Workshop on Essential Abstractions in GCC

More Details of Machine Descriptions

GCC Resource Center (www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

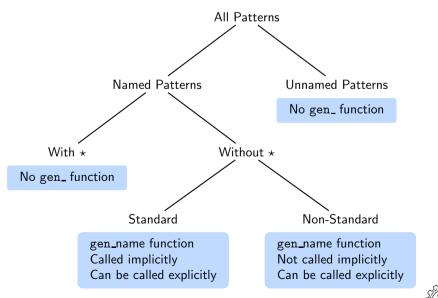
2 July 2012

Part 1

More Features

2 July 2012 MD Details: Outline 1/38

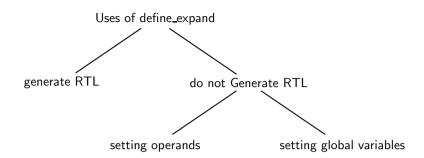
Outline


- Some details of MD constructs
 - ▶ On names of patterns in .md files
 - ▶ On the role of define_expand
 - ▶ On the role of predicates and constraints
 - ► Mode and code iterators
 - ► Defining attributes
 - Other constructs
- Improving machine descriptions and instruction selection
 - New constructs to factor out redundancy
 - ► Cost based tree tiling for instruction selection

Essential Abstractions in GCC

2 July 2012 MD Details: More Features 2/38

Pattern Names in .md File

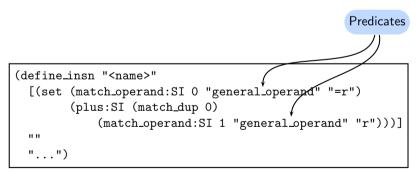

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

2 July 2012

Role of define_expand

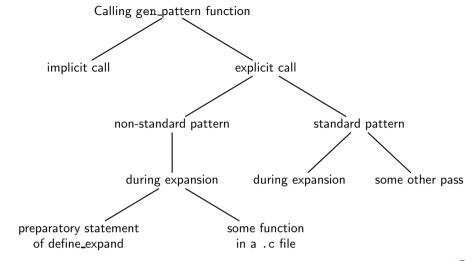
Essential Abstractions in GCC


GCC Resource Center, IIT Bombay

- (III)

2 July 2012 MD Details: More Features

5/38


Use of Predicates

Predicates are using for matching operands

- For constructing an insn during expansion
 name> must be a standard pattern name
- For recognizing an instruction (in subsequent RTL passes including pattern matching)

Using define_expand for Generating RTL statements

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

-(T)

2 July 2012


MD Details: More Features

6/38

Understanding Constraints

- Reloading operands in the most suitable register class
- Fine tuning within the set of operands allowed by the predicate
- If omitted, operands will depend only on the predicates

2 July 2012 MD Details: More Features 7/38

Role of Constraints

Consider the following two instruction patterns:

- During expansion, the destination and left operands must match the same predicate
- During recognition, the destination and left operands must be identical

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

Factoring Out Common Information

2 July 2012 MD Details: More Features 8/38

Role of Constraints

• Consider an insn for recognition

```
(insn n prev next
    (set (reg:SI 3)
          (plus:SI (reg:SI 6) (reg:SI 109)))
          ...)}
```

- Predicates of the first pattern do not match (because they require identical operands during recognition)
- Constraints do not match for operand 1 of the second pattern
- Reload pass generates additional insn to that the first pattern can be used

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

2 July 2012

MD Details: Factoring Out Common Information

9/38

Handling Mode Differences

10/38

Mode Iterators: Abstracting Out Mode Differences

Essential Abstractions in GCC

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

2 July 2012 MD Details: Factoring Out Common Information

Code Iterators: Abstracting Out Code Differences

GCC Resource Center, IIT Bombay

Handling Code Differences

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

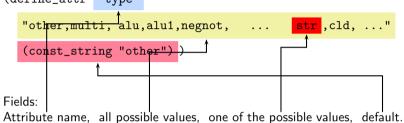
Part 3

Miscellaneous Features

13/38

Defining Attributes

MD Details: Miscellaneous Features


- Classifications are need based
- Useful to GCC phases e.g. pipelining

Property: Pipelining

Need: To classify target instructions

Construct: define_attr

;; Instruction type.
(define_attr "type"

