Workshop on Essential Abstractions in GCC

Introduction to Data Flow Analysis

GCC Resource Center (www.cse.iitb.ac.in/grc)

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay

1 July 2012

- Live Variables Analysis
- Available Expressions Analysis
- Pointer Analysis

Part 2

Motivation

Dead Code Elimination

 No uses for variables a_3, b_4, c_5, and n_6

Dead Code Elimination

 No uses for variables a_3, b_4, c_5, and n_6

Dead Code Elimination

- No uses for variables a_3, b_4, c_5, and n_6
- Assignments to these variables can be deleted

How can we conclude this systematically?

Introduction to DFA: Motivation

3/38

Find out at each program point p, the variables that are used beyond p

1 July 2012

Which variables are used beyond this point?

1 July 2012

3/38

Find out at each program point p, the variables that are used beyond p

Which variables are used beyond this point?

Introduction to DFA: Motivation

Find out at each program point p, the variables that are used beyond p

1 July 2012

Introduction to DFA: Motivation

Introduction to DFA: Motivation

Introduction to DFA: Motivation

Find out at each program point p, the variables that are used beyond p

1 July 2012

Find out at each program point p, the variables that are used beyond p

Introduction to DFA: Motivation

Find out at each average point at the verichles that are used have

Find out at each program point p, the variables that are used beyond p

Which variables are used beyond this point?

Liveness Analysis of Variables

Find out at each program point p, the variables that are used beyond p

Which variables are used beyond this point? $\{a_7, a_9\}$

Introduction to DFA: Motivation

{a_7, a_9}

Find out at each program point p, the variables that are used beyond p

GCC Resource Center, IIT Bombay

3/38

1 July 2012

Livelless Allalysis of Vallables

ziveness ymalysis er variablesi teeration z

Introduction to DFA: Motivation

4/38

Find out at each program point p, the variables that are used beyond p

1 July 2012

Liveness Analysis of Variables. Relation 2

Introduction to DFA: Motivation

4/38

Find out at each program point p, the variables that are used beyond p $\{a_7, a_9\}$

1 July 2012

Essential Abstractions in GCC GCC Resource Center, IIT Bombay

Using Liveness Analysis for Dead Code Elimination

5/38

Using Liveness Analysis for Dead Code Elimination

Using Liveness Analysis for Dead Code Elimination

Using Liveness Analysis for Dead Code Elimination

Using Liveness Analysis for Dead Code Elimination

Part 3

Live Variables Analysis

A variable v is live at a program point p, if some path from p to program exit contains an r-value occurrence of v which is not preceded by an l-value occurrence of v.

Path based specification

7/38

7/38

Introduction to DFA: Live Variables Analysis

$$Gen_n = \{ v \mid \text{variable } v \text{ is } \text{used in basic block } n \text{ and } \text{is not preceded by a definition of } v \}$$
 $Kill_n = \{ v \mid \text{basic block } n \text{ contains a definition of } v \}$

8/38

1 July 2012

8/38

Local Data Flow Properties for Live Variables Analysis

```
r-value occurrence
Value is only read, e.g. x,y,z in
x.sum = y.data + z.data
```

$$Gen_n = \{ v \mid \text{variable } v \text{ is used in basic block } n \text{ and is not preceded by a definition of } v \}$$
 $Kill_n = \{ v \mid \text{basic block } n \text{ contains a definition of } v \}$

within n

1 July 2012

Introduction to DFA: Live Variables Analysis

Local Data Flow Properties for Live Variables Analysis

• $Kill_n$: Definition anywhere in a block

• Gen_n: Use not preceded by definition

9/38

Introduction to DFA: Live Variables Analysis

9/38

1 July 2012

Upwards exposed use

• Gen_n: Use not preceded by definition

• $Kill_n$: Definition anywhere in a block

Stop the effect from being propagated across a block

10/38

Introduction to DFA: Live Variables Analysis

Data Flow Equations For Live Variables Analysis

$$In_n = (Out_n - Kill_n) \cup Gen_n$$
 $Out_n = \begin{cases} Bl & n \text{ is } End \text{ block} \\ \bigcup_{s \in succ(n)} In_s & \text{otherwise} \end{cases}$

11/38

1 July 2012

$$In_n = (Out_n - Kill_n) \cup Gen_n$$
 $Out_n = \begin{cases} Bl & n \text{ is } End \text{ block} \\ \bigcup_{s \in succ(n)} In_s & \text{ otherwise} \end{cases}$

 In_n and Out_n are sets of variables.

