Workshop on Essential Abstractions in GCC

Introduction to Data Flow Analysis

GCC Resource Center
 (www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

1 July 2012

Outline

- Motivation
- Live Variables Analysis
- Available Expressions Analysis
- Pointer Analysis

Part 2

Motivation

Dead Code Elimination

- No uses for variables a_3, b_4, c_5, and n_6

Dead Code Elimination

- No uses for variables a_3, b_4, c_5, and n_6

Dead Code Elimination

- No uses for variables a_3, b_4, c_5, and n_6
- Assignments to these variables can be deleted

How can we conclude this systematically?

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Which variables are used beyond this point?

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Which variables are used beyond this point?

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Which variables are used beyond this point?

$$
\left\{\mathrm{a} _1, \mathrm{a} _9\right\}
$$

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Which variables are used beyond this point?

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Which variables are used beyond this point?

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables: Iteration 2

Find out at each program point p, the variables that are used beyond p

Liveness Analysis of Variables: Iteration 2

Find out at each program point p, the variables that are used beyond p

Using Liveness Analysis for Dead Code Elimination

Part 3

Live Variables Analysis

Defining Live Variables Analysis

A variable v is live at a program point p, if some path from p to program exit contains an r-value occurrence of v which is not preceded by an I-value occurrence of v.

Defining Live Variables Analysis

A variable v is live at a program point p, if some path from p to program exit contains an r-value occurrence of v which is not preceded by an I-value occurrence of v.
v is live at p

Defining Live Variables Analysis

A variable v is live at a program point p, if some path from p to program exit contains an r-value occurrence of v which is not preceded by an I-value occurrence of v.
v is live at p

v is not live at p

Defining Live Variables Analysis

A variable v is live at a program point p, if some path from p to program exit contains an r-value occurrence of v which is not preceded by an I-value occurrence of v.

v is not live at p

v is live at p

Defining Live Variables Analysis

A variable v is live at a program point p, if some path from p to program exit contains an r-value occurrence of v which is not preceded by an I-value

Path based specification

 occurrence of v.
v is not live at p

v is live at p

Defining Data Flow Analysis for Live Variables Analysis

Defining Data Flow Analysis for Live Variables Analysis

Defining Data Flow Analysis for Live Variables Analysis

Defining Data Flow Analysis for Live Variables Analysis

Defining Data Flow Analysis for Live Variables Analysis

Local Data Flow Properties for Live Variables Analysis

$$
\left.\begin{array}{rl}
\text { Gen }_{n}=\{v \mid & \text { variable } v \text { is used in basic block } n \text { and } \\
& \text { is not preceded by a definition of } v\}
\end{array}\right\} \text { Kill }_{n}=\{v \mid \text { basic block } n \text { contains a definition of } v\} \text {. }
$$

Local Data Flow Properties for Live Variables Analysis

Local Data Flow Properties for Live Variables Analysis

Local Data Flow Properties for Live Variables Analysis

Local Data Flow Properties for Live Variables Analysis

Local Data Flow Properties for Live Variables Analysis

- Gen $_{n}$: Use not preceded by definition
- Kill n : Definition anywhere in a block

Local Data Flow Properties for Live Variables Analysis

- Gen $_{n}$: Use not preceded by definition

Upwards exposed use

- Kill ${ }_{n}$: Definition anywhere in a block

Stop the effect from being propagated across a block

Defining Data Flow Analysis for Live Variables Analysis

Defining Data Flow Analysis for Live Variables Analysis

Defining Data Flow Analysis for Live Variables Analysis

Data Flow Equations For Live Variables Analysis

$$
\begin{aligned}
I n_{n} & =\left(\text { Out }_{n}-\text { Kill }_{n}\right) \cup \text { Gen }_{n} \\
\text { Out }_{n} & = \begin{cases}B I & n \text { is End block } \\
\bigcup_{s \in \operatorname{succ}(n)}^{B I} I n_{s} & \text { otherwise }\end{cases}
\end{aligned}
$$