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

2 July 2012

MD Details: Miscellaneous Features

15/38

Using Attributes

Pipeline specification requires the CPU type to be "pentium" and the instruction type to be "str"

Specifying Instruction Attributes

- Optional field of a define_insn
- For an i386, we choose to mark string instructions with the attribute value str

```
(define_insn "*strmovdi_rex_1"
  [(set (mem:DI (match_operand:DI 2 ...)]
  "TARGET_64BIT && (TARGET_SINGLE_ ...)"
  "movsq"
  [ (set_attr "type" "str")
  ...
  (set_attr "memory" "both")])
```

NOTE

2 July 2012

An instruction may have more than one attribute!

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

MD Details: Miscellaneous Features

16/38

Some Other RTL Constructs

- define_split: Split complex insn into simpler ones e.g. for better use of delay slots
- define_insn_and_split: A combination of define_insn and define_split
 Used when the split pattern matches and insn exactly.
- **define_peephole2**: Peephole optimization over insns that substitutes insns. Run after register allocation, and before scheduling.
- define_constants: Use literal constants in rest of the MD.

The Need for Improving Machine Descriptions

The Problems:

- The specification mechanism for Machine descriptions is guite adhoc
 - Only syntax borrowed from LISP, neither semantics not spirit!
 - ► Non-composable rules
 - Mode and code iterator mechanisms are insufficient
- Adhoc design decisions
 - ► Honouring operand constraints delayed to global register allocation During GIMPLE to RTL translation, a lot of C code is required
 - Choice of insertion of NOPs

Essential Abstractions in GCC

2 July 2012

MD Details: Machine Descriptions in specRTL

19/38

Design Flaws in Machine Descriptions

Multiple patterns with same structure

- Repetition of almost similar RTL expressions across multiple define_insn an define_expand patterns
 - ▶ Some Modes, Predicates, Constraints, Boolean Condition, or RTL Expression may differ everything else may be identical
 - ▶ One RTL expression may appears as a sub-expression of some other RTL expression
- Repetition of C code along with RTL expressions in these patterns.

Part 4

Machine Descriptions in specRTL

2 July 2012

MD Details: Machine Descriptions in specRTL

18/38

Handing Constraints

- define_insns patterns have operand predicates and constraints
- While generating an RTL insn from GIMPLE, only the predicates are checked. The constraints are completely ignored
- An insn which is generated in the expander is modified in the reload pass to satisfy the constraints
- It may be possible to generate this final form of RTL during expansion by honouring constraints
 - ▶ Honouring contraints earlier than the current place
 - ⇒ May get rid of some C code in define_expand

Redundancy in MIPS Machine Descriptions: Example 1

MD Details: Machine Descriptions in specRTL

[(set (match_operand: $m \circ m$ o "register_operand" " $c\theta$ ") (plus:m (match_operand: \underline{m} 1 "register_operand" " $\underline{c1}$ ") $(match_operand: \underline{m} \ 2 \ "p" \ "\underline{c2}")))]$

RTL Template

Details

Structure

Pattern name	\underline{m}	<u>p</u>	<u>c0</u>	<u>c1</u>	<u>c2</u>
define_insn add <mode>3</mode>	ANYF	register_operand	=f	f	f
define_expand add <mode>3</mode>	GPR	arith_operand			
define_insn *add <mode>3</mode>	GPR	arith_operand	=d,d	d,d	d,Q

Essential Abstractions in GCC

GCC Resource Center, IIT Bomb

2 July 2012

MD Details: Machine Descriptions in specRTL

22/38

Redundancy in MIPS Machine Descriptions: Example 3

[(set (match_operand: \underline{m} 0 "register_operand" " $\underline{c}\underline{\theta}$ ") (plus: \underline{m} (mult:m (match_operand:m 1 "register_operand" "c1") $[match_operand: m \ 2 \ "register_operand" \ "c2")))]$ (match_operand: m 3 "register_operand" "c3")))]

RTL Template

Details

Structure

Pattern name	\underline{m}	<u>c0</u>	<u>c1</u>	<u>c2</u>	<u>c3</u>
mul_acc_si	SI	=1?*?,d?	d,d	d,d	0,d
mul_acc_si_r3900	SI	=1?*?,d*?,d?	d,d,d	d,d,d	0,1,d
*macc	SI	=1,d	d,d	d,d	0,1
*madd4 <mode></mode>	ANYF	=f	f	f	f
*madd3 <mode></mode>	ANYF	=f	f	f	0