11/38

	Gen	Kill
B2	Ø	{a_3, b_4, c_5, n_6}
B4	{a_7}	{a_1}
В3	{a_1}	{a_7}
B5	{a_1}	Ø
B6	{a _ 1}	{a _ 9}
B7	{a_1, a_9}	{a _ 2}

B7 |

	Gen	Kill
B2	Ø	{a_3, b_4, c_5, n_6}
B4	{a_7}	{a_1}
B3	{a_1}	{a_7}
B5	{a_1}	Ø
B6	{a _ 1}	{a _ 9}
B7	{a_1, a_9}	{a _ 2}

	Gen	Kill
B2	Ø	{a_3, b_4, c_5, n_6}
B4	{a_7}	{a_1}
B3	{a_1}	{a_7}
B5	{a_1}	Ø
B6	{a _ 1}	{a _ 9}
B7	{a_1, a_9}	{a _ 2}

B7

	Gen	Kill
B2	Ø	{a_3, b_4, c_5, n_6}
B4	{a_7}	{a_1}
B3	{a_1}	{a_7}
B5	{a_1}	Ø
B6	{a _ 1}	{a _ 9}
B7	{a_1, a_9}	{a_2}

return a_2

B7

	Gen	Kill
B2	Ø	{a_3, b_4, c_5, n_6}
B4	{a_7}	{a_1}
B3	{a_1}	{a_7}
B5	{a_1}	Ø
B6	{a _ 1}	{a _ 9}
B7	{a_1, a_9}	{a _ 2}

return a_2

B7

	Gen	Kill
B2	Ø	{a_3, b_4, c_5, n_6}
B4	{a_7}	{a_1}
B3	{a_1}	{a_7}
B5	{a_1}	Ø
B6	{a _ 1}	{a _ 9}
В7	{a_1, a_9}	{a_2}

	Gen	Kill
B2	Ø	{a_3, b_4, c_5, n_6}
B4	{a_7}	{a_1}
B3	{a_1}	{a_7}
B5	{a_1}	Ø
B6	{a _ 1}	{a _ 9}
B7	{a_1, a_9}	{a_2}

	Gen	Kill
B2	Ø	{a_3, b_4,
		c_5, n_6}
B4	{a_7}	$\{a_1\}$
B3	$\{a_1\}$	{a_7}
B5	$\{a_1\}$	Ø
B6	{a _ 1}	{a _ 9}
B7	{a_1, a_9}	{a _ 2}

	Gen	Kill
B2	Ø	{a_3, b_4, c_5, n_6}
B4	{a_7}	{a_1}
B3	{a_1}	{a_7}
B5	{a_1}	Ø
B6	{a _ 1}	{a _ 9}
B7	{a_1, a_9}	{a _ 2}

	Gen	Kill
B2	Ø	{a_3, b_4, c_5, n_6}
B4	{a_7}	{a_1}
B3	{a_1}	{a_7}
B5	{a_1}	Ø
B6	{a _ 1}	{a _ 9}
В7	{a_1, a_9}	{a _ 2}

	Gen	Kill
B2	Ø	{a_3, b_4, c_5, n_6}
B4	{a_7}	{a_1}
B3	{a_1}	{a_7}
B5	{a_1}	Ø
B6	{a _ 1}	{a _ 9}
B7	{a_1, a_9}	{a _ 2}

	Gen	Kill
B2	Ø	{a_3, b_4, c_5, n_6}
B4	{a_7}	{a_1}
B3	{a_1}	{a_7}
B5	{a_1}	Ø
B6	{a _ 1}	{a _ 9}
В7	{a_1, a_9}	{a _ 2}

	Gen	Kill
B2	Ø	{a_3, b_4, c_5, n_6}
B4	{a_7}	{a_1}
B3	{a_1}	{a_7}
B5	{a_1}	Ø
B6	{a _ 1}	{a _ 9}
B7	{a_1, a_9}	{a _ 2}

	Gen	Kill
B2	Ø	{a_3, b_4, c_5, n_6}
B4	{a_7}	{a_1}
B3	{a_1}	{a_7}
B5	{a_1}	Ø
B6	{a_1}	{a _ 9}
B7	{a_1, a_9}	{a _ 2}