Data Flow Equations For Live Variables Analysis

$$
\begin{aligned}
I n_{n} & =\left(O u t_{n}-\text { Kill }_{n}\right) \cup \text { Gen }_{n} \\
\text { Out }_{n} & = \begin{cases}n \text { is End block } \\
\bigcup_{s \in \operatorname{succ}(n)}^{B I} I n_{s} & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
I n_{n} \text { and } O u t_{n} \text { are sets of variables. }
$$

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	$\begin{array}{r} \hline \text { \{a_3, b_4, } \\ \text { c_5, n_6 } \end{array}$
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	$\begin{array}{r} \hline \hline \text { a_3, b_4, } \\ \left.c _5, n_{-} 6\right\} \\ \hline \end{array}$
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	$\begin{array}{r} \hline \hline \text { a_3, b_4, } \\ \left.c _5, n_{-} 6\right\} \\ \hline \end{array}$
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	$\begin{array}{r} \hline \text { \{a_3, b_4, } \\ \text { c_5, n_6 } \end{array}$
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	$\begin{array}{r} \hline \text { \{a_3, b_4, } \\ \text { c_5, n_6\} } \end{array}$
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	$\begin{array}{r} \hline \text { \{a_3, b_4, } \\ \text { c_5, n_6 } \end{array}$
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	$\begin{gathered} \hline \hline \text { a_3, b_4, } \\ \text { c_5, n_6\} } \end{gathered}$
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	$\begin{gathered} \hline \text { \{a_3, b_4, } \\ \left.c _5, n_{-} 6\right\} \\ \hline \end{gathered}$
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Performing Live Variables Analysis

	Gen	Kill
B2	\emptyset	$\begin{gathered} \hline \hline \text { a_3, b_4, } \\ \text { c_5, n_6\} } \end{gathered}$
B4	\{a_7\}	\{a_1\}
B3	\{a_1\}	\{a_7\}
B5	\{a_1\}	\emptyset
B6	\{a_1\}	\{a_9\}
B7	\{a_1, a_9\}	\{a_2\}

Strongly Live Variables Analysis

A variable v is strongly live if it is used in

- in statement other than assignment statement, or (this case is same as simple liveness analysis)
- in defining other strongly live variables in an assignment statement (this case is different from simple liveness analysis)

Understanding Strong Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Comparision of Simple and Strong Liveness for our Example

Simple Liveness

Using Data Flow Information of Live Variables Analysis

- Used for register allocation.

If variable x is live in a basic block b, it is a potential candidate for register allocation.

Using Data Flow Information of Live Variables Analysis

- Used for register allocation.

If variable x is live in a basic block b, it is a potential candidate for register allocation.

- Used for dead code elimination.

If variable x is not live after an assignment $x=\ldots$, then the assginment is redundant and can be deleted as dead code.

Part 4

Available Expressions Analysis

Defining Available Expressions Analysis

An expression e is available at a program point p, if every path from program entry to p contains an evaluation of e which is not followed by a definition of any operand of e.

End

End

End

Defining Available Expressions Analysis

An expression e is available at a program point p, if every path from program entry to p contains an evaluation of e which is not followed by a definition of any operand of e.

End

Defining Available Expressions Analysis

An expression e is available at a program point p, if every path from program entry to p contains an evaluation of e which is not followed by a definition of any operand of e.

End

End

Defining Available Expressions Analysis

An expression e is available at a program point p, if every path from program entry to p contains an evaluation of e which is not followed by a definition of any operand of e.

End

Local Data Flow Properties for Available Expressions Analysis

Gen $_{n}=\{e \mid$ expression e is evaluated in basic block n and this evaluation is not followed by a definition of any operand of e \}

Kill $_{n}=\{e \mid$ basic block n contains a definition of an operand of $e\}$

	Entity	Manipulation	Exposition
Gen $_{n}$	Expression	Use	Downwards
Kill $_{n}$	Expression	Modification	Anywhere

Data Flow Equations For Available Expressions Analysis

$$
\begin{aligned}
I n_{n} & =\left\{\begin{array}{cl}
\bigcap_{p \in \operatorname{pred}(n)}^{B I} \text { Out }_{p} & n \text { is Start block }
\end{array}\right. \\
\text { Out }_{n} & =G e n_{n} \cup\left(I n_{n}-\text { Kill }_{n}\right)
\end{aligned}
$$