Redundancy in MIPS Machine Descriptions: Example 2

[(set (match_operand: m 0 "register_operand" " $c\theta$ ") (mult: m (match_operand: m 1 "register_operand" "c1") (match_operand: m 2 "register_operand" "c2")))]

Details

Pattern name	<u>m</u>	<u>c0</u>	<u>c1</u>	<u>c2</u>
define_insn *mul <mode>3</mode>	SCALARF	=f	f	f
define_insn *mul <mode>3_r4300</mode>	SCALARF	=f	f	f
define_insn mulv2sf3	V2SF	=f	f	f
define_expand mul <mode>3</mode>	GPR			
define_insn mul <mode>3_mul3_loongson</mode>	GPR	=d	d	d
define_insn mul <mode>3_mul3</mode>	GPR	d,1	d,d	d,d

Essential Abstractions in GCC

GCC Resource Center, IIT

23/38

2 July 2012

MD Details: Machine Descriptions in specRTL Insufficient Iterator Mechanism

- Iterators cannot be used across define_insn, define_expand, define_peephole2 and other patterns
- Defining iterator attribute for each varying parameter becomes tedious
- For same set of modes and rtx codes, change in other fields of pattern makes use of iterators impossible
- Mode and code attributes cannot be defined for operator or operand number, name of the pattern etc.
- Patterns with different RTL template share attribute value vector for which iterators can not be used

Many Similar Patterns Cannot be Combined

MD Details: Machine Descriptions in specRTL

```
(define_expand "iordi3"
   [(set (match_operand:DI 0 "nonimmediate_operand" "")
      (ior:DI (match_operand:DI 1 "nonimmediate_operand" "")
           (match_operand:DI 2 "x86_64_general_operand" "")))
   (clobber (reg:CC FLAGS_REG))]
   "TARGET_64BIT"
   "ix86_expand_binary_operator (IOR, DImode, operands); DONE;")
(define_insn "*iordi_1_rex64"
   [(set (match_operand:DI 0 "nonimmediate_operand" "=rm,r")
      (ior:DI (match_operand:DI 1 "nonimmediate_operand" "%0,0")
           (match_operand:DI 2 "x86_64_general_operand" "re,rme")))
   (clobber (reg:CC FLAGS_REG))]
   "TARGET_64BIT
   && ix86_binary_operator_ok (IOR, DImode, operands)"
   "or{q}\t{%2, %01%0, %2}"
   [(set_attr "type" "alu")
   (set_attr "mode" "DI")])
```


26/38

Essential Abstractions in GCC

2 July 2012

specRTL: Key Observations

• Davidson Fraser insight

Register transfers are target specific but their form is target independent

MD Details: Machine Descriptions in specRTL

- GCC's approach
 - ▶ Use Target independent RTL for machine specification
 - ▶ Generate expander and recognizer by reading machine descriptions

Main problems with GCC's Approach

Although the shapes of RTL statements are target independent, they have to be provided in RTL templates

• Our key idea:

Separate shapes of RTL statements from the target specific details

Measuring Redundancy in RTL Templates

MD File	Total number of patterns	Number of primitive trees	Number of times primitive trees are used to create composite trees
i386.md	1303	349	4308
arm.md	534	232	1369
mips.md	337	147	921

Essential Abstractions in GCC

2 July 2012

MD Details: Machine Descriptions in specRTL

27/38

Specification Goals of specRTL

Support all of the following

Essential Abstractions in GCC

- Separation of shapes from target specific details
- Creation of new shapes by composing shapes
- Associtiating concrete details with shapes
- Overriding concrete details

28/38

Software Engineering Goals of specRTL

- Allow non-disruptive migration for existing machine descriptions
 - Incremental changes
 - ► No need to change GCC source until we are sure of the new specification

 $\ensuremath{\mathsf{GCC}}$ must remain usable after each small change made in the machine descriptions

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

2 July 2012

31/38

2 July 2012

MD Details: Machine Descriptions in specRTL

30/38

Meeting the Specification Goals: Operations

- Creating new shapes by composing shapes: extends
- Associtiating concrete details with shapes: instantiates
- Overriding concrete details: overrides

