
Workshop on Essential Abstractions in GCC

Introduction to Data Flow Analysis

GCC Resource Center

(www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering,

Indian Institute of Technology, Bombay

1 July 2012



1 July 2012 Introduction to DFA: Outline 1/38

Outline

• Motivation

• Live Variables Analysis

• Available Expressions Analysis

• Pointer Analysis

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



Part 2

Motivation



1 July 2012 Introduction to DFA: Motivation 2/38

Dead Code Elimination

B2
a 3 = 1; b 4 = 2
c 5 = 3; n 6 = 6

B2B2
a 3 = 1; b 4 = 2
c 5 = 3; n 6 = 6

B2

B4
a 1 = φ (1, a 7)

if a 1 ≤ 6
B4

B3 a 7 = a 1 + 1

B5 if a 1 ≤ 11

B6
D.1200 8 = a 1 + 2
a 9 = D.1200 8 + 3

B6

B7
a 2 = φ (a 1, a 9)

return a 2

T
F

T

F

• No uses for variables a 3, b 4,
c 5, and n 6

• Assignments to these variables
can be deleted

How can we conclude
this systematically?

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Motivation 3/38

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

B2
a 3 = 1; b 4 = 2
c 5 = 3; n 6 = 6

B2

B4
a 1 = φ (1, a 7)

if a 1 ≤ 6
B4

B3 a 7 = a 1 + 1

B5 if a 1 ≤ 11

B6
D.1200 8 = a 1 + 2
a 9 = D.1200 8 + 3

B6

B7
a 2 = φ (a 1, a 9)

return a 2

T
F

T

F

Which variables are used
beyond this point?

∅

Which variables are used
beyond this point?

{a 1, a 9}

What about a 2?

Which variables are used
beyond this point?

{a 1, a 9}

Which variables are used
beyond this point?

{a 1}

Which variables are used
beyond this point?

{a 1, a 9}

Which variables are used
beyond this point?

{a 1, a 9}

Which variables are used
beyond this point?

∅ (Conservative assumption)

Which variables are used
beyond this point?

{a 1}

Which variables are used
beyond this point?

{a 1, a 9}

Which variables are used
beyond this point?

{a 7, a 9}

Which variables are used
beyond this point?

{a 7, a 9}

{a 7, a 9}

∅

{a 1, a 9}

{a 1, a 9}

∅ (Conservative assumption)

{a 1, a 9}

{a 7, a 9}

{a 7, a 9}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Motivation 4/38

Liveness Analysis of Variables: Iteration 2

Find out at each program point p, the variables that are used beyond p

B2
a 3 = 1; b 4 = 2
c 5 = 3; n 6 = 6

B2

B4
a 1 = φ (1, a 7)

if a 1 ≤ 6
B4

B3 a 7 = a 1 + 1

B5 if a 1 ≤ 11

B6
D.1200 8 = a 1 + 2
a 9 = D.1200 8 + 3

B6

B7
a 2 = φ (a 1, a 9)

return a 2

T
F

T

F

∅

{a 1, a 9}

{a 1, a 9}

∅ (Conservative assumption){a 7, a 9}

{a 1, a 9}

{a 7, a 9}

{a 7, a 9}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Motivation 5/38

Using Liveness Analysis for Dead Code Elimination

Find out at each program point p, the variables that are used beyond p

B2
a 3 = 1; b 4 = 2
c 5 = 3; n 6 = 6

B2B2
a 3 = 1; b 4 = 2
c 5 = 3; n 6 = 6

B2

B4
a 1 = φ (1, a 7)

if a 1 ≤ 6
B4

B3 a 7 = a 1 + 1

B5 if a 1 ≤ 11

B6
D.1200 8 = a 1 + 2
a 9 = D.1200 8 + 3

B6

B7
a 2 = φ (a 1, a 9)

return a 2

T
F

T

F

∅

{a 1, a 9}

{a 1, a 9}

{a 7, a 9}

{a 1, a 9}

{a 7, a 9}

{a 7, a 9}

• Values of a 3, a 4, c 5, and n 6 are
guaranteed not to be used

• Why are the values of a 7 and a 9

meaningful at the exit of B2?