Data Flow Equations For Available Expressions Analysis

$$
\begin{aligned}
I n_{n} & =\left\{\begin{array}{cl}
\bigcap_{p \in \operatorname{pred}(n)}^{B I} \text { Out }_{p} & n \text { is Start block }
\end{array}\right. \\
\text { Out }_{n} & =\operatorname{Gen}_{n} \cup\left(I n_{n}-K_{i l l}\right)
\end{aligned}
$$

Alternatively,

$$
\begin{aligned}
\text { Out }_{n} & =f_{n}\left(\operatorname{In}_{n}\right), \quad \text { where } \\
f_{n}(X) & =G e n_{n} \cup\left(X-\text { Kill }_{n}\right)
\end{aligned}
$$

Data Flow Equations For Available Expressions Analysis

$$
\begin{aligned}
I n_{n} & =\left\{\begin{array}{cl}
\bigcap_{p \in \operatorname{pred}(n)}^{B I} \text { Out }_{p} & n \text { is Start block }
\end{array}\right. \\
\text { Out }_{n} & =G e n_{n} \cup\left(I n_{n}-K i l_{n}\right)
\end{aligned}
$$

Alternatively,

$$
\begin{aligned}
\text { Out }_{n} & =f_{n}\left(I n_{n}\right), \quad \text { where } \\
f_{n}(X) & =\text { Gen }_{n} \cup\left(X-\text { Kill }_{n}\right)
\end{aligned}
$$

$I n_{n}$ and $O u t_{n}$ are sets of expressions.

Using Data Flow Information of Available Expressions Analysis

- Common subsexpression elimination

Using Data Flow Information of Available Expressions Analysis

- Common subsexpression elimination
- If an expression is available at the entry of a block b and

Using Data Flow Information of Available Expressions Analysis

- Common subsexpression elimination
- If an expression is available at the entry of a block b and
- a computation of the expression exists in b such that

Using Data Flow Information of Available Expressions Analysis

- Common subsexpression elimination
- If an expression is available at the entry of a block b and
- a computation of the expression exists in b such that
- it is not preceded by a definition of any of its operands

Using Data Flow Information of Available Expressions Analysis

- Common subsexpression elimination
- If an expression is available at the entry of a block b and
- a computation of the expression exists in b such that
- it is not preceded by a definition of any of its operands

Then the expression is redundant

Using Data Flow Information of Available Expressions Analysis

- Common subsexpression elimination
- If an expression is available at the entry of a block b and
- a computation of the expression exists in b such that
- it is not preceded by a definition of any of its operands

Then the expression is redundant

- Redundant expression must be upwards exposed

Using Data Flow Information of Available Expressions Analysis

- Common subsexpression elimination
- If an expression is available at the entry of a block b and
- a computation of the expression exists in b such that
- it is not preceded by a definition of any of its operands

Then the expression is redundant

- Redundant expression must be upwards exposed
- Expressions in Gen_{n} are downwards exposed

Part 5

Introduction to Pointer Analysis

Code Optimization In Presence of Pointers

Program	Memory graph at statement 5
1. $\mathrm{q}=\mathrm{p}$; 2. while (...) \{ 3. $\mathrm{q}=\mathrm{q} \rightarrow$ next; 4. \} 5. $\mathrm{p} \rightarrow$ data $=\mathrm{r} 1$; 6. print ($q \rightarrow$ data $)$; 7. $\mathrm{p} \rightarrow$ data $=\mathrm{r} 2$;	

- Is $p \rightarrow$ data live at the exit of line 5? Can we delete line 5?

Code Optimization In Presence of Pointers

Program	Memory graph at statement 5
1. $\mathrm{q}=\mathrm{p}$; 2. do \{ 3. $\mathrm{q}=\mathrm{q} \rightarrow$ next; 4. while (...) 5. $p \rightarrow$ data $=r 1$; 6. print ($q \rightarrow$ data $)$; 7. $\mathrm{p} \rightarrow$ data $=\mathrm{r} 2$;	

- Is $p \rightarrow$ data live at the exit of line 5? Can we delete line 5?