Meeting the Specification Goals: Key Idea

- Separation of shapes from target specific details:
 - ▶ Shape \equiv tree structure of RTL templates
 - Details ≡ attributes of tree nodes (eg. modes, predicates, constraints etc.)
- Abstract patterns and Concrete patterns
 - ► Abstract patterns are shapes with "holes" in them that represent missing information
 - ► Concrete patterns are shapes in which all holes are plugged in using target specific information
- Abstract patterns capture shapes which can be concretized by providing details

Essential Abstractions in GCC

Properties of Operations

MD Details: Machine Descriptions in specRTL

Operation	Base pattern	Derived pattern	Nodes influenced	Can change
extends	Abstract	Abstract	Leaf nodes	Structure
instantiates	Abstract	Concrete	All nodes	Attributes
overrides	Abstract	Abstract	Internal nodes	Attributes
	Concrete	Concrete	All nodes	Attributes

Creating Abstract Patterns

<pre>abstract set_plus extends set { root.2 = plus; }</pre>	root.1 + root.2 root.2.2
<pre>abstract set_macc extends set_plus { root.2.2 = mult; }</pre>	root.2 root.2.1 * root.2.2 root.2.2.1 root.2.2.2

32/38

Essential Abstractions in GCC

GCC Resource Center, IIT Bomba

2 July 2012

MD Details: Machine Descriptions in specRTL

34/38

Generating Conventional Machine Descriptions

```
abstract set_plus extends set
                                                  root
                                      root.1
                                                      root.2
   root.2 = plus;
                                       root.2.1
                                                       root.2.2
concrete add<mode>3.insn instantiates set_plus
 set_plus(register_operand:ANYF:"=f", register_operand:ANYF:"f",
           register_operand:ANYF:"f");
  root.2.mode = ANYF:
\{: \ /st Conventional Machine Description Fragments st/:\}
                      Resulting MD Specification
(define_insn "add<mode>3"
[(set (match_operand:ANYF 0 "register_operand" "=f")
      (plus:ANYF (match_operand:ANYF 1 "register_operand" "f")
                 (match_operand:ANYF 2 "register_operand" "f")))]
/* Conventional Machine Description Fragments */
```

Creating Concrete Patterns

```
abstract set_plus extends set
                                              =) root
                                                   root.2
                                    root.1
 root.2 = plus;
                                      root.2.1
                                                     root.2.2
concrete add<mode>3.insn instantiates set_plus
{ set_plus(register_operand:ANYF:"=f",
           register_operand:ANYF:"f",
           register_operand:ANYF:"f");
 root.2.mode = ANYF;
concrete add<mode>3.expand instantiates set_plus
{ set_plus(register_operand:GPR:"",
           register_operand:GPR:"",
           arith_operand:GPR:"");
 root.2.mode = GPR;
```

Essential Abstractions in GCC

Essential Abstractions in GCC

GCC Resource Center, IIT Bomba

2 July 2012

MD Details: Machine Descriptions in specRTL

35/38

Overriding Details

```
abstract set_plus extends set
                                                root
                                                 +) root.2
  root.2 = plus;
                                      root.2
                                                     root.2.2
concrete add<mode>3.expand instantiates set_plus
  set_plus(register_operand:GPR:"",
           register_operand:GPR:"",
           arith_operand:GPR:"");
  root.2.mode = GPR:
concrete *add<mode>3.insn overrides add<mode>3.expand
 allconstraints = ("=d,d", "d,d", "d,Q"); }
```


Some More Examples

Omitting conventional MD fragments

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

2 July 2012

MD Details: Conclusions

37/38

Current Status and Plans for Future Work

- specRTL compiler is ready
- Many of the i386 instructions and all spim instructions have been rewritten
- We invite more people to try out specRTL in writing other descriptions

Part 5

Conclusions

2 July 2012 MD Details: Conclusions 38/38

Conclusions

- Separating shapes from concrete details is very helpful
- It may be possible to identify a large number of common shapes
- Machine descriptions may become much smaller
 Only the concrete details need to be specified
- Non-disruptive and incremental migration to new machine descriptions
- GCC source need not change until these machine descriptions have been found useful

