary, JohnConstructors• Union  $\sqcup$ : Eg. Man  $\sqcup$  Woman

- Intersection  $\sqcap$ : Eq. Person  $\sqcap$  Female
- Restriction Exists  $\exists: Eg. \exists hasChild.Female$
- Restriction ForAll  $\forall: Eg. \forall hasChild.Engineer$
- Negation  $\neg$ : Eg.  $\neg$ Man
- Number restriction:  $\leq k, \geq m$

**Axioms** Mother  $\sqsubseteq$  Parent

# DL Constituents (contd)

 "A man that is married to a doctor and has at least five children, all of whom are professors"

 $Human \sqcap \neg Female \sqcap \exists married. Doctor$  $\sqcap (\geq 5child) \sqcap \forall child. Professor$ 

## **DL** Interpretation

- An interpretation  $\mathcal{I}$  is a tuple( $\triangle^{I}, \cdot^{I}$ ) where
  - $\Delta^I$  is the domain
  - $\cdot^{I}$  is a mapping which maps
    - \* Names of individuals to elements of  $\triangle^I$
    - \* Names of concepts to subsets of  $\Delta^I$
    - \* Names of roles to subsets of  $\triangle^I \times \triangle^I$

## Concepts, Roles and Interpretation



## **DL Knowledge base**

## TBox

 $Woman \equiv Person \sqcap Female$  $Man \equiv Person \sqcap \neg Woman$  $Mother \equiv Woman \sqcap \exists hasChild.Person$  $Father \equiv Man \sqcap \exists hasChild.Person$  $Parent \sqsubseteq Person$ 

## ABox

 $\langle PETER \rangle$ : Father  $\langle MARY \rangle$ : Mother  $\langle MARY, PETER \rangle$ : hasChild  $\langle PETER, HARRY \rangle$ : hasChild

# Inferencing on the KB

- Satisfiability: Is there some interpretation that satisfies axioms in TBox?
- Subsumption: Is concept A more general than concept B?
- Equivalence: Are concept A and concept B the same?
- Instance check: Can assertion α be entailed by the ABox?
- Retrieval: Which individuals satisfy concept C?

# Inferencing on the KB

- Satisfiability: Is there some interpretation that satisfies axioms in TBox?
- Substitute to constant A more constant than
  CC All of these can be reduced to checking satisfiability
  E Same :
- Instance check: Can assertion α be entailed by the ABox?
- Retrieval: Which individuals satisfy concept C?

## **Tableaux Inferencing Algorithm**

- (1) Convert description to Negation Normal form
- (2) For any existential restriction, introduce a new individual as role filler such that it satisfies the constraints expressed by the restriction.
- (3) Use value restrictions in interaction with already defined role relationships to impose new constraints on individuals
- (4) For disjunctive constraints, try both possibilities in successive attempts. Backtrack if you reach an obvious contradiction
- (5) If an at-most number restriction is violated then the algorithm must identify different role fillers

## Tableaux Inferencing algorithm (example)

 $(\exists teaches.Biology) \sqcap (\exists teaches.Statistics) \sqsubseteq (\exists teaches.(Biology \sqcap Statistics))$ 

**Bio-statistics** 

## $(\exists R.A) \sqcap (\exists R.B) \sqsubseteq (\exists R.(A \sqcap B))$

# Tableaux Inferencing algorithm (example)

- Check whether  $(\exists R.A) \sqcap (\exists R.B) \sqsubseteq (\exists R.(A \sqcap B))$
- If  $C = (\exists R.A) \sqcap (\exists R.B) \sqcap \neg (\exists R.(A \sqcap B))$  is unsatisfiable, then  $(\exists R.A) \sqcap (\exists R.B) \sqsubseteq (\exists R.(A \sqcap B))$
- Move the negations as far inside as possible.

$$C = (\exists R.A) \sqcap (\exists R.B) \sqcap \forall R.(\neg A \sqcup \neg B)$$

C is now in negation normal form.

- Now, we try to construct an interpretation  $\mathcal{I}$  such that  $C^{\mathcal{I}} \neq \phi$ . This means there must exist an individual in  $\Delta^{\mathcal{I}}$  that is an element of  $C^{\mathcal{I}}$ . So, we construct an individual  $b \in C^{\mathcal{I}}$ .
- Since C is the conjunction of 3 concepts, b must satisfy  $b \in (\exists R.A)^{\mathcal{I}}, b \in (\exists R.B)^{\mathcal{I}}$  and  $b \in (\forall R.(\neg A \sqcup \neg B))^{\mathcal{I}}$ .

# Tableaux Inferencing algorithm (contd)

- From  $b \in (\exists R.A)^{\mathcal{I}}$ , we can see that there must exist an individual c such that  $(b,c) \in R^{\mathcal{I}}$  and  $c \in A^{\mathcal{I}}$ . Similarly,  $b \in (\exists R.B)^{\mathcal{I}}$  implies that there must exist an individual d with  $(b,d) \in R^{\mathcal{I}}$  and  $d \in B^{\mathcal{I}}$ .
- Since b must also satisfy  $\forall R.(\neg A \sqcup \neg B)$ , and c, d were introduced as fillers of b for R, we get 2 more constraints  $c \in (\neg A \sqcup \neg B)^{\mathcal{I}}$  and  $d \in (\neg A \sqcup \neg B)^{\mathcal{I}}$ .
- Now,  $c \in (\neg A \sqcup \neg B)^{\mathcal{I}}$  means  $c \in (\neg A)^{\mathcal{I}}$  or  $c \in (\neg B)^{\mathcal{I}}$ .  $c \in (\neg A)^{\mathcal{I}}$ clashes with the constraint  $c \in A^{\mathcal{I}}$ , implying that this choice leads to an obvious contradiction. Hence, we must choose  $c \in (\neg B)^{\mathcal{I}}$ . Similarly, we must choose  $d \in (\neg A)^{\mathcal{I}}$  in order to satisfy the constrait  $d \in (\neg A \sqcup \neg B)^{\mathcal{I}}$ without contradicting  $d \in B^{\mathcal{I}}$ .