Code Optimization In Presence of Pointers

Program	Memory graph at statement 5
1. $\mathrm{q}=\mathrm{p}$; 2. do \{ 3. $\mathrm{q}=\mathrm{q} \rightarrow \mathrm{next}$; 4. while (...) 5. $\mathrm{p} \rightarrow$ data $=\mathrm{r} 1$; 6. print ($q \rightarrow$ data $)$; 7. $\mathrm{p} \rightarrow$ data $=\mathrm{r} 2$;	

- Is $p \rightarrow$ data live at the exit of line 5 ? Can we delete line 5 ?
- No, if p and q can be possibly aliased (while loop or do-while loop with a circular list)

Code Optimization In Presence of Pointers

- Is $p \rightarrow$ data live at the exit of line 5? Can we delete line 5?
- No, if p and q can be possibly aliased (while loop or do-while loop with a circular list)
- Yes, if p and q are definitely not aliased (do-while loop without a circular list)

Code Optimization In Presence of Pointers

Original Program

Code Optimization In Presence of Pointers

Original Program Constant Propagation without aliasing

Code Optimization In Presence of Pointers

Original Program Constant Propagation
Constant Propagation with aliasing

The World of Pointer Analysis

Alias Information Vs. Points-To Information

- What about transitivity?

Alias Information Vs. Points-To Information

- What about transitivity?
- Points-To: No.

Alias Information Vs. Points-To Information

- What about transitivity?
- Points-To: No.
- Alias: Depends.

Introduction

Two important dimensions for precise pointer analysis are

- Flow Sensitivity
- Context Sensitivity

Flow Sensitive analysis

A flow-sensitive analysis computes the data flow information at each program point according to the control-flow of a program.

At the exit of node n_{4}

Flow insensitive information:
$\{a \rightarrow b, a \rightarrow c, a \rightarrow d\}$
Flow sensitive information:
$\{a \rightarrow d\}$

Context Sensitivity in Interprocedural Analysis

Issues with Pointer Analysis

- For precise pointer information, we require flow and context sensitive pointer analysis
- Flow and context sensitive pointer analysis computes a large size of information

Example of Points-to Analysis

Is All This Information Useful?

Is All This Information Useful?

Is All This Information Useful?

Improving pointer analysis

For a fast flow and context sensitive pointer analysis, we can reduce the number of computations done at a program point. This can be done in following ways :

- Computing pointer information for only those variables that are being used at some later program point.
- Propagating only the new data flow values obtained in current iteration to the next iteration.

Liveness Based Pointer analysis(L-FCPA)

- A flow and context sensitive pointer analysis

Liveness Based Pointer analysis(L-FCPA)

- A flow and context sensitive pointer analysis
- Pointer information is not computed unless a variable becomes live.

Liveness Based Pointer analysis(L-FCPA)

- A flow and context sensitive pointer analysis
- Pointer information is not computed unless a variable becomes live.
- Strong liveness is used for computing liveness information.

If basic block contains statement like $\mathrm{x}=\mathrm{y}$, then y is said to be live, if x is live at the exit of basic block.

Liveness Based Pointer analysis(L-FCPA)

- A flow and context sensitive pointer analysis
- Pointer information is not computed unless a variable becomes live.
- Strong liveness is used for computing liveness information.

If basic block contains statement like $x=y$, then y is said to be live, if x is live at the exit of basic block.