• We have assumed a φ function to be
an ordinary expression in which
operands are computed along every
path reaching the computation

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



Part 3

Live Variables Analysis



1 July 2012 Introduction to DFA: Live Variables Analysis 6/38

Defining Live Variables Analysis

A variable v is live at a program point p, if some
path from p to program exit contains an r-value oc-
currence of v which is not preceded by an l-value
occurrence of v .

Path based
specification

v is live at p v is not live at p v is live at p

v=a∗b

a=v+2

End

p

Start

v=a∗b

v=a+2

End

p

Start

v = v + 2v=v+2

End

p

Start

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Live Variables Analysis 7/38

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Basic Blocks ≡
Single statements or Maximal groups
of sequentially executed statements

Control Transfer

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Local Data Flow Properties

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Live Variables Analysis 8/38

Local Data Flow Properties for Live Variables Analysis

Genn = { v | variable v is used in basic block n and

is not preceded by a definition of v }

Killn = { v | basic block n contains a definition of v }

r-value occurrence

Value is only read, e.g. x,y,z in

x.sum = y.data + z.data

l-value occurrence

Value is modified e.g. y in

y = x.lptr

within n

anywhere in n

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Live Variables Analysis 9/38

Local Data Flow Properties for Live Variables Analysis

• Genn : Use not preceded by definition

Upwards exposed use

• Killn : Definition anywhere in a block

Stop the effect from being propagated across a block

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Live Variables Analysis 10/38

Defining Data Flow Analysis for Live Variables Analysis

Ini

Geni , Kill i

Out i

Inj

Genj , Kill j

Out j

Ink = Genk ∪ (Outk − Killk)

Genk , Killk

Outk = Ini ∪ Inj

Global Data Flow Properties
Edge based
specifications

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Live Variables Analysis 11/38

Data Flow Equations For Live Variables Analysis

Inn = (Outn − Killn) ∪ Genn

Outn =







BI n is End block
⋃

s∈succ(n)

Ins otherwise

Inn and Outn are sets of variables.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Live Variables Analysis 12/38

Performing Live Variables Analysis

a 3 = 1; b 4 = 2
c 5 = 3; n 6 = 6

B2

a 1 = φ (1, a 7)

if a 1 ≤ 6
B4

B3 a 7 = a 1 + 1

if a 1 ≤ 11 B5

B6
D.1200 8 = a 1 + 2
a 9 = D.1200 8 + 3

B6

B7
a 2 = φ (a 1, a 9)

return a 2

T

F

T

F

∅

{a 1, a 9}

{a 1, a 9}

{a 1}

{a 1, a 9}

{a 1, a 9}
∅

{a 1}

{a 1, a 9}

{a 7, a 9}

{a 7, a 9}

{a 7, a 9}

{a 7, a 9}

{a 1, a 9}

Gen Kill

B2 ∅
{a 3, b 4,
c 5, n 6}

B4 {a 7} {a 1}
B3 {a 1} {a 7}
B5 {a 1} ∅
B6 {a 1} {a 9}
B7 {a 1, a 9} {a 2}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Live Variables Analysis 13/38

Strongly Live Variables Analysis

A variable v is strongly live if it is used in

• in statement other than assignment statement, or

(this case is same as simple liveness analysis)

• in defining other strongly live variables in an assignment statement

(this case is different from simple liveness analysis)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Live Variables Analysis 14/38

Understanding Strong Liveness

y = x

print (x)

Strong
Liveness

∅

{x}

{x}

Simple
Liveness

∅

{x}

{x}

y = x

print (y)

Strong
Liveness

∅

{y}

{x}

Simple
Liveness

∅

{x}

{y}

y = x

print (z)

Strong
Liveness

∅

{z}

{z}

Simple
Liveness

∅

{z}

{z , x}

Same Same Different

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Live Variables Analysis 15/38

Comparision of Simple and Strong Liveness for our Example

a 3 = 1; b 4 = 2
c 5 = 3; n 6 = 6

B2

Simple Liveness

a 1 = φ (1, a 7)

if a 1 ≤ 6
B4

B3 a 7 = a 1 + 1

if a 1 ≤ 11 B5

B6
D.1200 8 = a 1 + 2
a 9 = D.1200 8 + 3
print ”Hello”