	Gen	Kill
B2	Ø	{a_3, b_4, c_5, n_6}
B4	{a_7}	{a_1}
B3	{a_1}	{a_7}
B5	{a_1}	Ø
B6	{a _ 1}	{a _ 9}
B7	{a_1, a_9}	{a _ 2}

1 July 2012

13/38

- A variable v is strongly live if it is used in
 - in statement other than assignment statement, or (this case is same as simple liveness analysis)
 - in defining other strongly live variables in an assignment statement (this case is different from simple liveness analysis)

Comparision of Simple and Strong Liveness for our Example Simple Liveness Strong Liveness

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ {a_7, a_9} $a_1 = \phi (1, a_7)$ {a_1, a_9} if a_1 \le 6 $T \{a_1, a_9\}$ B3 $a_7 = a_1 + 1$ $\{a_1, a_9\}$ {a_7, a_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2$ { a_1 } B6 $a_9 = D.1200_8 + 3$ $\{a_1, a_9\}$ print "Hello"

 $a_1 = \phi (1, a_7)$ if $a_1 \le 6$ B3 $a_{1}7 = a_{1}1 + 1$ if a_1 < 11 $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$ print "Hello"

 $a_3 = 1$; $b_4 = 2$ $c_5 = 3$; $n_6 = 6$

B7 $a_{2} = \overline{\phi (a_{1}, a_{9})}$ {a_1, a_9} ϕ

Simple Liveness Strong Liveness

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ {a_7, a_9} $a_1 = \phi (1, a_7)$ {a_1, a_9} if a_1 \le 6 $T \{a_1, a_9\}$ B3 $a_7 = a_1 + 1$ $\{a_1, a_9\}$ {*a*_7, *a*_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2 | \{a_1\}$ B6 $a_9 = D.1200_8 + 3$ $\{a_1, a_9\}$ print "Hello"

 $a_1 = \phi (1, a_7)$ if $a_1 \le 6$ B3 $a_{1}7 = a_{1}1 + 1$ if a_1 < 11 $D.1200_8 = a_1 + 2$

print "Hello"

 $a_9 = D.1200_8 + 3$

 $a_3 = 1$; $b_4 = 2$ $c_5 = 3$; $n_6 = 6$

Simple Liveness Strong Liveness

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ {a_7, a_9} $a_1 = \phi (1, a_7)$ {a_1, a_9} if a_1 \le 6 $T \{a_1, a_9\}$ B3 $a_7 = a_1 + 1$ $\{a_1, a_9\}$ {*a*_7, *a*_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2$ { a_1 } B6 $a_9 = D.1200_8 + 3$ $\{a_1, a_9\}$ print "Hello"

 $a_1 = \phi (1, a_7)$ if $a_1 \le 6$ B3 $a_{1}7 = a_{1}1 + 1$ if a_1 < 11

 $D.1200_8 = a_1 + 2$

 $a_9 = D.1200_8 + 3$

print "Hello"

 $a_3 = 1$; $b_4 = 2$ $c_5 = 3$; $n_6 = 6$

Essential Abstractions in GCC

B7 $a_{2} = \overline{\phi (a_{1}, a_{9})}$ {a_1, a_9} ϕ

GCC Resource Center, IIT Bombay

Simple Liveness Strong Liveness

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ {a_7, a_9} $a_1 = \phi (1, a_7)$ {a_1, a_9} if a_1 \le 6 $T \{a_1, a_9\}$ B3 $a_7 = a_1 + 1$ $\{a_1, a_9\}$ {*a*_7, *a*_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2 | \{a_1\}$ B6 $a_9 = D.1200_8 + 3$ $\{a_1, a_9\}$ print "Hello"

 $a_1 = \phi (1, a_7)$ if $a_1 \le 6$ B3 $a_{1}7 = a_{1}1 + 1$ if a_1 < 11

 $D.1200_8 = a_1 + 2$

 $a_9 = D.1200_8 + 3$

print "Hello"

 $a_3 = 1$; $b_4 = 2$ $c_5 = 3$; $n_6 = 6$

Essential Abstractions in GCC

B7 $a_{2} = \overline{\phi (a_{1}, a_{9})}$ {a_1, a_9} ϕ

Simple Liveness Strong Liveness

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ {a_7, a_9} $a_1 = \phi (1, a_7)$ {a_1, a_9} if a_1 \le 6 $T \{a_1, a_9\}$ B3 $a_7 = a_1 + 1$ $\{a_1, a_9\}$ {*a*_7, *a*_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2 | \{a_1\}$ B6 $a_9 = D.1200_8 + 3$ $\{a_1, a_9\}$ print "Hello"

print "Hello"