- Pointer information is propagated only in live range of the pointer

First Round of Liveness Analysis and Points-to Analysis

First Round of Liveness Analysis and Points-to Analysis

First Round of Liveness Analysis and Points-to Analysis

First Round of Liveness Analysis and Points-to Analysis

First Round of Liveness Analysis and Points-to Analysis

First Round of Liveness Analysis and Points-to Analysis

First Round of Liveness Analysis and Points-to Analysis

First Round of Liveness Analysis and Points-to Analysis

First Round of Liveness Analysis and Points-to Analysis

First Round of Liveness Analysis and Points-to Analysis

First Round of Liveness Analysis and Points-to Analysis

First Round of Liveness Analysis and Points-to Analysis

First Round of Liveness Analysis and Points-to Analysis

Second Round of Liveness Analysis and Points-to Analysis

Second Round of Liveness Analysis and Points-to Analysis

Second Round of Liveness Analysis and Points-to Analysis

Second Round of Liveness Analysis and Points-to Analysis

Second Round of Liveness Analysis and Points-to Analysis

Second Round of Liveness Analysis and Points-to Analysis

Second Round of Liveness Analysis and Points-to Analysis

Second Round of Liveness Analysis and Points-to Analysis

Second Round of Liveness Analysis and Points-to Analysis

Second Round of Liveness Analysis and Points-to Analysis

Second Round of Liveness Analysis and Points-to Analysis

Second Round of Liveness Analysis and Points-to Analysis

Observation

- L-FCPA has 2 fixed point computations :
- Strong Liveness analysis
- Points-to analysis
- Liveness and Points-to passes are interdependent.
- Both the computations are done alternatively until final value converges.

Conclusions: New Insights in Pointer Analysis

- Usable pointer information is very small and sparse
- Earlier approaches reported inefficiency and non-scalability because they computed far more information than the actual usable information

Conclusions: New Insights in Pointer Analysis

- Usable pointer information is very small and sparse
- Earlier approaches reported inefficiency and non-scalability because they computed far more information than the actual usable information
- Triumph of The Genius of AND over the Tyranny of OR

Conclusions: New Insights in Pointer Analysis

- Usable pointer information is very small and sparse
- Earlier approaches reported inefficiency and non-scalability because they computed far more information than the actual usable information
- Triumph of The Genius of AND over the Tyranny of OR
- Future work
- Redesign data structures by hiding them behind APIs Current version uses linked lists and linear search
- Incremental version
- Using precise pointer information in other passes in GCC