B6

B7
a 2 = φ (a 1, a 9)

print ”Hi”

T

F

T

F

∅

{a 1, a 9}

{a 1, a 9}

{a 1}

{a 1, a 9}

{a 1, a 9}

{a 1, a 9}

{a 7, a 9}

{a 7, a 9}

{a 7, a 9}

{a 7, a 9}

{a 1, a 9}

a 3 = 1; b 4 = 2
c 5 = 3; n 6 = 6

B2

Strong Liveness

a 1 = φ (1, a 7)

if a 1 ≤ 6
B4

B3 a 7 = a 1 + 1

if a 1 ≤ 11 B5

B6
D.1200 8 = a 1 + 2
a 9 = D.1200 8 + 3
print ”Hello”

B6

B7
a 2 = φ (a 1, a 9)

print ”Hi”

T

F

T

F

∅

∅

∅

∅

∅

{a 1}
∅

∅

{a 1}

{a 7}

{a 7}

{a 7}

{a 7}

{a 1}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Live Variables Analysis 16/38

Using Data Flow Information of Live Variables Analysis

• Used for register allocation.

If variable x is live in a basic block b, it is a potential candidate for
register allocation.

• Used for dead code elimination.

If variable x is not live after an assignment x = . . ., then the assginment is
redundant and can be deleted as dead code.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



Part 4

Available Expressions Analysis



1 July 2012 Introduction to DFA: Available Expressions Analysis 17/38

Defining Available Expressions Analysis

An expression e is available at a program point p, if
every path from program entry to p contains an evaluation of e
which is not followed by a definition of any operand of e.

a ∗ b is
available at p

a ∗ b is not
available at p

a ∗ b is not
available at p

Start

p

End

a ∗ b

a ∗ b

a ∗ b

Start Start

p

End

a ∗ b

a ∗ b

a ∗ b

a =

Start Start

p

End

a ∗ b

a ∗ b

Start

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Available Expressions Analysis 18/38

Local Data Flow Properties for Available Expressions
Analysis

Genn = { e | expression e is evaluated in basic block n and
this evaluation is not followed by a definition of
any operand of e}

Killn = { e | basic block n contains a definition of an operand of e}

Entity Manipulation Exposition

Genn Expression Use Downwards
Killn Expression Modification Anywhere

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Available Expressions Analysis 19/38

Data Flow Equations For Available Expressions Analysis

Inn =







BI n is Start block
⋂

p∈pred(n)

Outp otherwise

Outn = Genn ∪ (Inn − Killn)

Alternatively,
Outn = fn(Inn), where

fn(X ) = Genn ∪ (X − Killn)

Inn and Outn are sets of expressions.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Available Expressions Analysis 20/38

Using Data Flow Information of Available Expressions
Analysis

• Common subsexpression elimination

◮ If an expression is available at the entry of a block b and
◮ a computation of the expression exists in b such that
◮ it is not preceded by a definition of any of its operands

Then the expression is redundant

• Redundant expression must be upwards exposed

• Expressions in Genn are downwards exposed

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



Part 5

Introduction to Pointer Analysis



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 21/38

Code Optimization In Presence of Pointers

Program Memory graph at statement 5

1. q = p;
2. while (. . . ) {do {
3. q = q next;
4. }while (. . . )
5. p data = r1;
6. print (q data);
7. p data = r2;

q

p . . .p next next

• Is p data live at the exit of line 5? Can we delete line 5?

• No, if p and q can be possibly aliased

(while loop or do-while loop with a circular list)

• Yes, if p and q are definitely not aliased

(do-while loop without a circular list)

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 22/38

Code Optimization In Presence of Pointers

a = 5

x = &a

b = ∗x

a = 5

x = &a

b = ∗x

a = 5

x = &a

b = 5

Original Program Constant Propagation Constant Propagation
without aliasing with aliasing

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 23/38

The World of Pointer Analysis

Alias Analysis Pointer Analysis

Alias analysis
of reference
parameters,

fields of unions
array indices

Alias analysis of
data pointers

Points-to
analysis of
data and
function
pointers

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 24/38

Alias Information Vs. Points-To Information

1 x = &a 1

2 b = x 2

a a
x a
b a

“x Points-To a”
denoted x a

a a
x a
b a

“x and b are Aliases”
denoted x ⊜ b

Symmetric
and

Reflexive

Neither
Symmetric

Nor Reflexive

• What about transitivity?