GCC Resource Center, IIT Bombay

 $a_3 = 1$; $b_4 = 2$ $c_5 = 3$; $n_6 = 6$

Simple Liveness Strong Liveness

 $\{a_1, a_9\}$

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ {a_7, a_9} $a_1 = \phi (1, a_7)$ {a_1, a_9} if a_1 \le 6 $T \{a_1, a_9\}$ B3 $a_7 = a_1 + 1$ $\{a_1, a_9\}$ {*a*_7, *a*_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2$ { a_1 } B6 $a_9 = D.1200_8 + 3$

print "Hello"

 $a_1 = \phi (1, a_7)$ if $a_1 \le 6$ B3 $a_7 = a_1 + 1$ if a_1 < 11 $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$

print "Hello"

 $a_3 = 1$; $b_4 = 2$ $c_5 = 3$; $n_6 = 6$

Essential Abstractions in GCC

B7 $a_{2} = \overline{\phi (a_{1}, a_{9})}$ {a_1, a_9} ϕ GCC Resource Center, IIT Bombay

Simple Liveness Strong Liveness

 $\{a_1, a_9\}$

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ $\{a.7, a.9\}$ $a.1 = \phi (1, a.7)$ $\{a.1, a.9\}$ if $a.1 \le 6$ $T \{a_1, a_9\}$ B3 $a_7 = a_1 + 1$ $\{a_1, a_9\}$ {a_7, a_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2$ B6 $a_9 = D.1200_8 + 3$

print "Hello"

 $a_1 = \phi (1, a_7)$ if $a_1 \le 6$ B3 $a_7 = a_1 +$ {a_1} if $a_1 < 11$ $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$

 $a_3 = 1$; $b_4 = 2$ $c_5 = 3$; $n_6 = 6$

print "Hello"

Comparision of Simple and Strong Liveness for our Example Simple Liveness Strong Liveness

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ $\{a.7, a.9\}$ $a.1 = \phi (1, a.7)$ $\{a.1, a.9\}$ if $a.1 \le 6$ $T \{a_1, a_9\}$ B3 $a_7 = a_1 + 1$ $\{a_1, a_9\}$ {a_7, a_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2$ B6 $a_9 = D.1200_8 + 3$ $\{a_1, a_9\}$ print "Hello"

 $\begin{bmatrix} a.1 = \phi (1, a.7) \\ \text{if } a.1 \le 6 \end{bmatrix} B^{2}$ F B3 a.7 = a.1 + B5 T

 $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$

print "Hello"

 $a_3 = 1$; $b_4 = 2$ $c_5 = 3$; $n_6 = 6$

B7 $a_{2} = \overline{\phi (a_{1}, a_{9})}$ {a_1, a_9} ϕ

{a_1}

Comparision of Simple and Strong Liveness for our Example Simple Liveness Strong Liveness

{a_1}

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ $\{a.7, a.9\}$ $a.1 = \phi (1, a.7)$ $\{a.1, a.9\}$ if $a.1 \le 6$ $T \{a_1, a_9\}$ B3 $a_7 = a_1 + 1$ $\{a_1, a_9\}$ {a_7, a_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2$ B6 $a_9 = D.1200_8 + 3$ $\{a_1, a_9\}$ print "Hello"

 $a_3 = 1$; $b_4 = 2$ $c_5 = 3$; $n_6 = 6$ $a_1 = \phi (1, a_7)$ if $a_1 \le 6$ B3 $a_7 = a_1 + a_2$ if $a_1 < 11$ $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$ print "Hello"

GCC Resource Center, IIT Bombay

B7 $a_{2} = \overline{\phi (a_{1}, a_{9})}$ {a_1, a_9} ϕ

Simple Liveness Strong Liveness

 $\{a_1, a_9\}$

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ $\{a.7, a.9\}$ $a.1 = \phi (1, a.7)$ $\{a.1, a.9\}$ if $a.1 \le 6$ $T \{a_1, a_9\}$ B3 $a_7 = a_1 + 1$ $\{a_1, a_9\}$ {a_7, a_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2$ B6 $a_9 = D.1200_8 + 3$

print "Hello"

