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Abstract—Performance of Translation Lookaside Buffers
(TLBs) and on-chip caches plays a crucial role in delivering high-
performance for memory-intensive applications with irregular
memory accesses. Our observations show that, on average, an
L2 TLB (STLB) miss for address translation can stall the head
of the reorder buffer (ROB) for a maximum of 50 cycles. The
corresponding data request, also called as the replay load can
stall the head of the ROB for more than 200 cycles. We show
that current state-of-the-art mid-level (L2C) and last-level cache
(LLC) replacement policies do not treat cache block with address
translations and replay data access differently. As a result these
policies fail to reduce ROB stalls because of translation and
replay data access misses.

To improve the performance further on top of high-performing
cache replacement policies, we propose address translation and
replay data access conscious cache replacement policies at L2C
and LLC. Our enhancements help in reducing ROB stalls due
to STLB misses by 28.76%. We also find that cache blocks
storing replay loads are dead (no reuse after insertion), and cache
replacement policies alone cannot mitigate the ROB stalls caused
by replay data accesses. Hence, we propose an address translation
hit triggered hardware prefetcher that brings replay data on an
address translation hit at the L2C and LLC. This enhancement
reduces ROB stalls due to replay data accesses by 18.5%. For a
group of memory-intensive benchmarks with high STLB misses,
our enhancements improve performance by 5.1% (reducing ROB
stall cycles by 46.7%) and as high as 10.6%, on top of state-of-
the-art cache replacement policies that are highly competitive.
Our enhancements do not incur any additional storage overhead.
However, we need additional flags from the page-table-walker
into the cache hierarchy.

I. INTRODUCTION

The effectiveness of translation look-aside buffers (TLBs)
and on-chip caches play an important role in overall system
performance for applications with huge data footprints and
irregular memory accesses. For memory-intensive applications
with huge data footprints, low-performance L2 TLB (STLB)
can severely degrade system performance. A translation miss
at the STLB can induce a five-level page table walk may
require five off-chip memory accesses. After a successful
address translation, a processor sends the corresponding data
request (known as the replay data load). If it misses at the on-
chip cache hierarchy, requires one more memory access. So,
overall a demand load can cause six DRAM accesses (five

*The work was done while the author was an MS student at IIT Kanpur.
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Fig. 1. ROB stalls due to STLB misses, its corresponding replay loads, and
the remaining (non-replay) loads.

for address translations and one for the corresponding data).
Since on-chip caches store both address translations and data
blocks, effective management of the cache hierarchy keeping
both address translations and data blocks is crucial.

Replay and non-replay demand loads. We use the term
replay load for those data requests (demand loads) whose
corresponding address translations, miss at the STLB, and
walk the page table. We call a demand load request a non-
replay load if the corresponding address translation gets a hit
at the STLB. These terms were proposed in one of the prior
works [11].

The Problem. Modern deeper and wider out-of-order pro-
cessors with a large reorder buffer (ROB) of 352 entries [1]
can amortize i) translation misses at L1 TLB (DTLB) that get
hit at STLB, and ii) their corresponding replay loads. However,
these processors fail to amortize all the STLB misses and
their corresponding replay loads. Fig. 1 shows that an STLB
miss can stall at the head of the ROB for a maximum of
54 cycles and, on average, for 33 cycles. In comparison, the
corresponding replay loads can stall the head of the ROB for
a maximum of 226 cycles and on average, for 191 cycles. On
the other hand, on average, non-replay loads stall the head of
the ROB for 47 cycles. So, a demand load request that misses
at the STLB stalls the head of the ROB for a maximum of 280
(226+54) cycles and on average for 224 (191+33) cycles.

For Fig. 1, we use irregular memory-intensive benchmarks
from SPEC CPU2017 [4], PARSEC [3], and Ligra [2] suites,
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Fig. 2. Normalized performance with ideal L2C and LLC for leaf-level
translations (T), replay loads (R) and for both of them (TR).

with average (maximum) misses per kilo instructions (MPKI)
of 15.60 (35.69), and 31.25 (62.83), for STLB and LLC,
respectively. We use a data-set of size 918MB for graph
workloads, maximum of 4GB for SPEC workloads, and a
maximum of 2.3GB for PARSEC workloads. Table I lists all
simulated parameters (similar to Intel Sunny Cove) [1].

Opportunity. Fig. 2 shows the performance improvement
that can be achieved if we have an ideal LLC and ideal L2C
for leaf-level address translations, their corresponding replay
loads, and for both address translations and replay loads. We
use the term leaf-level translations for the last page table level
that stores the required physical address of the page. An L1D
cache is smaller in size, and non-replay loads dominate the
cache due to their frequent reuse. Optimizing a small L1D
cache with respect to non-frequent replay loads and address
translations affects non-replay loads. Hence, we explore the
scope of optimizations at L2C and LLC.