# Tableaux Inferencing algorithm (contd)

- Now, since we have satisfied all constraints without encountering an obvious contradiction, we can conclude that C is satisfiable.
- We have generated an interpretation  $\mathcal{I}$  as proof of this fact:  $\Delta^{\mathcal{I}} = \{b, c, d\}; R^{\mathcal{I}} = \{(b, c), (b, d)\}; A^{\mathcal{I}} = \{c\}$  and  $B^{\mathcal{I}} = \{d\}$ . This means that, for this interpretation,  $b \in C^{\mathcal{I}}$  i.e.  $b \in ((\exists R.A) \sqcap (\exists R.B))^{\mathcal{I}}$ , but  $b \notin (\exists R.(A \sqcap B))^{\mathcal{I}}$ . This shows that  $(\exists R.A) \sqcap (\exists R.B)$  is not subsumed by  $\exists R.(A \sqcap B)$ .

 $(\exists R.A) \sqcap (\exists R.B) \nsubseteq (\exists R.(A \sqcap B))$ 

## **DL Family**

- ALC Concepts constructed using  $\sqcup, \sqcap, \exists, \forall, \neg$ , but roles are atomic.
- S is an abbreviation for ALC with transitive roles.
- $\mathcal{H}$  for role hierarchy. Eg: hasDaughter  $\sqsubseteq$  hasChild
- $\mathcal{O}$  for nominals. Eg: {*Mary*, *Hohn*}
- $\mathcal{I}$  for inverse roles. Eg:  $isChildOf \equiv hasChild^{-1}$
- $\mathcal{N}$  for cardinality restrictions. Eg:  $\geq 2hasChild$
- $\mathcal{F}$  restricts cardinality to be 0 or 1.
- Q for qualified number restrictions. Eg:  $\geq 2hasChild.Professor$
- $\mathcal{R}$  for role inclusion and role disjointness.
- $(\mathcal{D})$  to denote use of datatype properties, data values or data types.

For example, SHOIQ = ALC with transitive roles +H + O + I + Q

## **OWL – Web Ontology Language**

- A language based on RDF, RDFS and XML to represent Ontologies
- A W3C standard

```
-<rdfs:Class rdf:ID="Animal">
```

```
<rdfs:subClassOf rdf:resource="#Organism"/>
```

-<rdfs:comment>

An Organism with eukaryotic Cells, and lacking stiff cell walls, plastids, and photosynthet: </rdfs:comment>

</rdfs:Class>

### -<owl:ObjectProperty rdf:ID="wears">

```
-<rdfs:comment>
```

(wears ?AGENT ?CLOTHING) means that ?AGENT is wearing the item of Clothing </rdfs:comment> <rdf:type rdf:resource="#BinaryPredicate"/>

<rdfs:domain rdf:resource="#Animal"/>

<rdfs:range rdf:resource="#Clothing"/>

</owl:ObjectProperty>

## **OWL Species**

## • OWL DL

- Uses SHOIN(D)
- Non deterministic exponential time reasoning
- OWL Lite
  - Uses SHIF(D)
  - Deterministic exponential time reasoning
- OWL Full
  - Goes well outside DL framework
  - Reasoning undecidable



## Q = "John Little Sysedit publications"





## Q = "John Little Sysedit publications"





Q = "John Little Sysedit publications"



Querying

 $Q = \langle x, JohnLittle \rangle : name \land \langle x, y \rangle : author \land \langle y, z \rangle : hasProject \land \langle z, Sysedit \rangle : name \land \langle y : publication \rangle$ 



## Conclusions

## Semantic web is a hot topic of research

- Semantic annotation of documents using ontologies and inferencing gives better search results
- Need of the hour
  - Standards
  - Annotation tools
  - Efficient large scale inferencing engines
  - World wide acceptance and use

## References

[1] Grigoris Antoniou and Frank van Harmelen. Web ontology language: OWL. In Handbook on Ontologies in Information Systems, pages 76–92. Springer-Verlag, 2003.

[2] Franz Baader and Werner Nutt. Basic description logics. In The description logic handbook: theory, implementation, and applications, pages 43–95, New York, NY, USA, 2003. Cambridge University Press.

[3] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web: Scientific american. Scientific American, May 2001.

[4] Ian Horrocks, Peter F. Patel-schneider, and Frank Van Harmelen. From SHIQ and RDF to OWL: The making of a web ontology Ianguage. Journal of Web Semantics, 1:7–26, 2003.

## References

[5] Ian Niles and Adam Pease. Towards a standard upper ontology. In FOIS '01: Proceedings of the international conference on Formal Ontology in Information Systems, pages 2–9, New York, NY, USA, 2001. ACM.

[6] Thanh Tran, Philipp Cimiano, Sebastian Rudolph, and Rudi Studer. Ontology-based interpretation of keywords for semantic search. In Proceedings of the 6th International Semantic Web Conference and 2nd Asian Semantic Web Conference (ISWC/ASWC2007), Busan, South Korea, volume 4825 of LNCS, pages 519–532, Berlin, Heidelberg, November 2007. Springer Verlag.

[7] Wikipedia. Ontology — Wikipedia, the free encyclopedia, 2009. [Online; accessed 10-April-2009].

[8] Jidi Zhao. Introduction to description logic and ontology languages, 2008. Institute of Computer Technology, TU Vienna.