 $a_1 = \phi (1, a_7)$ if $a_1 \le 6$ B3 $a_7 = a_1 + a_2$ {a_1} if $a_1 < 11$ $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$ print "Hello"

GCC Resource Center, IIT Bombay

 $a_3 = 1$; $b_4 = 2$ $c_5 = 3$; $n_6 = 6$

Simple Liveness Strong Liveness

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ $\{a.7, a.9\}$ $a.1 = \phi (1, a.7)$ $\{a.1, a.9\}$ if $a.1 \le 6$ $T \{a_1, a_9\}$ B3 $|a_7 = a_1 + 1|$ $\{a_1, a_9\}$ {a_7, a_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$ $\{a_1, a_9\}$ print "Hello"

 $\{a_7\} \mid a_1 = \phi (1, a_7)$ $\{a_1\}$ if $a_1 \le 6$ B3 $a_7 = a_1 + a_2$ {a_1} if $a_1 < 11$ $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$

print "Hello"

 $a_3 = 1$; $b_4 = 2$ $c_5 = 3$; $n_6 = 6$

15/38

Simple Liveness Strong Liveness

 $\{a_1, a_9\}$

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ $\{a_7, a_9\}$ $a_1 = \phi (1, a_7)$ $\{a_1, a_9\}$ if $a_1 \le 6$ $T \{a_1, a_9\}$ B3 $a_7 = a_1 + 1$ $\{a_1, a_9\}$ {*a*_7, *a*_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$

print "Hello"

 $\{a_7\} \mid a_1 = \phi (1, a_7)$ $\{a_1\}$ if $a_1 \le 6$ B3 $a_7 = a_1 + a_2$ {a_1} if $a_1 < 11$ $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$

print "Hello"

 $a_3 = 1$; $b_4 = 2$ $c_5 = 3$; $n_6 = 6$

Simple Liveness Strong Liveness

{a_1}

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ {a_7, a_9} $a_1 = \phi (1, a_7)$ {a_1, a_9} if a_1 \le 6 $T \{a_1, a_9\}$ B3 $a_7 = a_1 + 1$ $\{a_1, a_9\}$ {*a*_7, *a*_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$ $\{a_1, a_9\}$ print "Hello"

 a_{-7} $a_{-3} = 1$; $b_{-4} = 2$ $c_{-5} = 3$; $a_{-6} = 6$ $\{a_7\} | a_1 = \phi (1, a_7)$ $\{a_1\}$ if $a_1 \le 6$ B3 $a_7 = a_1 + a_2$ if $a_1 < 11$ $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$ print "Hello"

GCC Resource Center, IIT Bombay

B7 $\begin{vmatrix} a_{.}2 = \phi \ (a_{.}1, a_{.}9) \end{vmatrix}$ $\begin{cases} a_{.}1, a_{.}9 \end{cases}$

15/38

Comparision of Simple and Strong Liveness for our Example Simple Liveness Strong Liveness

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ {a_7, a_9} $a_1 = \phi (1, a_7)$ {a_1, a_9} if a_1 \le 6 $T \{a_1, a_9\}$ B3 $a_7 = a_1 + 1$ $\{a_1, a_9\}$ {a_7, a_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$ $\{a_1, a_9\}$ print "Hello"

 a_{-7} $a_{-3} = 1$; $b_{-4} = 2$ $c_{-5} = 3$; $a_{-6} = 6$ $\{a_7\} | a_1 = \phi (1, a_7)$ $\{a_1\}$ if $a_1 \le 6$ B3 $a_7 = a_1 + a_2$ {a_7} if $a_1 < 11$

 $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$

print "Hello"

{a_1}

15/38

Comparision of Simple and Strong Liveness for our Example Simple Liveness Strong Liveness

 ${a_7, a_9}$ $a_3 = 1; b_4 = 2$ $c_5 = 3; n_6 = 6$ $\{a_7, a_9\}$ $a_1 = \phi (1, a_7)$ $\{a_1, a_9\}$ if $a_1 \le 6$ $T \{a_1, a_9\}$ B3 $a_7 = a_1 + 1$ $\{a_1, a_9\}$ {a_7, a_9} if a_1 < 11 | B5 $\{a_1, a_9\}$ $D.1200_8 = a_1 + 2$ $a_9 = D.1200_8 + 3$ $\{a_1, a_9\}$ print "Hello"

Introduction to DFA: Live Variables Analysis

Using Data Flow Information of Live Variables Analysis

16/38

If variable x is live in a basic block b, it is a potential candidate for register allocation.