We simulate an ideal LLC for leaf-level address translations
by providing a 100% hit rate to all those translations that
missed at L2C. On a miss at the LLC, we respond with a hit la-
tency of LLC. However, to model the impact of bandwidth on
the ideal performance we send the miss request to miss-status-
holding-registers(MSHRs). Similarly, we simulate it separately
for replay loads and then for both address translations and
replay loads. Similarly, we simulate the ideal L2C. On average,
an ideal LLC for address translations and their corresponding
replay loads provides 30.7% improvement on top of high-
performing cache replacement policies at the L2C and LLC.
An ideal L2C provides a performance improvement on top
of the ideal LLC, leading to performance improvement of
37.6%. If we concentrate only on leaf-level translations at
the L2C, then we get a performance improvement of 4.7%.
If we consider ideal L2C only for the replay loads, we get a
performance improvement of 30.2%, and for both leaf-level
translations and replays, we get 37.6%.

Our goal. Our goal is to improve the performance of
address translations and their corresponding replay loads in
a multi-level cache hierarchy without incurring additional
storage overhead.

Prior works. Prior works like TEMPO [11] helps in
mitigating replay load latency by proposing a prefetcher at

the DRAM controller that expedites replay load response.
Some of the prior works [18] [17] improve the TLB and
LLC coverage by bypassing dead pages and dead blocks and
by a TLB aware cache partitioning. However, we find that
these techniques do not mitigate the overall address translation
and replay load penalty that stall the head of the ROB. OS-
aware cache insertion policy [22] proposes a dynamic insertion
policy on LRU replacement policy to reduce OS interference
at the LLC. We find that with the current trend of large LLCs
(2MB/core) and L2C of (512KB/core) and a large STLB of
1536 entries, there is marginal OS interference at the LLC.
Instead, there is interference from the user-level accesses on
the OS accesses. We corroborate the findings of [22] for a
one-level TLB and two-level cache hierarchy with 64KB of
L1D and 1MB of L2C as mentioned in [22] and find that with
small caches page-table walk accesses can affect user level
accesses at the LLC.

Our key observations. We find that state-of-the-art cache
replacement policies [14] [21] [13] at the L2C and LLC are
not conscious of address translations and replay loads and do
not learn the reuse behavior of address translations, replay
loads, and non-replay loads separately even though their reuse
behaviors are different. For some of the benchmarks, state-of-
the-art policies perform worse than LRU in terms of covering
address translations and replay loads. One of the primary
reasons for this trend is the signature (e.g., an instruction
pointer) based reuse learning of cache blocks (more details
in Section III). We observe that more than 95% of cache
blocks that store data for replay accesses are dead;no reuse
after a block is inserted into the cache (more details in Section
III). Finally, we show that even state-of-the-art hardware data
prefetchers [19] [16] [10] [12] fail to mitigate the ROB stalls
because of a replay load access (more details in Section III).
Based on these observations, we make the following key
contributions.

• We propose minor enhancements that enhances cache
block reuse training of cache blocks that store address
translations and replay loads. We insert cache blocks
that comprise address translations with low priority for
eviction at L2C and LLC, so that these blocks will stay
longer. To make the L2C replacement policy aware of the
replays, we insert replay loads with high priority for evic-
tion (as we find that the blocks containing replay loads
are dead). This enhancement improves address translation
on-chip cache hierarchy hit rate to 99%. Note that this
enhancement incurs zero storage overhead (Section IV).

• To further mitigate the ROB stalls, we utilize the previous
enhancements that strive for 100% address translation
hit rate at the on-chip cache hierarchy and prefetch the
corresponding replay loads. We trigger prefetching of
replay loads once we get a hit for an address translation
at the L2C or LLC, effectively reducing the ROB stall
time because of replay loads (Section IV).

• Overall, our enhancements mitigate ROB stalls by 46.7%
resulting in an average performance improvement of
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5.1% and as high as 10.6%. In the case of a 2-way
SMT processor where two threads that share the memory
hierarchy, our enhancements are equally effective with an
average performance improvement of 6.3% and as high
as 12.6% (Section V).

II. BACKGROUND

This section provides the necessary background on the
address translation process and cache replacement policies.

A. Address translation
Page table. Processor demands load and store requests

through virtual addresses that need to be translated to physical
addresses in order to get the corresponding data. Modern
processors, after Ice Lake processors [5] based on Intel Sunny
Cove micro-architecture [1] uses 57 bit virtual address. This
virtual to physical address translation is stored in a radix-tree
structured five-level page table. An entry in the page table
occupies 8B, also called page table entry (PTE).