◮ Points-To: No.
◮ Alias: Depends.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 25/38

Introduction

Two important dimensions for precise pointer analysis are

• Flow Sensitivity

• Context Sensitivity

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 26/38

Flow Sensitive analysis

A flow-sensitive analysis computes the data flow information at each program
point according to the control-flow of a program.

n1 a = b n1

n2 a = &b n2n3 a = &c n3

n4 a = &d n4

At the exit of node n4

Flow insensitive information:
{a b, a c , a d}

Flow sensitive information:
{a d}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 27/38

Context Sensitivity in Interprocedural Analysis

Startr

Endr

Starts

a = &b

Ends

Ci

Ri

ci

Startt

c = &d

Endt

Cj

Rj

cj

a b

a b

a b

c d

c d

c d

fr

××

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 28/38

Issues with Pointer Analysis

• For precise pointer information, we require flow and context sensitive
pointer analysis

• Flow and context sensitive pointer analysis computes a large size of
information

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 29/38

Example of Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4
use u

use x
n4

∅

{x y , y z , z u}

{x y , y z , z u} {x y , y z , z u}

{x y , y z , z u, u z} {x y , y z , z z}

{x y , y z , z u, z z , u z}

{x y , y z , z u, z z , u z}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 30/38

Is All This Information Useful?

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4
use u

use x
n4

∅

{x y , y z , z u}

{x y , y z , z u} {x y , y z , z u}{x y ,y z , z u}

{x y , y z , z u, u z} {x y , y z , z z}{x y ,y z , z u, u z} {x y ,y z , z z}

{x y , y z , z u, z z , u z}{x y ,y z , z u, z z , u z}

{x y , y z , z u, z z , u z}{x y , y z , z u, z z , u z}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 31/38

Improving pointer analysis

For a fast flow and context sensitive pointer analysis, we can reduce the number
of computations done at a program point. This can be done in following ways :

• Computing pointer information for only those variables that are being used
at some later program point.

• Propagating only the new data flow values obtained in current iteration to
the next iteration.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 32/38

Liveness Based Pointer analysis(L-FCPA)

• A flow and context sensitive pointer analysis

• Pointer information is not computed unless a variable becomes live.

• Strong liveness is used for computing liveness information.

If basic block contains statement like x = y, then y is said to be live, if x is
live at the exit of basic block.

• Pointer information is propagated only in live range of the pointer

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 33/38

First Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4
use u

use x
n4

{u, x}

{u, x}{u, x}

{u, x}{z}

{u, x , z}

{u} {u ?}

{u ?, x y , z u}

{u ?, x y}{z u}

{u ?, x y}{u ?}

{u ?, x y}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 34/38

Second Round of Liveness Analysis and Points-to Analysis

n1

x = &y

y = &z

z = &u

n1

n2 ∗z = y n2 n3 z = y n3

n4
use u

use x
n4

{u, x}

{u, x}{u, x}

{u, x}{z}{z , x , y}

z u

{u, x , z}{u, x , z , y}

{u} {u ?}

{u ?, x y , z u} ∪ {y z}

{z u} ∪ {y z , x y}
{u ?, x y}

{u ?, x y}
{u z , x y}

{u ?, x y} ∪ {u z}

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 35/38

Observation

• L-FCPA has 2 fixed point computations :

◮ Strong Liveness analysis
◮ Points-to analysis

• Liveness and Points-to passes are interdependent.

• Both the computations are done alternatively until final value converges.