Essential Abstractions in GCC

GCC Resource Center, IIT Bombay

Osing Data Flow Information of Live Variables Analysis

- Used for register allocation.
 If variable x is live in a basic block b, it is a potential candidate for
- Used for dead code elimination.

register allocation.

If variable x is not live after an assignment $x = \ldots$, then the assginment is redundant and can be deleted as dead code.

Part 4

Available Expressions Analysis

Local Data Flow Properties for Available Expressions Analysis

 $Gen_n = \{e \mid \text{ expression } e \text{ is evaluated in basic block } n \text{ and } \}$ this evaluation is not followed by a definition of any operand of e

 $Kill_n = \{ e \mid \text{basic block } n \text{ contains a definition of an operand of } e \}$

	Entity	Manipulation	Exposition
Genn	Expression	Use	Downwards
Kill _n	Expression	Modification	Anywhere

$$In_n = \begin{cases} BI & n \text{ is } Start \text{ block} \\ \bigcap_{p \in pred(n)} Out_p & \text{otherwise} \end{cases}$$
 $Out_n = Gen_n \cup (In_n - Kill_n)$

Introduction to DFA: Available Expressions Analysis

rata Flow Equations For Available Expressions Analysis

Introduction to DFA: Available Expressions Analysis

$$In_n = \begin{cases} BI & n \text{ is } Start \text{ block} \\ \bigcap_{p \in pred(n)} Out_p & \text{otherwise} \end{cases}$$
 $Out_n = Gen_n \cup (In_n - Kill_n)$

Alternatively,
$$Out_n = f_n(In_n)$$
, where

$$f_n(X) = Gen_n \cup (X - Kill_n)$$

Data Flow Equations For Available Expressions Analysis

Introduction to DFA: Available Expressions Analysis

$$In_n = \begin{cases} BI & n \text{ is } Start \text{ block} \\ \bigcap_{p \in pred(n)} Out_p & \text{otherwise} \end{cases}$$
 $Out_n = Gen_n \cup (In_n - Kill_n)$

Alternatively, $Out_n = f_n(In_n),$ where

$$f_n(X) = Gen_n \cup (X - Kill_n)$$

 In_n and Out_n are sets of expressions.

Introduction to DFA: Available Expressions Analysis

Using Data Flow Information of Available Expressions Analysis

Common subsexpression elimination

Analysis

Introduction to DFA: Available Expressions Analysis

- Common subsexpression elimination
 - ▶ If an expression is available at the entry of a block b and

20/38

1 July 2012

Analysis

Introduction to DFA: Available Expressions Analysis

- Common subsexpression elimination
 - ▶ If an expression is available at the entry of a block b and
 - ▶ a computation of the expression exists in *b* such that

- Common subsexpression elimination
 - ▶ If an expression is available at the entry of a block b and

Analysis

- ▶ a computation of the expression exists in b such that
- ▶ it is not preceded by a definition of any of its operands

20/38

Using Data Flow Information of Available Expressions Analysis

- Common subsexpression elimination
 - ▶ If an expression is available at the entry of a block b and
 - ▶ a computation of the expression exists in b such that
 - ▶ it is not preceded by a definition of any of its operands

Then the expression is redundant

Analysis

- Common subsexpression elimination
 - ▶ If an expression is available at the entry of a block b and
 - ▶ a computation of the expression exists in b such that
 - ▶ it is not preceded by a definition of any of its operands

Then the expression is redundant

Redundant expression must be upwards exposed

Using Data Flow Information of Available Expressions **Analysis**

- Common subsexpression elimination
 - ▶ If an expression is available at the entry of a block b and
 - ▶ a computation of the expression exists in b such that
 - ▶ it is not preceded by a definition of any of its operands

Then the expression is redundant

- Redundant expression must be upwards exposed
- Expressions in Gen_n are downwards exposed

Part 5

Introduction to Pointer Analysis

Program		Memory graph at statement 5
_	 q = p; while () { q = q→next; } p→data = r1; print (q→data); p→data = r2; 	p p next next

• Is p→data live at the exit of line 5? Can we delete line 5?