Page table walker(PTW). It is a hardware structure that
walks the page table by extracting the page-offset from the
virtual address to obtain the physical address of the page.
The virtual address is divided into 9-bit chunks, corresponding
to every level. The CR3 register stores the pointer to the
outermost page table, i.e., level five. For page size of 4KB,
PTW adds the first chunk of the virtual address(VA[56:48])
to the base address of page table level five to get the page
offset of the fifth level page. The corresponding PTE entry
stores the page frame number of the next level, i.e., the fourth
level. PTW then uses the next 9-bit chunk (VA[47:39]) to get
the page offset of PTE. Page offset is retrieved from the last
chunk of the virtual address (VA[11:0]).

Translation Look-aside Buffer(TLB). A TLB stores recent
virtual to physical address translations. The first level TLB
comprises Data TLB(DTLB) and Instruction TLB(ITLB). The
second level TLB is a unified TLB. In the case of the
DTLB/ITLB hit, the corresponding physical address is used
as the translated address. On the other hand, in case of a miss,
the address translation request is forwarded to 2nd level TLB
(STLB). If it gets an STLB hit, the entry is filled in the first
level TLB also. If it gets an STLB miss, then PTW is initiated
for page walk.

Paging Structure Caches(PSCs). PSCs (four in number
for a five-level page table) store the recently accessed PTEs
of intermediate page table levels. PTW searches all the PSCs
concurrently after an STLB miss. In case of more than one
hit, the farthest level is considered as it minimizes the page
table walk latency. In case of a PSC miss, the translation
request goes through the cache hierarchy. All the data caches
(L1D/L2C/LLC) store eight contiguous translations of all the
page table levels (eight PTEs = 64 bytes) in a cache block,
which is 64 bytes. If all these caches miss, then PTW accesses
the DRAM.

B. LLC replacement policies
In the last one decade, many high-performing LLC replace-

ment policies [14] [21] [13] have been proposed. We outline

some of the recent and high-performing policies. A cache
replacement policy consists of three sub-policies: (i) insertion,
(ii) promotion, and (iii) eviction. An insertion policy decides
the replacement priority of cache block at the time of a cache
fill, a promotion policy decides the replacement priority on
reuse, and an eviction policy decides on a miss, which block
to use for eviction;

SRRIP. Static re-reference interval prediction (SRRIP) [14]
stores an two-bit re-reference prediction value (RRPV) per
block. On a miss to cache set, it evicts the block with a distant
re-reference interval, RRPV of 3 (22−1) and inserts the incom-
ing block with RRPV of 2. On a cache hit, SRRIP promotes
the block to RRPV=0. Inserting blocks at RRPV=2 neither
supports the new block to have an immediate (RRPV=0) nor
distant (RRPV=3) re-reference interval. On a cache miss, for
eviction, if no block with RRPV=3 is available within a cache
set, then the RRPV of all the blocks is incremented by one.

DRRIP. Dynamic RRIP [14] uses two policies; a) SRRIP
and b) bimodal RRIP(BRRIP). For thrashing access patterns,
BRRIP inserts cache blocks mostly with 3. Only a few blocks
are inserted with an RRPV of 2. DRRIP dynamically chooses
the insertion policy out of the two for every set through a
technique called set dueling [14].

SHiP. SHiP [21] uses SRRIP policy to select the victim
block and promotes the block with RRPV=0 on a hit. However,
it dynamically predicts the re-reference interval on every cache
block insertion using signatures (e.g., instruction pointers
(IPs)). It uses Signature History Counter Table (SHCT) that
stores a counter per signature. If a cache block provides a
hit, the counter is incremented. Else, if the cache block gets
evicted without being referenced, the counter corresponding to
that signature is decremented. If the signature corresponding
to the upcoming block has counter value zero in the SHCT
table, then the block is inserted with 3, else with 2.

Hawkeye. Hawkeye [13] learns a long history of accesses
to align its future replacement decisions with Belady’s optimal
policy. It uses two main components, OPTgen and Hawkeye
predictor. OPTgen uses the cache occupancy vector and usage
interval of a block to determine whether it will get hit on
future accesses. Hawkeye uses a three-bit RRPV and assigns
RRPV=0 for cache-friendly and RRPV=7 for cache-averse
blocks upon insertion. It selects the block with RRPV=7 as
a victim. If no such block is available, it selects the block
with the highest RRPV value.

In this paper, we evaluate DRRIP at the L2C, and SHiP and
Hawkeye at the LLC.

III. MOTIVATING OBSERVATIONS

Performance of cache hierarchy in terms of address
translations. Fig. 3 shows from which level of the cache
hierarchy, leaf-level translations get their responses after an
STLB miss. On average, out of all the STLB misses, 23%
get serviced at L1D, 55.6% at L2C, and 15.1% get serviced
at LLC. The remaining 6.3%, miss at LLC. Delay in address
translation also delays further corresponding replay loads, and
more than 80% replay loads get miss at LLC.
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Fig. 3. Distribution of memory-hierarchy responses to leaf-level translations
because of STLB misses(T) that stall the head of the ROB and their
corresponding replay loads(R).LLC miss(T) and LLC miss(R) correspond to
responses for translations and their replays from the DRAM.