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 36/38

Conclusions: New Insights in Pointer Analysis

• Usable pointer information is very small and sparse

• Earlier approaches reported inefficiency and non-scalability because they
computed far more information than the actual usable information

• Triumph of The Genius of AND over the Tyranny of OR

• Future work

◮ Redesign data structures by hiding them behind APIs
Current version uses linked lists and linear search

◮ Incremental version
◮ Using precise pointer information in other passes in GCC

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 37/38

Precise Context Information is Small and Sparse

Our contributions: Value based termination, liveness

Total No. and percentage of functions for call-string counts

Program no. of 0 call strings 1-4 call strings 5-8 call strings 9+ call strings

functions L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA

lbm 22
16 3 6 19

0 0 0 0
(72.7%) (13.6%) (27.3%) (86.4%)

mcf 25
16 3 9 22

0 0 0 0
(64.0%) (12.0%) (36.0%) (88.0%)

bzip2 100
88 38 12 62

0 0 0 0
(88.0%) (38.0%) (12.0%) (62.0%)

libquantum 118
100 56 17 62 1

0 0 0
(84.7%) (47.5%) (14.4%) (52.5%) (0.8%)

sjeng 151
96 37 43 45 12 15

0
54

(63.6%) (24.5%) (28.5%) (29.8%) (7.9%) (9.9%) (35.8%)

hmmer 584
548 330 32 175 4 26

0
53

(93.8%) (56.5%) (5.5%) (30.0%) (0.7%) (4.5%) (9.1%)

parser 372
246 76 118 135 4 63 4 98

(66.1%) (20.4%) (31.7%) (36.3%) (1.1%) (16.9%) (1.1%) (26.3%)

9+ call strings in L-FCPA: Tot 4, Min 10, Max 52, Mean 32.5, Median 29, Mode 10

h264ref 624
351

?
240

?
14

?
19

?
(56.2%) (38.5%) (2.2%) (3.0%)

9+ call strings in L-FCPA: Tot 14, Min 9, Max 56, Mean 27.9, Median 24, Mode 9

Essential Abstractions in GCC GCC Resource Center, IIT Bombay



1 July 2012 Introduction to DFA: Introduction to Pointer Analysis 38/38

Precise Usable Pointer Information is Small and Sparse

Our contribution: liveness

Total No. and percentage of basic blocks (BBs) for points-to (pt) pair counts

Program no. of 0 pt pairs 1-4 pt pairs 5-8 pt pairs 9+ pt pairs

BBs L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA L-FCPA FCPA

lbm 252
229 61 23 82

0
66

0
43

(90.9%) (24.2%) (9.1%) (32.5%) (26.2%) (17.1%)

mcf 472
356 160 116 2

0
1

0
309

(75.4%) (33.9%) (24.6%) (0.4%) (0.2%) (65.5%)

libquantum 1642
1520 793 119 796 3 46

0
7

(92.6%) (48.3%) (7.2%) (48.5%) (0.2%) (2.8%) (0.4%)

bzip2 2746
2624 1085 118 12 3 12 1 1637

(95.6%) (39.5%) (4.3%) (0.4%) (0.1%) (0.4%) (0.0%) (59.6%)

9+ pt pairs in L-FCPA: Tot 1, Min 12, Max 12, Mean 12.0, Median 12, Mode 12

sjeng 6000
4571 3239 1208 12 221 41

0
2708

(76.2%) (54.0%) (20.1%) (0.2%) (3.7%) (0.7%) (45.1%)

hmmer 14418
13483 8357 896 21 24 91 15 5949

(93.5%) (58.0%) (6.2%) (0.1%) (0.2%) (0.6%) (0.1%) (41.3%)

9+ pt pairs in L-FCPA: Tot 6, Min 10, Max 16, Mean 13.3, Median 13, Mode 10

parser 6875
4823 1821 1591 25 252 154 209 4875

(70.2%) (26.5%) (23.1%) (0.4%) (3.7%) (2.2%) (3.0%) (70.9%)

9+ pt pairs in L-FCPA: Tot 13, Min 9, Max 53, Mean 27.9, Median 18, Mode 9

h264ref 21315
13729

?
4760

?
2035

?
791

?
(64.4%) (22.3%) (9.5%) (3.7%)

9+ pt pairs in L-FCPA: Tot 44, Min 9, Max 98, Mean 36.3, Median 31, Mode 9

Essential Abstractions in GCC GCC Resource Center, IIT Bombay


	Outline
	Outline
	Motivation
	Live Variables Analysis
	Available Expressions Analysis
	Introduction to Pointer Analysis