Program	Memory graph at statement 5
 q = p; do { q = q→next; while () p→data = r1; print (q→data); 	$ \begin{array}{c} $

• Is p→data live at the exit of line 5? Can we delete line 5?

Program	Memory graph at statement 5
 q = p; do { q = q→next; while () p→data = r1; print (q→data); n→data = r2; 	$\begin{array}{c} q \\ \hline \\ p \\ \hline \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$

- Is p→data live at the exit of line 5? Can we delete line 5?
- No, if p and q can be possibly aliased (while loop or do-while loop with a circular list)

Program

Code Optimization In Presence of Pointers

Memory graph at statement 5

1. q = p; 2. do { 3. q = q→next; 4. while () 5. p→data = r1; 6. print (q→data); 7. p→data = r2:	
7. $p\rightarrow data = r2;$	

- Is p→data live at the exit of line 5? Can we delete line 5?
- No, if p and q can be possibly aliased (while loop or do-while loop with a circular list)
- Yes, if p and q are definitely not aliased (do-while loop without a circular list)

Introduction to DFA: Introduction to Pointer Analysis

22/38

1 July 2012

a = 5

Original Program

Original Program Constant Propagation without aliasing

22/38

Code Optimization In Presence of Pointers

Original Program Constant Propagation Constant Propagation without aliasing with aliasing

The World of Pointer Analysis

Introduction to DFA: Introduction to Pointer Analysis

24/38

1 July 2012

denoted $x \rightarrow a$

"x Points-To a"

1 July 2012

Alias Information Vs. Points-To Information

What about transitivity?

Alias Information Vs. Points-To Information

- What about transitivity?
 - Points-To: No.

Alias Information Vs. Points-To Information

- What about transitivity?
 - ▶ Points-To: No.
 - ► Alias: Depends.

Two important dimensions for precise pointer analysis are

Introduction to DFA: Introduction to Pointer Analysis

- Flow Sensitivity
- Context Sensitivity

Flow Sensitive analysis

A flow-sensitive analysis computes the data flow information at each program point according to the control-flow of a program.

At the exit of node n_4

Flow insensitive information:

$$\{a \rightarrow b, a \rightarrow c, a \rightarrow d\}$$

Flow sensitive information:

$$\{a \rightarrow d\}$$

Introduction to DFA: Introduction to Pointer Analysis

- For precise pointer information, we require flow and context sensitive pointer analysis
- Flow and context sensitive pointer analysis computes a large size of information

30/38

30/38

31/38

improving pointer analysis

For a fast flow and context sensitive pointer analysis, we can reduce the number of computations done at a program point. This can be done in following ways: $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2$

- Computing pointer information for only those variables that are being used at some later program point.
- Propagating only the new data flow values obtained in current iteration to the next iteration.

Introduction to DFA: Introduction to Pointer Analysis

• A flow and context sensitive pointer analysis

- A flow and context sensitive pointer analysis
- Pointer information is not computed unless a variable becomes live.

- A flow and context sensitive pointer analysis
- Pointer information is not computed unless a variable becomes live.
- Strong liveness is used for computing liveness information.

If basic block contains statement like x=y, then y is said to be live, if x is live at the exit of basic block.

- A flow and context sensitive pointer analysis
- Pointer information is not computed unless a variable becomes live.
- Strong liveness is used for computing liveness information. If basic block contains statement like x = y, then y is said to be live, if x is live at the exit of basic block.
- Pointer information is propagated only in live range of the pointer

First Round of Liveness Analysis and Points-to Analysis

1 July 2012

35/38

L-FCPA has 2 fixed point computations :

- Strong Liveness analysis
- ► Points-to analysis

- Liveness and Points-to passes are interdependent.
- Both the computations are done alternatively until final value converges.

- Usable pointer information is very small and sparse
- Earlier approaches reported inefficiency and non-scalability because they computed far more information than the actual usable information

Conclusions: New Insights in Pointer Analysis

- Usable pointer information is very small and sparse
- Earlier approaches reported inefficiency and non-scalability because they computed far more information than the actual usable information
- Triumph of *The Genius of AND over the Tyranny of OR*

36/38

Conclusions: New Insights in Pointer Analysis

- Usable pointer information is very small and sparse
- Earlier approaches reported inefficiency and non-scalability because they computed far more information than the actual usable information
- Triumph of The Genius of AND over the Tyranny of OR
- Future work
 - Redesign data structures by hiding them behind APIs
 Current version uses linked lists and linear search
 - ► Incremental version
 - ▶ Using precise pointer information in other passes in GCC