LLC replacement policies fail to keep all the cache
blocks that comprise address translations. Fig. 4 shows the
leaf-level translation MPKI at LLC with various LLC replace-
ment policies. On average, the MPKI for SRRIP, DRRIP, and
SHiP decreases as compared to LRU by 14.72%, 27.45%, and
33.3%, respectively. On the other hand, leaf-level translation
MPKI increases by 44.1% with Hawkeye. Both SHiP and
Hawkeye use IP based training for predicting the usefulness
of cache block (cache-friendly or cache-averse). Hawkeye uses
reuse distance for training. SHiP observes if the cache block
gets a hit before getting evicted to train it as cache-friendly
or cache-averse. The original proposals do not consider cache
blocks with address translations and train both the data blocks
and address translation blocks impartially, leading to noise in
learning and predicting the reuse behavior of cache blocks.

Why do LLC replacement policies fail in keeping ad-
dress translation blocks? There are two primary reasons: (i)
not all the PTEs have the same or similar reuse behavior,
and classifying all the eight PTEs based on one leaf-level
translation is misleading. Ideally, the reuse behavior of all
eight PTEs should be trained independently, and (ii) the IP
that is used as a signature for learning the reuse behavior of
data blocks is also used for training of translation blocks. This
leads to noise in training as the reuse behavior of data blocks
and translation blocks are different even though they belong
to the same IP.

For example, if an instruction X with IPX generates a load
to virtual address VA and gets a TLB miss at the STLB. It
further initiates a PTW, and let’s say it misses at the L1, L2C,
and LLC, and finally inserts a PTE at LLC with IPX as the
signature. If the demand loads are cache-averse in nature, then
SHiP and Hawkeye will assume the address translation blocks
brought by IPX will also be cache-averse.

Since, non-replay demand loads are frequently reused as
compared to leaf-level translations at LLC, Hawkeye classifies
non-replay loads as cache-friendly and leaf-level translations
as cache-averse. Hence, the translation MPKI with Hawkeye
increases significantly as compared to other policies. On the
other hand, SHiP focuses on whether a cache block got used

mcf

xal
ancbmk bf

can
neal cc mis pr

rad
ii tc

ave
rag

e
0

1

2

3

4

5

Tr
an

sla
tio

n 
M

PK
I a

t L
LC

(11.06, 8.46, 8.31, 14.4, 7.1)
LRU SRRIP DRRIP Hawkeye SHiP

Fig. 4. Leaf-level translation MPKI at the LLC with various replacement
policies.

before eviction; the IP-based training of SHiP is more accurate
than Hawkeye. This property does not let non-replay memory
references get prioritized so aggressively as in Hawkeye.
However, the translation MPKI at LLC with SHiP is still
greater than one. This trend shows that there is a need for
better signatures for dealing with address translation blocks.

Recall distance of address translations. Fig. 5 shows the
recall distance of address translation blocks at the LLC and
L2C, respectively. We define recall distance as the distance
in terms of a number of unique accesses that arrive in the
same cache set. For example, for the LLC, we calculate the
number of unique accesses to a set after a block gets evicted
from the LLC and before the next request to the same block
arrives at the LLC. Please note that this is different from one
of the popular metrics called reuse distance. As we can see,
around 30% of the address translation blocks have a recall
distance within ten, and more than 70% of the blocks have
a recall distance within 50. This shows that if we can keep
the address translation blocks for 10 more accesses in their
respective cache sets then they will get LLC and L2C hits.

Cache blocks storing replay loads are dead in the
LLC. Fig. 6 shows LLC MPKI for replay loads with various
replacement policies. As we can see, there is no effect of
replacement policies on replay demand accesses. Fig. 7 shows
the recall distance of replay loads at the LLC and L2C,
respectively. As we can see, more than 60% of the blocks
have a recall distance of more than 50 unique accesses to
their respective sets, which explains why all the replacement
policies fail to keep these kinds of blocks. This motivates
for proposals [18] [15] that bypass dead blocks at the LLC.
Though LLC bypassing helps in providing more cache space
to non-replay loads, but it does not help in mitigating the ROB
stalls because of replay loads.