Precise Context Information is Small and Sparse

Our contributions: Value based termination, liveness

Program	Total no. of functions	No. and percentage of functions for call-string counts							
		0 call strings		1-4 call strings		5-8 call strings		9+ call strings	
		L-FCPA	FCPA	L-FCPA	FCPA	L-FCPA	FCPA	L-FCPA	FCPA
lbm	22	$\begin{array}{r} 16 \\ (72.7 \%) \end{array}$	$\begin{array}{r} \hline 3 \\ (13.6 \%) \end{array}$	$\begin{array}{r} \hline 6 \\ (27.3 \%) \\ \hline \end{array}$	$\begin{array}{r} \hline 19 \\ (86.4 \%) \\ \hline \end{array}$	0	0	0	0
mcf	25	$\begin{array}{r} 16 \\ (64.0 \%) \end{array}$	$\begin{array}{r} 3 \\ (12.0 \%) \\ \hline \end{array}$	$\begin{array}{r} 9 \\ (36.0 \%) \end{array}$	$\begin{array}{r} 22 \\ (88.0 \%) \\ \hline \end{array}$	0	0	0	0
bzip2	100	$\begin{array}{r} 88 \\ (88.0 \%) \\ \hline \end{array}$	$\begin{array}{r} 38 \\ (38.0 \%) \\ \hline \end{array}$	$\begin{array}{r} 12 \\ (12.0 \%) \\ \hline \end{array}$	$\begin{array}{r} 62 \\ (62.0 \%) \\ \hline \end{array}$	0	0	0	0
libquantum	118	$\begin{array}{r} 100 \\ (84.7 \%) \\ \hline \end{array}$	$\begin{array}{r} 56 \\ (47.5 \%) \\ \hline \end{array}$	$\begin{array}{r} 17 \\ (14.4 \%) \\ \hline \end{array}$	$\begin{array}{r} 62 \\ (52.5 \%) \\ \hline \end{array}$	$\begin{array}{r} 1 \\ (0.8 \%) \\ \hline \end{array}$	0	0	0
sjeng	151	$\begin{array}{r} 96 \\ (63.6 \%) \\ \hline \end{array}$	$\begin{array}{r} 37 \\ (24.5 \%) \\ \hline \end{array}$	$\begin{array}{r} 43 \\ (28.5 \%) \\ \hline \end{array}$	$\begin{array}{r} 45 \\ (29.8 \%) \\ \hline \end{array}$	$\begin{array}{r} 12 \\ (7.9 \%) \\ \hline \end{array}$	$\begin{array}{r} 15 \\ (9.9 \%) \\ \hline \end{array}$	0	$\begin{array}{r} 54 \\ (35.8 \%) \\ \hline \end{array}$
hmmer	584	$\begin{array}{r} 548 \\ (93.8 \%) \\ \hline \end{array}$	$\begin{array}{r} 330 \\ (56.5 \%) \\ \hline \end{array}$	$\begin{array}{r} 32 \\ (5.5 \%) \\ \hline \end{array}$	$\begin{array}{r} 175 \\ (30.0 \%) \\ \hline \end{array}$	$\begin{array}{r} 4 \\ (0.7 \%) \\ \hline \end{array}$	$\begin{array}{r} 26 \\ (4.5 \%) \\ \hline \end{array}$	0	$\begin{array}{r} 53 \\ (9.1 \%) \\ \hline \end{array}$
parser	372	$\begin{gathered} 246 \\ (66.1 \%) \\ \hline \end{gathered}$	$\begin{array}{r} 76 \\ (20.4 \%) \\ \hline \end{array}$	$\begin{array}{r} 118 \\ (31.7 \%) \\ \hline \end{array}$	$\begin{array}{r} 135 \\ (36.3 \%) \\ \hline \end{array}$	$\begin{gathered} 4 \\ (1.1 \%) \end{gathered}$	$\begin{gathered} 63 \\ (16.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ (1.1 \%) \\ \hline \end{gathered}$	$\begin{array}{r} 98 \\ (26.3 \%) \\ \hline \end{array}$
	9+ call strings in L-FCPA: Tot 4, Min 10, Max 52, Mean 32.5, Median 29, Mode 10								
h264ref	624	$\begin{array}{r} 351 \\ (56.2 \%) \\ \hline \end{array}$?	$\begin{array}{r} 240 \\ (38.5 \%) \\ \hline \end{array}$?	$\begin{array}{r} 14 \\ (2.2 \%) \\ \hline \end{array}$?	$\begin{array}{r} 19 \\ (3.0 \%) \end{array}$?
	9+ call strings in L-FCPA: Tot 14, Min 9, Max 56, Mean 27.9, Median 24, Mode 9								