Precise Context Information is Small and Sparse

Our contributions: Value based termination, liveness

	Total	No. and percentage of functions for call-string counts							
Program	no. of	0 call strings		1-4 call strings		5-8 call strings		9+ call strings	
	functions	L-FCPA	FCPA	L-FCPA	FCPA	L-FCPA	FCPA	L-FCPA	FCPA
lbm	22	16 (72.7%)	3 (13.6%)	6 (27.3%)	19 (86.4%)	0	0	0	0
mcf	25	16 (64.0%)	3 (12.0%)	9 (36.0%)	22 (88.0%)	0	0	0	0
bzip2	100	88 (88.0%)	38 (38.0%)	12 (12.0%)	62 (62.0%)	0	0	0	0
libquantum	118	100 (84.7%)	56 (47.5%)	17 (14.4%)	62 (52.5%)	1 (0.8%)	0	0	0
sjeng	151	96 (63.6%)	37 (24.5%)	43 (28.5%)	45 (29.8%)	12 (7.9%)	15 (9.9%)	0	54 (35.8%)
hmmer	584	548 (93.8%)	330 (56.5%)	32 (5.5%)	175 (30.0%)	4 (0.7%)	26 (4.5%)	0	53 (9.1%)
parser	372	246 (66.1%)	76 (20.4%)	118 (31.7%)	135 (36.3%)	4 (1.1%)	63 (16.9%)	(1.1%)	98 (26.3%)
	9+ call strings in L-FCPA: Tot 4, Min 10, Max 52, Mean 32.5, Median 29, Mode 10								
h264ref	624	351 (56.2%)	?	240 (38.5%)	?	14 (2.2%)	?	19 (3.0%)	?
	9+ call strings in L-FCPA: Tot 14, Min 9, Max 56, Mean 27.9, Median 24, Mode 9								

Precise Usable Pointer Information is Small and Sparse

Our contribution: liveness

	Total	Total No		o. and percentage of basic blocks (BBs) for points-to (pt) pair counts							
Program	no. of	0 pt pairs		1-4 pt pairs		5-8 pt pairs		9+ pt pairs			
	BBs	L-FCPA	FCPA	L-FCPA	FCPA	L-FCPA	FCPA	L-FCPA	FCPA		
lbm	252	229 (90.9%)	61 (24.2%)	23 (9.1%)	82 (32.5%)	0	66 (26.2%)	0	43 (17.1%)		
mcf	472	356 (75.4%)	160 (33.9%)	116 (24.6%)	2 (0.4%)	0	1 (0.2%)	0	309 (65.5%)		
libquantum	1642	1520 (92.6%)	793 (48.3%)	119 (7.2%)	796 (48.5%)	3 (0.2%)	46 (2.8%)	0	7 (0.4%)		
bzip2	2746	2624 (95.6%)	1085 (39.5%)	118 (4.3%)	12 (0.4%)	3 (0.1%)	12 (0.4%)	(0.0%)	1637 (59.6%)		
	9+ pt pa	9+ pt pairs in L-FCPA: Tot 1, Min 12, Max 12, Mean 12.0, Median 12, Mode 12									
sjeng	6000	4571 (76.2%)	3239 (54.0%)	1208 (20.1%)	12 (0.2%)	221 (3.7%)	41 (0.7%)	0	2708 (45.1%)		
hmmer	14418	13483 (93.5%)	8357 (58.0%)	896 (6.2%)	21 (0.1%)	24 (0.2%)	91 (0.6%)	15 (0.1%)	5949 (41.3%)		
	9+ pt pairs in L-FCPA: Tot 6, Min 10, Max 16, Mean 13.3, Median 13, Mode 10										
parser	6875	4823 (70.2%)	1821 (26.5%)	1591 (23.1%)	25 (0.4%)	252 (3.7%)	154 (2.2%)	209 (3.0%)	4875 (70.9%)		
	9+ pt pairs in L-FCPA: Tot 13, Min 9, Max 53, Mean 27.9, Median 18, Mode 9										
h264ref	21315	13729 (64.4%)	?	4760 (22.3%)	?	2035 (9.5%)	?	791 (3.7%)	?		
	9+ pt pairs in L-FCPA: Tot 44, Min 9, Max 98, Mean 36.3, Median 31, Mode 9										