Data prefetchers fail to bring replay loads into the
cache hierarchy. Fig. 8 shows that state-of-the-art spatial
prefetchers [19] [10] [16] fail in prefetching the replay loads.
One of the primary reasons for the same is even though these
prefetchers allow cross-page training, they do not perform
cross-page prefetching as some of them like SPP and Bingo
are employed at the L2C. Instruction Pointer Classifier-based
Spatial Hardware Prefetching (IPCP) is an L1D prefetcher and
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can perform cross-page prefetching. However, even a cross-
page IPCP prefetcher fails to hide the ROB stalls because of
a replay load request. The primary reason for the same is late
prefetching. IPCP with cross-page prefetching sends a prefetch
request to STLB, and on an STLB miss, the prefetch request
doesn’t proceed till the STLB fills, delaying the prefetch
response. We find that in benchmarks like mcf and bf, IPCP
improves the ROB stall due to replay loads by 5%. However,
the average improvement in L2C and LLC replay load MPKI
is less than 1%. On the other hand, temporal prefetchers
like Irregular Stream Buffer (ISB) [12] performs significantly
better for some of the benchmarks like xalancbmk, and
overall improve ROB stalls because of replay loads by 20%.
We do not show performance with other temporal prefetchers
like IMP [23], as On average, ISB performs better than
IMP [23] with an average performance improvement of 2%.
Overall, on average, state-of-the-art prefetchers fail to hide the
latency of replay load requests.

IV. IMPROVED CACHING FOR ADDRESS TRANSLATIONS
AND REPLAY LOADS

At a high level, we propose enhancements to cache
replacement policies for improving translation miss coverage
at the L2C and LLC. This helps in retaining address
translations for a longer period at the L2C and LLC so that a
significant fraction of STLB misses get their responses from
L2C and LLC. Next, we propose an address translation hit
triggered data prefetcher that prefethes replay loads on an
L2C or LLC hit to an address translation.
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Address translation conscious signatures. SHiP and
Hawkeye use IP as a signature for training and predicting
the reuse of LLC blocks. As discussed in Section III, SHiP
and Hawkeye do not differentiate reuse learning of data
blocks from translation blocks causing noise in reuse training,
resulting in premature eviction of address translation blocks.
An ideal and non-trivial solution for this problem is to learn
the reuse behavior of each PTE present within a cache block
and group PTEs into two signatures: cache-friendly IPs and
cache averse IPs. We propose a simple enhancement that
differentiates an IP signature based on whether the IP is
filling a PTE, replay load, or non-replay load into an LLC.
We augment an additional flag and redefine the signatures
(IPs) that are used for learning the reuse behavior of address
translations and demand replay loads as follows:

signaturetranslations = IP << IsTranslation

signaturereplayloads = IP << IsReplay + IsTranslation

For non-replay loads, we do not change the signature and use
the signature as suggested in SHiP and Hawkeye. With the
new signatures, we make sure reuse learning of replay loads,
non-replay loads, and address translations are independent of
each other, mitigating noise in the training. Note that for L2C,
we do not need these changes as L2C uses DRRIP, a policy
that does not use any signature.

L2C insertion policy. Fig. 9 shows our enhancements
for the L2 replacement policy. At L2C, we insert replay loads
with the highest priority (RRPV=3) for eviction as replay loads
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Fig. 9. RRPV transition with the L2C replacement policy (T-DRRIP)
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are dead and do not get any reuse. However, we insert leaf-
level address translations with RRPV=0, the lowest priority
for eviction so that translations will stay at the L2C for a
longer period of time. As the L2C is dominated by non-replays
and more than 96% replays get misses at LLC, there is no
performance penalty in bringing these replay data blocks with
the highest priority for eviction. Note that just inserting address
translations with RRPV=0 does not improve performance
unless their corresponding replay loads are also inserted with
RRPV=3. Fig. 10 shows the performance degradation when
both the address translations and replay loads are inserted
with RRPV=0. This is because the replay loads affect the
replacement priorities (if they get inserted with RRPV=2)
of cache blocks with translations as RRIP based policies
increment RRPV values of all the blocks within a set when
it fails to find a block for eviction (RRPV=3). We call this
policy, address translation conscious DRRIP(T-DRRIP).

LLC insertion policy. Fig. 11 shows our enhancements for
insertion through the LLC replacement policy. At the LLC,
we enhance SHiP [21] and insert leaf-level address translations
with RRPV=0. We do not enhance the LLC replacement policy
for replays as SHiP is already effective in handling these dead
data blocks with new IP signatures. We call this policy as
address translation conscious SHiP (T-SHiP). We, similarly
enhance Hawkeye and call it T-Hawkeye. As we can see
SHiP outperforms Hawkeye even in the baseline without our

Fig. 11. RRPV transition with the LLC replacement policy (T-SHiP)
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Fig. 12. Leaf-level translation MPKI at LLC. NewSign: New enhanced IP
signature.

enhancements, we use SHiP as the baseline LLC policy as a
strong baseline.

Note that the promotion policy and eviction policy of T-
DRRIP and T-SHiP remains the same as in DRRIP [14] and
SHiP [21], respectively. So, in summary, we propose simple
extensions in the form of better signatures with L2C and LLC
management policies that are aware of address translations
and replay loads. Fig. 12 shows the improvement in address
translation MPKI at the LLC, with these enhancements. Note
that we do not need this enhancement for the private L2C as
it uses DRRIP that does not use any IP based signatures.