Precise Usable Pointer Information is Small and Sparse

Our contribution: liveness

Program	Total no. of BBs	No. and percentage of basic blocks (BBs) for points-to (pt) pair counts							
		0 pt pairs		1-4 pt pairs		5-8 pt pairs		9+ pt pairs	
		L-FCPA	FCPA	L-FCPA	FCPA	L-FCPA	FCPA	L-FCPA	FCPA
lbm	252	$\begin{gathered} \hline \hline 229 \\ (90.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 61 \\ (24.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 23 \\ (9.1 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 82 \\ (32.5 \%) \\ \hline \end{gathered}$	0	$\begin{gathered} \hline \hline 66 \\ (26.2 \%) \\ \hline \end{gathered}$	0	$\begin{gathered} \hline \hline 43 \\ (17.1 \%) \\ \hline \end{gathered}$
mcf	472	$\begin{array}{r} 356 \\ (75.4 \%) \\ \hline \end{array}$	$\begin{array}{r} 160 \\ (33.9 \%) \\ \hline \end{array}$	$\begin{array}{r} 116 \\ (24.6 \%) \\ \hline \end{array}$	$\begin{array}{r} 2 \\ (0.4 \%) \\ \hline \end{array}$	0	$\begin{array}{r} 1 \\ (0.2 \%) \\ \hline \end{array}$	0	$\begin{array}{r} 309 \\ (65.5 \%) \\ \hline \end{array}$
libquantum	1642	$\begin{gathered} 1520 \\ (92.6 \%) \\ \hline \end{gathered}$	$\begin{gathered} 793 \\ (48.3 \%) \\ \hline \end{gathered}$	$\begin{gathered} 119 \\ (7.2 \%) \\ \hline \end{gathered}$	$\begin{array}{r} 796 \\ (48.5 \%) \\ \hline \end{array}$	$\begin{array}{r} 3 \\ (0.2 \%) \\ \hline \end{array}$	$\begin{array}{r} 46 \\ (2.8 \%) \\ \hline \end{array}$	0	$\begin{array}{r} 7 \\ (0.4 \%) \\ \hline \end{array}$
bzip2	2746	$\begin{gathered} 2624 \\ (95.6 \%) \end{gathered}$	$\begin{gathered} 1085 \\ (39.5 \%) \end{gathered}$	$\begin{gathered} 118 \\ (4.3 \%) \end{gathered}$	$\begin{array}{r} 12 \\ (0.4 \%) \end{array}$	$\begin{array}{r} 3 \\ (0.1 \%) \\ \hline \end{array}$	$\begin{array}{r} 12 \\ (0.4 \%) \end{array}$	$\begin{array}{r} 1 \\ (0.0 \%) \\ \hline \end{array}$	$\begin{gathered} 1637 \\ (59.6 \%) \end{gathered}$
	$9+$ pt pairs in L-FCPA: Tot 1, Min 12, Max 12, Mean 12.0, Median 12, Mode 12								
sjeng	6000	$\begin{gathered} 4571 \\ (76.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} 3239 \\ (54.0 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1208 \\ (20.1 \%) \\ \hline \end{gathered}$	$\begin{array}{r} 12 \\ (0.2 \%) \\ \hline \end{array}$	$\begin{gathered} 221 \\ (3.7 \%) \\ \hline \end{gathered}$	$\begin{array}{r} 41 \\ (0.7 \%) \\ \hline \end{array}$	0	$\begin{gathered} 2708 \\ (45.1 \%) \\ \hline \end{gathered}$
hmmer	14418	$\begin{gathered} 13483 \\ (93.5 \%) \\ \hline \end{gathered}$	$\begin{array}{r} 8357 \\ (58.0 \%) \\ \hline \end{array}$	$\begin{gathered} 896 \\ (6.2 \%) \\ \hline \end{gathered}$	$\begin{array}{r} 21 \\ (0.1 \%) \\ \hline \end{array}$	$\begin{array}{r} 24 \\ (0.2 \%) \\ \hline \end{array}$	$\begin{gathered} 91 \\ (0.6 \%) \\ \hline \end{gathered}$	$\begin{array}{r} 15 \\ (0.1 \%) \\ \hline \end{array}$	$\begin{array}{r} 5949 \\ (41.3 \%) \\ \hline \end{array}$
	9+ pt pairs in L-FCPA: Tot 6, Min 10, Max 16, Mean 13.3, Median 13, Mode 10								
parser	6875	$\begin{gathered} 4823 \\ (70.2 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1821 \\ (26.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1591 \\ (23.1 \%) \\ \hline \end{gathered}$	$\begin{array}{r} 25 \\ (0.4 \%) \\ \hline \end{array}$	$\begin{array}{r} 252 \\ (3.7 \%) \\ \hline \end{array}$	$\begin{gathered} 154 \\ (2.2 \%) \end{gathered}$	$\begin{gathered} 209 \\ (3.0 \%) \end{gathered}$	$\begin{gathered} 4875 \\ (70.9 \%) \\ \hline \end{gathered}$
	9+ pt pairs in L-FCPA: Tot 13, Min 9, Max 53, Mean 27.9, Median 18, Mode 9								
h264ref	21315	$\begin{gathered} 13729 \\ (64.4 \%) \\ \hline \end{gathered}$?	$\begin{array}{r} 4760 \\ (22.3 \%) \\ \hline \end{array}$?	$\begin{gathered} 2035 \\ (9.5 \%) \\ \hline \end{gathered}$?	$\begin{gathered} 791 \\ (3.7 \%) \\ \hline \end{gathered}$?