Address translation initiated replay-load prefetcher.
With T-DRRIP and T-SHiP, translations stay at the cache hi-
erarchy for more time and enjoy more cache hits. We propose
an address-translation triggered hardware prefetcher (ATP)
that prefetches a replay load as soon as its corresponding
translation hits at on-chip caches, thanks to translation aware
cache management policies, T-DRRIP and T-SHiP. However,
to implement this, we modify the PTW with an additional
bit (IsLeafLevel) that indicates whether the PTW is walking
through the leaf-level of the page table. Note that the leaf-level
of the page table provides the required physical page address.
The PTW also carries the upper six bits of the page offset for
the final level page-table walk. When the PTW gets a hit at the
on chip L2C or LLC, it triggers hardware prefetching for the
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Fig. 13. Scope of address translation initiated replay-load prefetcher (ATP). In general, ATP converts one replay load LLC miss into an LLC hit, which is
not the case with the baseline with improved caching like T-SHiP. However, there are replay loads for which ATP hides a fraction of LLC miss latency and
not the complete LLC miss latency.

TABLE I
SIMULATED PARAMETERS.

Core Out-of-order, hashed perceptron branch predictor [20], 4GHz
with 6 issue width, 4 retire width, 352 entry ROB

TLBs 64 entry 4-way at L1 DTLB/ITLB (1 cycle), 2048 entries 16-
way entry L2 STLB (8 cycles)

MMU
Caches

2 entry (PSCL5), 4 entry (PSCL4), 8 entry (PSCL3), 32 entry
(PSCL2), searched parallely, one cycle

L1 32KB 8-way L1I (4 cycles), 48KB 12-way L1D (5 cycles)
L2 512KB 8-way associative (10 cycles), DRRIP [14]
LLC 2MB/slice 16-way (20 cycles), SHiP [21]
DRAM 1 channel/4-cores, DDR5, 6400 MT/sec

replay with the highest priority for eviction (e.g., RRPV=3
for DRRIP). Fig. 13 illustrates the scope of ATP. In case
of a translation miss at the LLC, we trigger TEMPO [11]
prefetching that triggered prefetching for replay loads at the
DRAM controller.

We do not trigger prefetching on an L1D translation hit as
the scope (time gap between translation hit and data request
to L1D is small) for replay load prefetching is minimum.
Note that through this prefetching, we improve the replay load
miss latency (not miss rate) as the prefetched block is on the
way from DRAM before the replay load request comes to
L2C/LLC. Ideally, ATP can hide one off-chip DRAM access
latency.

ATP and TEMPO are beneficial for such cases in prefetch-
ing a replay and also, accelerating other prefetch requests. We
show the performance of our enhancements combined with
state-of-the-art data prefetchers in section V.

V. EVALUATION

In this section, we evaluate our enhancements based on per-
formance improvements and reduction in ROB stalls because
of address translations and replay load misses. We also com-
pare our enhancements with some of the recent proposals that
try to mitigate address translation latency. Finally, we evaluate
our results for a Simultaneous multi-threading (SMT) core and
multi-core environments. We use ChampSim simulator that is
used in the recent ISCA championships for cache replacement,
data, and instruction prefetching [7] [6] [8] [9]. Table I shows
our simulated parameters. For each benchmark, we simulate
their region of interests of 10B instructions after a warmup
of 100M instructions. Table II provides the details of the
benchmarks that we use in our study.

A. Performance
Fig. 14 shows the performance improvement (in terms of re-

duction in execution time) with our enhancements normalized
to the baseline. On average, more than 98% of the leaf-level
address translations now hit at the on-chip cache hierarchy.
On average, we get a performance improvement of 5.1%
and as high as 10.6%. T-DRRIP provides an average perfor-
mance improvement of 0.5% that improves to 2.9%, 4.8%,
and 5.1% with T-SHiP, ATP, and TEMPO [11], respectively.
Note that these improvements are on top of state-of-the-art
cache management policies that are highly competitive, and
a 5% improvement on top of these policies is a significant
performance boost. Also, with our on-chip enhancements, the
effectiveness of TEMPO is marginal (a performance boost
from 4.8% to 5.1%) as, on average, only 2% of address
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TABLE II
BENCHMARKS AND THEIR CORRESPONDING L2 AND LLC MPKIS FOR LEAF-LEVEL TRANSLATIONS(PTL1), REPLAY LOADS, AND NON-REPLAY LOADS.

NOTE THAT THE MEMORY FOOTPRINT OF SIMULATED REGIONS ARE IN THE RANGE OF 200MB TO 400MB.

Benchmark Suite Data-set MPKI STLB L2C L2C L2C LLC LLC LLC
size Category Replay Non replay PTL1 Replay Non replay PTL1

xalancbmk SPEC CPU2017 500MB Low 4.78 4.37 17.27 1.04 2.16 7.81 0.48
tc Ligra 918MB Medium 12.54 12.35 10.88 3.51 11.64 8.59 1.6

canneal PARSEC 2.3GB Medium 17.54 17.51 4.15 7.65 17.41 4.07 1.76
mis Ligra 918MB Medium 18.64 17.76 63.68 1.49 14.7 39.07 0.49
mcf SPEC CPU2017 4GB Medium 22.35 22.27 8.21 6.84 22.24 4.5 0.11
bf Ligra 918MB High 33.31 29.37 42.06 4.82 27.10 34.18 1.62

radii Ligra 918MB High 35.69 34.08 44.91 5.18 31.11 31.86 1.54
cc Ligra 918MB High 49.5 47.25 4.94 66.15 40.40 42.54 0.79
pr Ligra 918MB High 82.29 80.43 44.65 20.98 76.53 35.63 7.1
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translations go to the DRAM. For pr, we observe that the
address-translation MPKI at the LLC increases slightly (1.65
becomes 1.98) with TEMPO as TEMPO’s prefetched blocks
cause evictions of translation blocks at the LLC. We observe
a similar trend with xalancbmk with one difference which
is the non-replay LOAD MPKI also increases from 8.3 to 8.5.

Performance in the presence of hardware prefetchers.
Our enhancements are slightly more effective in the presence
of a baseline with state-of-the-art data prefetchers IPCP [19],
Bingo [10], SPP [16], and ISB [12] with performance improve-
ments of 11.2%, 7.5%, 6.4% and 7.2%, respectively (Fig. 15).
This happens because, on average, these prefetchers are not
effective in predicting the irregular memory access patterns.
For example, with IPCP at L1D and L2C, mcf shows 4%

mcf

xal
ancbmk bf

can
neal cc mis pr

rad
ii tc

ave
rag

e
0
5

10
15
20
25
30

%
 R

ed
uc

tio
n 

in
 R

OB
 st

al
l c

yc
le

s

77 5441
STLB miss Replay requests

Fig. 16. Reduction in ROB stall cycles due to STLB miss and replay requests.

degradation compared to a baseline with no prefetching. Other
prefetchers improve performance in some of the benchmarks
and degrade in the rest, overall providing performance worse
than the baseline with no prefetching. We also find that with
the presence of ATP prefetcher, conventional data prefetchers
prefetch requests for accesses following the replay load (which
itself is prefetched by ATP) a bit earlier than the baseline
improving the timeliness and hence performance. Note that our
enhancements do not affect the performance of applications
that do not see significant STLB misses. Our ATP prefetcher
is 100% accurate as it is not speculative.

Reduction in ROB stalls. Fig. 16 shows that the perfor-
mance gain that we achieve is due to the reduction in STLB
miss caused ROB stall cycles. Our enhancements successfully
reduce ROB stalls due to STLB misses by 28.76% and replay
requests by 18.5%, on average. Improved caching of address
translations helps in reducing ROB stall cycles due to STLB
misses. Further, ATP and TEMPO [11] both help in the
reduction of ROB stall cycles due to replay load requests.
For xalancbmk, the average ROB stall cycles get reduced
by 77%, as most of the address translations hit in the on-chip
cache hierarchy with a translation MPKI at LLC of only 0.003.

SMT results. Next, we evaluate our work on 2-way SMT
environment. For creating mixes of two threads, we divide the
benchmarks into three categories with respect to STLB MPKI.
Table II shows that if the STLB MPKI of a benchmark is
within 10, then it is classified under Low MPKI category. If
STLB MPKI is in between 11 to 25, then the benchmark is
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classified as Medium MPKI, else High MPKI category. We
have created 2-threaded mixes by considering all the combi-
nations, for eg. High-Low, High-Medium, etc. Fig. 17 shows
the performance improvement with 2-way SMT mixes. We use
harmonic speedup of individual thread to show the total gain in
performance for a mix. For every mixes, we list two bench-
marks as T0 and T1 that are used in one mix. On average,
we find performance gain of 6.3%. Performance gain trend
for those mixes which comprises of atleast one benchmark
with low or medium STLB MPKI is lower, in comparison
to other mixes. For example, canneal-xalancbmk and
xalancbmk-xalancbmk yield an improvement of 3.5%
and 0.5%, respectively. On the other hand, for radii-bf,
pr-cc, and tc-pr the performance gain is 6.5%, 12.6%
and 11.1%, respectively.

Multi-core results. We evaluate our enhancements with 25
8-core multi-programmed (homogeneous and heterogeneous)
mixes. On average, our enhancements provide an average
performance improvement of more than 4%. One of the
primary reasons for this trend is with heterogeneous mixes,
benchmarks that used to get high translation and replay load
misses stay at the LLC, relatively for more amount of time, if
the co-running applications do not thrash LLC.

B. Comparison with recent works

STLB management policies fail to reduce ROB stalls
because of STLB misses. Chandrashis et al. propose a
dead block predictor(cbPred) [18] at LLC using dead page
predictor(dpPred) [18] at STLB. The main goal of this paper
is to bypass dead translations at STLB and dead data blocks

at LLC. The proposal incurs 11KB of additional storage per
core. Overall, cache blocks that store replay loads are dead,
and bypassing dead blocks does not expedite the ROB stalls
because of a replay load access. Figure 18 shows that on
average, more than 40% of the TLB entries have a recall
distance of more than 50 (dead TLB entries). So, bypassing
dead TLB entries do not expedite the costly address translation
misses that have a high recall distance. Also, this proposal uses
conventional SHiP at the LLC, which is unaware of address
translations and replay loads. Our enhancements increase
the lifetime of translations at data caches (L2C/LLC) and
prefetch replay loads. When we compare our enhancements
with CbPred based on DpPred [18], we find that on average,
our enhancements further improve average performance by
3.1%. Note that DpPred simulates a conservative core with
128 ROB entries, and its effectiveness drops when we have
an aggressive core that uses 352 entries.

CSALT [17] dynamically partitions cache for data blocks
and translations based on their hit rates. CSALT also pro-
poses TLB optimizations that are orthogonal to our proposed
enhancements. Also, CSALT does not consider the effect
of hardware prefetching. On average, CSALT partitioning
improves performance by 1% on top of the enhanced SHiP
and DRRIP at the L2. We corroborate the findings of CSALT
in terms of performance improvement over a weaker baseline
that uses LRU policy at the L2 and LLC.

C. Sensitivity Analysis

STLB sensitivity study. Fig. 19 shows the normalized
performance of our idea with respect to their corresponding
baselines with different STLB sizes. We observe similar per-
formance gains with different TLB sizes as the recall distance
of most of the address translations that stall the head of the
ROB is high. In mcf, after 2048 entries, there is no further
performance gain as all the translations fit in STLB and STLB
MPKI drops to 0.39 with 4096 entries. The performance
gain reduces with an increase in STLB size, as the scope of
retaining leaf-level translations at data caches reduces due to
a decrease in STLB MPKI.

L2C sensitivity study. Fig. 20 shows the performance gain
with various L2C sizes. We observe that with an increase in
L2C size after 512KB(baseline), the average gain in perfor-
mance is either almost similar(768KB) or decreases(1MB).
Note that the access latency of 1MB is higher than the
512KB L2C. With an increase in L2C size, the baseline can
retain more translations so, the contribution of T-DRRIP at
L2C towards the performance gain reduces. However, we
observe marginal performance gain in xalancbmk with an
increase in L2C size. For xalancbmk, the contribution of
T-DRRIP towards total performance gain is high as even with
an 1MB L2C, translation misses are non-negligible. Hence,
it is intuitive that the scope of improvement at L2C for this
benchmark is high. On the other hand, in canneal the scope
of the performance of T-DRRIP is low, hence no further
increase in the magnitude of performance. mcf also shows
high scope for T-DRRIP, but since the translations fit in L2C as
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Fig. 20. L2 sensitivity with various L2 sizes.

it grows bigger, the magnitude of performance gain decreases.
LLC sensitivity study. Fig. 21 shows similar sensitivity

trend as L2C at LLC, with various cache size. The perfor-
mance gain decreases with an increase in LLC size from
6.3% at 1MB to 4.2% at 8MB LLC. The influence of ATP
and T-SHiP is bigger at LLC than L2C as the number of
prefetch requests generated at LLC is higher than L2C. As the
LLC size increases, the LLC prefetch hit rate also increases
and hence, the gain in performance decreases. In mcf, LLC
prefetch MPKI does not decrease significantly as the data
blocks are yet not fitting in the LLC size. With a large LLC
size, the effectiveness of ATP prefetcher increases. Hence, the
performance keeps on increasing.

VI. CONCLUSION

In this paper, We find that an STLB miss can stall the head
of the ROB for a maximum of 50 cycles and replay loads
for more than 200 cycles. We further discussed that the state-
of-the-art cache management policies at the L2 and LLC are
ineffective in reducing ROB stall cycles because of an STLB
miss and replay loads. We proposed simple enhancements
in the form of T-DRRIP and T-SHiP for address translation
aware cache hierarchy management. Our enhancements reduce
the number of ROB stall cycles by reduced by 28.76%.
For mitigating latency because of replay loads, we propose
ATP that reduces ROB stall cycles by additional 18.5% by
prefetching replay loads into the cache hierarchy. Overall,

mcf

xal
ancbmk bf

can
neal cc mis pr

rad
ii tc

geom
ean

1
1.02
1.04
1.06
1.08
1.10
1.12

No
rm

al
ize

d 
IP

C

1.15
1MB 2MB 4MB 8MB

Fig. 21. LLC sensitivity with various LLC sizes.

these enhancements contribute to an average performance
improvement of 5.1%.
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